JP2003533676A5 - - Google Patents

Download PDF

Info

Publication number
JP2003533676A5
JP2003533676A5 JP2001578932A JP2001578932A JP2003533676A5 JP 2003533676 A5 JP2003533676 A5 JP 2003533676A5 JP 2001578932 A JP2001578932 A JP 2001578932A JP 2001578932 A JP2001578932 A JP 2001578932A JP 2003533676 A5 JP2003533676 A5 JP 2003533676A5
Authority
JP
Japan
Prior art keywords
opening
charge
polymer
component
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001578932A
Other languages
Japanese (ja)
Other versions
JP4719906B2 (en
JP2003533676A (en
Filing date
Publication date
Priority claimed from US09/653,543 external-priority patent/US6413792B1/en
Application filed filed Critical
Priority claimed from PCT/US2001/013101 external-priority patent/WO2001081896A1/en
Publication of JP2003533676A publication Critical patent/JP2003533676A/en
Publication of JP2003533676A5 publication Critical patent/JP2003533676A5/ja
Application granted granted Critical
Publication of JP4719906B2 publication Critical patent/JP4719906B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【特許請求の範囲】
【請求項1】
少なくとも1つのポリマーを検出するためのシステムであって、
前記ポリマーが通過可能な開口部を有する少なくとも1つの検出領域を有する少なくとも1つの半導体装置を含み、前記開口部は、約100nm以下の断面積を有し、前記少なくとも1つのポリマーが前記開口部を通過する間に少なくとも前記ポリマーの構成要素の電荷が前記領域に鏡像電荷を作成するよう構成されており、前記鏡像電荷は、前記構成要素の電荷に関連する量により、前記領域の導電性を高めるのに十分であり、
前記検出領域が前記開口部における前記構成要素の前記電荷を検出するようになるように、前記検出領域は、前記ポリマーが前記開口部に入ることを可能にするのに十分な断面を有する、前記半導体装置における開口部を定義する絶縁層を有する前記半導体装置の領域を含む、システム。
【請求項2】
前記絶縁層が酸化物層を含む、請求項1に記載のシステム。
【請求項3】
前記検出領域の前記領域が、ドーピングされていない半導体層を含む、請求項1に記載のシステム。
【請求項4】
前記検出領域の前記領域が、前記開口部が形成された酸化物層を含み、前記酸化物層が少なくとも1つのシリコンナノ結晶を含んでいる、請求項1に記載のシステム。
【請求項5】
前記開口部が非円形である、請求項1に記載のシステム。
【請求項6】
ポリマーを検出するための装置を製造するための方法であって、
少なくとも1つの半導体層を含む半導体構造を提供するステップと、
前記半導体構造に前記ポリマーが通過可能な開口部を有する検出領域を作成するステップと、
前記開口部の前記断面を小さくするために前記開口部を形成する前記半導体層の壁面にドーピングされていない半導体層を形成するステップと、を含み、
前記開口部は、約100nm以下の断面積を有し、前記少なくとも1つのポリマーが前記開口部を通過する間に少なくとも前記ポリマーの構成要素の電荷が前記領域に鏡像電荷を作成するよう構成されており、前記鏡像電荷は、前記構成要素の電荷に関連する量により、前記領域の導電性を高めるのに十分である、方法。
【請求項7】
前記検出領域作成ステップが、前記開口部の前記断面を小さくするために前記開口部を形成する前記半導体層の壁面に酸化物層を形成し、前記酸化物層が少なくとも1つのシリコンナノ結晶を含んでいるステップを含む、請求項6に記載の方法。
【請求項8】
前記検出領域作成ステップが、酸化物を含む前記絶縁層を形成するステップをさらに含む、請求項6に記載の方法。
【請求項9】
少なくとも1つのポリマーを検出するためのシステムであって、
絶縁層および少なくとも1つの金属層を含む少なくとも1つの構造を含み、前記ポリマーが通過可能な開口部を有する少なくとも1つの検出領域を形成するよう配置され、前記開口部は、約100nm以下の断面積を有し、前記少なくとも1つのポリマーが前記開口部を通過する間に少なくとも前記ポリマーの構成要素の電荷が前記領域に鏡像電荷を作成するよう構成されており、前記鏡像電荷は、前記構成要素の電荷に関連する量により、前記領域の導電性を高めるのに十分である、システム。
【請求項10】
前記絶縁層が前記金属層に接触する、請求項9に記載のシステム。
【請求項11】
前記構造が2つの金属層を含み、前記絶縁層が前記2つの金属層の間に配置されている、請求項9に記載のシステム。
【請求項12】
前記検出領域が前記開口部における前記構成要素の前記電荷を検出するようになるように、前記検出領域が、前記ポリマーが前記開口部に入ることを可能にするのに十分な断面を有する前記開口部が形成された前記構造の領域を含む、請求項9に記載のシステム。
