JP2003348849A - Current detector for rectifier circuit - Google Patents

Current detector for rectifier circuit

Info

Publication number
JP2003348849A
JP2003348849A JP2002150444A JP2002150444A JP2003348849A JP 2003348849 A JP2003348849 A JP 2003348849A JP 2002150444 A JP2002150444 A JP 2002150444A JP 2002150444 A JP2002150444 A JP 2002150444A JP 2003348849 A JP2003348849 A JP 2003348849A
Authority
JP
Japan
Prior art keywords
circuit
semiconductor switch
current
resistor
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002150444A
Other languages
Japanese (ja)
Inventor
Kazuaki Mino
和明 三野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2002150444A priority Critical patent/JP2003348849A/en
Publication of JP2003348849A publication Critical patent/JP2003348849A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration
    • H02M1/0085Partially controlled bridges

Landscapes

  • Rectifiers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To detect an input current without use of a direct current detector when a rectifier circuit is operated with a high power factor. <P>SOLUTION: Resistors 11 and 12 are connected in serial with both semiconductor switch circuits, and a first current computing circuit 20 computes the input current IIN of the rectifier circuit from the voltages of both resistors 11 and 12. The first current computing circuit 20 is composed of a first adder 25 which subtracts a negative voltage detection value from a second negative voltage detector 24 connected with the second resistor from a negative voltage detection value from a first negative voltage detector 23 connected with the first resistor 11. Alternatively, an alternating current detector 31 is installed on the input side of the rectifying circuit, and the resistors 11 and 12 are connected in series with both the semiconductor switch circuits. A second current computing circuit 30 computes the input current IIN of the rectifier circuit from the voltages of both resistors 11 and 12 and a detection value from the alternating current detector 31. The second current computing circuit 30 is composed of a second adder 32 which subtracts the voltage of the second resistor 12 from the voltage of the first resistor 11; an average value computing unit 33 which determines the average value of the results of the computation by the second adder; and a third adder 34 which adds the computed average value and the detection value from the alternating current detector 31. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、交流電力を高力
率で直流電力に変換出来る整流回路へ入力する電流を検
出する整流回路の電流検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rectifier circuit current detector for detecting a current input to a rectifier circuit capable of converting AC power into DC power at a high power factor.

【0002】[0002]

【従来の技術】図7は交流電力を高力率で直流電力に変
換できる整流回路の従来例を示した回路図である。図7
の従来例回路において、半導体スイッチ素子としてのM
OSFET1Aと内蔵ダイオード1Bとでなる半導体ス
イッチ回路1に直列ダイオード2を接続した直列回路
と、MOSFET3Aと内蔵ダイオード3Bとでなる半
導体スイッチ回路3に直列ダイオード4を接続した直列
回路とを直流回路の正極Pと負極Nとの間に接続し、半
導体スイッチ回路1と直列ダイオード2の結合点と半導
体スイッチ回路3と直列ダイオード4の結合点との間に
はリアクトル5を介して交流電源6を接続することで、
交流電力を直流電力に変換する整流回路を形成させる。
更にこの整流回路の入力電流を検出する直流電流検出器
7をリアクトル5に直列に挿入すると共に、当該整流回
路が出力する直流電力に含まれる脈動分を除去するため
の平滑コンデンサ8を直流回路の正負極間に接続する。
2. Description of the Related Art FIG. 7 is a circuit diagram showing a conventional rectifier circuit capable of converting AC power into DC power at a high power factor. FIG.
In the conventional circuit of FIG.
A series circuit in which a series diode 2 is connected to a semiconductor switch circuit 1 composed of an OSFET 1A and a built-in diode 1B and a series circuit in which a series diode 4 is connected to a semiconductor switch circuit 3 composed of a MOSFET 3A and a built-in diode 3B are connected to the positive electrode of a DC circuit. An AC power supply 6 is connected between the connection point between the semiconductor switch circuit 1 and the series diode 2 and the connection point between the semiconductor switch circuit 3 and the series diode 4 via a reactor 5. By that
A rectifier circuit for converting AC power to DC power is formed.
Further, a DC current detector 7 for detecting an input current of the rectifier circuit is inserted in series with the reactor 5, and a smoothing capacitor 8 for removing a pulsating component contained in the DC power output from the rectifier circuit is connected to the DC circuit. Connect between positive and negative electrodes.

【0003】整流回路の入力電圧VINが正の期間では、
MOSFET1Aをオンすると電流は交流電源6→リア
クトル5→MOSFET1A→内蔵ダイオード3B→交
流電源6の経路で増加しながら流れる。そこでMOSF
ET1Aをオフにすると、リアクトル5を流れていた電
流は、リアクトル5→直列ダイオード2→平滑コンデン
サ8→内蔵ダイオード3B→交流電源6→リアクトル5
の経路に転流する。
When the input voltage V IN of the rectifier circuit is positive,
When the MOSFET 1A is turned on, the current flows while increasing along the path of the AC power supply 6 → reactor 5 → MOSFET 1A → built-in diode 3B → AC power supply 6. So MOSF
When the ET1A is turned off, the current flowing through the reactor 5 is changed from the reactor 5 → the series diode 2 → the smoothing capacitor 8 → the built-in diode 3B → the AC power supply 6 → the reactor 5
Commutation to the path.

