JP2003343991A - Natural convection type dehumidifying air conditioner - Google Patents

Natural convection type dehumidifying air conditioner

Info

Publication number
JP2003343991A
JP2003343991A JP2002186881A JP2002186881A JP2003343991A JP 2003343991 A JP2003343991 A JP 2003343991A JP 2002186881 A JP2002186881 A JP 2002186881A JP 2002186881 A JP2002186881 A JP 2002186881A JP 2003343991 A JP2003343991 A JP 2003343991A
Authority
JP
Japan
Prior art keywords
heat exchange
natural convection
air
heat
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002186881A
Other languages
Japanese (ja)
Other versions
JP3806843B2 (en
Inventor
Takashi Numano
孝志 沼野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002186881A priority Critical patent/JP3806843B2/en
Publication of JP2003343991A publication Critical patent/JP2003343991A/en
Application granted granted Critical
Publication of JP3806843B2 publication Critical patent/JP3806843B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make liquid flow at a temperature within a given range for heat exchanging fins of a natural convection type dehumidifying air conditioner and to perform natural convection more smoothly than a conventional method. <P>SOLUTION: This natural convection type dehumidifying air conditioner is provided with a double tube constituted by attaching a bifurcator to an inner side of an outer tube on a flow-in side of liquid, an eddy current device attached to the halfway of the outer tube, and a mixing part. A problem concerning natural convection is solved by providing a suction air interference prevention plate, an escape prevention part for suction air, a side wall of the heat exchange fin, and a diamond-shaped condensed water receiver. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は天井面に箱型形状で
内部に熱交換フィン付き、伝熱2重管を取りつけた自然
対流型除湿空調器であり、0℃〜10℃の低温の液体を
流すことにより屋内空気を露点温度まで冷却し、空気の
比重差による自然対流により、屋内空気中の湿度を凝縮
水として除去し、同時に空気も冷却するが,主力は除湿
を目的とした空調器であり、空気調和分野で、熱交換器
に属する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a natural convection type dehumidifying air conditioner having a box shape on the ceiling surface, a heat exchange fin inside, and a heat transfer double tube attached. Air to cool the indoor air to the dew point temperature, and natural convection due to the difference in specific gravity of the air removes the humidity in the indoor air as condensed water, and at the same time cools the air, but the main purpose is dehumidification And belongs to the heat exchanger in the field of air conditioning.

【0002】[0002]

【従来の技術】従来の自然対流冷房装置としては輻射冷
房方式があり、天井面や壁面にパイプをコイル状に配置
し、仕上げ材により埋設のパイプに低温の液体を流し、
壁面や、天井面を冷却し屋内温度を下げる方式はあつた
が、除湿については、屋内露点温度以下には、結露の問
題があり液温を下げれなかつた。その為に除湿に付いて
は、他の冷却方式により屋内空気や外気を除湿して送気
していた。また他の冷房方式では熱交換フィンに低温の
液体を流し、機械的送風により屋内に送気する場合フィ
ン面の風速は効率等を考えた時、毎秒2m前後であり、
約20%程度の屋内空気は処理されずに熱交換フィンを
通過している。また吹き出し口の温度を露点温度以下で
吹き出せば、吹き出し口付近の結露の問題が生じるが、
最近の空調関係の業界誌には、屋内空気を過冷却に近い
温度まで処理して高速ダクトにて送気して、吹き出し口
の直近にて、混合箱で処理空気を他の空気と混合させ吹
き出し口より吹き出し、温湿度の調節をしている建物も
ある。また産業界では、屋内空気や外気を過冷却した
後、再熱処理して屋内に吹き出している、この方法が一
番湿度調節にはよい方式である。また暖房では機械送風
を使用しない方式として、自然対流方式と輻射方式があ
り気持ちのよい環境を作つている。しかし冷房では湿度
の関係と、放熱器等の温度差の問題で一般化されていな
いのが現状です。
2. Description of the Related Art There is a radiant cooling system as a conventional natural convection cooling apparatus, in which pipes are arranged in a coil shape on a ceiling surface or a wall surface, and a low temperature liquid is flown through an embedded pipe by a finishing material,
Although there was a method to cool the wall surface and ceiling surface to lower the indoor temperature, there was a problem of dew condensation below the indoor dew point temperature, and the liquid temperature could not be lowered. Therefore, for dehumidification, indoor air or outside air was dehumidified by another cooling method before being sent. In other cooling methods, when a low-temperature liquid is flown through the heat exchange fins and the air is blown indoors by mechanical blowing, the wind speed on the fin surface is around 2 m / s when considering efficiency,
About 20% of the indoor air passes through the heat exchange fin without being treated. Also, if the temperature of the air outlet is blown out below the dew point temperature, the problem of dew condensation near the air outlet will occur.
Recent air-conditioning related industry magazines treat indoor air to a temperature close to supercooling and send it through a high-speed duct, and mix the treated air with other air in a mixing box near the outlet. In some buildings, the temperature and humidity are controlled by blowing from the outlet. Further, in the industrial world, after supercooling indoor air or outdoor air, it is heat-treated again and blown indoors, which is the best method for humidity control. In addition, there is a natural convection method and a radiation method as a method that does not use mechanical ventilation for heating, which creates a pleasant environment. However, in the air conditioning, it is the current situation that it is not generalized due to the relationship between humidity and the temperature difference between radiators.

【0003】[0003]