【請求項13】
前記開口部を通る前記ポリマーの動きを容易にするために前記構造において動きを生成するようになっている励起装置をさらに含む、請求項12に記載のシステム。
【請求項14】
前記開口部が非円形である、請求項12に記載のシステム。
【請求項15】
前記検出領域が凹部における前記構成要素の電荷を検出するようになるように、前記検出領域が前記構造において前記凹部が形成された前記構造の領域を含む、請求項9に記載のシステム。
【請求項16】
前記少なくとも1つの構造が、前記構成要素と結合または前記構成要素と化学反応を起こす前記半導体装置の部分(portion)がなくとも、前記構成要素の前記電荷を受動的に(passively)検出する、請求項9に記載のシステム。
【請求項17】
前記少なくとも1つの構造が、前記構成要素の単一の(single)前記電荷を受動的に(passively)に検出する、請求項9に記載のシステム。
【請求項18】
ポリマーを検出するための装置を製造するための方法であって、
絶縁層および少なくとも1つの金属層を含む構造を提供するステップと、
前記構造に検出領域を作成するステップと、を含み、
前記検出領域は、前記ポリマーが通過可能な開口部を有し、前記開口部は、約100nm以下の断面積を有し、前記少なくとも1つのポリマーが前記開口部を通過する間に少なくとも前記ポリマーの構成要素の電荷が前記領域に鏡像電荷を作成するよう構成されており、前記鏡像電荷は、前記構成要素の電荷に関連する量により、前記領域の導電性を高めるのに十分である、方法。
【請求項19】
前記構成要素が核酸鎖の塩基を含み、
前記作成ステップが前記核酸鎖の前記塩基を表す前記電荷を検出するようになっている前記検出領域を作成する、請求項18に記載の方法。
【請求項20】
前記構造に開口部を作成し、前記開口部が前記ポリマーの一部がそれを通過することを可能にするのに十分な断面を有し、前記検出領域が前記開口部における前記構成要素を表す前記電荷を検出するようになるように前記検出領域に対して位置決めされているステップをさらに含む、請求項18に記載の方法。
【請求項21
前記開口部が非円形である、請求項20に記載の方法。
【請求項22】
前記検出領域が凹部における前記構成要素を表す前記電荷を検出するようになるように前記検出領域に対して位置決めされた前記凹部を前記構造に作成するステップをさらに含む、請求項18に記載の方法。
【請求項23】
前記検出領域が、前記構成要素と結合または前記構成要素と化学反応を起こす前記半導体装置の部分(portion)がなくとも、前記構成要素の電荷を受動的に(passively)検出する、請求項18に記載の方法。
【請求項24】
前記検出領域が、前記構成要素の単一の前記電荷を受動的に(passively)に検出する、請求項18に記載のシステム。
【請求項25】
少なくとも1つのポリマーを検出するためのシステムであって、
複数の検出装置と、
読取り器と、を含み、
前記検出装置のそれぞれは、前記ポリマーが通過可能な開口部を有する少なくとも1つの検出領域を有し、前記開口部は、約100nm以下の断面積を有し、前記少なくとも1つのポリマーが前記開口部を通過する間に少なくとも前記ポリマーの構成要素の電荷が前記領域に鏡像電荷を作成するよう構成されており、前記鏡像電荷は、前記構成要素の電荷に関連する量により、前記領域の導電性を高めるのに十分あり、
前記読み取り器は、前記検出装置のそれぞれからの読取りを選択的に得るようになっており、それぞれの前記読取りが前記検出装置によって検出された電荷のそれぞれを表す、システム。
【請求項26】
前記検出装置の少なくとも1つが、前記検出領域に近接する前記ポリマーの構成要素の電荷を検出するようになっている、前記検出領域を少なくとも1つ有する少なくとも1つの半導体装置を含む、請求項25に記載のシステム。
【請求項27】
前記検出装置の少なくとも1つが、少なくとも1つの前記検出領域を形成するよう配置された絶縁層および少なくとも1つの金属層を含んだ構造を含み、前記検出領域に近接する前記ポリマーの構成要素を表す電荷を検出するようになっている、請求項25に記載のシステム。
【請求項28】
前記検出装置それぞれが、前記構成要素と結合または前記構成要素と化学反応を起こす前記半導体装置の部分(portion)がなくとも、前記構成要素の前記電荷を受動的に(passively)検出する、請求項25に記載のシステム。
【請求項29】
前記検出装置それぞれが、前記構成要素の単一の前記電荷を受動的に(passively)に検出する、請求項25に記載のシステム。
【請求項30】
少なくとも1つのポリマーを検出するためのシステムであって、
前記ポリマーが通過可能な開口部を有する少なくとも1つの検出領域を有する少なくとも1つの半導体装置を含み、前記開口部は、約100nm以下の断面積を有し、前記少なくとも1つのポリマーが前記開口部を通過する間に少なくとも前記ポリマーの構成要素の電荷が前記領域に鏡像電荷を作成するよう構成されており、前記鏡像電荷は、前記構成要素の電荷に関連する量により、前記領域の導電性を高めるのに十分あり、前記検出領域が開口部における前記構成要素の前記電荷を検出するようになるようになっており、前記検出領域の前記領域が、前記開口部が形成された酸化物層を含み、前記酸化物層が少なくとも1つのシリコンナノ結晶を含んでいる、システム。
【請求項31】
ポリマーを検出するための装置を製造するための方法であって、
少なくとも1つの半導体層を含む半導体構造を提供するステップと、
前記半導体構造に検出領域を作成するステップを含み、前記検出領域は、前記ポリマーが通過可能な開口部を有し、前記開口部は、約100nm以下の断面積を有し、前記少なくとも1つのポリマーが前記開口部を通過する間に少なくとも前記ポリマーの構成要素の電荷が前記領域に鏡像電荷を作成するよう構成されており、前記鏡像電荷は、前記構成要素の電荷に関連する量により、前記領域の導電性を高めるのに十分あり、
