JP2003347231A - Method of manufacturing compound semiconductor and semiconductor element - Google Patents

Method of manufacturing compound semiconductor and semiconductor element

Info

Publication number
JP2003347231A
JP2003347231A JP2002158677A JP2002158677A JP2003347231A JP 2003347231 A JP2003347231 A JP 2003347231A JP 2002158677 A JP2002158677 A JP 2002158677A JP 2002158677 A JP2002158677 A JP 2002158677A JP 2003347231 A JP2003347231 A JP 2003347231A
Authority
JP
Japan
Prior art keywords
atoms
compound semiconductor
nitrogen
arsenic
iii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002158677A
Other languages
Japanese (ja)
Inventor
Naoki Futakuchi
尚樹 二口
Kosuke Yokoyama
康祐 横山
Katsuya Akimoto
克弥 秋元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2002158677A priority Critical patent/JP2003347231A/en
Publication of JP2003347231A publication Critical patent/JP2003347231A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method by which a III-V compound semiconductor having a large nitrogen atom composition can be manufactured easily, and to provide a semiconductor element manufactured by the method. <P>SOLUTION: In the method, the III-V compound semiconductor containing at least both arsenic atoms and nitrogen atoms as group V atoms is manufactured by the vapor phase growth method by using a gaseous starting material of nitrogen. In this method, the ratio of the partial pressure of a gaseous starting material of arsenic to the sum of partial pressures of group III gaseous starting materials in a reaction chamber is controlled to ≤1. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、V族原子として少
なくとも砒素原子及び窒素原子の両方を含むIII−V族
化合物半導体の製造方法及び半導体素子に係り、特に、
砒素原料ガスの分圧比を工夫して窒素原子の組成の増大
を図った化合物半導体の製造方法及び半導体素子に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a III-V compound semiconductor containing at least both arsenic atoms and nitrogen atoms as group V atoms, and a semiconductor device.
The present invention relates to a compound semiconductor manufacturing method and a semiconductor element in which the composition of nitrogen atoms is increased by devising a partial pressure ratio of an arsenic source gas.

【0002】[0002]

【従来の技術】光通信用レーザとしては1.3μm帯、
あるいは1.55μm帯が用いられている。特に1.3
μm帯レーザは近距離の光通信用として用いられている
が、現状では、III−V族化合物半導体であるInGa
AsP/InP系材料が主流である。しかしこの材料系
は、InP基板を使わなければならないために、基板コ
ストがかかるという問題のほかに、活性層のヘテロ障壁
での伝導帯の不連続量(バンドオフセット量)が小さ
く、電子が活性層の外に漏れやすいために、高温動作時
の特性劣化が問題となっている。通常は、高温でも安定
に動作させるためにペルチェ素子で冷却するなどの方法
が取られているが、このためにデバイスコストがかか
り、加えて消費電力が大きくなるという問題がある。
2. Description of the Related Art As a laser for optical communication, a 1.3 μm band is used.
Alternatively, the 1.55 μm band is used. Especially 1.3
The μm band laser is used for short-distance optical communication, but at present, InGa which is a group III-V compound semiconductor is used.
AsP / InP-based materials are mainly used. However, this material system requires the use of an InP substrate, which increases the substrate cost. In addition, the conduction band discontinuity (band offset amount) at the hetero barrier in the active layer is small, and electrons are not activated. Since it is easy to leak out of the layer, deterioration of characteristics during high-temperature operation is a problem. Normally, a method such as cooling with a Peltier element is used to stably operate even at high temperatures, but this causes a problem that device cost is increased and power consumption is increased.

【0003】一方、Jpn.J.Appl.Phys.
Vol.35(1996)Pt.1,No.11,p.
5711には、InGaAsP/InP系材料以外のII
I−V族化合物半導体として、GaInAsに窒素を加
えたGaInNAsが、GaAsの上にエピタキシャル
成長させることができ、1.3μmから1.55μmの
波長領域をカバーする材料として提案されている。
On the other hand, Jpn. J. Appl. Phys.
Vol. 35 (1996) Pt. 1, No. 11, p.
5711 has II other than InGaAsP / InP-based materials.
As a group IV compound semiconductor, GaInNAs obtained by adding nitrogen to GaInAs has been proposed as a material that can be epitaxially grown on GaAs and covers a wavelength region of 1.3 μm to 1.55 μm.

【0004】GaAsにInを加えると、InがGaよ
り原子半径が大きいために、GaInAsはGaAsに
対して格子定数が大きくなるが、これにさらにAsより
原子半径が小さいNを加えることでGaAsと同じ格子
定数にすることができる。
When In is added to GaAs, the lattice constant of GaInAs becomes larger than that of GaAs because In has a larger atomic radius than that of Ga. The same lattice constant can be used.

【0005】さらに、GaInNAsは、GaInAs
Pなどの多くのIII−V族化合物半導体とは異なり、G
aAsにAsより原子半径の小さなNを加えてもバンド
ギャップ波長を短波長化することができる。したがっ
て、適切にInとNの組成を設計することで、GaAs
に格子整合した1.3μmあるいは1.55μmのバン
ドギャップ波長を持つIII−V族化合物半導体が得られ
る。
Further, GaInNAs is made of GaInAs.
Unlike many III-V compound semiconductors such as P, G
Even if N having a smaller atomic radius than As is added to aAs, the band gap wavelength can be shortened. Therefore, by appropriately designing the composition of In and N, the GaAs
A group III-V compound semiconductor having a band gap wavelength of 1.3 μm or 1.55 μm lattice-matched to the above is obtained.