【0004】また入力電圧VINが負の期間では、MOS
FET3Aをオンにすることで電流が交流電源6→MO
SFET3A→内蔵ダイオード1B→リアクトル5→交
流電源6の経路で増加しながら流れる。そこでMOSF
ET3Aをオフにすると、リアクトル5を流れていた電
流は、リアクトル5→交流電源6→直列ダイオード4→
平滑コンデンサ8→内蔵ダイオード1B→リアクトル5
の経路に転流する。
When the input voltage V IN is negative, the MOS
By turning on FET3A, the current is changed from AC power supply 6 to MO.
It flows while increasing along the path of SFET 3A → built-in diode 1B → reactor 5 → AC power supply 6. So MOSF
When the ET3A is turned off, the current flowing through the reactor 5 is changed from the reactor 5 → AC power supply 6 → series diode 4 →
Smoothing capacitor 8 → Built-in diode 1B → Reactor 5
Commutation to the path.

【0005】すなわち入力電圧VINが正の期間ではMO
SFET1Aの制御パルス幅を制御し、負の期間ではM
OSFET3Aの制御パルス幅を制御することにより、
直流電力に変換する際の交流入力電力を高い力率に制御
することができる。しかし、そのためには入力電流IIN
を検出し、入力電圧VINと同位相の正弦波電圧と同じ波
形になるように、MOSFET1AとMOSFET3A
のパルス幅を制御しなければならないが、そのためには
入力電流IINを検出する必要がある。そこで従来例回路
では直流電流検出器7を整流回路の入力側に設置するこ
とで、入力電流IINを検出していた。
That is, when the input voltage V IN is positive, MO
The control pulse width of the SFET 1A is controlled.
By controlling the control pulse width of the OSFET 3A,
AC input power at the time of conversion to DC power can be controlled to a high power factor. However, this requires the input current I IN
And the MOSFET 1A and the MOSFET 3A so as to have the same waveform as the sine wave voltage having the same phase as the input voltage V IN.
, The input current I IN needs to be detected. Therefore, in the conventional circuit, the input current I IN is detected by installing the DC current detector 7 on the input side of the rectifier circuit.

【0006】図8は図7に図示の従来例回路における整
流回路の入力電圧と入力電流の波形を示した波形図であ
って、図8は整流回路の入力電圧VINの波形、図8
は直流電流検出器7が検出する入力電流IINの波形であ
って、電圧と電流が同相,すなわち力率100%の状態
を示している。
FIG. 8 is a waveform diagram showing the waveforms of the input voltage and input current of the rectifier circuit in the conventional circuit shown in FIG. 7, and FIG. 8 shows the waveform of the input voltage V IN of the rectifier circuit.
Is a waveform of the input current I IN detected by the DC current detector 7, and shows a state where the voltage and the current are in phase, that is, the power factor is 100%.

【0007】[0007]

【発明が解決しようとする課題】前述したように整流回
路の入力電力を高力率に維持するには、入力電流IIN
検出する必要があるが、図示の整流回路を制御するにあ
たっては、一般に直流出力側の負極Nを基準電位にす
る。そこで制御回路で入力電流IINを検出する際の電流
検出器は絶縁されていなければならないし、この電流検
出器は入力電流IINに含まれる直流成分も検出できなけ
ればならない。なぜならば、交流電流を検出する変流器
は入力電流IINに重畳されている直流電流成分を検出で
きないから、整流回路を制御する際に僅かでも制御誤差
が存在すると、入力電流IINに含まれる直流電流成分を
補正することができない。よって直流電流成分が増加
し、過大電流となって装置を破損する恐れを生じる。そ
こでこのような危険を回避するために直流電流検出器7
を使用する。ところが直流電流検出器7は、抵抗の電圧
降下による電流検出や、交流電流検出器による電流検出
に比べて回路が複雑で高価になる欠点を有する。
As described above, in order to maintain the input power of the rectifier circuit at a high power factor, it is necessary to detect the input current I IN. However, in controlling the rectifier circuit shown in FIG. Generally, the negative electrode N on the DC output side is set to the reference potential. Therefore, the current detector for detecting the input current I IN in the control circuit must be insulated, and this current detector must also be able to detect the DC component included in the input current I IN . This is because the current transformer that detects the AC current cannot detect the DC current component superimposed on the input current I IN , and if there is any control error when controlling the rectifier circuit, the current transformer is included in the input current I IN . Cannot correct the DC current component. As a result, the DC current component increases and an excessive current may be caused to damage the device. Therefore, in order to avoid such danger, the DC current detector 7 is used.
Use However, the DC current detector 7 has a drawback that the circuit is complicated and expensive compared to the current detection based on the voltage drop of the resistance and the current detection using the AC current detector.

【0008】そこでこの発明の目的は、整流回路を高力
率で運転する際に、直流電流検出器を使用せずに入力電
流を検出できるようにすることにある。
An object of the present invention is to make it possible to detect an input current without using a DC current detector when operating a rectifier circuit at a high power factor.