前記開口部作成ステップが、前記開口部の前記断面を小さくするために前記開口部を形成する前記半導体層の壁面に酸化物層を形成し、前記酸化物層が少なくとも1つのシリコンナノ結晶を含んでいる、酸化物層形成ステップを含む、方法。
[Claims]
(1)
A system for detecting at least one polymer, comprising:
The device includes at least one semiconductor device having at least one detection region having an opening through which the polymer can pass , wherein the opening has a cross-sectional area of about 100 nm or less, and the at least one polymer defines the opening. At least the charge of the polymer component is configured to create a mirror image charge in the region during passage, the mirror image charge increasing the conductivity of the region by an amount associated with the charge of the component. Is enough to
The detection region has a sufficient cross-section to allow the polymer to enter the opening, such that the detection region is to detect the charge of the component in the opening. A system comprising a region of the semiconductor device having an insulating layer defining an opening in the semiconductor device .
(2)
The system of claim 1, wherein the insulating layer comprises an oxide layer.
(3)
The system of claim 1, wherein the region of the detection region includes an undoped semiconductor layer.
(4)
The system of claim 1, wherein the region of the detection region includes an oxide layer in which the opening is formed, wherein the oxide layer includes at least one silicon nanocrystal.
(5)
The system of claim 1, wherein the opening is non-circular.
6.
A method for manufacturing a device for detecting a polymer, comprising:
Providing a semiconductor structure including at least one semiconductor layer;
Creating a detection region in the semiconductor structure having an opening through which the polymer can pass;
Forming an undoped semiconductor layer on a wall surface of the semiconductor layer forming the opening to reduce the cross section of the opening,
The opening has a cross-sectional area of about 100 nm or less, and is configured such that at least a charge of a component of the polymer creates a mirror image charge in the region while the at least one polymer passes through the opening. And wherein the mirror image charge is sufficient to increase the conductivity of the region by an amount related to the charge of the component.
7.
The detecting region forming step forms an oxide layer on a wall surface of the semiconductor layer forming the opening to reduce the cross section of the opening, and the oxide layer includes at least one silicon nanocrystal. 7. The method of claim 6, comprising the step of:
Claim 8.