【発明が解決しようとする課題】従来の天井輻射冷房や
壁面輻射冷房では空気の冷却はできても除湿はできなか
つた。本発明は屋内空気を露点温度以下の低温の液体を
箱型冷却装置内に流し、内臓している熱交換フィンにて
屋内空気を冷却除湿すると共に、屋内空気の比重差よる
自然対流による循環にて、屋内空気の除湿を主目的とし
ている、従来の機械的送風の場合には熱交換フィンに対
して風速が速く除湿機能は必ずしもよくななかつた。本
発明は自然対流により熱交換フィンと空気の接触時間が
長く、除湿としての機能は満足できる。また人の体感温
度は、乾球温度と湿球温度との相関関係にあり相対湿度
を50%以下に制御すれば、現在の温度による制御より
高い温度にても同じ体感温度となり、除湿を主体とした
自然対流型除湿空調器を使用すれば、さわやかな暑さの
空調が可能となる。夏期の屋内空気温度の基準を乾球温
度28℃、相対湿度45%以上にて、自然対流型空調器
を稼動させるよう自動制御を設定すれば、10%以上の
省エネとなる。この自然対流型除湿空調器を使用する場
合、蓄熱槽を設置し冷凍機により液体の温度を0℃〜7
℃前後の低温で蓄熱して使用すれば、より省エネ効果が
出る。本来の目的は電力のピークカットと、省エネであ
り、床蓄熱と蓄熱槽の容量を負荷計算により決定すれ
ば、深夜電力利用による空調も可能であり、氷蓄熱方式
とは別の方法として利用できる。また部屋の換気回数を
3回として自然対流による循環量は、自然対流型除湿空
調器1mに対して毎時72立方メートル程度あり充分に
確保できる。そして従来の機械的送風による過度の冷気
感の解消と、動力による稼動部分がないため、適切な流
速で液体を流せば建物と同じ耐用年数まで使用が可能で
ある。近年の建物は内装材に天然素材の使用がすくな
く、建物内の空気中に含まれる湿り気を吸湿されない、
屋内仕上げ材の天然素材使用による自然吸湿と共に自然
対流型除湿空調器の課題を解決したい。
In the conventional ceiling radiant cooling and wall radiant cooling, the air can be cooled but the dehumidification cannot be performed. INDUSTRIAL APPLICABILITY According to the present invention, a low-temperature liquid having a dew point temperature or lower is supplied to indoor air to cool and dehumidify the indoor air with a heat exchange fin incorporated therein, and to be circulated by natural convection due to a difference in specific gravity of the indoor air In the case of the conventional mechanical ventilation, which is mainly intended to dehumidify indoor air, the wind speed is fast and the dehumidification function is not always good with respect to the heat exchange fins. In the present invention, the contact time between the heat exchange fins and air is long due to natural convection, and the function as dehumidification can be satisfied. In addition, the sensible temperature of a person has a correlation between the dry-bulb temperature and the wet-bulb temperature, and if the relative humidity is controlled to 50% or less, the sensible temperature becomes the same even if the temperature is higher than the control by the current temperature, and dehumidification is mainly performed. By using the natural convection type dehumidifying air conditioner, it becomes possible to perform air conditioning with a refreshing heat. If the automatic control is set to operate the natural convection type air conditioner at the dry-bulb temperature of 28 ° C and the relative humidity of 45% or more as the standard of indoor air temperature in summer, energy saving of 10% or more can be achieved. When this natural convection type dehumidifying air conditioner is used, a heat storage tank is installed and the temperature of the liquid is kept at 0 ° C to 7 ° C by a refrigerator.
If it is used by storing heat at a low temperature around ℃, more energy-saving effect will be obtained. The original purpose is to cut the peak of electricity and save energy. If the floor heat storage and the capacity of the heat storage tank are determined by the load calculation, it is possible to air-condition by using night power, which can be used as a method different from the ice heat storage method. . Also, with the ventilation frequency of the room being three times, the circulation amount by natural convection is about 72 cubic meters per hour for 1 m of natural convection type dehumidifying air conditioner, and can be sufficiently secured. And because the excessive mechanical sensation of cold air is eliminated and there is no moving part due to power, it is possible to use it up to the same service life as a building if the liquid is flowed at an appropriate flow rate. The use of natural materials for interior materials in modern buildings is rare, and the moisture contained in the air inside the building is not absorbed.
We would like to solve the problems of natural convection type dehumidifying air conditioners as well as natural moisture absorption by using natural materials for indoor finishing materials.

【0004】[0004]

【課題を解決するための手段】自然対流型除湿空調器の
機能を発揮させるためには、吸入側空気温度と出口側空
気温度差が大きい程よいが、通常の伝熱管の場合は液体
の流入側と流出側との温度差が生じ装置全体としての能
力は落ちる。伝熱管にできるだけ平均的な温度にて液体
を流すために伝熱2重定温管装置を考案した。また天井
面に設置した自然対流型除湿空調器の両側より流入する
屋内空気が、熱交換フィンの上部にて干渉するため、防
止装置として中心部に曲面のついた隔壁を設け熱交換フ
ィンに誘導し対流をよくしている。熱交換フィン部で発
生する凝縮水の処理は熱交換フィン部を将棋の駒形にし
て熱交換フィン面にV形の溝を作ることにより解決し
た。また凝縮水受けの形状も、自然対流を考慮した形と
している。
In order to exert the function of the natural convection type dehumidifying air conditioner, the larger the difference between the intake side air temperature and the outlet side air temperature, the better. However, in the case of an ordinary heat transfer tube, the liquid inflow side A temperature difference between the outflow side and the outflow side occurs, and the capacity of the entire apparatus decreases. We devised a heat transfer double constant temperature tube device in order to flow the liquid to the heat transfer tube at an average temperature as much as possible. In addition, since indoor air flowing in from both sides of the natural convection type dehumidifying air conditioner installed on the ceiling surface interferes with the upper part of the heat exchange fins, a partition wall with a curved surface is provided at the center as a preventive device to guide the heat exchange fins. I am doing good convection. The treatment of condensed water generated in the heat exchange fin portion was solved by forming the heat exchange fin portion into a shogi piece and forming a V-shaped groove on the surface of the heat exchange fin. The shape of the condensate receiver is also a shape that takes natural convection into consideration.

【0005】本体は箱型であり断熱,重量,耐久性を考
慮し木質とし、空気の吸い込み口、空気出口側とも格子
状である.
The main body has a box shape and is made of wood in consideration of heat insulation, weight and durability, and has a lattice shape on both the air intake side and the air outlet side.

