JP2003502705A - Numeric aperture increase lens (NAIL) technology for creating high-resolution subsurface images - Google Patents

Numeric aperture increase lens (NAIL) technology for creating high-resolution subsurface images

Info

Publication number
JP2003502705A
JP2003502705A JP2001505221A JP2001505221A JP2003502705A JP 2003502705 A JP2003502705 A JP 2003502705A JP 2001505221 A JP2001505221 A JP 2001505221A JP 2001505221 A JP2001505221 A JP 2001505221A JP 2003502705 A JP2003502705 A JP 2003502705A
Authority
JP
Japan
Prior art keywords
lens
substrate
optical system
focal region
nail
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001505221A
Other languages
Japanese (ja)
Inventor
イッポリト,スティーブン,ビー.
ウンル,エム.,セリム
ゴールドバーグ,ベネット,ビー.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boston University
Original Assignee
Boston University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boston University filed Critical Boston University
Publication of JP2003502705A publication Critical patent/JP2003502705A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/33Immersion oils, or microscope systems or objectives for use with immersion fluids
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/58Optics for apodization or superresolution; Optical synthetic aperture systems
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1374Objective lenses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1387Means for guiding the beam from the source to the record carrier or from the record carrier to the detector using the near-field effect
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B2007/13727Compound lenses, i.e. two or more lenses co-operating to perform a function, e.g. compound objective lens including a solid immersion lens, positive and negative lenses either bonded together or with adjustable spacing

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Lenses (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

(57)【要約】 半導体ウエハー又はチップなどのサブストレート内を見るため使用する顕微鏡(26)などの観察光学系又はメディアレコーダなどの画像作成光学系に使用される数値絞りつまり光収集又は焦点力を強化する働きの観察強化レンズ(18−NAIL)。その結果、nをレンズサブストレートの屈折率とするとき、nとnの間の屈折率で光学系の解像度を増加する。 (57) [Abstract] A numerical aperture used in an observation optical system such as a microscope (26) used for viewing inside a substrate such as a semiconductor wafer or a chip or an image forming optical system such as a media recorder, that is, light collection or focusing power. (18-NAIL). As a result, when the n the refractive index of the lens substrate, to increase the resolution of the optical system in the refractive index between n and n 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】 関連出願の相互参照[0001]     Cross-reference of related applications

【0002】 本出願は、35 U.S.C.§119(e)の下で、1999年6月21日
受付、条件付き出願60/140,138号に対し優先主張をする。その開示を
参照としてここに組込む。
The present application is directed to 35 U.S.P. S. C. Under §119 (e), filed June 21, 1999, make a priority claim to conditional application 60 / 140,138. That disclosure is incorporated herein by reference.

【0003】 政府補助金の受領[0003]     Receipt of government subsidies

【0004】 本発明は、国家科学基金により契約番号1210800号の下で授与された補
助金ECS−9625236号の政府補助金を用いて実施された。
The present invention was implemented with a government grant of grant ECS-9625236 awarded by the National Science Foundation under Contract No. 1210800.

【0005】 発明の背景 標準光学顕微鏡検査は、レイレ又はアッベ限界とも言われる回折限界のため、
光の波長のほぼ半分以上の解像力を持つ横方向解像度を得る能力がなく、回折限
界空間解像度は、λを集光の自由空間における波長とすると、λ/(2 NA)
である。数値絞りは、nを媒質の屈折率としθaを集光角、即ち集光領域の半角
とすると、NA=n・sinθaと定義される。回折に制限される顕微鏡検査の
解像度改善のためには、NAを増加させなければならない。空気環境内の標準顕
微鏡対物レンズに関する最高NA値は1以下で、一般的最良値はほぼ0.6であ
る。
BACKGROUND OF THE INVENTION Standard optical microscopy is due to diffraction limits, also known as Rayleigh or Abbe limits,
There is no ability to obtain lateral resolution with a resolution that is more than half the wavelength of light, and the diffraction-limited spatial resolution is λ / (2 NA), where λ is the wavelength in free space of light collection.
Is. The numerical aperture is defined as NA = n · sin θa, where n is the refractive index of the medium and θa is the focusing angle, that is, the half angle of the focusing region. In order to improve the resolution of diffraction limited microscopy, the NA must be increased. The highest NA value for standard microscope objectives in air environment is less than 1 and the general best value is around 0.6.

【0006】 NA増加の一方法は、集光焦点が形成される場所で媒質の屈折率nを増加する
ことである。油など高屈折率流体を、顕微鏡対物レンズとサンプルとの間に挿入
すると、一般的に最良値が1.3までNAが高くなる。同様に、サンプルとの間
隔を小さくした固浸レンズ(SIL)と呼ばれる高屈折率半球レンズを利用する
顕微鏡設計は、1/nの解像度改善をおこなうことが出来る。SIL顕微鏡は、
高屈折率SIL内で焦点を結んだ光とサンプルと間に極めて微かな結合を有する
。SIL顕微鏡検査に関する以前の特許は、SIL球面の幾何学的中心に光が焦
点を結ぶ配置を開示する。
One way to increase the NA is to increase the refractive index n of the medium at the location where the focus is formed. Inserting a high refractive index fluid such as oil between the microscope objective and the sample generally increases the NA to a best value of 1.3. Similarly, a microscope design using a high-index hemispherical lens called a solid immersion lens (SIL) with a small distance from the sample can improve the resolution by 1 / n. SIL microscope
There is very little coupling between the focused light and the sample in the high index SIL. Earlier patents on SIL microscopy disclose arrangements where the light is focused on the geometric center of the SIL sphere.