【0006】GaInNAsの結晶成長法としては、分
子線エピタキシー(MBE)法、有機金属気相エピタキ
シー(MOVPE)法などがあるが、低コストのデバイ
スを作製するには、多数枚の基板を同時に結晶成長でき
るMOVPE法が有利である。MOVPE法は、一定温
度に保たれた有機金属化合物に水素あるいは窒素などの
ガスを通し、原料をガスの状態で大量の水素あるいは窒
素からなるキャリアガスと一緒に反応容器内に供給し、
熱分解させて結晶成長を行うものである。通常は、V族
原料ガスの分圧をIII族原料ガスの分圧に比べて数倍か
ら数千倍に大きくして成長を行っている。
As a crystal growth method of GaInNAs, there are a molecular beam epitaxy (MBE) method, a metal organic vapor phase epitaxy (MOVPE) method, and the like. To manufacture a low-cost device, a large number of substrates are simultaneously crystallized. An MOVPE method that can grow is advantageous. In the MOVPE method, a gas such as hydrogen or nitrogen is passed through an organometallic compound maintained at a constant temperature, and the raw material is supplied in a gaseous state together with a large amount of a carrier gas composed of hydrogen or nitrogen into a reaction vessel.
The crystal is grown by thermal decomposition. Usually, the growth is performed by increasing the partial pressure of the group V source gas by several to several thousand times as compared with the partial pressure of the group III source gas.

【0007】ところで、GaInNAsは、非混和性の
大きな材料なので、窒素原子の組成を大きくすることが
難しい。
[0007] Since GaInNAs is a highly immiscible material, it is difficult to increase the composition of nitrogen atoms.

【0008】そこで、従来の化合物半導体の製造方法と
しては、窒素原子の組成を大きくするために、低温で非
平衡性を大きくして成長し、かつ低温でも分解しやすい
1,1−ジメチルヒドラジンなどの有機窒素化合物を用
いる方法(S.Sato et.al. Jpn.J.
Appl.Phys.Vol.36(1997)Pt.
1,No.5A,p.2671)や、窒素キャリアガス
を用いる方法(A.Ougazzaden et.a
l. Jpn.J.Appl.Phys.Vol.38
(1999)Pt.1,No.2B,p.1019)等
がある。
[0008] Therefore, as a conventional method for producing a compound semiconductor, in order to increase the composition of nitrogen atoms, a non-equilibrium is grown at a low temperature to grow, and 1,1-dimethylhydrazine which is easily decomposed even at a low temperature. Using an organic nitrogen compound (S. Sato et. Al. Jpn.
Appl. Phys. Vol. 36 (1997) Pt.
1, No. 5A, p. 2671) or a method using a nitrogen carrier gas (A. Ougazzaden et.a.
l. Jpn. J. Appl. Phys. Vol. 38
(1999) Pt. 1, No. 2B, p. 1019).

【0009】[0009]

【発明が解決しようとする課題 】しかしながら、従来
の化合物半導体の製造方法では、結晶性の良いGaIn
NAsを得ようとすれば、その窒素原子の組成は1〜2
%程度が限界であり、窒素原子の組成が小さいという問
題がある。
However, in the conventional method of manufacturing a compound semiconductor, GaIn has good crystallinity.
To obtain NAs, the composition of the nitrogen atom is 1-2.
% Is the limit and there is a problem that the composition of nitrogen atoms is small.

【0010】これは、砒素の反応種が結晶表面に付着し
やすく、反対に窒素の反応種が結晶表面に付着しにく
く、さらに一旦結晶表面に付着した砒素原子は再離脱し
にくく、反対に窒素原子は再離脱しやすい、という砒素
原子と窒素原子の性質の差によるものである。
This is because the reactive species of arsenic easily adhere to the crystal surface, the reactive species of nitrogen hardly adhere to the crystal surface, the arsenic atoms once adhered to the crystal surface are less likely to be eliminated again, and This is due to the difference in the properties of the arsenic atom and the nitrogen atom that atoms are easily detached.

【0011】このため、窒素原子の組成の大きいGaI
nNAs結晶を得るには、結晶表面での砒素反応種と窒
素反応種の付着・再離脱をコントロールする結晶成長法
が必要である。
For this reason, GaI having a large composition of nitrogen atoms is used.
In order to obtain an nNAs crystal, a crystal growth method for controlling the attachment and detachment of arsenic reactive species and nitrogen reactive species on the crystal surface is required.

【0012】また、従来の製造方法によって作製される
GaInNAsを用いた半導体素子(半導体発光デバイ
ス)においては、1.3μmの発光波長を得ようとする
と窒素原子の組成を大きくできないために、代わりにI
nの組成を大きくする必要があり、その場合、歪み量が
大きくなりすぎて特性が悪化してしまうという問題があ
る。この意味でも、GaInNAsの窒素原子の組成を
大きくする結晶成長法が必要である。
In a semiconductor element (semiconductor light emitting device) using GaInNAs manufactured by a conventional manufacturing method, the composition of nitrogen atoms cannot be increased in order to obtain an emission wavelength of 1.3 μm. I
It is necessary to increase the composition of n, and in that case, there is a problem that the distortion amount becomes too large and the characteristics are deteriorated. In this sense, a crystal growth method for increasing the composition of nitrogen atoms in GaInNAs is required.

【0013】そこで、本発明の目的は、窒素原子の組成
の大きなIII−V族化合物半導体を容易に作製できる化
合物半導体の製造方法及びその製造方法を用いて作製さ
れる半導体素子を提供することにある。
It is an object of the present invention to provide a compound semiconductor manufacturing method capable of easily manufacturing a group III-V compound semiconductor having a large composition of nitrogen atoms, and a semiconductor device manufactured by using the manufacturing method. is there.

【0014】[0014]

【課題を解決するための手段】本発明は上記目的を達成
するために創案されたものであり、請求項1の発明は、
V族原子として少なくとも砒素原子及び窒素原子の両方
を含むIII−V族化合物半導体を、気相成長法により、
窒素原料ガスを用いて製造する方法であって、反応容器
内のIII族原料ガスの分圧の和に対する砒素原料ガスの
分圧の比を、1以下にする化合物半導体の製造方法であ
る。
SUMMARY OF THE INVENTION The present invention has been made to achieve the above object, and the invention of claim 1 is as follows.
A group III-V compound semiconductor containing at least both arsenic atoms and nitrogen atoms as group V atoms is formed by a vapor phase growth method.
A method for producing a compound semiconductor using a nitrogen source gas, wherein a ratio of a partial pressure of an arsenic source gas to a sum of partial pressures of a group III source gas in a reaction vessel is 1 or less.