7. The method of claim 6, wherein the step of creating a detection region further comprises forming the insulating layer including an oxide.
9.
A system for detecting at least one polymer, comprising:
At least one structure comprising an insulating layer and at least one metal layer, wherein the at least one structure is arranged to form at least one detection region having an opening through which the polymer can pass, the opening having a cross-sectional area of about 100 nm or less. Wherein the charge of at least a component of the polymer creates a mirror image charge in the region while the at least one polymer passes through the opening, the mirror image charge of the component The system wherein the quantity associated with the charge is sufficient to increase the conductivity of the region.
10.
The system of claim 9, wherein the insulating layer contacts the metal layer.
11.
The system of claim 9, wherein the structure comprises two metal layers, and wherein the insulating layer is disposed between the two metal layers.
12.
Wherein the detection region has a cross section sufficient to allow the polymer to enter the opening, such that the detection region is to detect the charge of the component at the opening. The system of claim 9, wherein the system includes an area of the structure where a portion is formed.
Claim 13
13. The system of claim 12, further comprising an exciter adapted to generate motion in the structure to facilitate movement of the polymer through the opening.
14.
13. The system of claim 12, wherein the opening is non-circular.
15.
The system of claim 9, wherein the detection region comprises a region of the structure where the depression is formed in the structure, such that the detection region is adapted to detect a charge of the component in the depression.
16.
The at least one structure passively detects the charge on the component without a portion of the semiconductor device that couples to or chemically reacts with the component. Item 10. The system according to Item 9.
17.
The system of claim 9, wherein the at least one structure passively detects a single charge of the component.
18.
A method for manufacturing a device for detecting a polymer, comprising:
Providing a structure comprising an insulating layer and at least one metal layer;
Creating a detection region in the structure,
The detection region has an opening through which the polymer can pass, the opening has a cross-sectional area of about 100 nm or less, and at least one of the polymers passes while the at least one polymer passes through the opening. The method wherein the component charge is configured to create a mirror image charge in the region, wherein the mirror image charge is sufficient to increase the conductivity of the region by an amount associated with the component charge.
(19)
The component comprises a nucleic acid strand base,
19. The method of claim 18, wherein said creating step creates said detection region adapted to detect said charge representing said base of said nucleic acid strand.
20.
Creating an opening in the structure, the opening having a sufficient cross-section to allow a portion of the polymer to pass therethrough, and the detection area representing the component at the opening 19. The method of claim 18, further comprising the step of being positioned with respect to the detection region to detect the charge.
21.
21. The method of claim 20, wherein said openings are non-circular.
22.
19. The method of claim 18, further comprising creating the recess in the structure positioned relative to the detection region such that the detection region is to detect the charge representing the component in the recess. .
23.
19. The method of claim 18, wherein the detection region passively detects a charge on the component without the portion of the semiconductor device that couples to or chemically reacts with the component. The described method.
24.
20. The system of claim 18, wherein the detection region passively detects a single charge of the component.
25.
A system for detecting at least one polymer, comprising:
A plurality of detection devices;
A reader;
Each of the detection devices has at least one detection region having an opening through which the polymer can pass, wherein the opening has a cross-sectional area of about 100 nm or less, and wherein the at least one polymer has the opening. At least the charge of the component of the polymer is configured to create a mirror image charge in the region while passing through the mirror image, wherein the image charge, by an amount related to the charge of the component, reduces the conductivity of the region. Enough to enhance,
The system wherein the reader is adapted to selectively obtain readings from each of the detection devices, wherein each of the readings represents a respective one of the charges detected by the detection device.
26.
26. The method of claim 25, wherein at least one of the detection devices includes at least one semiconductor device having at least one of the detection regions, adapted to detect a charge of a component of the polymer proximate to the detection region. The described system.
27.
At least one of the detection devices includes a structure that includes an insulating layer and at least one metal layer arranged to form at least one of the detection regions, and a charge representing a component of the polymer proximate to the detection region. 26. The system of claim 25, wherein the system is adapted to detect
28.
The method of claim 1, wherein each of the detection devices passively detects the charge on the component without the portion of the semiconductor device that couples to or chemically reacts with the component. The system according to claim 25.
29.
26. The system of claim 25, wherein each of said detection devices passively detects a single said charge of said component.
30.