【0009】[0009]

【課題を解決するための手段】前記の目的を達成するた
めに、この発明の整流回路の電流検出装置は、内蔵ダイ
オードを有する半導体スイッチ素子または半導体スイッ
チ素子とダイオードとの逆並列接続でなる半導体スイッ
チ回路に通流方向が異なる直列ダイオードを接続し、こ
の直列回路の2組を並列にして直流回路の正負極間に接
続し、前記半導体スイッチ回路と直列ダイオードとの2
つの結合点の間にリアクトルを介して交流電源を接続
し、当該交流電源の電圧が正の半サイクル期間は一方の
半導体スイッチ回路をオン・オフさせ、負の半サイクル
期間は他方の半導体スイッチ回路をオン・オフさせるこ
とにより、交流電力を直流電力に変換している整流回路
において、前記一方の半導体スイッチ回路と直列に第1
抵抗を接続すると共に他方の半導体スイッチ回路と直列
に第2抵抗を接続し、これら第1抵抗の電圧降下値と第
2抵抗の電圧降下値から、第1入力電流演算回路は当該
整流回路の入力電流を演算する。
In order to achieve the above object, a current detecting device for a rectifier circuit according to the present invention comprises a semiconductor switch element having a built-in diode or a semiconductor comprising an anti-parallel connection of a semiconductor switch element and a diode. A series diode having a different conduction direction is connected to the switch circuit, and two sets of the series circuit are connected in parallel between the positive and negative electrodes of the DC circuit, and two sets of the semiconductor switch circuit and the series diode are connected.
An AC power supply is connected between the two connection points via a reactor, and the voltage of the AC power supply turns on / off one semiconductor switch circuit during a positive half cycle, and the other semiconductor switch circuit during a negative half cycle. In a rectifier circuit that converts AC power into DC power by turning on and off the first semiconductor switch circuit in series with the one semiconductor switch circuit.
A resistor is connected, and a second resistor is connected in series with the other semiconductor switch circuit. From the voltage drop value of the first resistor and the voltage drop value of the second resistor, the first input current operation circuit determines the input of the rectifier circuit. Calculate the current.

【0010】前記第1入力電流演算回路は、第1抵抗の
電圧降下が負のときの値を検出する第1負電圧検出器
と、第2抵抗の電圧降下が負のときの値を検出する第2
負電圧検出器と、第1負電圧検出器の検出値から第2負
電圧検出器の検出値を差し引いた結果を前記整流器の入
力電流とする第1加算器とで構成する。または前記整流
器の入力回路に交流電流検出器を挿入し、前記一方の半
導体スイッチ回路と直列に第1抵抗を接続すると共に他
方の半導体スイッチ回路と直列に第2抵抗を接続し、こ
れら第1抵抗の電圧降下値と第2抵抗の電圧降下値と前
記交流電流検出器の検出値から、第2入力電流演算回路
が当該整流回路の入力電流を演算する。
The first input current calculation circuit detects a value when the voltage drop of the first resistor is negative, and detects a value when the voltage drop of the second resistor is negative. Second
The rectifier comprises a negative voltage detector and a first adder which uses a result obtained by subtracting a detection value of the second negative voltage detector from a detection value of the first negative voltage detector as an input current of the rectifier. Alternatively, an AC current detector is inserted into an input circuit of the rectifier, a first resistor is connected in series with the one semiconductor switch circuit, and a second resistor is connected in series with the other semiconductor switch circuit. The second input current calculation circuit calculates the input current of the rectifier circuit from the voltage drop value of the second resistor, the voltage drop value of the second resistor, and the detection value of the AC current detector.

【0011】前記第2入力電流演算回路は、第1抵抗の
電圧降下を検出する第1電圧検出器と、第2抵抗の電圧
降下を検出する第2電圧検出器と、これら第1電圧検出
器の検出値から第2電圧検出器の検出値を減算する第2
加算器と、この第2加算器の演算結果の平均値を求める
平均値演算器と、この平均値演算値と前記交流電流検出
器の検出値とを加算した結果を前記整流器の入力電流と
する第3加算器とで構成する。
The second input current operation circuit includes a first voltage detector for detecting a voltage drop of a first resistor, a second voltage detector for detecting a voltage drop of a second resistor, and the first voltage detector. Subtracting the detection value of the second voltage detector from the detection value of
An adder, an average calculator for calculating an average value of the operation result of the second adder, and a result obtained by adding the average calculation value and a detection value of the AC current detector as an input current of the rectifier. It is composed of a third adder.

【0012】[0012]

【発明の実施の形態】図1は本発明の第1実施例を表し
た回路図であるが、この図1に図示の第1実施例回路
は、図7で既述の従来例から直流電流検出器7を除去
し、半導体スイッチ回路1には第1抵抗11を直列に接
続し、半導体スイッチ回路3には第2抵抗12を直列に
接続しているのが異なる点であり、これ以外は図7の従
来例回路と同じであるから、同じ部分の説明は省略す
る。
FIG. 1 is a circuit diagram showing a first embodiment of the present invention. The circuit of the first embodiment shown in FIG. 1 is different from the conventional example shown in FIG. The difference is that the detector 7 is removed, a first resistor 11 is connected in series to the semiconductor switch circuit 1, and a second resistor 12 is connected in series to the semiconductor switch circuit 3. Since the circuit is the same as the conventional circuit of FIG. 7, the description of the same part is omitted.

【0013】図2は図1に図示の第1実施例回路の動作
を表した動作波形図であって、図2は整流回路の入力
電圧VINの波形、図2は第1抵抗11に生じる電圧V
R1の波形、図2は第2抵抗12に生じる電圧VR2の波
形、図2は整流回路の入力電流IINの波形を表してお
り、これらの図1と図2とで本発明の第1実施例の内容
を以下で説明する。
FIG. 2 is an operation waveform diagram showing the operation of the circuit of the first embodiment shown in FIG. 1. FIG. 2 shows the waveform of the input voltage V IN of the rectifier circuit, and FIG. Voltage V
FIG. 2 shows the waveform of R1 ; FIG. 2 shows the waveform of the voltage V R2 generated in the second resistor 12; and FIG. 2 shows the waveform of the input current I IN of the rectifier circuit. The contents of the embodiment will be described below.

【0014】従来例回路と同様に、図1に図示のMOS
FET1Aは入力電圧VINが正であるt1 〜t2 期間で
スイッチング動作をする。よってこの期間でMOSFE
T1Aがオンすると、第1抵抗11にはMOSFET1
Aから負極Nの方向に電流が流れて矢印方向の電圧VR1
が発生するが、MOSFET1Aをオフにすれば第1抵
抗11に電流は流れず、電圧VR1も生じない。よってt
1 〜t2 期間では断続した電圧(図2参照)が発生す
る。また入力電圧VINが負であるt2 〜t3 期間では、
MOSFET3Aがオンまたはオフのいずれであって
も、第1抵抗11には常に負極NからMOSFET1A
の方向へ電流が流れるから、矢印とは逆方向の連続した
電圧(図2参照)が発生する。
As in the conventional circuit, the MOS shown in FIG.
FET1A to a switching operation at t 1 ~t 2 period the input voltage V IN is positive. Therefore, during this period, MOSFE
When T1A is turned on, the first resistor 11 has the MOSFET 1
A current flows from A to the negative electrode N, and a voltage V R1 in the direction of the arrow is drawn.
Although but occurs, current to the first resistor 11 if the off MOSFET1A does not flow, does not occur voltage V R1. Therefore t
Intermittent voltage (see FIG. 2) is generated in the 1 ~t 2 period. Also, during the period from t 2 to t 3 when the input voltage V IN is negative,
Regardless of whether the MOSFET 3A is on or off, the first resistor 11 always has the MOSFET 1A
, A continuous voltage in the direction opposite to the arrow (see FIG. 2) is generated.

【0015】入力電圧VINが負であるt2 〜t3 期間で
は、MOSFET3Aがスイッチング動作をするから、
この期間でMOSFET3Aがオンすると、第2抵抗1
2にはMOSFET3Aから負極Nの方向に電流が流れ
て矢印方向の電圧VR2が発生するが、MOSFET3A
をオフにすれば第2抵抗12に電流は流れないから電圧
R2も生じない。よってt2 〜t3 期間では断続した電
圧(図2参照)が発生する。また入力電圧VINが正で
あるt1 〜t2 期間では、MOSFET1Aがオンまた
はオフのいずれであっても、第2抵抗12には常に負極
NからMOSFET3Aの方向へ電流が流れるから、矢
印とは逆方向の連続した電圧(図2参照)が発生す
る。
During the period from t 2 to t 3 when the input voltage V IN is negative, the MOSFET 3A performs a switching operation.
When the MOSFET 3A turns on during this period, the second resistor 1
The second current in the direction of the negative electrode N is generated, the arrow direction of the voltage V R2 flows from MOSFETs but, MOSFETs
Is turned off, no current flows through the second resistor 12, so that no voltage VR2 is generated. Therefore intermittent voltage (see FIG. 2) is generated in the t 2 ~t 3 periods. Further, during the period from t 1 to t 2 when the input voltage V IN is positive, a current always flows from the negative electrode N to the MOSFET 3A through the second resistor 12 regardless of whether the MOSFET 1A is on or off. Generates a continuous voltage in the reverse direction (see FIG. 2).

【0016】そこで第1抵抗11に生じる電圧VR1が負
である期間(すなわち図2でt2〜t3 期間)と、第
2抵抗12に生じる電圧VR2が負である期間(すなわち
図2でt1 〜t2 期間)を取り出し、前者の電圧と後
者の電圧との差を演算すれば、図2に図示の波形,す
なわち入力電流IINが得られる。あるいは後者の電圧の
極性を反転させ、それと前者の電圧との和を求めても、
図2に図示の入力電流IINが得られる。
Therefore, a period in which the voltage V R1 generated in the first resistor 11 is negative (ie, a period from t 2 to t 3 in FIG. 2) and a period in which the voltage V R2 generated in the second resistor 12 is negative (ie, FIG. in t 1 ~t 2 period) was removed, if calculating the difference between the former voltage and the latter voltage, the waveform shown in FIG. 2, that is, the input current I iN is obtained. Or, by inverting the polarity of the latter voltage and calculating the sum of it and the former voltage,
The input current I IN shown in FIG. 2 is obtained.

【0017】図3は本発明の第2実施例を表した回路図
であって、図1の第1実施例回路において図2に既述
の入力電流IINを得る第1電流演算回路20の構成を表
している。この第2実施例回路において、第1電流演算
回路20は、第1抵抗11の両端電圧を絶縁して検出す
る第1電圧検出器21と、この検出電圧の負の値のみを
出力する第1負電圧検出器23と、第2抵抗12の両端
電圧を絶縁して検出する第2電圧検出器22と、この検
出電圧の負の値のみを出力する第2負電圧検出器24
と、第1負電圧検出器23の出力値から第2負電圧検出
器24の出力値を減算する第1加算器25とで構成して
おり、この第1加算器25の出力が図2に図示の入力
電流IINとなる。
FIG. 3 is a circuit diagram showing a second embodiment of the present invention. In the circuit of the first embodiment shown in FIG. 1, the first current operation circuit 20 for obtaining the input current I IN already described in FIG. It shows the configuration. In the circuit of the second embodiment, a first current calculation circuit 20 includes a first voltage detector 21 that insulates and detects a voltage across the first resistor 11 and a first voltage detector 21 that outputs only a negative value of the detected voltage. A negative voltage detector 23, a second voltage detector 22 for detecting the voltage across the second resistor 12 while insulating the voltage, and a second negative voltage detector 24 for outputting only a negative value of the detected voltage
And a first adder 25 for subtracting the output value of the second negative voltage detector 24 from the output value of the first negative voltage detector 23. The output of the first adder 25 is shown in FIG. The input current I IN is shown.