【0015】請求項2の発明は、上記III−V族化合物
半導体は、III族原子として少なくともガリウム原子を
含み、かつ窒素原子の組成が砒素原子の組成よりも小さ
い請求項1記載の化合物半導体の製造方法である。
According to a second aspect of the present invention, there is provided the compound semiconductor according to the first aspect, wherein the group III-V compound semiconductor contains at least a gallium atom as a group III atom, and a composition of a nitrogen atom is smaller than a composition of an arsenic atom. It is a manufacturing method.

【0016】請求項3の発明は、上記窒素原料ガスは、
アンモニア、ヒドラジン、モノメチルヒドラジン、1,
1−ジメチルヒドラジン、ターシャリーブチルヒドラジ
ン、ターシャリーブチルアミンの中から選ばれる少なく
とも一つを含む請求項1または2記載の化合物半導体の
製造方法である。
According to a third aspect of the present invention, the nitrogen source gas comprises:
Ammonia, hydrazine, monomethylhydrazine, 1,
3. The method for producing a compound semiconductor according to claim 1, wherein the compound semiconductor comprises at least one selected from 1-dimethylhydrazine, tertiary butyl hydrazine, and tertiary butylamine.

【0017】請求項4の発明は、請求項1〜3のいずれ
かに記載された化合物半導体の製造方法を用いて作製さ
れる砒素原子及び窒素原子の両方を含むIII−V族化合
物半導体を備えた半導体素子である。
According to a fourth aspect of the present invention, there is provided a group III-V compound semiconductor containing both arsenic atoms and nitrogen atoms produced by using the compound semiconductor manufacturing method according to any one of the first to third aspects. Semiconductor device.

【0018】[0018]

【発明の実施の形態】以下、本発明の好適実施の形態を
添付図面にしたがって説明する。
Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.

【0019】図1は、本発明の好適実施の形態である化
合物半導体の製造方法を用いて作製される半導体素子の
構造を示す断面図である。
FIG. 1 is a sectional view showing a structure of a semiconductor device manufactured by using a compound semiconductor manufacturing method according to a preferred embodiment of the present invention.

【0020】図1に示すように、本発明に係る半導体素
子1は、主として発光素子や受光素子に使用されるもの
であり、Siドープn型GaAs基板2上に、アンドー
プのGaAsバッファ層3を形成し、GaAsバッファ
層3上に、窒素原子の組成が大きいアンドープのGaI
nNAs層4を形成し、GaInNAs層4上に、アン
ドープのGaAsキャップ層5を形成したものである。
As shown in FIG. 1, a semiconductor device 1 according to the present invention is mainly used for a light emitting device and a light receiving device. An undoped GaAs buffer layer 3 is provided on a Si-doped n-type GaAs substrate 2. Undoped GaI having a large composition of nitrogen atoms is formed on the GaAs buffer layer 3.
An nNAs layer 4 is formed, and an undoped GaAs cap layer 5 is formed on the GaInNAs layer 4.

【0021】この半導体素子1は、例えば、気相成長法
としての有機金属気相エピタキシー(MOVPE)法に
より、慣用のMOVPE装置の反応容器内にGaAs基
板2を設置し、反応容器内に原料ガスを供給し、GaA
s基板2上に結晶を順次成長させて作製される。
In this semiconductor device 1, a GaAs substrate 2 is placed in a reaction vessel of a conventional MOVPE apparatus by, for example, a metalorganic vapor phase epitaxy (MOVPE) method as a vapor phase growth method, and a raw material gas is placed in the reaction vessel. And GaAs
It is manufactured by sequentially growing crystals on the s substrate 2.

【0022】窒素原子の組成が大きいGaInNAs結
晶を得るには、上述したように、結晶表面での砒素反応
種と窒素反応種の付着・再離脱をコントロールする結晶
成長法が必要である。
In order to obtain a GaInNAs crystal having a large nitrogen atom composition, as described above, a crystal growth method for controlling the attachment / removal of arsenic reactive species and nitrogen reactive species on the crystal surface is required.

【0023】さて、本発明に係る化合物半導体の製造方
法は、V族原子として少なくとも砒素原子及び窒素原子
の両方を含むIII−V族化合物半導体としてのGaIn
NAs層4を、MOVPE法により、窒素原料ガスを用
いて製造する方法であり、GaAsバッファ層3上にG
aInNAs層4を作製する際、反応容器内のIII族原
料ガスの分圧の和に対する砒素原料ガスの分圧の比(A
s/III比)を、1以下にする方法である。
The method of manufacturing a compound semiconductor according to the present invention is directed to a method of manufacturing a compound semiconductor comprising a group III-V compound semiconductor containing at least both arsenic atoms and nitrogen atoms as group V atoms.
This is a method of manufacturing the NAs layer 4 by a MOVPE method using a nitrogen source gas.
When producing the aInNAs layer 4, the ratio of the partial pressure of the arsenic source gas to the sum of the partial pressures of the group III source gas in the reaction vessel (A
(s / III ratio) is set to 1 or less.

【0024】ここで、使用する砒素原料ガス及び窒素原
料ガスは、特に限定されるものではない。窒素原料ガス
としては、例えば、アンモニア、ヒドラジン、モノメチ
ルヒドラジン、1,1−ジメチルヒドラジン、ターシャ
リーブチルヒドラジン、ターシャリーブチルアミンの中
から選ばれる一種類以上の原料を用いることができる。
Here, the arsenic source gas and the nitrogen source gas used are not particularly limited. As the nitrogen source gas, for example, one or more types of materials selected from ammonia, hydrazine, monomethylhydrazine, 1,1-dimethylhydrazine, tertiary butyl hydrazine, and tertiary butylamine can be used.

【0025】As/III比が1より大きいと、砒素原子
とIII族原子が優先的に結合してしまうため、窒素原子
とIII族原子との結合を阻害してしまう。したがって、
As/III比を1以下にして、砒素原子と結合しないIII
族原子を残すような条件にすることで、窒素原子とIII
族原子との結合が効果的に促進される。
If the As / III ratio is greater than 1, arsenic atoms and group III atoms are preferentially bonded, which hinders bonding between nitrogen atoms and group III atoms. Therefore,
Reduce the As / III ratio to 1 or less and do not bond with arsenic atoms III
The nitrogen atoms and III
The bond with the group atom is effectively promoted.

【0026】このように、本発明に係る化合物半導体の
製造方法は、反応容器内に、砒素原料ガスを低いAs/
III比で供給することにより、砒素原子と結合しないIII
族原子が増えるので、その砒素原子と結合しないIII族
原子に、砒素原子と比べて結晶表面に付着しにくく、結
晶表面から再離脱しやすい窒素原子をより多く結合させ
ることができる。
As described above, according to the method for manufacturing a compound semiconductor according to the present invention, the arsenic source gas is supplied into the reaction vessel at a low As /
Not supplied with arsenic atoms by supplying at III ratio III
Since the group atoms increase, the group III atoms that are not bonded to the arsenic atoms can be bonded with more nitrogen atoms that are less likely to adhere to the crystal surface than the arsenic atoms and are easily detached from the crystal surface.

【0027】したがって、窒素原子の組成の大きなIII
−V族化合物半導体を容易に作製することができ、ひい
ては、窒素原子の組成の大きなIII−V族化合物半導体
からなる活性層等を備えた半導体素子を容易に作製する
こともできる。
Therefore, III having a large nitrogen atom composition
A -V group compound semiconductor can be easily manufactured, and a semiconductor device having an active layer or the like made of a III-V group compound semiconductor having a large nitrogen atom composition can be easily manufactured.

【0028】この半導体素子は、窒素原子の組成が大き
いIII−V族化合物半導体を備えているため、歪み量が
それほど大きくなくてよく、より高性能なものとなる。
半導体素子として、例えば、発光素子や受光素子を作製
した場合、1.3μm帯の光通信だけでなく、1.55
μm帯の光通信にも利用することができる。
Since this semiconductor device includes a III-V compound semiconductor having a large composition of nitrogen atoms, the amount of distortion does not need to be so large, and higher performance can be obtained.
For example, when a light emitting element or a light receiving element is manufactured as a semiconductor element, not only optical communication in the 1.3 μm band but also 1.55
It can also be used for optical communication in the μm band.

【0029】また、本発明は、窒素原子の組成を容易に
高めることができる化合物半導体の製造方法を提供する
ものであるため、実施例2で後述するように、通常は窒
素原子の組成を高めにくい、III族原子として少なくと
もガリウム原子を含み、V族原子として少なくとも窒素
原子及び砒素原子の両方を含むIII−V族化合物半導体
のうちで、窒素原子の組成が砒素組成よりも小さい、す
なわち単位体積に含まれる砒素原子の数に対する窒素原
子の数の比が、0より大きく1より小さい化合物半導体
の製造方法において、より本発明の効果が得られる。
Further, since the present invention provides a method for manufacturing a compound semiconductor in which the composition of nitrogen atoms can be easily increased, the composition of nitrogen atoms is usually increased as described later in Example 2. Among III-V compound semiconductors that contain at least gallium atoms as Group III atoms and at least both nitrogen atoms and arsenic atoms as Group V atoms, the composition of nitrogen atoms is smaller than that of arsenic, In the method for manufacturing a compound semiconductor, the ratio of the number of nitrogen atoms to the number of arsenic atoms contained in the compound semiconductor is more than 0 and less than 1, the effect of the present invention can be obtained.

【0030】[0030]

【実施例】(実施例1)図1で説明した半導体素子1の
製造方法の一例を、より詳細に説明する。
(Embodiment 1) An example of a method of manufacturing the semiconductor device 1 described with reference to FIG. 1 will be described in more detail.

【0031】図1に示すように、半導体素子1は、Si
ドープn型GaAs基板2上に、MOVPE法により、
膜厚500nmのアンドープのGaAsバッファ層3、
膜厚500nmのアンドープのGaInNAs層4、お
よび膜厚100nmのアンドープのGaAsキャップ層
5をこの順に成長させたものである。
As shown in FIG. 1, the semiconductor element 1 is made of Si
On the doped n-type GaAs substrate 2 by MOVPE method,
An undoped GaAs buffer layer 3 having a thickness of 500 nm;
An undoped GaInNAs layer 4 having a thickness of 500 nm and an undoped GaAs cap layer 5 having a thickness of 100 nm are grown in this order.

【0032】GaInNAs層4以外の層の作製には、
原料としてトリメチルガリウム(TMGa)及び水素で
希釈した10%アルシン(AsH3 )を用い、水素ガス
によって反応容器内まで送り込んだ。
To manufacture layers other than the GaInNAs layer 4,
Trimethylgallium (TMGa) and 10% arsine (AsH 3 ) diluted with hydrogen were used as raw materials, and were fed into the reaction vessel by hydrogen gas.

【0033】成長温度は650℃、反応容器内の圧力は
66.7hPa(50torr)、キャリアガスは水素
であり、反応容器内に供給するガスの総流量は4slm
とした。このとき、III族原料ガスの分圧の和に対する
V族原料ガスの分圧の和の比(V/III比)は約10と
なり、これはAs/III比と同じ値である。
The growth temperature is 650 ° C., the pressure in the reaction vessel is 66.7 hPa (50 torr), the carrier gas is hydrogen, and the total flow rate of the gas supplied into the reaction vessel is 4 slm.
And At this time, the ratio of the sum of the partial pressures of the group V source gas to the sum of the partial pressures of the group III source gas (V / III ratio) is about 10, which is the same value as the As / III ratio.

【0034】GaInNAs4層の作製には、原料とし
てトリエチルガリウム(TEGa)、トリメチルインジ
ウム(TMIn)、アンモニア(NH3 )及び水素希釈
のAsH3 を用い、水素ガスで反応容器内まで送り込ん
だ。TEGa、TMIn、AsH3 の実質供給流量はそ
れぞれ0.37sccm(1.7×10-5mol/mi
n)、0.015sccm(6.7×10-7mol/m
in)、1000sccm(4.5×10-2mol/m
in)及び0.31sccm(1.4×10-5mol/
min)とした。
For the production of the four layers of GaInNAs, triethyl gallium (TEGa), trimethyl indium (TMIn), ammonia (NH 3 ) and hydrogen-diluted AsH 3 were used as raw materials, and were fed into the reaction vessel with hydrogen gas. The actual supply flow rates of TEGa, TMIn, and AsH 3 are each 0.37 sccm (1.7 × 10 −5 mol / mi).
n), 0.015 sccm (6.7 × 10 −7 mol / m)
in), 1000 sccm (4.5 × 10 -2 mol / m)
in) and 0.31 sccm (1.4 × 10 −5 mol /
min).

【0035】成長温度は550℃、反応容器内の圧力は
66.7hPa(50torr)、キャリアガスは水素
であり、反応容器内に供給するガスの総流量は4slm
とした。このとき、V/III比は約2600、As/III
比は1以下の0.8となる。
The growth temperature is 550 ° C., the pressure in the reaction vessel is 66.7 hPa (50 torr), the carrier gas is hydrogen, and the total flow rate of the gas supplied into the reaction vessel is 4 slm.
And At this time, the V / III ratio was about 2600 and As / III
The ratio is less than or equal to 0.8.

【0036】成長後のサンプルを2次イオン質量分析装
置(SIMS)で分析したところ、GaInNAs層4
のN濃度が4.2×1020cm-3であった。これは窒素
原子の組成として約2%に相当する。また、この結果と
X線回折測定の結果から、In組成は約8%と導かれ
た。
When the sample after growth was analyzed by a secondary ion mass spectrometer (SIMS), the GaInNAs layer 4 was analyzed.
Had an N concentration of 4.2 × 10 20 cm −3 . This corresponds to about 2% of the composition of nitrogen atoms. Further, from this result and the result of the X-ray diffraction measurement, the In composition was derived to be about 8%.

【0037】さらに、室温でフォトルミネッセンス(P
L)測定したところ、図2に示すようなスペクトルが得
られた。図2では、横軸を波長(μm)にとり、縦軸を
PL強度(任意単位)にとって、半導体素子1をフォト
ルミネッセンス測定したスペクトル図を示している。こ
のピーク波長は1.16μmであった。
Further, at room temperature, photoluminescence (P
L) Upon measurement, a spectrum as shown in FIG. 2 was obtained. FIG. 2 shows a spectrum diagram of photoluminescence measurement of the semiconductor element 1 with the horizontal axis representing wavelength (μm) and the vertical axis representing PL intensity (arbitrary unit). This peak wavelength was 1.16 μm.

【0038】なお、PL測定は、試料のバンドギャップ
エネルギーよりも大きい光子エネルギーを有するレーザ
などの光を試料に励起し、活性層内の帯間遷移に伴う発
光の2次元像を得て、試料の発光効率の良否を判断する
ものである。
In the PL measurement, light such as a laser having a photon energy larger than the band gap energy of the sample is excited on the sample, and a two-dimensional image of light emission accompanying interband transition in the active layer is obtained. This is to judge whether the luminous efficiency is good or not.

【0039】このように、As/III比が1より小さく
なるように砒素原料ガスを反応容器内に供給すること
で、約2%もの高窒素組成のGaInNAs層4を容易
に得ることができ、しかも良好な結晶であることを確認
できた。
As described above, by supplying the arsenic source gas into the reaction vessel so that the As / III ratio becomes smaller than 1, the GaInNAs layer 4 having a high nitrogen composition of about 2% can be easily obtained. Moreover, it was confirmed that the crystals were good.

【0040】(実施例2)次に、実施例2を説明する。
実施例2は、実施例1で説明したGaInNAs層4
を、半導体レーザの活性層に応用したものである。
(Embodiment 2) Next, Embodiment 2 will be described.
In the second embodiment, the GaInNAs layer 4 described in the first embodiment is used.
Is applied to an active layer of a semiconductor laser.

【0041】図3は、本発明に係る半導体素子としての
半導体レーザの構造を示す断面図である。
FIG. 3 is a sectional view showing the structure of a semiconductor laser as a semiconductor device according to the present invention.

【0042】図3に示すように、本発明に係る半導体レ
ーザ31は、Siドープしたn型GaAs基板32上
に、MOVPE法により、厚さ500nmのSiドープ
n型GaAsバッファ層33、厚さ1500nmのSi
ドープn型Al0.75Ga0.25As下部クラッド層34、
厚さ50nmのアンドープGaAs下部光ガイド層35
d、三層の井戸層を有する厚さ44nmの多重量子井戸
活性層36、厚さ50nmアンドープGaAs上部光ガ
イド層35u、厚さ1500nmのMgドープp型Al
0.75Ga0.25As上部クラッド層37、厚さ20nmの
Mgドープp型GaAsコンタクト層38をこの順に成
長させ、エッチングにより、上部クラッド層37を断面
凸状に形成すると共にコンタクト層38をストライプ状
に形成し、さらに、GaAs基板32の下面にAuGe
Ni下部電極39を形成し、ストライプ状のコンタクト
層38の上面にAuZn上部電極40を形成したもので
ある。この半導体レーザ31は、いわゆる量子井戸型レ
ーザであり、低発振しきい値電流という特性がある。
As shown in FIG. 3, a semiconductor laser 31 according to the present invention comprises a Si-doped n-type GaAs buffer layer 33 having a thickness of 500 nm and a thickness of 1500 nm formed on a Si-doped n-type GaAs substrate 32 by MOVPE. Si
Doped n-type Al 0.75 Ga 0.25 As lower cladding layer 34,
50 nm thick undoped GaAs lower optical guide layer 35
d, a multiple quantum well active layer 36 having a thickness of 44 nm having three well layers, an undoped GaAs upper optical guide layer 35 u having a thickness of 50 nm, and Mg-doped p-type Al having a thickness of 1500 nm.
An upper cladding layer 37 of 0.75 Ga 0.25 As and a Mg-doped p-type GaAs contact layer 38 having a thickness of 20 nm are grown in this order, and the upper cladding layer 37 is formed to have a convex cross section by etching and the contact layer 38 is formed to have a stripe shape. Then, AuGe is formed on the lower surface of the GaAs substrate 32.
A Ni lower electrode 39 is formed, and an AuZn upper electrode 40 is formed on the upper surface of a stripe-shaped contact layer 38. The semiconductor laser 31 is a so-called quantum well laser, and has a characteristic of a low oscillation threshold current.

【0043】ここで、多重量子井戸活性層36は、図4
に示すように、各層が厚さ8nmのアンドープGaIn
NAs井戸層41からなる三層と、これら三層のGaI
nNAs井戸層41間に挟まれた各層が厚さ10nmの
アンドープGaAs障壁層42からなる二層とで構成さ
れた五層構造である。
Here, the multiple quantum well active layer 36 is formed as shown in FIG.
As shown in FIG. 2, each layer is undoped GaIn having a thickness of 8 nm.
The three layers of the NAs well layer 41 and the GaI
Each of the layers sandwiched between the nNAs well layers 41 has a five-layer structure including two layers of an undoped GaAs barrier layer 42 having a thickness of 10 nm.

【0044】多重量子井戸活性層36以外の作製には、
Ga原料としてTMGaを用い、Al原料としてトリメ
チルアルミニウム(TMAl)を用い、As原料として
水素希釈の10%AsH3 を用い、それぞれの原料は水
素によって反応容器内に送り込んだ。反応容器内に供給
するキャリアガスは水素ガスとし、反応容器内に供給す
るガスの総流量は4slmとした。また、反応容器内の
圧力は66.7hPa(50torr)、温度は650
℃に保って結晶の成長を行った。
For fabrication other than the multiple quantum well active layer 36,
TMGa was used as a Ga raw material, trimethylaluminum (TMAl) was used as an Al raw material, and 10% AsH 3 diluted with hydrogen was used as an As raw material, and each raw material was fed into the reaction vessel with hydrogen. The carrier gas supplied into the reaction vessel was hydrogen gas, and the total flow rate of the gas supplied into the reaction vessel was 4 slm. The pressure in the reaction vessel was 66.7 hPa (50 torr), and the temperature was 650 hPa.
The crystals were grown while being kept at ℃.

【0045】多重量子井戸活性層36の作製には、Ga
原料としてTEGa、In原料としてTMIn、N原料
として1,1−ジメチルヒドラジン(UDMHy)及び
As原料として水素希釈の10%AsH3 を用い、実質
供給流量はそれぞれ0.37sccm(1.7×10-5
mol/min)、0.029sccm(1.3×10
-6mol/min)、500sccm(2.2×10-2
mol/min)及び0.32sccm(1.4×10
-5mol/min)とした。キャリアガスとしては水素
ガスを用い、反応容器内に供給するガスの総流量は4s
lmであり、反応容器内の圧力は66.7hPa(50
torr)、温度は550℃とした。このとき、V/II
I比は1250、As/III比は1以下の0.8となる。
To manufacture the multiple quantum well active layer 36, Ga
TEGa was used as the raw material, TMIn was used as the In raw material, 1,1-dimethylhydrazine (UDMHy) was used as the N raw material, and 10% AsH 3 diluted with hydrogen was used as the As raw material. The actual supply flow rates were 0.37 sccm (1.7 × 10 −), respectively. Five
mol / min), 0.029 sccm (1.3 × 10
-6 mol / min), 500 sccm (2.2 × 10 -2)
mol / min) and 0.32 sccm (1.4 × 10
-5 mol / min). Hydrogen gas was used as the carrier gas, and the total flow rate of the gas supplied into the reaction vessel was 4 s.
lm, and the pressure in the reaction vessel was 66.7 hPa (50
torr) and the temperature was 550 ° C. At this time, V / II
The I ratio is 1250, and the As / III ratio is 0.8, which is 1 or less.

【0046】このようにして成長したエピウェハを、ス
トライプ幅2μm、共振器長300μmのリッジ型ファ
ブリペローレーザに加工して半導体レーザ31を作製
し、そのレーザ特性を評価した。室温で半導体レーザ3
1の発振を確認することができ、その発振波長が約1.
29μmであった。室温での発振スペクトルを図5に示
す。図5では、横軸を波長(μm)にとり、縦軸を発光
強度(任意単位)にとって半導体レーザ31の室温発振
スペクトル図を示している。
The epitaxial wafer thus grown was processed into a ridge-type Fabry-Perot laser having a stripe width of 2 μm and a resonator length of 300 μm to produce a semiconductor laser 31, and its laser characteristics were evaluated. Semiconductor laser 3 at room temperature
1 can be confirmed, and the oscillation wavelength is about 1.
It was 29 μm. FIG. 5 shows the oscillation spectrum at room temperature. FIG. 5 shows a room temperature oscillation spectrum diagram of the semiconductor laser 31 with the horizontal axis representing wavelength (μm) and the vertical axis representing emission intensity (arbitrary unit).

【0047】一方、この半導体レーザ31とは別に、こ
こで用いたGaInNAs井戸層41と同じ成長条件で
厚さ300nmのGaInNAs層を、Siドープn型
GaAs基板上に成長させて作製し、これをSIMS分
析したところ、N濃度は8.3×1020atoms/c
3 であった。これは窒素原子の組成としては約4%に
相当する。また、X線回折測定とあわせて、In組成は
15%と求められ、GaInNAs井戸層41の組成
は、Ga0.85In0.150.04As0.96であることがわか
った。
On the other hand, aside from the semiconductor laser 31, a GaInNAs layer having a thickness of 300 nm is grown on a Si-doped n-type GaAs substrate under the same growth conditions as the GaInNAs well layer 41 used here. According to SIMS analysis, the N concentration was 8.3 × 10 20 atoms / c.
m 3 . This corresponds to a composition of nitrogen atoms of about 4%. In addition to the X-ray diffraction measurement, the In composition was determined to be 15%, and the composition of the GaInNAs well layer 41 was found to be Ga 0.85 In 0.15 N 0.04 As 0.96 .

【0048】これにより、GaInNAs井戸層41
は、本発明によって簡単な方法で作製され、窒素原子の
組成が大きく、しかも良好な結晶であることを確認でき
た。また、半導体レーザ31は、窒素原子の組成が大き
いGaInNAs井戸層41を備えているので、歪み量
が小さく、従来よりデバイス特性が良好かつ高性能にな
ったことも確認できた。さらに、上述した実施例2と同
様にして、発振波長が1.55μmの半導体レーザを作
製することもできる。
Thus, the GaInNAs well layer 41 is formed.
Was produced by a simple method according to the present invention, and it was confirmed that the composition of nitrogen atoms was large and that it was a good crystal. In addition, since the semiconductor laser 31 includes the GaInNAs well layer 41 having a large composition of nitrogen atoms, it was confirmed that the distortion amount was small, and the device characteristics were better and the performance was higher than before. Further, a semiconductor laser having an oscillation wavelength of 1.55 μm can be manufactured in the same manner as in Example 2 described above.

【0049】上記実施例では、GaInNAs層4やG
aInNAs井戸層41を作製する際のGa、In、A
s及びNの原料として、それぞれTEGa、TMIn、
AsH3 及びNH3 またはUDMHyを用いた例で説明
した。しかし、原料はこれらに限定されるわけではな
く、As/III比が1以下であるという条件を満たせ
ば、どのような原料を用いてもよい。例えば、As原料
としてターシャリーブチルアルシン(TBAs)を用い
ることができるし、III族原料として、TMGaやTM
Inを用いることもできる。
In the above embodiment, the GaInNAs layer 4 and the G
a, Ga, In, A for forming the aInNAs well layer 41
As raw materials for s and N, TEGa, TMIn,
The example using AsH 3 and NH 3 or UDMHy has been described. However, the raw material is not limited to these, and any raw material may be used as long as the condition that the As / III ratio is 1 or less is satisfied. For example, tertiary butyl arsine (TBAs) can be used as an As material, and TMGa or TM
In can also be used.

【0050】また、実施例2では、本発明に係る化合物
半導体の製造方法によって作製されるGaInNAs結
晶を、端面発光ファブリペロー型半導体レーザに応用し
た例で説明したが、応用例として端面発光ファブリペロ
ー型半導体レーザに限定されるわけではなく、端面発光
分布帰還型半導体レーザ、面発光型半導体レーザ、発光
ダイオードなどの発光素子、フォトダイオードなどの受
光素子、その他太陽電池及び電子デバイス等に応用して
も、歪み量を大きくしすぎることなく、従来よりも高性
能になるという効果が得られる。
In the second embodiment, the GaInNAs crystal manufactured by the method of manufacturing a compound semiconductor according to the present invention is applied to an edge-emitting Fabry-Perot type semiconductor laser. It is not limited to type semiconductor lasers, but is applied to edge emitting distributed feedback semiconductor lasers, surface emitting semiconductor lasers, light emitting elements such as light emitting diodes, light receiving elements such as photodiodes, other solar cells and electronic devices, etc. However, the effect of higher performance than before can be obtained without excessively increasing the amount of distortion.

【0051】[0051]

【発明の効果】以上説明したことから明らかなように、
本発明によれば、次のような優れた効果を発揮する。
As is apparent from the above description,
According to the present invention, the following excellent effects are exhibited.

【0052】(1)III族原料ガスの分圧の和に対する
砒素原料ガスの分圧の比を1以下にすることによって、
容易に窒素原子の組成の大きなIII−V族化合物半導体
を得ることができる。これにより、歪み量をそれほど大
きくすることなく、1.3μmのバンドギャップ波長を
持つ結晶を得ることができる。
(1) By setting the ratio of the partial pressure of the arsenic source gas to the sum of the partial pressures of the group III source gas to 1 or less,
A group III-V compound semiconductor having a large composition of nitrogen atoms can be easily obtained. Thereby, a crystal having a band gap wavelength of 1.3 μm can be obtained without increasing the amount of strain so much.

【0053】(2)1.55μmのバンドギャップ波長
を持つ結晶も容易に作製可能となる。
(2) A crystal having a bandgap wavelength of 1.55 μm can be easily produced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る半導体素子の構造を示す断面図で
ある。
FIG. 1 is a sectional view showing a structure of a semiconductor device according to the present invention.

【図2】図1に示した半導体素子をフォトルミネッセン
ス測定したスペクトル図である。
FIG. 2 is a spectrum diagram of the semiconductor device shown in FIG. 1 obtained by photoluminescence measurement.

【図3】本発明に係る半導体レーザの構造を示す断面図
である。
FIG. 3 is a sectional view showing a structure of a semiconductor laser according to the present invention.

【図4】図3に示した半導体レーザの活性層の構造を示
す断面図である。
FIG. 4 is a sectional view showing a structure of an active layer of the semiconductor laser shown in FIG. 3;

【図5】図3に示した半導体レーザの室温発振スペクト
ル図である。
5 is a diagram showing a room-temperature oscillation spectrum of the semiconductor laser shown in FIG. 3;

【符号の説明】[Explanation of symbols]

1 半導体素子 2 Siドープn型GaAs基板 3 アンドープGaAsバッファ層 4 アンドープGaInNAs層(砒素原子及び窒素原
子の両方を含むIII−V族化合物半導体層) 5 アンドープGaAsキャップ層
REFERENCE SIGNS LIST 1 semiconductor element 2 Si-doped n-type GaAs substrate 3 undoped GaAs buffer layer 4 undoped GaInNAs layer (III-V compound semiconductor layer containing both arsenic atoms and nitrogen atoms) 5 undoped GaAs cap layer

フロントページの続き (72)発明者 秋元 克弥 東京都千代田区大手町一丁目6番1号 日 立電線株式会社内 Fターム(参考) 4K030 AA09 BA08 BA11 BA25 BA38 CA04 CA12 FA10 JA09 LA14 5F041 AA11 AA40 CA34 CA35 CA65 FF14 5F045 AA04 AB18 AC01 AC08 AC09 AC12 AD10 AE23 BB12 CA12 DA53 DA63 5F073 AA13 AA45 AA74 BA02 CA05 CA17 CB02 DA05 EA02 EA29Continuation of front page    (72) Inventor Katsuya Akimoto             1-6-1 Otemachi, Chiyoda-ku, Tokyo Sun             Standing wire company F term (reference) 4K030 AA09 BA08 BA11 BA25 BA38                       CA04 CA12 FA10 JA09 LA14                 5F041 AA11 AA40 CA34 CA35 CA65                       FF14                 5F045 AA04 AB18 AC01 AC08 AC09                       AC12 AD10 AE23 BB12 CA12                       DA53 DA63                 5F073 AA13 AA45 AA74 BA02 CA05                       CA17 CB02 DA05 EA02 EA29

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 V族原子として少なくとも砒素原子及び
窒素原子の両方を含むIII−V族化合物半導体を、気相
成長法により、窒素原料ガスを用いて製造する方法であ
って、反応容器内のIII族原料ガスの分圧の和に対する
砒素原料ガスの分圧の比を、1以下にすることを特徴と
する化合物半導体の製造方法。
1. A method for producing a group III-V compound semiconductor containing at least both an arsenic atom and a nitrogen atom as a group V atom by a vapor phase growth method using a nitrogen source gas, the method comprising: A method for producing a compound semiconductor, wherein a ratio of a partial pressure of an arsenic source gas to a sum of partial pressures of a group III source gas is set to 1 or less.
【請求項2】 上記III−V族化合物半導体は、III族原
子として少なくともガリウム原子を含み、かつ窒素原子
の組成が砒素原子の組成よりも小さい請求項1記載の化
合物半導体の製造方法。
2. The method according to claim 1, wherein the III-V compound semiconductor contains at least gallium atoms as group III atoms, and the composition of nitrogen atoms is smaller than that of arsenic atoms.
【請求項3】 上記窒素原料ガスは、アンモニア、ヒド
ラジン、モノメチルヒドラジン、1,1−ジメチルヒド
ラジン、ターシャリーブチルヒドラジン、ターシャリー
ブチルアミンの中から選ばれる少なくとも一つを含む請
求項1または2記載の化合物半導体の製造方法。
3. The method according to claim 1, wherein the nitrogen source gas contains at least one selected from ammonia, hydrazine, monomethylhydrazine, 1,1-dimethylhydrazine, tertiary butyl hydrazine, and tertiary butyl amine. A method for manufacturing a compound semiconductor.
【請求項4】 請求項1〜3のいずれかに記載された化
合物半導体の製造方法を用いて作製される砒素原子及び
窒素原子の両方を含むIII−V族化合物半導体を備えた
ことを特徴とする半導体素子。
4. A compound semiconductor comprising a group III-V compound semiconductor containing both arsenic atoms and nitrogen atoms, which is manufactured by using the method for manufacturing a compound semiconductor according to claim 1. Semiconductor device.
JP2002158677A 2002-05-31 2002-05-31 Method of manufacturing compound semiconductor and semiconductor element Pending JP2003347231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002158677A JP2003347231A (en) 2002-05-31 2002-05-31 Method of manufacturing compound semiconductor and semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002158677A JP2003347231A (en) 2002-05-31 2002-05-31 Method of manufacturing compound semiconductor and semiconductor element

Publications (1)

Publication Number Publication Date
JP2003347231A true JP2003347231A (en) 2003-12-05

Family

ID=29773798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002158677A Pending JP2003347231A (en) 2002-05-31 2002-05-31 Method of manufacturing compound semiconductor and semiconductor element

Country Status (1)

Country Link
JP (1) JP2003347231A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009088160A (en) * 2007-09-28 2009-04-23 Dowa Electronics Materials Co Ltd Light emitting diode and manufacturing method thereof
US7811902B2 (en) 2005-02-22 2010-10-12 Samsung Electro-Mechanics Co., Ltd. Method for manufacturing nitride based single crystal substrate and method for manufacturing nitride based light emitting diode using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7811902B2 (en) 2005-02-22 2010-10-12 Samsung Electro-Mechanics Co., Ltd. Method for manufacturing nitride based single crystal substrate and method for manufacturing nitride based light emitting diode using the same
JP2009088160A (en) * 2007-09-28 2009-04-23 Dowa Electronics Materials Co Ltd Light emitting diode and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP4822150B2 (en) Semiconductor multilayer structure having non-uniform quantum dots, light emitting diode using the same, semiconductor laser diode, semiconductor optical amplifier, and manufacturing method thereof
USRE41310E1 (en) Methods for growing semiconductors and devices thereof the alloy semiconductor gainnas
JP2871477B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP3269344B2 (en) Crystal growth method and semiconductor light emitting device
US7141829B2 (en) Semiconductor laser device with antimony and crystal growth method
JP3251046B2 (en) Method for growing compound semiconductor, compound semiconductor light emitting device and method for manufacturing the same
US6459096B1 (en) Multi quantum well grinsch detector
US7508049B2 (en) Semiconductor optical device
JPH05243613A (en) Light-emitting device and its manufacture
JP2000277867A (en) Semiconductor laser device
JP2003347231A (en) Method of manufacturing compound semiconductor and semiconductor element
JP2000150398A (en) Method for forming compound semiconductor layer, compound semiconductor device, and system using the same
JP4545074B2 (en) Semiconductor manufacturing method
JP3654331B2 (en) Semiconductor manufacturing method and semiconductor light emitting device
JP3665911B2 (en) Semiconductor optical device manufacturing method and semiconductor optical device
EP1115145B1 (en) Method for forming compound semiconductor layer and compound semiconductor device
JP3561243B2 (en) Compound semiconductor growth method and compound semiconductor light emitting device
JP3432444B2 (en) Semiconductor light emitting device
JP3772794B2 (en) Method for producing compound semiconductor
JP2003347232A (en) Method of manufacturing semiconductor and semiconductor element formed by the same
JPH10326749A (en) Manufacture of compound semiconductor
JP2003347230A (en) Method of manufacturing compound semiconductor and semiconductor element
JP2001044489A (en) Growth of semiconductor crystal and semiconductor element
JP4157903B2 (en) Manufacturing method of semiconductor light emitting device
JPH08125285A (en) Semiconductor light-emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051213