A system for detecting at least one polymer, comprising:
The device includes at least one semiconductor device having at least one detection region having an opening through which the polymer can pass, wherein the opening has a cross-sectional area of about 100 nm or less, and the at least one polymer defines the opening. At least the charge of the polymer component is configured to create a mirror image charge in the region during passage, the mirror image charge increasing the conductivity of the region by an amount associated with the charge of the component. The detection region is adapted to detect the charge of the component in an opening, the region of the detection region including an oxide layer in which the opening is formed. The system wherein the oxide layer comprises at least one silicon nanocrystal.
31.
A method for manufacturing a device for detecting a polymer, comprising:
Providing a semiconductor structure including at least one semiconductor layer;
Creating a detection region in the semiconductor structure, wherein the detection region has an opening through which the polymer can pass, the opening has a cross-sectional area of about 100 nm or less, and the at least one polymer Is configured such that at least a charge of the polymer component creates a mirror image charge in the region while passing through the opening, wherein the mirror image charge is increased by an amount related to the charge of the component. Enough to increase the conductivity of the
The opening forming step includes forming an oxide layer on a wall surface of the semiconductor layer forming the opening to reduce the cross section of the opening, wherein the oxide layer includes at least one silicon nanocrystal. A method comprising forming an oxide layer.

JP2001578932A 2000-04-24 2001-04-24 Field effect transistor device for ultrafast nucleic acid sequencing Expired - Lifetime JP4719906B2 (en)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US19913000P 2000-04-24 2000-04-24
US60/199,130 2000-04-24
US21768100P 2000-07-12 2000-07-12
US60/217,681 2000-07-12
US09/653,543 2000-08-31
US09/653,543 US6413792B1 (en) 2000-04-24 2000-08-31 Ultra-fast nucleic acid sequencing device and a method for making and using the same
US25958401P 2001-01-04 2001-01-04
US60/259,584 2001-01-04
PCT/US2001/013101 WO2001081896A1 (en) 2000-04-24 2001-04-24 An ultra-fast nucleic acid sequencing device and a method for making and using the same

Publications (3)

Publication Number Publication Date
JP2003533676A JP2003533676A (en) 2003-11-11
JP2003533676A5 true JP2003533676A5 (en) 2008-06-19
JP4719906B2 JP4719906B2 (en) 2011-07-06

Family

ID=27498237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001578932A Expired - Lifetime JP4719906B2 (en) 2000-04-24 2001-04-24 Field effect transistor device for ultrafast nucleic acid sequencing

Country Status (4)

Country Link
EP (1) EP1285252A1 (en)
JP (1) JP4719906B2 (en)
AU (1) AU2001259128A1 (en)
WO (1) WO2001081896A1 (en)

Families Citing this family (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6413792B1 (en) * 2000-04-24 2002-07-02 Eagle Research Development, Llc Ultra-fast nucleic acid sequencing device and a method for making and using the same
US7250115B2 (en) 2003-06-12 2007-07-31 Agilent Technologies, Inc Nanopore with resonant tunneling electrodes
US7347921B2 (en) 2003-07-17 2008-03-25 Agilent Technologies, Inc. Apparatus and method for threading a biopolymer through a nanopore
US7138672B2 (en) 2003-09-25 2006-11-21 Agilent Technologies, Inc. Apparatus and method for making a tensile diaphragm with an insert
US6846702B1 (en) 2003-10-24 2005-01-25 Agilent Technologies, Inc. Nanopore chip with N-type semiconductor
US7279337B2 (en) 2004-03-10 2007-10-09 Agilent Technologies, Inc. Method and apparatus for sequencing polymers through tunneling conductance variation detection
US8536661B1 (en) 2004-06-25 2013-09-17 University Of Hawaii Biosensor chip sensor protection methods
CN101103357B (en) 2004-08-13 2012-10-03 哈佛学院院长等 An ultra high-throughput opti-nanopore DNA readout platform