【0006】伝熱2重定温管は、外管と内管の2重管構
造であり、液体流入側の外管内側に外管と内管への2分
流装置が取り付けてある、2分流装置は、外管に流れる
液体の管壁側を流れる流速の遅い液体を外管と内管の隙
間に流し、流速の速い中心部の液体を内管側に流す構造
である。即ち外管側を流れる液体は直進状態であり、流
速も内管側より遅い結果伝熱量も制御できる。なお外管
を流れる液体は、内管外管の途中に設ける角度の付い
た、切り欠き隔壁により渦流となり、内管を流れる液体
の熱を奪い外管側に伝えやすくする。また伝熱2重定温
管の全長中心部より、やや先端側で合流させ、液体温度
を回復させることにより熱量を平均化する伝熱2重定温
管である。材質は熱伝導のよい銅管、黄銅管、アルミ
管、但し内管にはSUS管を使用する場合もある。
The heat transfer double constant temperature tube has a double tube structure of an outer tube and an inner tube, and a two-way dividing device in which a two-way dividing device for the outer tube and the inner tube is attached inside the outer tube on the liquid inflow side. Is a structure in which a liquid having a low flow velocity flowing on the pipe wall side of the liquid flowing to the outer pipe is caused to flow into a gap between the outer pipe and the inner pipe, and a liquid in a central portion having a high flow velocity is caused to flow toward the inner pipe side. That is, the liquid flowing on the outer pipe side is in a straight traveling state, and the flow velocity is slower than that on the inner pipe side, so that the amount of heat transfer can be controlled. The liquid flowing through the outer pipe becomes a vortex flow due to the angled notched partition wall provided in the middle of the inner pipe, so that the heat of the liquid flowing through the inner pipe is taken away and is easily transferred to the outer pipe side. The heat transfer double constant temperature tube is a heat transfer double constant temperature tube in which the amount of heat is averaged by merging the heat transfer double constant temperature tube at a slightly distal end side from the central portion thereof to recover the liquid temperature. The material used is a copper tube, brass tube, or aluminum tube with good thermal conductivity, but the inner tube may be a SUS tube.

【0007】伝熱2重定温管の外側に取り付ける熱交換
フィンの形状を、将棋の駒状としたのは凝縮水の処理の
関係であり、熱交換フィン面にV型の溝はより速く、凝
縮水を凝縮水受けに導くためである。なおフィン両端の
V型溝は凝縮水が他に落下を防止するための溝であり、
フィン面に水膜を作らないことが、自然対流を良くし熱
交換効率を上げるために有効な方法である。熱交換フィ
ンの材質は熱伝導のよい銅板かアルミ板で伝熱2重定温
管の外管部に圧着してある。
The shape of the heat exchange fins attached to the outside of the heat transfer double constant temperature tube is made into a shogi piece shape because of the relationship of the treatment of condensed water, and the V-shaped groove on the heat exchange fin surface is faster. This is because the condensed water is guided to the condensed water receiver. The V-shaped grooves on both ends of the fins are for preventing condensed water from falling.
Not forming a water film on the fin surface is an effective method for improving natural convection and improving heat exchange efficiency. The material of the heat exchange fin is a copper plate or an aluminum plate having good heat conductivity and is crimped to the outer tube portion of the heat transfer double constant temperature tube.

【0008】自然対流型空調器の屋内空気の吸入口は左
右にあり、熱交換フィン面に導入される場合上部にて干
渉する。その防止策としてフィン上部の中央に曲面のつ
いた干渉防止板を設け干渉防止策とした、防止板は熱交
換フィンの直近まで下げてあり、左右より流入する空気
の流れを区分している。また熱交換フィンの格納本体は
2重構造で屋内温度と、熱交換部との温度差による結露
や温度伝導に対する障害防止策とした。
The indoor air intake ports of the natural convection type air conditioner are located on the left and right sides, and when introduced into the heat exchange fin surface, they interfere with each other at the upper part. As a preventive measure, an interference preventive plate with a curved surface is provided at the center of the upper part of the fin, which is used as an interference preventive measure. The preventive plate is lowered close to the heat exchange fins, and separates the flow of air flowing in from the left and right. In addition, the heat exchange fin housing main body has a double structure to prevent damage to condensation and temperature conduction due to the temperature difference between the indoor temperature and the heat exchange section.

【0009】凝縮水受けは菱形の上部を切り欠いた構造
で、自然対流を邪魔しない作りとし、外部は木質で結露
防止であり、内部には金属板が張つてある、溝の作りは
V型で1/50以上の勾配でも排水し易い形になつてい
る。木質と金属板の接合は接着テープを使用し多少の空
間を確保し断熱に配慮している。長い期間使用した場
合、当然繊維屑や粉塵が熱交換フィンに付着し、凝縮水
により流されV型の凝縮水受けの溝に蓄積する。特にV
型溝と排水管の接合部に集中するため空気出口側の、処
理空気の格子状出口を取り外し可能とし、掃除および点
検用とした。凝縮水受けの支持は、伝熱外管より銅線又
はSUS線にて吊るす状態で支持する。
The condensate water receiver has a diamond-shaped upper part cut out so that it does not interfere with natural convection, the outside is woody to prevent condensation, and the inside is covered with a metal plate. The groove is V-shaped. It has a shape that makes it easy to drain even with a gradient of 1/50 or more. Adhesive tape is used to join the wood to the metal plate to secure some space for heat insulation. When used for a long period of time, fiber dust and dust naturally adhere to the heat exchange fins, are washed away by the condensed water, and accumulate in the groove of the V-shaped condensed water receiver. Especially V
Since it concentrates on the joint between the mold groove and the drainage pipe, the latticed outlet of the treated air on the air outlet side can be removed for cleaning and inspection. The condensed water receiver is supported by a copper wire or SUS wire suspended from the heat transfer outer tube.

【0010】[0010]