【0007】 平面サンプルの表面下画像作成は、通常標準顕微鏡検査によりおこなわれる。
高屈折率サンプルの表面下画像を作成するとき、NAは同一のままである。屈折
率の増加は、平面境界における屈折からのsinθaの減少により完全に相殺さ
れるからである。標準表面下画像作成はまた、同一平面境界における屈折からの
集光に対し球面収差を与える。球面収差の量は、NAの増加に伴い単調に増加す
る。表面下画像作成は、シリコンサブストレートを通じる波長1.0μm以上で
、最良横解像度ほぼ1.0μmをもって、おこなわれて来た。
Subsurface imaging of planar samples is usually done by standard microscopy.
The NA remains the same when creating subsurface images of high refractive index samples. This is because the increase in refractive index is completely offset by the decrease in sin θa from refraction at the plane boundary. Standard subsurface imaging also imparts spherical aberration to collection from refraction at coplanar boundaries. The amount of spherical aberration monotonically increases with increasing NA. Subsurface imaging has been done at wavelengths of 1.0 μm or greater through a silicon substrate with best lateral resolution of approximately 1.0 μm.

【0008】 SIL顕微鏡検査の利用に対し、光位相フロントを幾何学的にSIL面に一致
させた場合の表面下画像作成に関する示唆があった。しかし、開示された方法は
、レンズ球面の幾何学的中心にある焦点から半球面レンズが光を集める配置に制
限される。この場合、解像度改善は、1/nに制限され、球面収差のない領域は
点に制限される。画像はサンプル及びSILを走査して形成することが出来るが
、この場合走査精度は屈折率nで緩和される。画像はまた、サンプルを走査しS
ILは静止させたままでも形成することが出来る。以下に記述する発明の特徴は
、多くの表面下応用のためのこれら標準及びSIL顕微鏡検査の改善である。
For the use of SIL microscopy, there have been suggestions for subsurface imaging when the optical phase front is geometrically matched to the SIL surface. However, the disclosed method is limited to an arrangement in which the hemispherical lens collects light from a focal point located at the geometric center of the lens sphere. In this case, the resolution improvement is limited to 1 / n and the area without spherical aberration is limited to points. The image can be formed by scanning the sample and the SIL, but in this case, the scanning accuracy is relaxed by the refractive index n. The image also scans the sample S
The IL can be formed stationary. A feature of the invention described below is the improvement of these standards and SIL microscopy for many subsurface applications.

【0009】 発明の概要 本発明は、サブストレート内焦点領域の観察又は画像作成のためサブストレー
ト面に置かれたレンズを提供し、光学系数値絞りに、このレンズがないときの値
を超える増加を与える。強化数値絞りは、集光又は照明における解像度の改善を
意味する。サブストレート内特定領域にある焦点は、無収差で結ばれ、視野に対
し広い横幅を与える。サブストレート及びレンズの媒質は、屈折率nが、同一で
はなくとも非常に近い。
SUMMARY OF THE INVENTION The present invention provides a lens placed on the substrate surface for observation or imaging of a focal region within a substrate, the numerical aperture of the optical system of which is increased beyond the value in the absence of this lens. give. Enhanced numerical aperture refers to improved resolution in focusing or illumination. The focal point in a specific area within the substrate is formed without any aberration and gives a wide lateral width to the visual field. The substrates and lens media are very close in refractive index n, even if they are not the same.

【0010】 本発明は、半導体デバイス及び回路、付着面の下側からの生物/化学標本、絶
縁体上シリコンサブストレートの境界など多層半導体及び誘電体、及び埋込光媒
体の読取/書込機能の観察に用途を見出す。
The present invention provides read / write capabilities for semiconductor devices and circuits, biological / chemical specimens from the underside of the attachment surface, multilayer semiconductors and dielectrics such as silicon substrate on insulator boundaries, and embedded optical media. Find use in observing.

【0011】 発明の詳細な説明 本発明は、半導体ウエハー又はチップサブストレート内の構造観察のため用い
られる顕微鏡などの観察光学系若しくはデータ媒体などの物質を露光するため用
いられる画像作成光学系の数値絞り即ち集光力を増加する働きをする観察強化レ
ンズ(NAIL)を提供する。その結果は、nをレンズとサブストレートの屈折
率とするとき、光学系の解像度をnとnとの間の屈折率だけ増加することであ
る。レンズとサブストレートは、一般的に同一屈折率のものであるけれども、一
致に近くても同様利点が得られる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to numerical values of an observation optical system such as a microscope used for observing a structure in a semiconductor wafer or a chip substrate or an image forming optical system used for exposing a substance such as a data medium. A viewing enhancement lens (NAIL) is provided that acts to increase the iris or collection power. The result is to increase the resolution of the optical system by a refractive index between n and n 2 , where n is the refractive index of the lens and the substrate. The lens and substrate are generally of the same index of refraction, but similar advantages can be obtained near match.

【0012】 図1は、このような観測システムを示し、コンピュータ制御XYZ運動支持台
12が、標本14をホルダ16の中に保持する。数値絞り増加レンズ(NAIL
)18が標本を覆って置かれている。一般的に、NAILと標本は精密研磨して
出来るだけ空隙を無くし、NAILとサブストレート境界における屈折の影響を
避けるに十分なほど小さく、少なくとも波長の分数以内にして、密に接触させる
。サブストレート14内の対象物からの光、一般的にはホルダ16が与える後方
照明から又は上からの表面照明からの光は、NAIL18を通過し、次いで顕微
鏡システム24の対物レンズ20及び出口レンズ24を通って、ビデオカメラ3
0又はその他の、観察、記録又は画像作成要素の中に入る。カメラ30からの信
号は、表示及び記録のため、コンピュータ32又はその他の処理、記憶及び/又
は観察システムに送られる。これにより、長時間にわたる一連の画像を記録する
ことが出来、これにより時分解測定が可能になる。コンピュータもまたプログラ
ムしてステージ12を手動又は自動で操作し、X、Y、及び/又はZ方向に走査
して、画像を二次元又は三次元領域で捕捉してもよい。
FIG. 1 shows such an observation system, in which a computer controlled XYZ motion support 12 holds a specimen 14 in a holder 16. Numerical aperture increase lens (NAIL
18) is placed over the specimen. Generally, the NAIL and the specimen are precision ground to eliminate as much voids as possible, and are small enough to avoid the effects of refraction at the NAIL-substrate boundary, and are in intimate contact, at least within a fraction of the wavelength. Light from objects within the substrate 14, typically from back illumination provided by holder 16 or from surface illumination from above, passes through NAIL 18 and then objective lens 20 and exit lens 24 of microscope system 24. Through the video camera 3
0 or other, observation, recording or imaging element. The signal from the camera 30 is sent to a computer 32 or other processing, storage and / or viewing system for display and recording. This makes it possible to record a series of images over a long period of time, which allows time-resolved measurements. A computer may also be programmed to manually or automatically operate the stage 12 to scan in the X, Y, and / or Z directions to capture an image in a two-dimensional or three-dimensional area.

【0013】 図2aは、NAIL18′及びサブストレート14′を拡大して示す。NAI
L18′は、一般的に完全半球より小さく、垂直高さDを有するので、外面から
曲率半径Rだけ離れたその中心は、サブストレート14′内の点40に位置する
。NAILが観察対物レンズの数値絞りを上述のように増加する一方で、無収差
の観察をするのもまた望ましい。サブストレート内には、深さに応じて、焦点が
結ばれ無収差観察が得られる球面がある。これは下記に説明するように点40よ
り深い。この球面の両側に視野がまた無収差又はほぼ無収差の距離があり、増加
解像度と無収差で対物レンズが見ることの出来る平面領域を与えている。視野の
サブストレート内への距離がXであると、D=R(1+1/n)−Xとなる。N
ALLを両方向に通過する放射位相フロントは、NAILの凸面とは幾何学的に
別個なので、それによりNAILを大きく超えるサブストレート深さの観察が出
来る。
FIG. 2a shows an enlarged view of NAIL 18 'and substrate 14'. NAI
Since L18 'is generally smaller than a full hemisphere and has a vertical height D, its center away from the outer surface by radius of curvature R is located at point 40 in substrate 14'. While NAIL increases the numerical aperture of the observing objective as described above, it is also desirable to have stigmatic viewing. Within the substrate, there is a spherical surface that is focused and obtains aberration-free observation depending on the depth. This is deeper than point 40, as explained below. The fields of view on either side of this sphere also have an aplanatic or nearly aplanatic distance, providing a planar area in which the objective lens can see with increased resolution and no aberration. If the distance of the field of view into the substrate is X, then D = R (1 + 1 / n) -X. N
The radial phase front, which passes through the ALL in both directions, is geometrically distinct from the convex surface of the NAIL, which allows the observation of substrate depths well beyond the NAIL.

【0014】 図2bは、サブストレート14′′内の、NAIL18′′を通じた、対物レ
ンズ42による、サブストレート14′′の底にある視野44に関する観察を示
す。視野は、例えば、出来上がった半導体チップ又はその他の要素の品質に関す
る情報を含む半導体ウエハーの処理領域の下側を含む。一般的に、図2cに示す
ように、NAIL18′′′とサブストレート14′′′は、強化解像度を用い
てサブストレート内の視野を観察することが望ましい任意の要素とすることが出
来る。例には、NAILを上に付けた顕微鏡スライドとカバーガラス及び作動中
の熱放散半導体の熱画像作成が含まれる。
FIG. 2 b shows an observation through the NAIL 18 ″ in the substrate 14 ″ by the objective lens 42 regarding the field of view 44 at the bottom of the substrate 14 ″. The field of view includes, for example, the underside of the processing area of the semiconductor wafer, which contains information about the quality of the finished semiconductor chip or other element. In general, as shown in FIG. 2c, NAIL 18 ″ ″ and substrate 14 ″ ″ may be any element where it is desirable to observe the field of view within the substrate using enhanced resolution. Examples include a microscope slide with a NAIL overlay and a cover glass and thermal imaging of a heat-dissipating semiconductor in operation.

【0015】 図3は、上部52が本発明のNAILをあらわし、残りが球面54にある視野
を無収差で見るため覗き込むべきサブストレートである単一の固体対象物50に
関する。仮想面58は、NAILとサブストレートとの間の分割線を示す。面5
4は、R/nにより、NAIL52の曲率中心60の下の深さとして定義される
FIG. 3 relates to a single solid object 50 whose upper part 52 represents the NAIL of the present invention and the rest is the substrate to be looked into for aberration-free viewing of the field of view on the spherical surface 54. Virtual plane 58 shows the dividing line between the NAIL and the substrate. Surface 5
4 is defined by R / n as the depth below the center of curvature 60 of NAIL 52.

【0016】 最適解像度のため、顕微鏡の光学をNAILのこれらに最も良く一致させる。
これは、以下の関係が満たされるとき達せられる。
Due to the optimum resolution, the optics of the microscope are best matched to those of NAIL.
This is reached when the following relations are met:

【0017】 s=(f)/R(n+1/n);[0017] s = (f 1 - 2) / R (n + 1 / n);

【0018】 ここで、fは対物レンズ焦点距離で、fを出口レンズ焦点距離とするとき
内部レンズ主要点距離(対物レンズから出口レンズ主要点まで)=s+f+f である。
[0018]   Where f1Is the focal length of the objective lens, fTwoAs the exit lens focal length
Inner lens principal point distance (from objective lens to exit lens principal point) = s + f1+ F Two Is.