US7888013B2 (en) 2004-08-27 2011-02-15 National Institute For Materials Science Method of analyzing DNA sequence using field-effect device, and base sequence analyzer
US8563237B2 (en) * 2004-09-30 2013-10-22 Agilent Technologies, Inc. Biopolymer resonant tunneling with a gate voltage source
US7785785B2 (en) 2004-11-12 2010-08-31 The Board Of Trustees Of The Leland Stanford Junior University Charge perturbation detection system for DNA and other molecules
EP2348300A3 (en) * 2005-04-06 2011-10-12 The President and Fellows of Harvard College Molecular characterization with carbon nanotube control
US20100291548A1 (en) 2006-03-12 2010-11-18 Applera Corporation Methods of Detecting Target Nucleic Acids
CA2672315A1 (en) 2006-12-14 2008-06-26 Ion Torrent Systems Incorporated Methods and apparatus for measuring analytes using large scale fet arrays
US11339430B2 (en) 2007-07-10 2022-05-24 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US8262900B2 (en) 2006-12-14 2012-09-11 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US8349167B2 (en) 2006-12-14 2013-01-08 Life Technologies Corporation Methods and apparatus for detecting molecular interactions using FET arrays
GB0625070D0 (en) * 2006-12-15 2007-01-24 Imp Innovations Ltd Characterization of molecules
US8003319B2 (en) 2007-02-02 2011-08-23 International Business Machines Corporation Systems and methods for controlling position of charged polymer inside nanopore
US9034637B2 (en) * 2007-04-25 2015-05-19 Nxp, B.V. Apparatus and method for molecule detection using nanopores
US8192600B2 (en) * 2007-09-27 2012-06-05 The Board Of Trustees Of The University Of Illinois Solid state device
WO2010008480A2 (en) 2008-06-25 2010-01-21 Ion Torrent Systems Incorporated Methods and apparatus for measuring analytes using large scale fet arrays
US20100301398A1 (en) 2009-05-29 2010-12-02 Ion Torrent Systems Incorporated Methods and apparatus for measuring analytes
US20100137143A1 (en) 2008-10-22 2010-06-03 Ion Torrent Systems Incorporated Methods and apparatus for measuring analytes
US20120261274A1 (en) 2009-05-29 2012-10-18 Life Technologies Corporation Methods and apparatus for measuring analytes
US8776573B2 (en) 2009-05-29 2014-07-15 Life Technologies Corporation Methods and apparatus for measuring analytes
JP5586001B2 (en) * 2009-08-26 2014-09-10 独立行政法人物質・材料研究機構 Nanoribbon and manufacturing method thereof, FET using nanoribbon and manufacturing method thereof, base sequence determination method using nanoribbon and apparatus thereof
WO2011108540A1 (en) 2010-03-03 2011-09-09 国立大学法人大阪大学 Method and device for identifying nucleotide, and method and device for determining nucleotide sequence of polynucleotide
US8940148B2 (en) 2010-06-22 2015-01-27 International Business Machines Corporation Nano-fluidic field effective device to control DNA transport through the same
US8598018B2 (en) 2010-06-22 2013-12-03 International Business Machines Corporation Forming an electrode having reduced corrosion and water decomposition on surface using a custom oxide layer
US8354336B2 (en) 2010-06-22 2013-01-15 International Business Machines Corporation Forming an electrode having reduced corrosion and water decomposition on surface using an organic protective layer
JP2013533482A (en) 2010-06-30 2013-08-22 ライフ テクノロジーズ コーポレーション Ion-sensitive charge storage circuit and method
CN106449632B (en) 2010-06-30 2019-09-20 生命科技公司 Array column integrator
US11307166B2 (en) 2010-07-01 2022-04-19 Life Technologies Corporation Column ADC
JP5876044B2 (en) 2010-07-03 2016-03-02 ライフ テクノロジーズ コーポレーション Chemically sensitive sensor with lightly doped drain
EP2617061B1 (en) 2010-09-15 2021-06-30 Life Technologies Corporation Methods and apparatus for measuring analytes
WO2012039812A1 (en) 2010-09-24 2012-03-29 Life Technologies Corporation Matched pair transistor circuits
GB201113309D0 (en) * 2011-08-02 2011-09-14 Izon Science Ltd Characterisation of particles
EP2574923A1 (en) * 2011-09-28 2013-04-03 Koninklijke Philips Electronics N.V. Apparatus for the processing of single molecules
US9970984B2 (en) 2011-12-01 2018-05-15 Life Technologies Corporation Method and apparatus for identifying defects in a chemical sensor array
US9758821B2 (en) 2012-04-17 2017-09-12 International Business Machines Corporation Graphene transistor gated by charges through a nanopore for bio-molecular sensing and DNA sequencing
CN103424457B (en) * 2012-05-18 2016-02-10 中国科学院微电子研究所 Biosensor and DNA sequencing method thereof
US8786331B2 (en) 2012-05-29 2014-07-22 Life Technologies Corporation System for reducing noise in a chemical sensor array
JP6033602B2 (en) * 2012-08-08 2016-11-30 株式会社日立ハイテクノロジーズ Biomolecule detection method, biomolecule detection apparatus, and analytical device
US9535033B2 (en) 2012-08-17 2017-01-03 Quantum Biosystems Inc. Sample analysis method
JP6282036B2 (en) 2012-12-27 2018-02-21 クオンタムバイオシステムズ株式会社 Method and control apparatus for controlling movement speed of substance
US9080968B2 (en) 2013-01-04 2015-07-14 Life Technologies Corporation Methods and systems for point of use removal of sacrificial material
US9841398B2 (en) 2013-01-08 2017-12-12 Life Technologies Corporation Methods for manufacturing well structures for low-noise chemical sensors
US8962366B2 (en) 2013-01-28 2015-02-24 Life Technologies Corporation Self-aligned well structures for low-noise chemical sensors
CN103193189B (en) * 2013-02-21 2015-08-26 东南大学 A kind of multi-electrode nanopore device for DNA detection and manufacture method thereof
US8963216B2 (en) 2013-03-13 2015-02-24 Life Technologies Corporation Chemical sensor with sidewall spacer sensor surface
US8841217B1 (en) 2013-03-13 2014-09-23 Life Technologies Corporation Chemical sensor with protruded sensor surface
US9835585B2 (en) 2013-03-15 2017-12-05 Life Technologies Corporation Chemical sensor with protruded sensor surface
EP2972281B1 (en) 2013-03-15 2023-07-26 Life Technologies Corporation Chemical device with thin conductive element
EP2972280B1 (en) 2013-03-15 2021-09-29 Life Technologies Corporation Chemical sensor with consistent sensor surface areas
US9116117B2 (en) 2013-03-15 2015-08-25 Life Technologies Corporation Chemical sensor with sidewall sensor surface
JP6581074B2 (en) 2013-03-15 2019-09-25 ライフ テクノロジーズ コーポレーション Chemical sensor with consistent sensor surface area
US20140336063A1 (en) 2013-05-09 2014-11-13 Life Technologies Corporation Windowed Sequencing
US10458942B2 (en) 2013-06-10 2019-10-29 Life Technologies Corporation Chemical sensor array having multiple sensors per well
US9377431B2 (en) 2013-07-24 2016-06-28 Globalfoundries Inc. Heterojunction nanopore for sequencing
EP3578987A1 (en) 2013-09-18 2019-12-11 Quantum Biosystems Inc. Biomolecule sequencing devices, systems and methods
JP2015077652A (en) 2013-10-16 2015-04-23 クオンタムバイオシステムズ株式会社 Nano-gap electrode and method for manufacturing same
JP6208253B2 (en) * 2013-11-08 2017-10-04 株式会社日立ハイテクノロジーズ DNA transport control device, manufacturing method thereof, and DNA sequencing apparatus
JP2015154750A (en) * 2014-02-20 2015-08-27 国立大学法人大阪大学 Electrode for biomolecule sequencing apparatus, and biomolecule sequencing apparatus, method, and program
US10438811B1 (en) 2014-04-15 2019-10-08 Quantum Biosystems Inc. Methods for forming nano-gap electrodes for use in nanosensors
WO2015170782A1 (en) 2014-05-08 2015-11-12 Osaka University Devices, systems and methods for linearization of polymers
JP6434744B2 (en) * 2014-08-07 2018-12-05 ローラス株式会社 Semiconductor biosensor
JP6285040B2 (en) * 2014-09-11 2018-02-28 株式会社日立製作所 Biomolecular structure analysis device and method of forming biomolecule structure analysis device
JP6259929B2 (en) * 2014-11-12 2018-01-10 株式会社日立製作所 Biological polymer analyzer and biological polymer analyzing method
CN111505087A (en) 2014-12-18 2020-08-07 生命科技公司 Method and apparatus for measuring analytes using large scale FET arrays
US10077472B2 (en) 2014-12-18 2018-09-18 Life Technologies Corporation High data rate integrated circuit with power management
EP3234576B1 (en) 2014-12-18 2023-11-22 Life Technologies Corporation High data rate integrated circuit with transmitter configuration