【発明の実施の形態】発明の実施の形態を実施例により
図面を参照して説明する。図1は、自然対流型除湿空調
器の本体であり、除湿処理した空気出口以外は天井埋設
となつている。本体は1で木質であり、7の屋内空気格
子状の吸い込み口より流入し、2の吸い込み空気干渉防
止板にて抵抗なく、3の熱交換フィンに導かれる。熱交
換フィンの温度は平均9.5℃除湿処理中の空気温度
は,平均15℃程度あり、空気は除湿冷却され屋内吸い
込み空気より、比重は約7%重くなり、8の処理空気の
格子状出口より自然対流によつて流出し、屋内空気と混
合する、その時の相対湿度は40%程度であり、45%
での湿度制御は可能である。部屋の換気回数の標準は3
回程度で、取り込み外気の湿度と、屋内で發生する湿度
の除去について、この自然対流型除湿空調器の格子状出
口は1m当たり有効開口面積は、標準品で0.1m
で、風速は毎秒0.2〜0.3mあり、時間当たり約
72立方メートルの処理能力がある。2の吸い込み空気
干渉防止板の材質は全て木質であり、曲面は45mmの
木質角材を、 曲面加工し滑らかな状態で防止板を両側
より押さえ込みみ固定接合としている。 防止板は10
mmの木質板で熱交換フィン上部より、5mm離した所
まで下げた状態である。防止板は本体中心部の天板部に
固定接合し、また熱交換フィン本体を支持する役割をし
ている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described by way of examples with reference to the drawings. FIG. 1 shows the body of a natural convection type dehumidifying air conditioner, which is buried in the ceiling except for the dehumidified air outlet. The main body 1 is made of wood and flows in through the indoor air lattice-shaped suction port 7 and is guided to the heat exchange fin 3 without resistance by the suction air interference prevention plate 2. The temperature of the heat exchange fins is 9.5 ° C on average The air temperature during dehumidification is about 15 ° C on average, the air is dehumidified and cooled, and the specific gravity is about 7% heavier than the indoor intake air. It flows out by natural convection from the outlet and mixes with indoor air. The relative humidity at that time is about 40%, 45%
It is possible to control humidity. Standard room ventilation rate is 3
For the removal of the humidity of the outside air taken in and the humidity generated indoors, the lattice-shaped outlet of this natural convection type dehumidifying air conditioner has an effective opening area of 0.1 m per 1 m per 1 m.
At 2 , the wind speed is 0.2-0.3 m / s and the throughput is about 72 cubic meters per hour. The material of the suction air interference prevention plate of No. 2 is made of wood, and the curved surface is made of 45 mm wood lumber, and the prevention plate is pressed in from both sides in a smooth state and fixedly joined. Prevent plate is 10
It is a state in which it is lowered to a position 5 mm away from the upper part of the heat exchange fin with a wood plate of mm. The prevention plate is fixedly joined to the top plate portion at the center of the main body and also serves to support the heat exchange fin main body.

【0011】図3に示す実施例は3の熱交換フィンの取
り付け間隔であり5mm程度である、機械的送風の場合
は熱交換フィンの間隔は3mmが多いが、自然対流型除
湿空調器は風速が遅く、除湿主力のため間隔は5mmと
している。4は本体の2重側壁であり熱交換フィンの格
納本体である。側壁は2重構造で温度差による結露防止
や、温度伝導による対流障害防止の機能である。側壁の
材質も木質であり、外側より木質5mm空気層5mm木
質5mmの合計15mmで構成されている。この側壁の
熱通過率はm当たり2.43kcal/h,℃で充分
な断熱効果がある。また熱交換フィンと2重側壁との間
隔は両側共2mmで、未処理空気の逃げを防止してい
る。
In the embodiment shown in FIG. 3, the space between the heat exchange fins 3 is about 5 mm, and in the case of mechanical ventilation, the space between the heat exchange fins is 3 mm, but the natural convection type dehumidifying air conditioner has a wind speed. However, the interval is 5 mm due to the dehumidifying main force. Reference numeral 4 denotes a double side wall of the main body, which is a storage main body of the heat exchange fins. The side wall has a double structure to prevent condensation due to temperature difference and prevent convection due to temperature conduction. The material of the side wall is also wood, and is composed of a wood of 5 mm from the outside, an air layer of 5 mm, and a wood of 5 mm, which is a total of 15 mm. The heat transfer coefficient of this side wall is 2.43 kcal / h per m 2 , and there is a sufficient heat insulating effect at ° C. In addition, the distance between the heat exchange fins and the double side wall is 2 mm on both sides to prevent escape of untreated air.

【0012】図4に示す実施例は3の熱交換フィンであ
り、左右内側寄り5mm程度の所にV型の溝を作り、そ
の内側に合計6本の溝と、下部にV字の溝により凝縮水
を速やかに6の凝縮水受けに導く溝であり、他に落下さ
せない機能をもつている。熱交換フィンの材質は、銅板
かアルミ板でプレス加工により加工し、5の伝熱外管に
圧着させる。V型溝の深さは全て2mmであり、伝熱外
管と接する部分のツバ部は3mmである。熱交換フィン
の伝熱面積は、1m当たり標準品で5.1mあり、冷
却能力は装置1mにつき700〜1,000kcal毎
時の冷却能力がある。6は凝縮水受けであり、菱形の上
部を切り欠いた形状で、できるだけ自然対流を妨げない
形にしている。また排水勾配もとり易く排水の流れもよ
い、内部には金属板が張つてあり外部は木質である。菱
形の角度は垂直に対して、30°で切り欠き部の角度は
水平方向に対して、30°となつている。排水溝の有効
深さは40mmと深く、年に1回程度の点検で充分であ
る。そして熱交換フィン上部左右に空気が隙間より逃げ
ないための、防止材を取り付けてある。その他として8
の処理空気の格子状出口は取り外し可能で、後日の排水
の点検掃除にそなえている。
The embodiment shown in FIG. 4 is a heat exchange fin 3 having a V-shaped groove at a position of about 5 mm toward the inner side of the left and right, a total of 6 grooves inside and a V-shaped groove at the bottom. It is a groove for promptly guiding the condensed water to the condensed water receiver 6 and has a function of preventing the condensed water from falling. The material of the heat exchange fins is a copper plate or an aluminum plate, which is press-worked and press-bonded to the heat transfer outer tube 5. The V-shaped grooves all have a depth of 2 mm, and the brim portion in contact with the heat transfer outer tube is 3 mm. The heat transfer area of the heat exchange fin is 5.1 m 2 per 1 m as a standard product, and the cooling capacity is 700 to 1,000 kcal per hour of the apparatus. Reference numeral 6 denotes a condensed water receiver, which is formed by cutting out the upper portion of the rhombus so as to prevent natural convection as much as possible. In addition, the drainage gradient is easy and the flow of drainage is good, and the inside is covered with a metal plate and the outside is woody. The angle of the diamond is 30 ° with respect to the vertical, and the angle of the notch is 30 ° with respect to the horizontal direction. The effective depth of the drainage groove is as deep as 40 mm, and inspection once a year is sufficient. In addition, preventive materials are attached to the left and right of the upper part of the heat exchange fins to prevent air from escaping through the gap. Others 8
The latticed outlet for treated air is removable for future drainage inspection and cleaning.