【0018】図4は本発明の第3実施例を表した回路図
であるが、この図4に図示の第3実施例回路は、図7で
既述の従来例から直流電流検出器7の代わりに交流電流
検出器31を備え、半導体スイッチ回路1には第1抵抗
11を直列に接続し、半導体スイッチ回路3には第2抵
抗12を直列に接続しているのが異なる点であり、これ
以外は図5の従来例回路と同じであるから、同じ部分の
説明は省略する。
FIG. 4 is a circuit diagram showing a third embodiment of the present invention. The circuit of the third embodiment shown in FIG. 4 is different from the conventional example shown in FIG. Instead, an AC current detector 31 is provided, the semiconductor switch circuit 1 is connected in series with the first resistor 11, and the semiconductor switch circuit 3 is connected in series with the second resistor 12, Other than this, the circuit is the same as the conventional circuit of FIG. 5, and the description of the same parts will be omitted.

【0019】図5は図4に図示の第3実施例回路の動作
を表した動作波形図であって、図5は整流回路の入力
電圧VINの波形、図5は第1抵抗11に生じる電圧V
R1の波形、図5は第2抵抗12に生じる電圧VR2の波
形、図5は電圧VR1から電圧VR2を減算して得られる
波形、図5は電圧VR1から電圧VR2を減算した値に含
まれる直流成分を表している。これらの図4と図5とで
本発明の第3実施例の内容を以下で説明する。
FIG. 5 is an operation waveform diagram showing the operation of the circuit of the third embodiment shown in FIG. 4. FIG. 5 is a waveform of the input voltage V IN of the rectifier circuit, and FIG. Voltage V
R1 waveforms 5 the waveform of the voltage V R2 generated in the second resistor 12, FIG. 5 is a waveform obtained by subtracting a voltage V R2 from voltage V R1, Figure 5 by subtracting a voltage V R2 from voltage V R1 Represents the DC component included in the value. The contents of the third embodiment of the present invention will be described below with reference to FIGS.

【0020】前述した第1実施例回路と同様に、図4に
図示のMOSFET1Aは入力電圧VINが正であるt1
〜t2 期間でスイッチング動作をし、入力電圧VINが負
であるt2 〜t3 期間では、MOSFET3Aがスイッ
チング動作をする。よって第1抵抗11に生じる電圧V
R1は図5で表される波形となるが、これは図2で既
述の波形と同じであるし、第2抵抗12に生じて図5
で表される電圧VR2の波形も図2で既述の波形と同じ
である。
[0020] Similar to the first embodiment circuit described above, MOSFET1A shown in FIG. 4 is positive input voltage V IN is t 1
And a switching operation in ~t 2 period, the input voltage V IN is in the t 2 ~t 3 periods is negative, MOSFETs to the switching operation. Therefore, the voltage V generated in the first resistor 11
R1 has the waveform shown in FIG. 5, which is the same as the waveform already described in FIG.
The waveform of the voltage V R2 represented by is also the same as the waveform already described in FIG.

【0021】この第3実施例では電圧VR1から電圧VR2
を減算する演算を行うが、この減算結果の波形は図5
となる。図5に図示の波形の平均値は零になるはずで
あるが、僅かでも制御誤差があると直流分が含まれてし
まうために零にならない。図5に図示の波形の平均値
を求めることで直流電流IDCの大きさ(図5参照)を
検出できる。このようにして得られた直流電流IDCと、
整流回路の入力回路に設置した交流電流検出器31が検
出する交流電流IACとを加算すれば、当該整流回路への
入力電流IIN(IIN=IAC+IDC)を求めることができ
る。
In the third embodiment, the voltage V R1 is changed from the voltage V R1 to the voltage V R2.
Is subtracted, and the waveform of the subtraction result is shown in FIG.
It becomes. The average value of the waveform shown in FIG. 5 should be zero, but if there is any control error, it does not become zero because a direct current component is included. The magnitude of the DC current I DC (see FIG. 5) can be detected by calculating the average value of the waveform shown in FIG. The DC current I DC thus obtained is
By adding the AC current I AC detected by the AC current detector 31 installed in the input circuit of the rectifier circuit, the input current I IN (I IN = I AC + I DC ) to the rectifier circuit can be obtained.

【0022】図6は本発明の第4実施例を表した回路図
であって、図4で既述の第3実施例回路で入力電流IIN
を求める第2電流演算回路30の構成を表している。こ
の第4実施例回路において、第2電流演算回路30は、
第1抵抗11の両端電圧を絶縁して検出する第1電圧検
出器21と、第2抵抗12の両端電圧を絶縁して検出す
る第2電圧検出器22と、第1電圧検出器21の出力値
から第2電圧検出器22の出力値を減算する第3加算器
32と、この第3加算器32の演算結果の平均値を演算
する平均値演算器33と、この平均値演算値と前記交流
電流検出器31の検出値とを加算する第3加算器34と
で構成しており、この第3加算器34の出力が整流回路
の入力電流IINとなる。
FIG. 6 is a circuit diagram showing a fourth embodiment of the present invention. The input current I IN in the circuit of the third embodiment described with reference to FIG.
2 shows the configuration of the second current calculation circuit 30 for obtaining the following equation. In the circuit of the fourth embodiment, the second current operation circuit 30
A first voltage detector 21 for insulating and detecting the voltage between both ends of the first resistor 11, a second voltage detector 22 for insulating and detecting the voltage between both ends of the second resistor 12, and an output of the first voltage detector 21 A third adder 32 for subtracting the output value of the second voltage detector 22 from the value, an average value calculator 33 for calculating an average value of the operation result of the third adder 32, And a third adder 34 for adding the detection value of the AC current detector 31. The output of the third adder 34 is the input current I IN of the rectifier circuit.

【0023】[0023]

【発明の効果】交流電力を高い力率で直流電力に変換す
るためには、整流回路を構成する半導体スイッチ回路を
制御するが、このときの僅かな制御誤差が原因で整流回
路の入力電流に直流電流成分が含まれる場合は、これを
補正しないと直流電流成分が増加して機器を破損させる
恐れがある。そこで直流電流成分を含んだ入力電流の検
出に従来は直流電流検出器を使用していたが、この直流
電流検出器は装置が複雑で高価な欠点がある。そこで本
発明では、整流回路を構成する半導体スイッチ回路に直
列に抵抗を挿入し、この抵抗に生じる電圧降下から、負
電圧検出器や加算器などで構成する第1電流演算回路で
入力電流IINを求めることにより、高価な直流電流検出
器を使用せずに、直流分を含んだ入力電流IINを検出で
きる効果が得られる。
In order to convert AC power into DC power at a high power factor, a semiconductor switch circuit constituting a rectifier circuit is controlled. However, a slight control error at this time causes an increase in the input current of the rectifier circuit. If a direct current component is included, the direct current component increases without correcting this, and there is a possibility that the device may be damaged. Therefore, a DC current detector has conventionally been used for detecting an input current including a DC current component. However, this DC current detector has a drawback that the device is complicated and expensive. Therefore, in the present invention, a resistor is inserted in series with a semiconductor switch circuit constituting a rectifier circuit, and the input current I IN is calculated by a first current operation circuit constituted by a negative voltage detector, an adder, etc., based on a voltage drop generated in the resistor. Is obtained, it is possible to detect an input current I IN including a DC component without using an expensive DC current detector.

【0024】或いは半導体スイッチ回路に直列に挿入し
た抵抗の電圧降下と平均値演算で求めた直流電流成分と
交流電流検出器で得られる交流電流成分との加算で入力
電流を検出する第2電流演算回路により、高価な直流電
流検出器を使用せずに直流分を含んだ入力電流IINを検
出できる効果が得られる。
Alternatively, a second current calculation for detecting an input current by adding a voltage drop of a resistor inserted in series to a semiconductor switch circuit and a DC current component obtained by an average value calculation and an AC current component obtained by an AC current detector. The circuit has an effect that the input current I IN including the DC component can be detected without using an expensive DC current detector.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例を表した回路図FIG. 1 is a circuit diagram showing a first embodiment of the present invention.

【図2】図1に図示の第1実施例回路の動作を表した動
作波形図
FIG. 2 is an operation waveform diagram showing the operation of the first embodiment circuit shown in FIG.

【図3】本発明の第2実施例を表した回路図FIG. 3 is a circuit diagram showing a second embodiment of the present invention.

【図4】本発明の第3実施例を表した回路図FIG. 4 is a circuit diagram showing a third embodiment of the present invention.

【図5】図4に図示の第3実施例回路の動作を表した動
作波形図
FIG. 5 is an operation waveform diagram showing the operation of the circuit of the third embodiment shown in FIG. 4;

【図6】本発明の第4実施例を表した回路図FIG. 6 is a circuit diagram showing a fourth embodiment of the present invention.

【図7】交流電力を高力率で直流電力に変換できる整流
回路の従来例を示した回路図
FIG. 7 is a circuit diagram showing a conventional example of a rectifier circuit capable of converting AC power to DC power at a high power factor.

【図8】図7に図示の従来例回路における整流回路の入
力電圧と入力電流の波形を示した波形図
8 is a waveform diagram showing the waveforms of the input voltage and the input current of the rectifier circuit in the conventional circuit shown in FIG.

【符号の説明】[Explanation of symbols]

1,3 半導体スイッチ回路 1A,3A MOSFET 1B,3B 内蔵ダイオード 2,4 直列ダイオード 5 リアクトル 6 交流電源 7 直流電流検出器 11 第1抵抗 12 第2抵抗 20 第1電流演算回路 21 第1電圧検出器 22 第2電圧検出器 23 第1負電圧検出器 24 第2負電圧検出器 25 第1加算器 30 第2電流演算回路 31 交流電流検出器 32 第2加算器 33 平均値演算器 34 第3加算器 1,3 semiconductor switch circuit 1A, 3A MOSFET 1B, 3B Built-in diode 2,4 series diode 5 reactor 6 AC power supply 7 DC current detector 11 1st resistance 12 Second resistance 20 1st current calculation circuit 21 1st voltage detector 22 Second voltage detector 23 1st negative voltage detector 24 Second negative voltage detector 25 First adder 30 Second current operation circuit 31 AC current detector 32 Second adder 33 Average calculator 34 Third adder

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】内蔵ダイオードを有する半導体スイッチ素
子でなる半導体スイッチ回路,または半導体スイッチ素
子とダイオードとの逆並列接続でなる半導体スイッチ回
路に、これとは通流方向が異なる直列ダイオードを接続
して直列回路を構成し、この直列回路の2組を並列にし
て直流回路の正負極間に接続し、前記半導体スイッチ回
路と直列ダイオードとの2つの結合点の間にリアクトル
を介して交流電源を接続し、当該交流電源の電圧が正の
半サイクル期間は一方の半導体スイッチ回路をオン・オ
フさせ、電圧が負の半サイクル期間は他方の半導体スイ
ッチ回路をオン・オフさせて交流電力を直流電力に変換
する整流回路において、 前記一方の半導体スイッチ回路と直列に第1抵抗を接続
すると共に他方の半導体スイッチ回路と直列に第2抵抗
を接続し、これら第1抵抗と第2抵抗の電圧降下検出値
から前記整流回路の入力電流を演算する第1入力電流演
算回路を備えることを特徴とする整流回路の電流検出装
置。
1. A semiconductor switch circuit comprising a semiconductor switch element having a built-in diode, or a semiconductor switch circuit comprising an anti-parallel connection of a semiconductor switch element and a diode, connected to a series diode having a different conduction direction. A series circuit is formed, and two sets of the series circuit are connected in parallel between the positive and negative electrodes of a DC circuit, and an AC power supply is connected via a reactor between two connection points of the semiconductor switch circuit and the series diode. During the positive half cycle of the voltage of the AC power supply, one semiconductor switch circuit is turned on and off, and during the negative half cycle, the other semiconductor switch circuit is turned on and off to convert AC power into DC power. In the rectifier circuit for conversion, a first resistor is connected in series with the one semiconductor switch circuit and a first resistor is connected in series with the other semiconductor switch circuit. A current detection device for a rectifier circuit, comprising: a first input current calculation circuit that connects two resistors and calculates an input current of the rectifier circuit from a voltage drop detection value of the first resistor and the second resistor.
【請求項2】請求項1に記載の整流回路の電流検出装置
において、 前記第1入力電流演算回路は、前記第1抵抗の電圧降下
が負のときの値を検出する第1負電圧検出器と、前記第
2抵抗の電圧降下が負のときの値を検出する第2負電圧
検出器と、この第1負電圧検出器の検出値から第2負電
圧検出器の検出値の加算または減算を行ってその演算結
果を前記整流回路の入力電流とする第1加算器とを備え
ることを特徴とする整流回路の電流検出装置。
2. The current detection device for a rectifier circuit according to claim 1, wherein the first input current calculation circuit detects a value when the voltage drop of the first resistor is negative. A second negative voltage detector for detecting a value when the voltage drop of the second resistor is negative, and adding or subtracting a detection value of the second negative voltage detector from a detection value of the first negative voltage detector And a first adder for calculating the result of calculation as an input current of the rectifier circuit.
【請求項3】寄生ダイオードを有する半導体スイッチ素
子でなる半導体スイッチ回路,または半導体スイッチ素
子とダイオードとの逆並列接続でなる半導体スイッチ回
路に、これとは通流方向が異なる直列ダイオードを接続
して直列回路を構成し、この直列回路の2組を並列にし
て直流回路の正負極間に接続し、前記半導体スイッチ回
路と直列ダイオードとの2つの結合点の間にリアクトル
を介して交流電源を接続し、当該交流電源の電圧が正の
半サイクル期間は一方の半導体スイッチ回路をオン・オ
フさせ、電圧が負の半サイクル期間は他方の半導体スイ
ッチ回路をオン・オフさせて交流電力を直流電力に変換
する整流回路において、交流電流検出器を前記整流回路
の入力回路に挿入し、前記一方の半導体スイッチ回路と
直列に第1抵抗を接続すると共に他方の半導体スイッチ
回路と直列に第2抵抗を接続し、前記交流電流検出器の
検出値とこれら第1抵抗と第2抵抗の電圧降下検出値か
ら前記整流回路の入力電流を演算する第2入力電流演算
回路を備えることを特徴とする整流回路の電流検出装
置。
3. A semiconductor switch circuit comprising a semiconductor switch element having a parasitic diode, or a semiconductor switch circuit comprising an anti-parallel connection of a semiconductor switch element and a diode, connected to a series diode having a different conduction direction. A series circuit is formed, and two sets of the series circuit are connected in parallel between the positive and negative electrodes of a DC circuit, and an AC power supply is connected via a reactor between two connection points of the semiconductor switch circuit and the series diode. During the positive half cycle of the voltage of the AC power supply, one semiconductor switch circuit is turned on and off, and during the negative half cycle, the other semiconductor switch circuit is turned on and off to convert AC power into DC power. In the rectifier circuit for conversion, an AC current detector is inserted into an input circuit of the rectifier circuit, and a first resistor is connected in series with the one semiconductor switch circuit. A second resistor is connected in series with the other semiconductor switch circuit, and an input current of the rectifier circuit is calculated from a detected value of the AC current detector and a detected voltage drop of the first resistor and the second resistor. A current detection device for a rectifier circuit, comprising a second input current calculation circuit.
【請求項4】請求項3に記載の整流回路の電流検出装置
において、 前記第2入力電流演算回路は、前記第1抵抗の電圧降下
を検出する第1電圧検出器と、第2抵抗の電圧降下を検
出する第2電圧電圧検出器と、この第1電圧検出器の検
出値から第2電圧検出器の検出値の減算を行う第2加算
器と、この第2加算器の演算結果の平均値を演算する平
均値演算器と、この平均値演算値と前記交流電流検出器
の検出値とを加算してその演算結果を前記整流回路の入
力電流とする第3加算器とを備えることを特徴とする整
流回路の電流検出装置。
4. The current detection device for a rectifier circuit according to claim 3, wherein the second input current calculation circuit detects a voltage drop of the first resistor, and a voltage of the second resistor. A second voltage / voltage detector for detecting a drop, a second adder for subtracting a detection value of the second voltage detector from a detection value of the first voltage detector, and an average of operation results of the second adder An average value calculator for calculating a value, and a third adder that adds the average value calculation value and the detection value of the AC current detector and uses the result of the calculation as an input current of the rectifier circuit. Characteristic rectifier circuit current detection device.
JP2002150444A 2002-05-24 2002-05-24 Current detector for rectifier circuit Withdrawn JP2003348849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002150444A JP2003348849A (en) 2002-05-24 2002-05-24 Current detector for rectifier circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002150444A JP2003348849A (en) 2002-05-24 2002-05-24 Current detector for rectifier circuit

Publications (1)

Publication Number Publication Date
JP2003348849A true JP2003348849A (en) 2003-12-05

Family

ID=29768300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002150444A Withdrawn JP2003348849A (en) 2002-05-24 2002-05-24 Current detector for rectifier circuit

Country Status (1)

Country Link
JP (1) JP2003348849A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010106701A1 (en) * 2009-03-18 2010-09-23 株式会社村田製作所 Pfc converter
JP2011101571A (en) * 2009-11-06 2011-05-19 Ohira Electronics Co Ltd Ac-dc converter
JP2011109817A (en) * 2009-11-18 2011-06-02 Fuji Electric Holdings Co Ltd Ac-dc converter
JP2011147202A (en) * 2010-01-12 2011-07-28 Tdk-Lambda Corp Switching power unit
JP2013200225A (en) * 2012-03-26 2013-10-03 Sanken Electric Co Ltd Ac input voltage detection circuit
JP2014166050A (en) * 2013-02-26 2014-09-08 Origin Electric Co Ltd Ac-dc power conversion device
WO2016031061A1 (en) * 2014-08-29 2016-03-03 新電元工業株式会社 Power factor improving converter and power supply device including power factor improving converter
JP2016077107A (en) * 2014-10-08 2016-05-12 パナソニックIpマネジメント株式会社 Dc power supply device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8427853B2 (en) 2009-03-18 2013-04-23 Murata Manufacturing Co., Ltd. Power factor correction converter including operation mode determination unit
WO2010106701A1 (en) * 2009-03-18 2010-09-23 株式会社村田製作所 Pfc converter
CN102356537A (en) * 2009-03-18 2012-02-15 株式会社村田制作所 Pfc converter
JP5104946B2 (en) * 2009-03-18 2012-12-19 株式会社村田製作所 PFC converter
JP2011101571A (en) * 2009-11-06 2011-05-19 Ohira Electronics Co Ltd Ac-dc converter
JP2011109817A (en) * 2009-11-18 2011-06-02 Fuji Electric Holdings Co Ltd Ac-dc converter
JP2011147202A (en) * 2010-01-12 2011-07-28 Tdk-Lambda Corp Switching power unit
JP2013200225A (en) * 2012-03-26 2013-10-03 Sanken Electric Co Ltd Ac input voltage detection circuit
US9429601B2 (en) 2012-03-26 2016-08-30 Sanken Electric Co., Ltd. Alternating current input voltage detection circuit
JP2014166050A (en) * 2013-02-26 2014-09-08 Origin Electric Co Ltd Ac-dc power conversion device
WO2016031061A1 (en) * 2014-08-29 2016-03-03 新電元工業株式会社 Power factor improving converter and power supply device including power factor improving converter
JPWO2016031061A1 (en) * 2014-08-29 2017-04-27 新電元工業株式会社 Power factor improving converter and power supply device including power factor improving converter
CN106716812A (en) * 2014-08-29 2017-05-24 新电元工业株式会社 Power factor improving converter and power supply device including power factor improving converter
US10601308B2 (en) 2014-08-29 2020-03-24 Shindengen Electric Manufacturing Co., Ltd. Power factor improving converter, and power supply device including power factor improving converter
JP2016077107A (en) * 2014-10-08 2016-05-12 パナソニックIpマネジメント株式会社 Dc power supply device

Similar Documents

Publication Publication Date Title
KR100682010B1 (en) Power supply circuit
JP5343816B2 (en) Power factor improved switching power supply
JP2001078370A (en) Charger and charging control circuit
JP2017034829A (en) Power conversion device
US20230299665A1 (en) Power converting device
JP2005065447A (en) Current detection method and current detection device of dc-dc converter
EP3054576B1 (en) Rectification device
JP2003348849A (en) Current detector for rectifier circuit
JP2001296324A (en) Sensing circuit for open phase of three-phase power supply
WO2014033864A1 (en) Power source device and power source device control method
JP2008125313A (en) Switching power supply
JP2018157727A (en) Bridgeless power factor correction circuit
JP2003219635A5 (en)
JP2009189114A (en) Direct-current power supply device
JP6022883B2 (en) Power supply
JP4725696B2 (en) Switching power supply
JP2019062665A (en) AC-DC converter
JP4970011B2 (en) Power factor correction type DC power supply
JP7161447B2 (en) power converter
JP2002153067A (en) High power factor converter and method of controlling the same
JP2009033814A (en) Dc power supply device
JP2005261106A (en) Three-phase rectifier device
JP7336490B2 (en) Leak current detection circuit and flux gate driver
JPH10127046A (en) Control circuit for step-up converter
JP3199342B2 (en) Inverter device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050117

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070424