【0019】 無収差焦点の利点には、図3に示すように、球面54の両側の領域により、一
般的に関心領域が含まれる平面64もまたほぼ無収差であることが出来ることが
含まれる。
Advantages of the aplanatic focus include that the regions on either side of the spherical surface 54, as shown in FIG. 3, can also cause the plane 64, which typically contains the region of interest, to be substantially aplanatic. .

【0020】 NAILの追加の利点は、無収差領域が比較的広い横幅を有するので画像構築
に要するステップが少ないことである。こうして広い範囲にわたる軸外観測を受
け容れることが出来る。各種のサブストレート深さに適合させるには、一般的に
各種のNAILを使用するので、NAILセット及びNAILのアレーを使用す
ることとなる。NAILはまた被覆して、背景又は前景照明に関する反射を最小
にする。NAILはまた、複合レンズとして及び/又は修正対物レンズ設計を持
たせて加工し、色収差を補正する。
An additional advantage of NAIL is that the aplanatic region has a relatively wide lateral width, thus requiring fewer steps for image construction. Thus, it is possible to accept a wide range of off-axis observations. Since various NAILs are generally used to adapt to various substrate depths, NAIL sets and arrays of NAILs will be used. NAIL also coats to minimize reflections on background or foreground illumination. NAILs are also processed as compound lenses and / or with modified objective lens designs to correct chromatic aberrations.

【0021】 図4Aは、生物又は化学標本の光学特性の変化又は状態に関する試験における
本発明の追加用途を示す。サブストレート100は、上のようにそれを覆うNA
ILレンズ102を有する。サブストレートは、絶縁又はその他の層104を有
し、標本106を付着させることが出来る。標本面は、一般的に、そこで雰囲気
中のあらゆる光特性即ち照射、伝送又は反射された光がNAIL102を通じて
強化解像度で見ることが出来る焦点領域54に相当する、焦点領域に置く。サブ
ストレートは、標本結合強化などの目的のため、その上に半透明金属を有するこ
とがある。
FIG. 4A illustrates an additional use of the present invention in testing for changes or states of optical properties of biological or chemical specimens. The substrate 100 is an NA that covers it as above
It has an IL lens 102. The substrate has an insulating or other layer 104 to which the specimen 106 can be attached. The specimen surface is generally placed in a focal area, which corresponds to the focal area 54 in which any light characteristic in the atmosphere, i.e. illuminated, transmitted or reflected light, can be seen through NAIL 102 at enhanced resolution. The substrate may have a translucent metal thereon for purposes such as strengthening the specimen bond.

【0022】 図4bに示すような標本106は、マイクロ波エネルギによる励起若しくは固
定又は変動環境を標本106に加えることの出来る、ハウジング108で区切ら
れるなどの環境に置くことが出来る。
The sample 106, as shown in FIG. 4b, can be placed in an environment in which an excitation or fixed or varying environment with microwave energy can be applied to the sample 106, such as delimited by a housing 108.

【0023】 図5は、標本106を覆うカバースリップ118のある顕微鏡スライドなどの
標本106をサブストレート116上で観察するのに使用する本発明の応用を示
す。NAILレンズ120はカバースリップの上に置かれ、物質は上述のように
標本106に無収差焦点領域を作る寸法とする。NAILレンズは、上述のよう
に同じ焦点領域を持たせてサブストレート上に置くことが出来る。
FIG. 5 illustrates an application of the present invention used to view a specimen 106, such as a microscope slide with a coverslip 118 covering the specimen 106, on a substrate 116. The NAIL lens 120 is placed on the coverslip and the material is sized to create an aplanatic focus area on the specimen 106 as described above. The NAIL lens can be placed on the substrate with the same focal area as described above.

【0024】 図6に、媒体の作成及び読取のため使用される本発明のNAILを示す。この
場合、サブストレート130は、CD、DVD、ミニディスクプレーヤ及びレコ
ーダなどの読取又は書込若しくは読取/書込媒体を含む。光学系132は、この
ような媒体への書込及び/又は読取用の良く知られた装置をあらわすため示した
。NAIL134は、層136が占める平面に焦点領域を作る。この層は、光学
系132の一つの型からの(磁場など他の影響を受け又は受けない)入力レーザ
ー光に応答して、後に光学系132の別の型が読み取ることの出来る恒久的又は
消去可能の記録を、層の中に作る。
FIG. 6 illustrates a NAIL of the present invention used for making and reading media. In this case, the substrate 130 includes read or write or read / write media such as CDs, DVDs, minidisc players and recorders. Optics 132 are shown to represent the well known device for writing and / or reading to such media. NAIL 134 creates a focal region in the plane occupied by layer 136. This layer is responsive to input laser light from one type of optics 132 (with or without other influences, such as a magnetic field), either permanent or erasable for later reading by another type of optics 132. Make possible records in layers.

【0025】 図7a−7dは、図2bに例示したように、後方照明システム150を用いて
半導体構造の層の画像を作成した実際のNAIL使用結果を示す。図7aは、通
常のNAIL無し5.4X顕微鏡を用いて得られた構造画像を示す。図7bとc
は、NAILを半導体サブストレートに被せて使った観察を示す。多結晶シリコ
ン試験ライン及び半導体の中のそれぞれ位置140と142に加工されたN型拡
散が明瞭に示されている。図7dは、図7cの画像を横切る線型走査を示し、約
96Xの強化倍率における鋭い解像度を示す。
7a-7d show actual NAIL usage results where a back-illumination system 150 was used to image the layers of the semiconductor structure as illustrated in FIG. 2b. Figure 7a shows a structural image obtained using a conventional 5.4X microscope without NAIL. 7b and c
Shows an observation using NAIL over a semiconductor substrate. The N-type diffusions machined at locations 140 and 142 in the polycrystalline silicon test line and semiconductor respectively are clearly shown. Figure 7d shows a linear scan across the image of Figure 7c, showing sharp resolution at an enhancement factor of about 96X.

【0026】 本発明はまた、図8のように、接合を焦点及び無収差観察の領域に置くことに
より、絶縁体上シリコン(SOI)加工においてシリコンと絶縁体との間に形成
された半導体デバイス中の接合の試験にも有用である。ここで層160は、半導
体材料162と絶縁物164との間の境界をあらわす。NAIL166によりこ
の境界の強化検査をすることが出来る。NAIL及び/又はサブストレートとし
て半導体材料の場合は、、Si、Ge、SiGe、GaAs、GaSb、GaP
、InP、GaN又は、三重又はそれより高い構造の基本原子の組合せを含む組
合せの物質が、格別有用である。
The present invention also provides a semiconductor device formed between silicon and an insulator in silicon-on-insulator (SOI) processing by placing the junction in the focus and aberration-free region of observation, as shown in FIG. It is also useful for testing inside joints. Here, layer 160 represents the boundary between semiconductor material 162 and insulator 164. NAIL 166 allows for a strengthening inspection of this boundary. In the case of a semiconductor material as NAIL and / or substrate, Si, Ge, SiGe, GaAs, GaSb, GaP
, InP, GaN, or combinations of materials containing combinations of basic atoms of triple or higher structure are particularly useful.

【0027】 本発明はまた、ラーマンスペクトル解析においてサブストレート内からのラー
マン散乱を検出するため有用である。図9a−9bは、サブストレート174上
においた本発明のNAIL172のアレー170を示す。このとき単一対物レン
ズ176を複数のNAIL172とともに使用することが出来る。これは、視野
が広いとの長所を備える。加えて、寸法形状の異なるNAIL172を用いて、
サブストレート174内の各種深さを無収差焦点で観察することが出来る。図1
0は、本発明の実現に有用な一般的には同一又は同様の径の、NAIL180、
182、…184のセットを示す。
The present invention is also useful for detecting Raman scattering from within a substrate in Raman spectral analysis. 9a-9b show an array 170 of NAIL 172 of the present invention mounted on a substrate 174. At this time, the single objective lens 176 can be used with a plurality of NAILs 172. This has the advantage of having a wide field of view. In addition, by using NAIL172 having different dimensions,
Various depths within the substrate 174 can be observed with a focus without aberrations. Figure 1
0 is NAIL 180, generally of the same or similar diameter, useful in the practice of the invention.
182, ... 184 sets are shown.

【0028】 外部レンズの光学系を用いて、図1に例示したように本発明を実行するには、
NAILとその他のシステム光学部品の複合特性により色収差の全体補正をおこ
なうことが出来る。色収差補正を用いる本発明はまた、赤外波長における熱画像
作成及び、半導体回路及びデバイスの近赤外波長目視検査において幅広いスペク
トル解析を可能にする。
To carry out the invention as illustrated in FIG. 1 using an external lens optics,
The overall characteristics of chromatic aberration can be corrected by the combined characteristics of NAIL and other system optical components. The present invention with chromatic aberration correction also enables broad spectrum analysis in thermal imaging at infrared wavelengths and near infrared wavelength visual inspection of semiconductor circuits and devices.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にしたがう数値絞り増加レンズ(NAIL)を有する画像
作成システムを示す。
FIG. 1 illustrates an imaging system having a numerical aperture increasing lens (NAIL) according to the present invention.

【図2a】典型的観察関係におけるNAILとサブストレートの断面図で
ある。
FIG. 2a is a cross-sectional view of NAIL and substrate in a typical viewing relationship.

【図2b】サブストレート内部観察のためのNAILと観察対物レンズの
断面図である。
FIG. 2b is a cross-sectional view of NAIL and an observation objective lens for observing the inside of the substrate.

【図2c】本発明に関する応用範囲を示す一般化したNAILとサブスト
レート関係の断面図である。
FIG. 2c is a cross-sectional view of a generalized NAIL and substrate relationship showing the scope of application for the present invention.

【図3】NAIL表面と無収差焦点面との幾何学的及び数学的関係を示す
媒体の断面図である。
FIG. 3 is a cross-sectional view of a medium showing a geometrical and mathematical relationship between a NAIL surface and an aplanatic focal plane.

【図4a−4b】サブストレート底面上の標本検査における本発明のNA
ILの追加用途を示す。
4a-4b NA of the present invention in specimen inspection on substrate bottom.
The additional use of IL is shown.

【図5】 カバースリップの下の標本観察に使用された本発明の応用を示
す。
FIG. 5 shows an application of the invention used to observe a specimen under a coverslip.

【図6】読取/書込の領域における本発明の利用を示す。FIG. 6 illustrates the use of the invention in the read / write area.

【図7a−7d】半導体構造観察における本発明の利用からの実際画像を
示す。
7a-7d show actual images from the use of the invention in observing semiconductor structures.

【図8】SOIデバイスにおいて境界検査のための本発明を示す。FIG. 8 illustrates the present invention for boundary inspection in SOI devices.

【図9a−9b】アレーでの本発明の利用を示す。9a-9b illustrate the use of the invention in an array.

【図10】本発明にしたがうNAILのセットを示す。FIG. 10 shows a set of NAILs according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 ゴールドバーグ,ベネット,ビー. アメリカ合衆国 02160 マサチューセッ ツ州 ニュートン バークシャー ロード 26 Fターム(参考) 2H087 KA09 NA14 QA01 QA07 ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Goldberg, Bennett, Bee.             United States 02160 Massachusetts             Newton Berkshire Road, Tutu               26 F term (reference) 2H087 KA09 NA14 QA01 QA07

Claims (31)

【特許請求の範囲】[Claims] 【請求項1】物質のサブストレートの表面を通過して物質に入射し又は物質
から発する光の観察又は画像作成において用いるための拡張数値絞りを有するレ
ンズであって、 前記サブストレートの面に整合する第一面と、凸型形状の第二面とを有する
レンズと、 前記レンズの第一面が前記サブストレート面に接触したとき、前記サブスト
レート内に焦点領域を有する前記レンズと、 前記凸型表面形状とは幾何学的に別個の位相フロントを伴って前記凸型表面
を通過する観察光又は画像作成光と、 を含むレンズ。
1. A lens having an extended numerical aperture for use in observing or imaging light emitted from or into a substance passing through the surface of the substrate, the lens being aligned with the surface of the substrate. A lens having a first surface and a second surface having a convex shape; a lens having a focal region in the substrate when the first surface of the lens contacts the substrate surface; A viewing light or imaging light that passes through the convex mold surface with a phase front that is geometrically distinct from the mold surface shape.
【請求項2】前記観察光又は画像作成光が、赤外か、可視か、紫外かのスペ
クトルを含む、請求項1のレンズ。
2. The lens of claim 1, wherein the viewing light or imaging light comprises the infrared, visible, or ultraviolet spectrum.
【請求項3】前記レンズが、色収差補正用複合レンズである、請求項1のレ
ンズ。
3. The lens according to claim 1, wherein the lens is a chromatic aberration correcting compound lens.
【請求項4】レンズとサブストレートとの屈折率が整合する、請求項1のレ
ンズ。
4. The lens of claim 1, wherein the refractive index of the lens and the substrate are matched.
【請求項5】前記レンズと前記サブストレートとが、実質的に同一の材料か
ら一体で形成されている、請求項1のレンズ。
5. The lens of claim 1, wherein the lens and the substrate are integrally formed from substantially the same material.
【請求項6】前記レンズと前記サブストレートとのうち一つ又は両方が半導
体材料から加工されている、請求項1のレンズ。
6. The lens of claim 1, wherein one or both of the lens and the substrate are processed from a semiconductor material.
【請求項7】前記半導体材料が、本質的にSiか、Geか、SiGeか、G
aAsか、GaSbか、GaPか、InPか、GaNか、それらの組合せか、を
含むグループから選ばれた、請求項6のレンズ。
7. The semiconductor material is essentially Si, Ge, SiGe, G
7. The lens of claim 6, selected from the group comprising aAs, GaSb, GaP, InP, GaN, or a combination thereof.
【請求項8】前記サブストレートが、前記焦点領域又は近傍に置かれたデバ
イス及び回路を含む加工構造体を含む、請求項1のレンズ。
8. The lens of claim 1, wherein the substrate comprises a fabrication structure including devices and circuitry located at or near the focal region.
【請求項9】前記サブストレートが、前記焦点領域又は近傍に、黒体輻射を
放射する加工構造体を含み、それにより熱画像作成が出来る、請求項1のレンズ
9. The lens of claim 1 wherein the substrate includes a textured structure in or near the focal region that emits blackbody radiation to enable thermal imaging.
【請求項10】前記サブストレートが、前記焦点領域に境界を持つ絶縁体上
シリコンウエハーである、請求項1のレンズ。
10. The lens of claim 1, wherein the substrate is a silicon wafer on insulator having a boundary in the focal region.
【請求項11】前記サブストレートが、前記焦点領域においてその表面に半
透明金属を含む、請求項1のレンズ。
11. The lens of claim 1, wherein the substrate comprises a translucent metal on its surface in the focal region.
【請求項12】前記凸型面形状が球面である、請求項1のレンズ、12. The lens according to claim 1, wherein the convex surface shape is a spherical surface, 【請求項13】前記レンズが曲率半径Rを有し、前記媒質が屈折率nを有し
、前記焦点領域が、前記凸型球面の幾何学的中心から半径R/nで生じる、請求
項12のレンズ。
13. The lens has a radius of curvature R, the medium has a refractive index n, and the focal region originates at a radius R / n from the geometric center of the convex spherical surface. Lens.
【請求項14】前記焦点領域が、収差を補正されており、前記を半径に直交
する領域を切断する表面が収差補正焦点領域を有するように半径の領域全体を覆
って伸びる、請求項13のレンズ。
14. The focal region is aberration-corrected and extends over the entire radius region such that the surface cutting the region orthogonal to the radius has an aberration-corrected focal region. lens.
【請求項15】前記焦点領域が、前記切断面を前記サブストレート面に対し
て平行に有する、請求項14のレンズ。
15. The lens of claim 14, wherein the focal region has the cutting surface parallel to the substrate surface.
【請求項16】請求項1のレンズ一つ以上との組み合わせで一つ以上のレン
ズを含み、色収差補正を備える光学系。
16. An optical system comprising one or more lenses in combination with one or more lenses according to claim 1 and having chromatic aberration correction.
【請求項17】請求項1のレンズ一つ以上を含み、前記レンズからの光に反
応し、前記焦点領域にある対物レンズの強化解像度を用いて、その画像作成をお
こなう光学系。
17. An optical system comprising one or more of the lenses of claim 1, which is responsive to light from said lenses to produce its image using the enhanced resolution of the objective lens in said focal region.
【請求項18】前記レンズのアレーをさらに含む請求項17の光学系。18. The optical system of claim 17, further comprising an array of said lenses. 【請求項19】前記サブストレート中の前記焦点領域の深さを調節するため
対物レンズ又はレンズのセットをさらに含む請求項17の光学系。
19. The optical system of claim 17, further comprising an objective lens or set of lenses for adjusting the depth of the focal region in the substrate.
【請求項20】前記画像作成システムが対物レンズと出口レンズとを有し、
その主要点が、Rをレンズ径とし、nを前記レンズとサブストレートとに関する
屈折率とするとき、d=f+f−f /R(n+1/n)の関係式にした
がう距離dをおいて分離されている、請求項17の光学系。
20. The imaging system has an objective lens and an exit lens,
Its main point is, the R and lens diameter, when n is a refractive index about said lens and the substrate, the distance according to the relationship of d = f 1 + f 2 -f 1 2 / R (n + 1 / n) d 18. The optical system of claim 17, which is separated by.
【請求項21】前記光学系が、熱画像作成のため、赤外波長において幅広い
スペクトル色収差補正を備えている、請求項17の光学系。
21. The optical system of claim 17, wherein said optical system comprises broad spectral chromatic aberration correction at infrared wavelengths for thermal imaging.
【請求項22】前記光学系が、半導体回路及びデバイスのサブストレート通
過目視検査のため近赤外波長において動作に備えている、請求項17の光学系。
22. The optical system of claim 17, wherein said optical system is prepared for operation at near infrared wavelengths for substrate passage visual inspection of semiconductor circuits and devices.
【請求項23】ラーマン散乱測定用システムを含む、請求項17の光学系。23. The optical system of claim 17, including a system for Raman scattering measurement. 【請求項24】時分解測定用システムを含む、請求項17の光学系。24. The optical system of claim 17 including a time resolved measurement system. 【請求項25】前記サブストレートに対し、標本を置くのに適した第二面を
さらに含み、前記焦点領域が前記第二面又はその近傍にある、請求項1のレンズ
25. The lens of claim 1, further comprising a second surface suitable for placing a specimen on the substrate, the focal region being at or near the second surface.
【請求項26】所定の環境内で前記標本を試験するためのシステムをさらに
含む、請求項25のレンズ。
26. The lens of claim 25, further comprising a system for testing the specimen in a predetermined environment.
【請求項27】標本の励起のソースをさらに含む、請求項25のレンズ。27. The lens of claim 25, further comprising a source of excitation of the specimen. 【請求項28】前記サブストレートが、前記焦点領域内にある上面とそれを
覆うカバースリップとを有する標本ホルダを含む、請求項1のレンズ。
28. The lens of claim 1, wherein the substrate includes a specimen holder having an upper surface in the focal region and a coverslip over it.
【請求項29】所定特性の照明に前記焦点面において反応し前記照明の存在
の読取可能記録を作成するサブストレートをさらに含む、請求項1のレンズ。
29. The lens of claim 1 further comprising a substrate responsive to illumination of a predetermined characteristic in the focal plane to create a readable record of the presence of the illumination.
【請求項30】前記サブストレートを記録可能と読取可能との媒体として有
する読取/書込システムをさらに含む、請求項29のレンズ。
30. The lens of claim 29, further comprising a read / write system having the substrate as a recordable and readable medium.
【請求項31】前記焦点領域でデータを読み取るための記録再生システムを
さらに含み、前記サブストレートがデータ媒体である、請求項1のレンズ。
31. The lens of claim 1, further comprising a recording / playback system for reading data in the focal area, wherein the substrate is a data medium.
JP2001505221A 1999-06-21 2000-06-20 Numeric aperture increase lens (NAIL) technology for creating high-resolution subsurface images Pending JP2003502705A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14013899P 1999-06-21 1999-06-21
US60/140,138 1999-06-21
PCT/US2000/040253 WO2000079313A1 (en) 1999-06-21 2000-06-20 Numerical aperture increasing lens (nail) techniques for high-resolution sub-surface imaging

Publications (1)

Publication Number Publication Date
JP2003502705A true JP2003502705A (en) 2003-01-21

Family

ID=22489921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001505221A Pending JP2003502705A (en) 1999-06-21 2000-06-20 Numeric aperture increase lens (NAIL) technology for creating high-resolution subsurface images

Country Status (5)

Country Link
EP (1) EP1196792A4 (en)
JP (1) JP2003502705A (en)
AU (1) AU6952700A (en)
CA (1) CA2375563A1 (en)
WO (1) WO2000079313A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005083490A1 (en) * 2004-02-27 2005-09-09 Hamamatsu Photonics K.K. Microscope and sample observing method
US7221502B2 (en) 2003-03-20 2007-05-22 Hamamatsu Photonics K.K. Microscope and sample observation method
US7312921B2 (en) 2004-02-27 2007-12-25 Hamamatsu Photonics K.K. Microscope and sample observation method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6621275B2 (en) 2001-11-28 2003-09-16 Optonics Inc. Time resolved non-invasive diagnostics system
US6594086B1 (en) 2002-01-16 2003-07-15 Optonics, Inc. (A Credence Company) Bi-convex solid immersion lens
US7012537B2 (en) 2004-02-10 2006-03-14 Credence Systems Corporation Apparatus and method for determining voltage using optical observation
JP4643994B2 (en) 2005-01-19 2011-03-02 浜松ホトニクス株式会社 Solid immersion lens holder
KR102352024B1 (en) 2014-03-11 2022-01-14 디씨지 시스템스 인코포레이티드 Self correcting floating sil tip