【0013】図5に示す実施例は伝熱定温2重管に対す
る、9の2分流器、10の渦流器と11の混合部分の取
り付け概略位置を示す。液体の流れは、9の2分流器ま
では一体であり、流速は毎秒1m前後であり、9の2分
流器に至る、但し、管壁側の流速は遅く、毎秒0.6m
前後である。9の2分流器で流れは2分され、流速の遅
い管壁側の液体は、5の伝熱外管と、13の内管の隙間
に流れ、管中心部の流速の速い液体は13の内管側に流
れる。9の2分流器の所で他の隙間に対して65%程度
の開口面積となりより遅くなる。9の2分流器を出た液
体で、5の伝熱外管側を流れる液体は直進して、10の
渦流器に至り角度の付いた切り欠き部により渦流とな
り、11の混合部にて、13の内管側の液体と合流し流
出側に至る。取り付け位置は、20mm伝熱外管7mの
場合、最初の渦流器まで1.2m次ぎ1m、0.8m、
0.6m、0.4m、合流となる。冷却能力で位置は変
化する。
The embodiment shown in FIG. 5 shows a schematic mounting position of the diversion device 9 and the swirl device 10 and the mixing portion 11 to the heat transfer constant temperature double tube. The liquid flow is integral up to the diversion device 9 and the flow velocity is about 1 m / sec, and reaches the diversion device 9 but the flow velocity on the pipe wall side is slow and 0.6 m / sec.
Before and after. The flow is divided into two by the two flow divider 9 and the liquid on the tube wall side with a slow flow velocity flows into the gap between the heat transfer outer pipe 5 and the inner pipe 13 and the liquid with a high flow velocity at the center of the pipe 13 It flows to the inner pipe side. At the 2 shunt of No. 9, the opening area becomes about 65% with respect to the other gaps, and it becomes slower. With the liquid exiting the two-stream diverter of 9, the liquid flowing through the heat transfer outer tube side of 5 goes straight and reaches the swirl of 10 to become a swirl due to the angled notch, and at the mixing part of 11, It merges with the liquid on the inner pipe side of 13 and reaches the outflow side. The mounting position is 1.2m up to the first vortexer 1m, 0.8m, when the 20mm heat transfer outer tube is 7m.
At 0.6m, 0.4m, it will merge. The position changes depending on the cooling capacity.

【0014】図6に示す実施例は9の2分流器であり、
5の伝熱外管流入側に取り付けるそして5の伝熱外管よ
り流入する液体を2分流する、液体が管内を流れる場合
は管壁側は遅く管中心部は速い、遅い管壁側の液体を、
9の2分流器にて5の伝熱外管と13の内管側の隙間に
流し、速い流速の液体を内管側に流す構造になつてい
る。9の2分流器より隙間に流す液体の量は、5の伝熱
外管と、13の内管側の隙間に対して65%程度の開口
面積であるが、開口面積を変化させる事は可能である。
即ち9の2分流器に13の、内管側と接合する個所を、
内管の内側にするのか、外側にすのかにより開口面積の
増減は可能です。9の2分流器の材質は砲または黄銅で
あり、機械加工にて製作する。外管側より内管内側への
勾配角度は11.5°と、緩やかな角度で内管と同じ内
径である。13の内管に接続する9の2分流器の内径は
0.1mm大きく厚みは0.5mmで13の内管と接続
する接合は銀ロウ接合とする。5の伝熱外管流入部に取
り付ける、9の2分流器には4箇所の凸部があり伝熱外
管内側に銀ロウ接合としている。5の伝熱外管の内部は
直線的に接合されているが、13の内管に接する内側に
は0.5mmの段差がある状態で液体は直進する。液体
の流速は9の2分流器に入る直前で、毎秒1mとして2
0mmの伝熱外管では、毎時1、200リットル、25
mmでは毎時2、400リットルとなり液体温度の流入
側と流出側の温度差を4℃とすれば、20mmでは4、
800キロカロー、25mmでは9,600キロカロリ
ーの熱を吸収することができる。また流速は平均1mの
場合中心部では1mより速く、管壁側では約0.6mと
遅く、9の2分流器の通過時には、外管と内管の隙間に
対する開口面積65%により流速は約0.5mで、10
の渦流器を通過して、11の、混合部では約0.3mと
なり、5の伝熱外管と、13の内管に対する20mm伝
熱外管の隙間1m当たりの内容積は0.1358リット
ル、内管15mmの1m当たり内容積は、0.1642
リットルであり、11の混合部での流量は外管側では、
毎分2.45リットル、内管側では、約毎分17.55
リットルと大きな差が出る。この差により熱交換フィン
の吸熱量が平均化となり、自然対流型除湿空調器の機能
を良好にしている。
The embodiment shown in FIG. 6 is a shunt of 9.
5 is attached to the heat transfer outer tube inflow side and divides the liquid flowing in from the heat transfer outer tube into 2 parts. When the liquid flows in the tube, the tube wall side is slow, the tube center is fast, and the slow tube wall side liquid. To
It is structured such that the heat transfer outer tube of 5 and the inner tube side of 13 are caused to flow in the space between the two flow dividers 9 and the liquid having a high flow rate is passed to the inner tube side. The amount of liquid flowing through the gap from the diverter 9 is 65% of the opening area of the heat transfer outer tube and the inner tube 13 side, but the opening area can be changed. Is.
In other words, in the 9-way shunt, the position of 13 to join with the inner pipe side,
The opening area can be increased / decreased depending on whether it is inside or outside the inner tube. The material of the diversion device 9 is gun or brass, and is manufactured by machining. The inclination angle from the outer pipe side to the inner pipe side is 11.5 °, which is a gentle angle and has the same inner diameter as the inner pipe. The inner diameter of the bifurcating device 9 connected to the inner pipe of 13 is 0.1 mm and the thickness is 0.5 mm, and the joint connected to the inner pipe of 13 is silver brazing. Attached to the inflow portion of the heat transfer outer tube of 5, there are four convex portions in the two-way divider of 9 and silver brazing is performed inside the heat transfer outer tube. The inside of the heat transfer outer tube 5 is linearly joined, but the liquid goes straight with a step of 0.5 mm inside the inner tube 13 which contacts the inner tube. The flow velocity of the liquid is 1m / sec just before entering the diversion device of 9 and 2
With 0 mm heat transfer outer tube, 1,200 liters / hour, 25
mm is 2,400 liters per hour, and if the temperature difference between the inflow side and the outflow side of the liquid temperature is 4 ° C., 20 mm is 4,
800 kcal and 25 mm can absorb 9,600 kcal heat. In addition, when the average flow velocity is 1 m, it is faster than 1 m in the central part and slow at about 0.6 m on the pipe wall side, and when passing through the two-way diverter of 9, the flow velocity is about 65% due to the opening area of 65% to the gap between the outer pipe and the inner pipe 10 at 0.5m
After passing through the swirler of No. 11, the mixing section of 11 becomes about 0.3 m, and the inner volume per 1 m of the gap between the heat transfer outer tube of 5 and the heat transfer outer tube of 20 mm with respect to the inner tube of 13 is 0.1358 liters. The inner volume per meter of the inner tube 15 mm is 0.1642.
The flow rate at the mixing section of 11 is
2.45 liters per minute, about 17.55 minutes per minute on the inner tube side
There is a big difference from the liter. Due to this difference, the heat absorption amount of the heat exchange fins is averaged, and the function of the natural convection dehumidifying air conditioner is improved.