US11124827B2 (en) * 2016-06-23 2021-09-21 Roche Sequencing Solutions, Inc. Period-to-period analysis of AC signals from nanopore sequencing
KR101737946B1 (en) * 2016-08-16 2017-05-19 서울대학교산학협력단 Method of manufacturing sample for film property measurement and analysis, and sample manuvactured by the method
EP3519097A4 (en) * 2016-10-03 2020-04-29 Genvida Technology Company Limited Method and apparatus for the analysis and identification of molecules
US20180334697A1 (en) * 2017-05-16 2018-11-22 Sensor Kinesis Corporation Method for isothermal dna detection using a modified crispr/cas system and the apparatus for detection by surface acoustic waves for gene editing
WO2019160925A1 (en) * 2018-02-16 2019-08-22 Illumina, Inc. Device for sequencing
CN110191760B (en) * 2019-04-16 2022-09-27 京东方科技集团股份有限公司 Micro-channel device, manufacturing method thereof and micro-fluidic system

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8522785D0 (en) * 1985-09-14 1985-10-16 Emi Plc Thorn Chemical-sensitive semiconductor device
US5846708A (en) * 1991-11-19 1998-12-08 Massachusetts Institiute Of Technology Optical and electrical methods and apparatus for molecule detection
US5871918A (en) * 1996-06-20 1999-02-16 The University Of North Carolina At Chapel Hill Electrochemical detection of nucleic acid hybridization
JPH08278281A (en) * 1995-04-07 1996-10-22 Hitachi Ltd Field effect type chemical substance detection device and dna sequanator using it
CA2238003C (en) * 1995-12-01 2005-02-22 Innogenetics N.V. Impedimetric detection system and method of production thereof
US6060327A (en) * 1997-05-14 2000-05-09 Keensense, Inc. Molecular wire injection sensors
WO1999036573A1 (en) * 1998-01-20 1999-07-22 Schichman Steven A Detection of genetic information
JP3245124B2 (en) * 1998-02-19 2002-01-07 インターナショナル・ビジネス・マシーンズ・コーポレーション Field effect transistor having vertical gate sidewalls and method of manufacturing the same
JP3233207B2 (en) * 1998-03-20 2001-11-26 日本電気株式会社 Method for manufacturing field effect transistor
US6002131A (en) * 1998-03-25 1999-12-14 The Board Of Trustees Of The Leland Stanford Junior University Scanning probe potentiometer
US6627067B1 (en) * 1999-06-22 2003-09-30 President And Fellows Of Harvard College Molecular and atomic scale evaluation of biopolymers

Similar Documents

Publication Publication Date Title
JP2003533676A5 (en)
JP2003531592A5 (en)
US8080456B2 (en) Robust top-down silicon nanowire structure using a conformal nitride
JP2005221450A (en) Physical quantity sensor
EP1341079A2 (en) Random number generating device
US5503017A (en) Semiconductor acceleration sensor
EP0940652A3 (en) Surface shape recognition sensor and method of fabricating the same
JP4455831B2 (en) Method for manufacturing acceleration sensor
WO2003007384A3 (en) Single-electron transistors and fabrication methods
WO2007038974A8 (en) Method for determining a particle and sensor device therefor
EP1226090A4 (en) Gas sensor and fabrication method thereof
JP2010203818A (en) Semiconductor sensor and method of manufacturing the same
US20150177273A1 (en) Motion Sensor Device and Methods for Forming the Same
EP0905765A3 (en) Endpoint detection method and apparatus
JPH07307478A (en) Semiconductor accelerometer and its manufacture
EP1385010A3 (en) Semiconductor acceleration sensor using doped semiconductor layer as wiring
EP2675748B1 (en) Strengthened micro-electromechanical system devices and methods of making thereof
JPH09321318A (en) Semiconductor device with movable gate
EP1267405A3 (en) Semiconductor device and method for fabricating the same
JP2008224254A (en) Sensor device and manufacturing method for sensor device
US7004029B2 (en) Semiconductor dynamic quantity sensor
US20030190817A1 (en) Electrode structure, and method for manufacturing thin-film structure
US20080179698A1 (en) Piezoresistive sensing structure
US20040020897A1 (en) Method for manufacturing thin-film structure
CN105084300B (en) A kind of semiconductor devices and preparation method thereof, electronic installation