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5004307A (en) * 1990-04-12 1991-04-02 The Board Of Trustees Of The Leland Stanford Junior University Near field and solid immersion optical microscope
JPH05157701A (en) * 1991-03-11 1993-06-25 Internatl Business Mach Corp <Ibm> Apparatus and method for aiding optical internal inspection
US5497359A (en) * 1994-08-30 1996-03-05 National Business Machines Corporation Optical disk data storage system with radiation-transparent air-bearing slider
WO1998008219A1 (en) * 1996-08-21 1998-02-26 Polaroid Corporation Phase-controlled evanescent field systems and methods
JPH1145455A (en) * 1997-01-29 1999-02-16 Ricoh Co Ltd Optical element for optical pickup, manufacture of the same and optical pickup
WO1999026240A1 (en) * 1997-11-18 1999-05-27 Polaroid Corporation Optical recording systems and media with integral near-field optics

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08315404A (en) * 1995-05-18 1996-11-29 Sony Corp Optical pickup device
ID16848A (en) * 1996-05-01 1997-11-13 Terastor Corp HEADS OF FLAGS WITH THE DAMAGED SOLID LENS

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5004307A (en) * 1990-04-12 1991-04-02 The Board Of Trustees Of The Leland Stanford Junior University Near field and solid immersion optical microscope
JPH05157701A (en) * 1991-03-11 1993-06-25 Internatl Business Mach Corp <Ibm> Apparatus and method for aiding optical internal inspection
US5497359A (en) * 1994-08-30 1996-03-05 National Business Machines Corporation Optical disk data storage system with radiation-transparent air-bearing slider
WO1998008219A1 (en) * 1996-08-21 1998-02-26 Polaroid Corporation Phase-controlled evanescent field systems and methods
JPH1145455A (en) * 1997-01-29 1999-02-16 Ricoh Co Ltd Optical element for optical pickup, manufacture of the same and optical pickup
WO1999026240A1 (en) * 1997-11-18 1999-05-27 Polaroid Corporation Optical recording systems and media with integral near-field optics

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7221502B2 (en) 2003-03-20 2007-05-22 Hamamatsu Photonics K.K. Microscope and sample observation method
WO2005083490A1 (en) * 2004-02-27 2005-09-09 Hamamatsu Photonics K.K. Microscope and sample observing method
US7110172B2 (en) 2004-02-27 2006-09-19 Hamamatsu Photonics K.K. Microscope and sample observation method
JPWO2005083490A1 (en) * 2004-02-27 2007-11-22 浜松ホトニクス株式会社 Microscope and sample observation method
US7312921B2 (en) 2004-02-27 2007-12-25 Hamamatsu Photonics K.K. Microscope and sample observation method
US7576910B2 (en) 2004-02-27 2009-08-18 Hamamatsu Photonics K.K. Microscope and sample observation method
JP4584917B2 (en) * 2004-02-27 2010-11-24 浜松ホトニクス株式会社 Microscope and sample observation method

Also Published As

Publication number Publication date
WO2000079313A1 (en) 2000-12-28
EP1196792A1 (en) 2002-04-17
AU6952700A (en) 2001-01-09
EP1196792A4 (en) 2008-08-27
CA2375563A1 (en) 2000-12-28
WO2000079313A9 (en) 2002-08-01

Similar Documents

Publication Publication Date Title
US6778327B2 (en) Bi-convex solid immersion lens
Ippolito High spatial resolution subsurface microscopy
Liron et al. Laser autofocusing system for high‐resolution cell biological imaging
US7738113B1 (en) Wafer measurement system and apparatus
US6831782B2 (en) Solid immersion lens array and methods for producing a solid immersion lens array
US5796487A (en) Dark field, photon tunneling imaging systems and methods for optical recording and retrieval
WO2008032100A1 (en) Calculating a distance between a focal plane and a surface
US8767199B2 (en) Inspection system utilizing solid immersion lenses
US6687058B1 (en) Numerical aperature increasing lens (nail) techniques for high-resolution sub-surface imaging
JP2003502705A (en) Numeric aperture increase lens (NAIL) technology for creating high-resolution subsurface images
Quinten A practical guide to surface metrology
US5715059A (en) Dark field, photon tunneling imaging systems and methods
Michaels Surface‐sensitive Raman microscopy with total internal reflection illumination
US5719677A (en) Dark field, photon tunneling imaging systems and methods for measuring flying height of read/write heads
JP2004144839A (en) Optical scanning device
De Wolf et al. High-resolution stress and temperature measurements in semiconductor devices using micro-Raman spectroscopy
Majlof et al. Confocal microscopy: important considerations for accurate imaging.
US20080037009A1 (en) Spectrometer system with IR microscope and electronically switchable detectors
Ippolito et al. High-resolution IC inspection technique
US8094384B2 (en) Camera, handlens, and microscope optical system for imaging and coupled optical spectroscopy
Lavalle et al. A comparison of immersion infrared microspectroscopy to attenuated total internal reflection microspectroscopy
Plane High Resolution Subsurface Microscopy Technique
Aplin New development in confocal scanning optical microscopy and its application to the study of electrically active defects in semiconductors
APLIN HH Wills Physics Laboratory, TyndallAvenue, GB-Bristol BS8 TL, Great-Britain
La Padula et al. First results from a 30 cm prototype of the IAS-TRT (Two Mirrors Three-Reflection Telescope)-presented by CD La Padula

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090126

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090210

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090224

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090327

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090420

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100908

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101008

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111202

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111226

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120629

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20121225

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20121228

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130117

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130122

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130225

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130228