【0015】図8に示す実施例は10の渦流器であり、
13の内管の外側に取り付けてあり切り欠き部は4箇所
で、角度は30°であり9の2分流器より直進の液体の
流れは通過することにより渦流となり、内管側の熱を外
管側に移動させる役割をしている、切り欠き部の開口面
積は隙間に対して75%程度であり、次ぎの10の渦流
器への取り付け間隔は順番に短くなつている。渦流器の
材質は砲金か、黄銅で機械加工にて製作する、渦流器の
幅は10〜15mmで4箇所の凸部があり、内側は0.
5mm厚のリング状の形態である。渦流器の内径は13
の内管、外径より0.1mm程度大きくしてあり接合代
である。接合については内管側は銀ロウ接合を使用し、
外管と接する凸部4箇所は、半田メツキとして内管の振
動による5の外管の損傷防止としている。そして5の外
管側隙間の逃げ水防止は、外管の外側よりローラー等に
より締め付け処理をする。10の渦流器を流れる断面の
面積は0.8平方センチメートルであり30°の角度に
て、5の外管内を流れる。
The embodiment shown in FIG. 8 is ten swirlers,
No. 13 is attached to the outside of the inner pipe, and there are four notches, the angle is 30 °, and the liquid flow straight ahead from the two-stream shunt of 9 becomes a vortex by passing the heat on the inner pipe side. The opening area of the notch portion, which plays a role of moving to the tube side, is about 75% of the gap, and the mounting intervals of the next 10 swirlers are sequentially shortened. The material of the vortex machine is made of gun metal or brass by machining. The width of the vortex machine is 10 to 15 mm, and there are four convex parts, and the inside is 0.
It has a ring-like form with a thickness of 5 mm. The inner diameter of the swirler is 13
The inner tube and outer diameter are larger by about 0.1 mm, which is a joining margin. For joining, use silver brazing on the inner tube side,
The four protrusions contacting the outer pipe are used as solder plating to prevent damage to the outer pipe 5 due to vibration of the inner pipe. In order to prevent the escape water in the outer tube side clearance of 5, a tightening process is performed from the outside of the outer tube with a roller or the like. The area of the cross section through the 10 swirlers is 0.8 square centimeters and flows in the 5 outer tube at an angle of 30 °.

【0016】図10に示す実施例は11の混合部であ
り、5の伝熱外管側に渦流となつて流れる液体が、13
の内管側を直進して流れる液体が、混合する箇所であ
る。13の内管は45°の角度に切断し、混合しやすく
なつている。流入液体温度を5℃とすれば、7℃前後に
て混合するように、9の2分流器にて開口面積を調節
し、5の外管流入側の温度と流出側の温度差4℃の半分
程度2℃前後に調節する。
The embodiment shown in FIG. 10 is a mixing section 11 in which the liquid flowing in a vortex on the side of the heat transfer outer tube 5 is 13
This is a place where liquids flowing straight along the inner tube side of are mixed. The inner tube of 13 was cut at a 45 ° angle to facilitate mixing. If the temperature of the inflowing liquid is 5 ° C, the opening area is adjusted by the 2 shunts of 9 so as to mix at around 7 ° C. Adjust the temperature to about 2 ℃.

【0017】図13に示す実施例は1の自然対流型空調
器を天井露出にて取り付けた場合であり、天井埋め込み
型より吸い込み空気がUターンしないだけ能力は増す。
また5の伝熱外管の返り管を3の熱交換フィンの上部に
通す方法もあるが、その場合は熱交換フィンの縦の長さ
を長くしないと効果的でない。
The embodiment shown in FIG. 13 is a case where the natural convection type air conditioner 1 is mounted by exposing the ceiling, and the capacity is increased as compared with the ceiling-embedded type because the intake air does not make a U-turn.
There is also a method of passing the return tube of the heat transfer outer tube of 5 through the upper part of the heat exchange fin of 3, but in that case, it is not effective unless the length of the heat exchange fin is increased.

【0018】図14に示す実施例は伝熱定温2重管を床
暖房に使用した場合の実施例であり、20mm伝熱定温
2重管で、幅0.4m長さ25〜30mの床面積を一定
の温度範囲で制御が可能であり、床暖房利用も考えてい
る。一例として内装の仕上げ材にもよるが、流す液体温
度の平均を30〜35℃として2分流器への流入管を1
5mmとして毎時600リットル流せば約16mの床
暖房が可能となる。
The embodiment shown in FIG. 14 is an embodiment in which the heat transfer constant temperature double pipe is used for floor heating. The heat transfer constant temperature double pipe has a width of 0.4 m and a floor area of 25 to 30 m in length. Can be controlled within a certain temperature range, and we are considering using floor heating. As an example, depending on the finishing material of the interior, the average temperature of the flowing liquid is 30 to 35 ° C.
If it is set to 5 mm and 600 liters per hour is flown, about 16 m 2 of floor heating is possible.

【0019】[0019]

【発明の効果】本発明は、以上説明したように構成され
ているので、以下に記載するような効果を出すことがで
きる。
Since the present invention is constructed as described above, the following effects can be obtained.

【0020】湿度制御が主力のため、屋内温度を2〜3
℃高く設定できその結果約10%の省エネができる。
Since the humidity control is the main factor, the indoor temperature should be kept within 2 to 3
It can be set higher by ℃, and as a result, about 10% energy saving can be achieved.

【0021】機械的な送風でないため、いやな冷風感が
なく静かな環境の部屋や事務所、老人施設、病院、学校
施設等人の動きの少ない建物によい。
Since it is not a mechanical air blower, it is suitable for a room or office, an old man's facility, a hospital, a school facility, etc., where there is little movement of people, in a quiet environment without a chilly feeling.

【0022】機械的な部分がないため、耐用年数が長く
騒音の発生もない。但し液体の流速を速くすると2分流
器の所より騒音の発生があるが、流速を毎秒1m前後に
すれば問題はない。
Since there is no mechanical part, the service life is long and no noise is generated. However, when the flow velocity of the liquid is increased, noise is generated at the position of the shunt, but there is no problem if the flow velocity is set to about 1 m / sec.

【0023】自然対流型除湿空調器は、蓄熱槽の利用が
一番有効な使用方法であり電力のピークカット対策とし
ても利用できる。また自動制御により室温が28℃以下
では運転しないようセツトし、湿度45%以上で運転す
るように調節すれば、一日の運転時間も短かく、省エネ
がより効果的にできる。
The natural convection type dehumidifying air conditioner is the most effective way of using the heat storage tank, and can also be used as a measure for peak cut of electric power. Also, if the automatic control is set so that the room temperature does not operate at 28 ° C. or lower and the humidity is controlled at 45% or more, the operating time per day is short and energy saving can be more effectively performed.

【0024】太陽の輻射熱の影響を受ける窓際の天井部
に、自然対流型除湿空調器を設置すれば、天井部の高い
温度の屋内空気を自然対流型除湿空調器でより効果的に
利用できる。
If a natural convection type dehumidifying air conditioner is installed on the ceiling near the window affected by the radiant heat of the sun, the indoor air at a high temperature in the ceiling can be used more effectively by the natural convection type dehumidifying air conditioner.

【0025】蓄熱槽と床蓄熱を併用すれば、深夜電力利
用による空調が可能になり、より経済的な運転が可能と
なる。その場合の蓄熱槽の容量は床面積1m当たり5
0リットルの容量で24時間の空調が可能となる。
If the heat storage tank and the floor heat storage are used together, the air conditioning by using the electric power at midnight becomes possible and the more economical operation becomes possible. The capacity of the heat storage tank in that case is 5 per 1 m 2 of floor area.
A capacity of 0 liters enables air conditioning for 24 hours.

【0026】設備費用が高くつくと思いがちですが、深
夜電力利用による運転費用の削減により約7年で償却が
可能である。そのためには、低温槽と高温層の2槽の蓄
熱槽にて、冷凍機の低温側と高温側の熱を、それぞれの
槽に蓄熱し再利用すればもつ経済的に利用できる。
It is easy to think that the equipment cost will be high, but it can be amortized in about 7 years due to the reduction of operating cost by using the late-night power. For that purpose, it is possible to economically utilize the heat of the low temperature side and the high temperature side of the refrigerator in the two heat storage tanks of the low temperature tank and the high temperature layer, by storing the heat in the respective tanks and reusing them.

【0027】冷凍機の発停の回数が少なく、効率の良い
運転が可能となる。そのため冷凍機の耐用年数も長くな
り、より経済性はます。
The number of times the refrigerator is started and stopped is small, and efficient operation is possible. Therefore, the service life of the refrigerator is extended and the economy is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】自然対流型除湿空調器の、縦断面図である。FIG. 1 is a vertical cross-sectional view of a natural convection type dehumidifying air conditioner.

【図2】自然対流型除湿空調器の、斜視図である。FIG. 2 is a perspective view of a natural convection type dehumidifying air conditioner.

【図3】本体に熱交換フインを取りつけたときの上部、
横断面図である。
[Fig. 3] The upper part when the heat exchange fin is attached to the main body,
FIG.

【図4】熱交換フインの、縦断面詳細図である。FIG. 4 is a detailed vertical cross-sectional view of a heat exchange fin.

【図5】伝熱定温2重管の全長にたいする、2分流器、
渦流器、混合部等の取り付け位置図である。
[Fig. 5] A two-way flow divider for the entire length of the heat transfer constant temperature double pipe,
It is a mounting position figure of a swirler, a mixing part, etc.

【図6】2分流器の、横断面図である。FIG. 6 is a cross-sectional view of the two-way divider.

【図7】2分流器の、縦断面図である。FIG. 7 is a vertical cross-sectional view of the bifurcating device.

【図8】渦流器の、横断面図である。FIG. 8 is a cross-sectional view of a swirler.

【図9】渦流器の、縦断面図である。FIG. 9 is a vertical cross-sectional view of a swirler.

【図10】混合部の、横断面図である。FIG. 10 is a cross-sectional view of the mixing section.

【図11】2分流器の、横断面詳細図である。FIG. 11 is a detailed cross-sectional view of the shunt.

【図12】2分流器の、縦断面詳細図である。FIG. 12 is a detailed vertical sectional view of the bifurcating device.

【図13】自然対流型除湿空調器を天井露出にて取り付
けた場合と,返り管を熱交換フィンの上部に通した場合
の、縦断面図である。
FIG. 13 is a vertical cross-sectional view of a case where a natural convection type dehumidifying air conditioner is attached with the ceiling exposed and a case where a return pipe is passed through the upper portion of a heat exchange fin.

【図14】伝熱定温2重管を、床暖房に利用した場合
の、縦断面図である。
FIG. 14 is a vertical cross-sectional view when the heat transfer constant temperature double tube is used for floor heating.

【符号の説明】[Explanation of symbols]

1 自然対流型除湿空調器の本体 2 吸い込み空気干渉防止板 3 熱交換フィン 4 本体の2重側壁 5 伝熱外管 6 凝縮水受け 7 屋内空気の格子状吸い込み口 8 処理空気の格子状出口 9 2分流器 10 渦流器 11 混合部 12 接合用ソケット 13 内管 14 床暖房用伝熱板 15 床仕上げ材 1 Natural convection dehumidifying air conditioner body 2 Suction air interference prevention plate 3 heat exchange fins 4 Double side wall of the body 5 Heat transfer outer tube 6 Condensed water receiver 7 Indoor air lattice intake 8 Processed air lattice outlet 9 2 shunt 10 whirlpool 11 mixing section 12 socket for joining 13 Inner tube 14 Heat transfer plate for floor heating 15 Floor finishing material

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】外管と内管により構成した伝熱管であり、
液体の流入外管の内側に分流器を設け、外管と内管側へ
の液体の流れを2分流として、外管側への流量を制御し
外管側に取り付けた熱交換用フィンに対する温度変化を
より少なくする部分である。また一定の距離をおいて内
管の外側に取り付ける隔壁には,角度の付いた切り欠き
を設け,以降の液体の流れを渦流として内管の熱を外管
側に移動させ温度の均一化と同時に、全長の中心点より
先端に寄つた部分にて外管、内管の液体を合流混合さ
せ、外管部に取り付けた熱交換フィンに対する伝熱量の
均一化を目的とした熱交換フィン付き伝熱定温2重管で
ある。
1. A heat transfer tube comprising an outer tube and an inner tube,
Liquid inflow A flow divider is provided inside the outer pipe, and the liquid flow to the outer pipe and the inner pipe is divided into two, and the flow rate to the outer pipe is controlled and the temperature for the heat exchange fins attached to the outer pipe is controlled. This is the part that makes changes less. In addition, the partition wall attached to the outside of the inner pipe at a certain distance is provided with an angled notch, and the heat of the inner pipe is moved to the outer pipe side by making the subsequent flow of liquid into a vortex flow to make the temperature uniform. At the same time, the liquids of the outer and inner pipes are mixed and mixed at the part closer to the tip than the center point of the entire length, and the heat transfer fins are attached to the heat exchange fins attached to the outer pipe to equalize the amount of heat transfer. It is a heat-controlled double tube.
【請求項2】熱交換フインの形状を将棋の駒形にし、熱
交換フィン面にはV形の溝を作り空気を冷却する時に発
生する凝縮水を、より速く溝に導くと共に凝縮水受け以
外には落下せない機能をもつている。またフィン面の湿
りを減少させることにより空気抵抗を減じ、自然対流を
良好に保つ機能をもつている。
2. The shape of the heat exchange fin is made into a shogi piece shape, and a V-shaped groove is formed on the heat exchange fin surface to guide condensed water generated when cooling the air to the groove more quickly and to provide a means other than the condensed water receiver. Has the function of not falling. It also has the function of keeping the natural convection good by reducing the air resistance by reducing the wetness of the fin surface.
【請求項3】自然対流を良好にするために、熱交換フィ
ンの上部吸い込み部にて、空気の干渉を防止しないと良
い結果がえられない。その対策として熱交換フィン上部
中央に曲面の付いた干渉防止板にて,左右より吸い込む
空気の干渉防止機能を持つ防止板である。
3. Good results cannot be obtained unless air interference is prevented in the upper suction portion of the heat exchange fins in order to improve natural convection. As a countermeasure, an interference prevention plate with a curved surface at the center of the upper part of the heat exchange fins has an interference prevention function for the air sucked in from the left and right.
JP2002186881A 2002-05-23 2002-05-23 Natural convection type dehumidifying air conditioner Expired - Fee Related JP3806843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002186881A JP3806843B2 (en) 2002-05-23 2002-05-23 Natural convection type dehumidifying air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002186881A JP3806843B2 (en) 2002-05-23 2002-05-23 Natural convection type dehumidifying air conditioner

Publications (2)

Publication Number Publication Date
JP2003343991A true JP2003343991A (en) 2003-12-03
JP3806843B2 JP3806843B2 (en) 2006-08-09

Family

ID=29774157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002186881A Expired - Fee Related JP3806843B2 (en) 2002-05-23 2002-05-23 Natural convection type dehumidifying air conditioner

Country Status (1)

Country Link
JP (1) JP3806843B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006112742A (en) * 2004-10-18 2006-04-27 Aoki Jutaku Kizai Hanbai Kk Ceiling radiation system
CN109120090A (en) * 2017-06-22 2019-01-01 东芝三菱电机产业系统株式会社 Totally-enclosed external fan type rotating electrical machine and cooler
CN112856587A (en) * 2021-01-04 2021-05-28 朱文卿 Air treatment system for ward

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006112742A (en) * 2004-10-18 2006-04-27 Aoki Jutaku Kizai Hanbai Kk Ceiling radiation system
JP4494930B2 (en) * 2004-10-18 2010-06-30 アオキ住宅機材販売株式会社 Ceiling radiation system
CN109120090A (en) * 2017-06-22 2019-01-01 东芝三菱电机产业系统株式会社 Totally-enclosed external fan type rotating electrical machine and cooler
CN112856587A (en) * 2021-01-04 2021-05-28 朱文卿 Air treatment system for ward

Also Published As

Publication number Publication date
JP3806843B2 (en) 2006-08-09

Similar Documents

Publication Publication Date Title
CN104776574B (en) The air-conditioning system of variable refrigerant volume
JP2017526894A (en) Air conditioning unit
CN204923344U (en) Become radiation air -conditioning system of refrigerant flow
JP4673632B2 (en) Air conditioning system
CN109595726A (en) A kind of cold emission suspended ceiling air-conditioner tail end equipment to dehumidify
CN208920319U (en) A kind of novel air processing system based on indoor temperature and humidity independent control
WO2020051945A1 (en) Air conditioning terminal device with heat exchange in narrow annular space
JP2003343991A (en) Natural convection type dehumidifying air conditioner
JPH0894111A (en) Air-conditioning equipment
EP3842697B1 (en) New-type air conditioning terminal system for high and large spaces
JPH11294832A (en) Air conditioner
CN213872960U (en) Super-silent non-wind-sense healthy and comfortable household central air-conditioning heating system
CN106679027A (en) Evaporative cooling displacement ventilation device and parameter confirming method thereof
CN209445537U (en) A kind of cold emission suspended ceiling air-conditioner tail end equipment to dehumidify
CN206410297U (en) A kind of air-conditioner tail end equipment
CN216644370U (en) Cold beam with condensed water accumulation plate
CN208920422U (en) A kind of novel air-conditioning system
CN215175486U (en) Fresh air induction device
JP2710707B2 (en) Ceiling radiation cooling and heating system
JP5185427B1 (en) Heat exchanger for air conditioning
CN203478700U (en) Heat pump system and air conditioner
CN208920234U (en) A kind of novel dry coils air-conditioner set
JPH04190027A (en) Radiation type cooler and heater
CN110446902B (en) Wall-mounted radiation cooling device
CN111868391B (en) Fan and air conditioning unit including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060428

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150526

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees