JP2003343478A - Spiral vortex fluid machine - Google Patents

Spiral vortex fluid machine

Info

Publication number
JP2003343478A
JP2003343478A JP2002195274A JP2002195274A JP2003343478A JP 2003343478 A JP2003343478 A JP 2003343478A JP 2002195274 A JP2002195274 A JP 2002195274A JP 2002195274 A JP2002195274 A JP 2002195274A JP 2003343478 A JP2003343478 A JP 2003343478A
Authority
JP
Japan
Prior art keywords
rotor
spiral
vortex
casing
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002195274A
Other languages
Japanese (ja)
Inventor
Shigeo Nakamura
重雄 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASUKA JAPAN KK
Aska Japan Inc
Original Assignee
ASUKA JAPAN KK
Aska Japan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASUKA JAPAN KK, Aska Japan Inc filed Critical ASUKA JAPAN KK
Priority to JP2002195274A priority Critical patent/JP2003343478A/en
Publication of JP2003343478A publication Critical patent/JP2003343478A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly functional spiral vortex fluid machine which has simple structure and a high-performance rotor, no gas leakage at the intake side and can be used as a simple body or a plurality of stages. <P>SOLUTION: Circular inner peripheral surface is formed to a casing communicating to an intake air port and exhaust port. Outer peripheral surface opposing to the inner peripheral surface is provided on the outer peripheral surface of the spiral partition of the rotor. A gas vortex flow path is provided in spiral annular shape in the groove part and many vanes are radially formed in the groove. The spiral partition which completely divides the intake air and the exhaust gas is provided in the groove so that vortex flow generates in the groove, and a stageless and a multistage vortex fluid machine can be formed by laminating in the axial direction. Since new compression structure is simply made at low cost, the high-performance one can be simply manufactured. The spiral structure is the constitution to be made by model casting. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は気体加圧する放射状
の羽根を構成した高圧縮比を保つロータをもった渦流形
流体機械に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vortex type fluid machine having a rotor configured of radial vanes for pressurizing a gas and maintaining a high compression ratio.

【0002】[0002]

【従来の技術】従来における渦流形流体機械は、現在、
市販されている機器として一回転、一段式として図6、
及び図7に示す如き構成があるる。すなわちケーシング
1とケーシングカバー2の間に、微小のすきまを保って
放射状の羽根5を備えたロータ4を高速回転させ、ケー
シング側面に吸気口14と一回転した他側に排気口1
5、を設けて、これらの間に気体渦流流路6、を形成す
ると共に、この気体渦流流路6内に、ロータ4に備えた
羽根5を高速回転させることによって渦流加圧し、前
記、吸気口14から排気口15へと気体の加圧、排気を
行うようにしている。次に図8に示す構成は、一側に吸
気口Aを、又他側に排気口BをもったケーシングC内に
は、軸方向、吸、排気口間に渉って複数のポンプステー
タDを固定すると共に、環状の気体渦流流路Eを複数段
設け、これらの気体渦流流路Eを連通路Rを介して互い
に連通させ、複数の円板FをもったポンプロータGをポ
ンプステータD内で回転自在に支持し、円板Fの外周部
に設けた羽根Hを前記、気体渦流流路E内で高速回転さ
せて、吸気口Aから排気口Bへと気体を加圧、排気して
いる。
2. Description of the Related Art Conventional vortex type fluid machinery is currently
One turn as a commercially available device, one step as shown in FIG.
And there is a configuration as shown in FIG. That is, between the casing 1 and the casing cover 2, the rotor 4 having the radial blades 5 is rotated at a high speed with a small clearance kept between the casing 1 and the casing cover 2.
5, a gas swirl flow path 6 is formed between them, and the blades 5 provided on the rotor 4 are rotated in the gas swirl flow path 6 at high speed so as to pressurize the swirl flow. The gas is pressurized and exhausted from the port 14 to the exhaust port 15. Next, in the structure shown in FIG. 8, in a casing C having an intake port A on one side and an exhaust port B on the other side, a plurality of pump stators D are arranged in the axial direction, between the intake port and the exhaust port. And a plurality of annular gas vortex flow passages E are provided, these gas vortex flow passages E are communicated with each other through a communication passage R, and a pump rotor G having a plurality of discs F is connected to a pump stator D. The blades H, which are rotatably supported inside and are provided on the outer peripheral portion of the disk F, are rotated at high speed in the gas swirl flow path E to pressurize and exhaust gas from the intake port A to the exhaust port B. ing.

【0003】更に図9、図10に示す構成は吸気口14
と、排気口15に連なるポンプステータ1Aに円形内周
面を形成すると共に、この内周面に対向するポンプロー
タ4の外周面に、微小すきまを保って吸気口14から排
気口15に連続して螺旋溝6を形成し、この螺旋溝6内
にポンプロータ4の回転で羽根5により渦流を発生させ
ながら、吸気口14から螺旋溝6内に吸入した気体を排
気口15へ加圧、排気させている。図10は螺旋溝6内
に羽根5を備えた様態を示しているが取付方法の詳細は
不明である。
Further, the structure shown in FIGS. 9 and 10 has an intake port 14
A circular inner peripheral surface is formed on the pump stator 1A connected to the exhaust port 15, and a small clearance is maintained on the outer peripheral surface of the pump rotor 4 facing the inner peripheral surface so as to continue from the intake port 14 to the exhaust port 15. To form a spiral groove 6 in the spiral groove 6, and while the vortex flow is generated by the blades 5 in the spiral groove 6 by the rotation of the pump rotor 4, the gas sucked into the spiral groove 6 from the intake port 14 is pressurized and exhausted to the exhaust port 15. I am letting you. FIG. 10 shows a state in which the blade 5 is provided in the spiral groove 6, but details of the mounting method are unknown.

【0004】[0004]

【発明が解決しようとする課題】従来の技術に示した構
成において、図6及び図7にあって、解決しようとする
致命的な課題を説明する。吸気口14と排気口15の設
定位置間は、ケーシング1及びケーシングカバー2にお
いて、渦流阻止壁17、17Aを設け、気体渦流流路6
を設けていない。この構成において矢印方向に高速回転
し羽根5と前記、気体渦流流路6との間で渦流が生じ、
排気口15、近辺に於いて加圧流体が発生し、該、排気
口15より加圧、排出されるが、この吸、排気口を区画
する渦流阻止壁17、17Aに圍まれているロータ4の
厚みと、羽根5とで構成される空間18は、常時、排気
口15側から吸気口14へ加圧流体は筒抜け漏気する構
造になっている。この吸気口14へ漏気する加圧流体に
より、排気口15より吐出される流体風量は大巾に減少
し、極めて吐出効率の低い性能となっている。更に空間
18、が存在することにより該、流体機械の昇圧性能も
低下し、その上、吸気口14に筒抜け漏気する加圧流体
が、吸気口14位置で吸気口14の圧力まで膨脹するこ
とによって、吸気口14に於ける実際の吸気風量も著し
く減少する。更に筒抜け漏気により吸気口14に流入し
た流体は加圧により高温になっているので、この繰返し
作動により流体昇温が悪循環し、極めて高い温度になり
微小すきまは、高温化による接触等のトラブルも発生す
る。
A fatal problem to be solved in FIGS. 6 and 7 in the structure shown in the prior art will be described. Between the set positions of the intake port 14 and the exhaust port 15, in the casing 1 and the casing cover 2, swirl preventing walls 17 and 17A are provided, and the gas swirl flow passage 6 is provided.
Is not provided. In this structure, the vortex flow is generated between the blade 5 and the gas vortex flow path 6 by rotating at high speed in the arrow direction,
A pressurized fluid is generated in the vicinity of the exhaust port 15 and is pressurized and discharged from the exhaust port 15. The rotor 4 is surrounded by the eddy current blocking walls 17 and 17A that partition the intake and exhaust ports. The space 18 constituted by the thickness of the blades and the blades 5 has a structure in which the pressurized fluid always leaks from the exhaust port 15 side to the intake port 14 and leaks. Due to the pressurized fluid leaking to the intake port 14, the amount of fluid air discharged from the exhaust port 15 is greatly reduced, and the performance is extremely low. Further, due to the presence of the space 18, the pressurizing performance of the fluid machine is deteriorated, and furthermore, the pressurized fluid leaking from the cylinder at the intake port 14 expands to the pressure of the intake port 14 at the position of the intake port 14. As a result, the actual intake air volume at the intake port 14 is also significantly reduced. Further, since the fluid flowing into the intake port 14 due to the cylinder escape leaks to a high temperature due to the pressurization, the temperature rise of the fluid is viciously cycled by this repeated operation, resulting in an extremely high temperature, and the minute clearance causes a trouble such as contact due to a high temperature. Also occurs.

【0005】次に図8における構成は、図6、図7で説
明した排気口から吸気口へ加圧流体が筒抜け漏気する構
造の致命的な課題を持ったままのロータ4を、複数積層
して設けたものでポンプステータD間にポンプロータG
の円板を夾持し組込むと共に、ポンプステータD間に設
ける気体渦流流路Eに羽根Hを配設し、上段の気体渦流
流路Eで圧縮した流体を、該、気体渦流流路Eの排気口
から下段の気体渦流流路Eの吸気口に、連通路Rを介し
て流動するようにしているから、前記の各気体渦流流路
Eの吸排気口を周方向に近接して設けている。また各段
の気体渦流流路Eにおける吸、排気口間には、これらを
区画する渦流阻止壁を設ける構成としている。この構成
のままで各気体渦流流路Eを互につなぐ連通路Rを設け
ているが、加圧流体が吸入側へ諸に流れる、前記した筒
抜け漏気はその儘である。故に全体に構造が複雑なうえ
に、運転性能も低い致命的な欠点のある構成である。
Next, in the structure shown in FIG. 8, a plurality of rotors 4 are laminated while still having the fatal problem of the structure described in FIGS. 6 and 7 in which the pressurized fluid leaks out of the cylinder from the exhaust port to the intake port. The pump rotor G is provided between the pump stator D.
The disc is held and incorporated, and the blades H are arranged in the gas swirl flow passage E provided between the pump stators D, and the fluid compressed in the upper gas swirl flow passage E is supplied to the gas swirl flow passage E. Since the gas flows from the exhaust port to the intake port of the lower gas vortex flow passage E through the communication passage R, the intake and exhaust ports of each of the gas vortex flow passages E are provided close to each other in the circumferential direction. There is. Further, between the suction and exhaust ports in the gas vortex flow path E of each stage, a vortex flow blocking wall that partitions them is provided. Although the communication passage R that connects the gas swirl flow passages E to each other is provided with this configuration as it is, the above-mentioned cylinder escape leak where the pressurized fluid flows to the suction side is the same. Therefore, the structure is complicated as a whole and the driving performance is low, which is a fatal drawback.

【0006】またポンプロータGの円板Fはポンプステ
ータD間に夾持するため、該ポンプステータDは半割状
にする必要があり、それだけ一層構造が複雑になる問題
もあった。更にポンプステータDとポンプロータGとが
熱膨脹で接触するのを防止するため、大きなすきまを軸
方向に設ける必要があるが、円板Fの数の集積すきまを
管理する必要上すきま管理が難しい問題もあった。
Further, since the disk F of the pump rotor G is held between the pump stators D, the pump stator D needs to be formed in a half-split shape, and there is a problem that the structure is further complicated. Further, in order to prevent the pump stator D and the pump rotor G from coming into contact with each other due to thermal expansion, it is necessary to provide a large clearance in the axial direction, but it is difficult to manage the clearance because it is necessary to manage the accumulated clearance of the number of the discs F. There was also.

【0007】次に図9、図10は従来の渦流形流体機械
で軸に直角に気体渦流流路を設けると、その弊害である
渦流流体が排気側から吸気側へ諸に筒抜けになる構造を
排除するため、一条ねじの気体渦流流路6を構築し、そ
の溝内に羽根5を多数嵌装する構成を示しているが、気
体渦流流路6に対し羽根5を構成するのが極めて難し
い。すなわち、該、羽根5はロータ4の高速回転に際し
て、羽根自体に強大な遠心力が作用すると共に、渦流圧
力がロータ4の反回転方向に羽根の平面に諸に作動反力
として作用する。従ってこれらの力に耐えるような取付
けを考慮せねばならない。その爲には羽根5を逆T字形
にして気体渦流流路6のねじ底にねじ締めすることが考
えられる。この方法で強固に取付けは行われるが、その
爲に羽根5の間隔が広くなって羽根枚数が必要数、確保
ができなくなる。この弊害は必要な渦流圧力が発生せず
ポンプの機能が発揮できぬばかりか、溝底面の円弧が構
成できず、渦流の発生が困難になり問題が残る。
Next, FIGS. 9 and 10 show a structure in which when a gas swirl flow path is provided at right angles to the axis in a conventional swirl type fluid machine, the harmful effect of the swirl fluid is that various cylinders escape from the exhaust side to the intake side. In order to exclude the gas, the gas swirl flow path 6 having a single thread is constructed and a large number of blades 5 are fitted in the grooves, but it is extremely difficult to configure the blade 5 for the gas swirl flow path 6. . That is, when the blade 5 rotates at high speed, the blade 5 exerts a strong centrifugal force on the blade itself, and the vortex pressure acts on the plane of the blade in the counter-rotational direction of the rotor 4 as an operating reaction force. Therefore, consideration must be given to mounting to withstand these forces. It is conceivable that the blade 5 is formed in an inverted T shape and is screwed to the screw bottom of the gas swirl flow path 6. Although the attachment is performed firmly by this method, the interval between the blades 5 is widened and the required number of blades cannot be secured. This problem is that the required swirl pressure is not generated and the function of the pump cannot be exerted, and the arc of the groove bottom surface cannot be formed, which makes it difficult to generate a swirl flow, which causes a problem.

【0008】本発明の目的は、軸に直角に渦流発生空域
を設けずに、螺旋状の渦流流路と羽根により渦流流体が
排気側から吸気側へ筒抜け状態で漏気する構造を改良
し、複数段にしても各段における筒抜け漏気を防止する
と共に、部品点数を大巾に削減する簡易な構成を提供し
ようとしている。
An object of the present invention is to improve a structure in which a vortex fluid is leaked from an exhaust side to an intake side in a hollow cylinder state by a spiral vortex flow passage and a blade without providing a vortex flow generation space perpendicular to an axis, Even if there are a plurality of stages, an attempt is made to provide a simple structure that prevents leakage of the cylinder in each stage and greatly reduces the number of parts.

【0009】[0009]

【課題を解決するための手段】上記、目的を達成するた
め、本発明では吸気口14と排気口15とに連なるケー
シング1内に、外周部に多数の羽根5を備えたロータ4
を回転自在に構成した渦流形流体機械において、ケーシ
ング1には円形内周面1Aを形成すると共に、ロータ4
には前記、ケーシング1の円形内周面に対向する螺旋隔
壁7の外周面を形成する一方、該、螺旋隔壁7を1回転
で1リード構成し、この1リード中央に羽根間渦流溝6
Aを構築し、螺旋隔壁7の両側に気体渦流流路6を設
け、且、渦流を起させる羽根5を放射状に構成して、
該、羽根5を介して、吸、排気口に連通する渦流発生空
域を形成するが、螺旋隔壁7によって、従来形の欠点で
ある筒抜け漏気する空間18を構成していない。更に高
圧縮比を発生させる爲には、ロータ4を軸方向に複数段
に積層し、螺旋隔壁7の連続した構成によって、複数リ
ードによる螺旋状の渦流発生空域となって、吸気口と排
気口とを完全に分断している。故に流体が筒抜けとなる
空間18と各段をつなぐ連通路Rを無くした構成とし
た。
In order to achieve the above object, according to the present invention, a rotor 4 having a large number of blades 5 on its outer peripheral portion is provided in a casing 1 connected to an intake port 14 and an exhaust port 15.
In a vortex type fluid machine configured to rotate freely, a casing 1 has a circular inner peripheral surface 1A and a rotor 4
While forming the outer peripheral surface of the spiral partition wall 7 facing the circular inner peripheral surface of the casing 1, the spiral partition wall 7 is constituted by one lead by one rotation, and the inter-blade vortex groove 6 is formed at the center of this one lead.
A is constructed, the gas vortex flow passages 6 are provided on both sides of the spiral partition wall 7, and the vanes 5 for causing the vortex are radially formed.
Although the vortex flow generating air space communicating with the intake and exhaust ports is formed through the blades 5, the spiral partition wall 7 does not form the space 18 for leaking air out of the cylinder, which is a drawback of the conventional type. In order to generate a higher compression ratio, the rotors 4 are stacked in a plurality of stages in the axial direction, and the spiral partition wall 7 is formed continuously to form a spiral vortex flow generation air space with a plurality of leads, which serves as an intake port and an exhaust port. And are completely divided. Therefore, the configuration is such that the communication passage R that connects the space 18 where the fluid comes out of the cylinder and each stage is eliminated.

【0010】[0010]

【作用】上記に示したロータ4の回転により、気体渦流
流路6内で羽根5により発生した渦流は、螺旋隔壁7で
完全に吸気、排気を分断されて、吸気口14から排気口
15に排気される。またロータ4を複数段とした構成で
は、ねじ形分子ポンプや軸流ターボポンプの作用と同様
に高圧縮比を保持しながら、前記、一段の吸気口14と
終段の排気口15は、各段の気体渦流流路6によって、
螺旋状に複数段で連続加圧し螺旋隔壁7と羽根5を介し
て連通するが、従来形のような筒抜け漏気することな
く、連続して加圧、排気することができる。
The vortex flow generated by the blades 5 in the gas vortex flow passage 6 by the rotation of the rotor 4 described above is completely divided into intake air and exhaust air by the spiral partition wall 7, and the vortex air flows from the intake port 14 to the exhaust port 15. Exhausted. In addition, in the configuration in which the rotor 4 has a plurality of stages, while maintaining a high compression ratio similar to the action of the screw type molecular pump or the axial flow turbo pump, the first stage intake port 14 and the final stage exhaust port 15 are By the gas vortex flow path 6 of the stage,
Although it continuously pressurizes in multiple stages in a spiral shape and communicates with the spiral partition wall 7 through the blades 5, it is possible to continuously pressurize and exhaust without leaking air through the cylinder unlike the conventional type.

【0011】[0011]

【実施例】図1〜図5による実施例で構成と作動を説明
する。図1及び図2は本発明構造の螺旋渦流形ブロワと
した構成で、ロータ4の一回転、一段式の作動で従来形
で最大の欠点とした筒抜け漏気する空間を無くし、螺旋
隔壁7にて吸気側14Bと排気側15を完全に分離し、
気体渦流流路6には羽根5を螺旋放射状に空間を保って
連続して設け、ロータ4の回転で羽根5から螺旋に設け
た次の羽根5へ運動エネルギーが渦流として与えられ、
吸気口14から排気口15へ連続して必要圧縮比まで圧
縮する構成を示す。図5は本発明構造の螺旋渦流形真空
ポンプとしてロータ4を5段に積層し、各段の気体渦流
流路6において、螺旋状に羽根間の空間による繰返し運
転エネルギーが渦流加圧となって、最初のロータから最
終ロータまで螺旋にて無段階で必要圧縮比まで圧縮する
構成を示している。図3は一段のもの、図4は、螺旋放
射状に羽根を構成した複数段に積層するロータの構造を
示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The construction and operation will be described with reference to an embodiment shown in FIGS. 1 and 2 show the structure of the spiral vortex type blower having the structure of the present invention, which eliminates the space for leaking air, which is the biggest drawback of the conventional type by one rotation of the rotor 4 and one-step operation, and eliminates the spiral partition wall 7. Completely separate the intake side 14B and the exhaust side 15,
The blades 5 are continuously provided in the gas vortex flow path 6 in a spiral radial manner with a space maintained, and kinetic energy is given as a vortex from the blade 5 to the next blade 5 provided in the spiral by the rotation of the rotor 4.
The configuration is shown in which the intake port 14 and the exhaust port 15 are continuously compressed to a required compression ratio. FIG. 5 shows a spiral vortex type vacuum pump having a structure according to the present invention in which rotors 4 are stacked in five stages, and in the gas vortex flow passages 6 in each stage, the repetitive operation energy due to the space between the blades spirally becomes vortex pressurization. , A structure in which the compression is performed steplessly from the first rotor to the final rotor to a required compression ratio. FIG. 3 shows a one-stage structure, and FIG. 4 shows a rotor structure in which blades are spirally and radially arranged and are laminated in a plurality of stages.

【0012】図1及び図2においてケーシング1、ケー
シングカバー2、をモータ20に中心を保って装着す
る。ケーシング1には円形内周面1Aを構成し、該、円
形内周面に微小のすきまを保って、螺旋隔壁7の外周面
を対向し嵌装させるロータ4をモータ20の軸に嵌着
し、該、螺旋隔壁7が構成する溝には気体渦流流路6を
設け、羽根5を螺旋隔壁7の両側面に羽根間渦流溝6A
を残して放射状に一体に設ける。ケーシング1の円形内
周面1Aに対向する外周面として螺旋隔壁7を吸気側、
排気側を完全分離する形態に設ける。ロータ4の両側面
には微小のすきまを保って、ケーシング1及びケーシン
グカバー2に対しロータ4を回転自在に設ける。ケーシ
ング1には吸気口14Bを又ケーシングカバー2には排
気口15を設ける。羽根間渦流溝6A、溝底円弧5A、
外周円弧5Bで8Aはロータ4を鋳造する際のロータ分
割線を示すが詳細については後述する。
1 and 2, the casing 1 and the casing cover 2 are mounted on the motor 20 while keeping the center thereof. The casing 1 has a circular inner peripheral surface 1A, and the rotor 4 for fitting the outer peripheral surface of the spiral partition 7 so as to face the outer peripheral surface of the spiral partition 7 is fitted to the shaft of the motor 20 while maintaining a small clearance in the circular inner peripheral surface. A gas vortex flow path 6 is provided in the groove formed by the spiral partition wall 7, and the blades 5 are provided on both sides of the spiral partition wall 7 between the blade vortex flow grooves 6A.
Is left and is provided integrally in a radial pattern. A spiral partition 7 is provided on the intake side as an outer peripheral surface facing the circular inner peripheral surface 1A of the casing 1,
The exhaust side is provided so as to be completely separated. The rotor 4 is rotatably provided with respect to the casing 1 and the casing cover 2 while maintaining a small clearance on both sides of the rotor 4. The casing 1 is provided with an intake port 14B, and the casing cover 2 is provided with an exhaust port 15. Inter-blade vortex groove 6A, groove bottom arc 5A,
The outer circumferential arc 5B and 8A indicate the rotor dividing line when the rotor 4 is cast, but the details will be described later.

【0013】次に図1及び図2の回転作動を説明する。
モータ20によりロータ4は矢印方向に回転すれば大気
は吸気口14よりケーシング1内に吸気され、ケーシン
グ1の吸気口14Bより気体渦流流路6に吸入される。
吸入された大気は羽根5による繰返し連続の螺旋した渦
流運動により、昇圧し螺旋隔壁7の排気側へ加圧され到
着する。加圧された流体は、螺旋隔壁7によって吸気口
14Bと排気口15は完全に分断しているので吸気側へ
漏気しない。この一連の作動にあって、ロータ4の螺旋
隔壁7の外周面及び両側面はケーシング1、ケーシング
カバー2の円形内周面1A及び側面1Bとの間は、微小
のすきまを保って回転するので、流体は気体渦流流路6
より吸気側へ漏気しない。勿論、従来形に起る如き筒抜
け漏気は完全に防止されている。尚、羽根間渦流溝6A
を夾んで螺旋に構成して放射状の羽根5を設けた前記、
気体渦流流路6の底面と螺旋隔壁7の外周面の内面は各
々、円弧5A、5Bの肉付をしているので渦流はスムー
ズに発生する。渦流は図1の矢印にみる如く羽根間渦流
溝6Aを中心に左右に外周方向へ渦流が発生する。
Next, the rotation operation of FIGS. 1 and 2 will be described.
When the rotor 4 is rotated in the direction of the arrow by the motor 20, the atmosphere is sucked into the casing 1 through the suction port 14 and is sucked into the gas swirl flow path 6 through the suction port 14B of the casing 1.
The sucked air is pressurized and reaches the exhaust side of the spiral partition 7 by the repeated spiral vortex motion of the blades 5. The pressurized fluid does not leak to the intake side because the intake port 14B and the exhaust port 15 are completely separated by the spiral partition 7. In this series of operations, the outer peripheral surface and both side surfaces of the spiral partition wall 7 of the rotor 4 rotate with a minute clearance maintained between the casing 1 and the circular inner peripheral surface 1A and the side surface 1B of the casing cover 2. , Fluid is gas vortex flow path 6
Does not leak to the intake side. Needless to say, the leakage air from the cylinder, which occurs in the conventional type, is completely prevented. The inter-blade vortex groove 6A
Which has a radial vane 5 and is formed into a spiral.
Since the bottom surface of the gas swirl flow path 6 and the inner surface of the outer peripheral surface of the spiral partition wall 7 are respectively provided with arcs 5A and 5B, the swirl flow smoothly occurs. As shown in the arrow in FIG. 1, the vortex flow is generated in the outer peripheral direction to the left and right around the inter-blade vortex flow groove 6A.

【0014】図5における構成は、ケーシング1、動力
側サイドカバー2、反動力側サイドカバー3をモータ2
0の中心にロータ軸11の中心が保持されている。ケー
シング1には円形内周面1Aを構成し、該、円形内周面
1Aに微小のすきまを保って5段に嵌着、積層したロー
タ4の螺旋隔壁7を対向させ、ロータ軸11に嵌着、キ
ー、ノックピンで固定させる。各段のロータ4の外周部
には螺旋隔壁7によって螺旋状に構成される気体渦流流
路6を設け、羽根5は渦流空間を残して螺旋放射状にロ
ータ4に一体に設ける。気体渦流流路6にはケーシング
1の円形内周面1Aに対向する外周面まで螺旋隔壁7を
吸気側、排気側を完全分離する形態に設ける。ロータ4
には螺旋隔壁7の両側面に設けた気体渦流流路6の開口
部が吸気口14に開口する構成にする。ロータ4は軸方
向に複数積層して嵌着し、螺旋隔壁7が連続するように
設ける。動力側サイドカバー2及び反動力側サイドカバ
ー3が、各々ロータ4と対向する側面、2B、3Bには
微小すきまを保って回転自在に構成する。積層したロー
タ4は締付ボルト9にてロータ4各々を固定し、キー1
2とロータ軸11に嵌着固定する。
In the configuration shown in FIG. 5, the casing 1, the power side cover 2 and the reaction side cover 3 are connected to the motor 2.
The center of the rotor shaft 11 is held at the center of 0. The casing 1 is formed with a circular inner peripheral surface 1A, and the circular inner peripheral surface 1A is fitted in five steps with a small clearance maintained, and the spiral partition walls 7 of the laminated rotor 4 are opposed to each other and fitted to the rotor shaft 11. Fix with clothes, keys, and knock pins. A gas vortex flow path 6 formed in a spiral shape by a spiral partition wall 7 is provided on the outer peripheral portion of the rotor 4 at each stage, and the blades 5 are provided integrally with the rotor 4 in a spiral radial shape leaving a vortex flow space. In the gas vortex flow path 6, a spiral partition 7 is provided up to the outer peripheral surface facing the circular inner peripheral surface 1A of the casing 1 so that the intake side and the exhaust side are completely separated. Rotor 4
In this configuration, the openings of the gas swirl flow passages 6 provided on both side surfaces of the spiral partition wall 7 open to the intake port 14. A plurality of rotors 4 are stacked and fitted in the axial direction, and the spiral partition walls 7 are provided so as to be continuous. The power side cover 2 and the reaction side cover 3 are configured to be rotatable with side surfaces 2B and 3B facing the rotor 4 each having a small clearance. As for the laminated rotors 4, each of the rotors 4 is fixed with the tightening bolts 9, and the key 1
2 and the rotor shaft 11 are fitted and fixed.

【0015】次は図5の回転作動を説明する。モータ2
0により積層されたロータ4は矢印方向に回転する。気
体は吸気口14より吸気空間3Aに吸気され、更にロー
タ4の流体入口4A、4Bより気体渦流流路6に吸入さ
れる。1段目に吸気された気体は螺旋状になった羽根5
による繰返し連続の渦流運動により、螺旋隔壁7側面の
終着羽根部4Cへ昇圧され到着する。昇圧された気体
は、2段目のロータ4の流体入口4Dより気体渦流流路
6へ更に2段加圧され終着羽根部4Eへ加圧状態を加速
する。3段、4段、5段ロータ4ともこの作動を繰返し
て高い圧力に加圧され、排気空間2Aに排気、保持され
る。この作動を真空ポンプに置換すれば、吸気空間3A
は一連の渦流加圧機構によって高真空度を保持できるも
のである。ケーシング1の円形内周面1Aとロータ4の
螺旋隔壁7の外周面とは回転に必要な最微小すきまで保
持されていることは、図1の構成と同一である。
Next, the rotation operation of FIG. 5 will be described. Motor 2
The rotors 4 stacked by 0 rotate in the arrow direction. The gas is sucked into the suction space 3A through the suction port 14 and further sucked into the gas swirl flow path 6 through the fluid inlets 4A and 4B of the rotor 4. The gas sucked in the first stage is a spiral blade 5
Due to the repeated and continuous vortex motion due to, the pressure is increased and arrives at the final blade portion 4C on the side surface of the spiral partition wall 7. The pressure-increased gas is further pressurized by two stages from the fluid inlet 4D of the rotor 4 of the second stage to the gas vortex flow path 6 and accelerates the pressurized state to the end vane portion 4E. This operation is repeated for the third, fourth, and fifth rotors 4 to be pressurized to a high pressure and exhausted and held in the exhaust space 2A. If this operation is replaced with a vacuum pump, the intake space 3A
Is capable of maintaining a high degree of vacuum by a series of eddy current pressurizing mechanisms. The circular inner peripheral surface 1A of the casing 1 and the outer peripheral surface of the spiral partition wall 7 of the rotor 4 are held up to the smallest clearance required for rotation, which is the same as the configuration of FIG.

【0016】図3、図4はロータ4、単体の形状を示し
ており図3は単体、1段式を、又図4は積層して複数段
にするものを示す。これらは強度のダイカスト鋳物或は
それと同等の型成形で造成する。従って羽根5の必要と
する回転方向への傾斜も確保は簡単であると共に、渦流
発生に必要な羽根間隔や螺旋構成、或は溝底円弧等5
A、5Bも随意に構成が可能である。又ロータ軸との嵌
合はキー溝12Aで軸直角方向の固定は勿論、ノックピ
ン10の位置決めと強固な嵌合いとボルト締めで、積層
に重ねても一つのロータとして頑丈に構成することがで
きる。
FIGS. 3 and 4 show the shape of the rotor 4 alone, FIG. 3 shows a single-stage type, and FIG. These are formed by high-strength die-casting or equivalent molding. Therefore, it is easy to secure the required inclination of the blades 5 in the rotation direction, and the blade spacing and the spiral structure required for generating the vortex, or the groove bottom arc 5
A and 5B can be arbitrarily configured. The rotor shaft can be fitted with the key groove 12A not only in the direction perpendicular to the axis, but also by positioning the knock pin 10 and firmly fitting and tightening the bolts, one rotor can be firmly constructed even if they are stacked. .

【0017】次にロータ4は螺旋隔壁7で1リードを保
ったねじ形を形成している。従ってこの形態のまま、型
成形するのは難点が残る。故に図3、図4にあって、任
意の円Dにおいて、ロータ分割線8A方向に示向する1
80°半円の半円弧面13を基準として、ロータ分割線
8Aを構成する点a、b、c、d、e、及びa′、
b′、c′、d′、e′を通る180°の線とで分割し
てなる鋳造成形のロータアダブタ8、2片とロータ4本
体とを、複数の締付ボルト8Bで締付け固定する方法を
採用すれば、図3及び図4で示す如きロータが無理なく
型成形でき、機能するロータ4、となる。
Next, the rotor 4 is formed with a spiral partition wall 7 in a screw shape in which one lead is maintained. Therefore, there remains a problem in molding with this form. Therefore, in FIG. 3 and FIG. 4, in an arbitrary circle D, the direction of the rotor division line 8A is 1
With reference to the semicircular arc surface 13 of the 80 ° semicircle, the points a, b, c, d, e, and a ′ that form the rotor dividing line 8A,
A method of tightening and fixing a rotor-adapter 8 and two pieces of cast molding, which are divided by a 180 ° line passing through b ′, c ′, d ′ and e ′, and the rotor 4 main body with a plurality of tightening bolts 8B. If the above is adopted, the rotor 4 shown in FIGS. 3 and 4 can be molded without difficulty, and the functioning rotor 4 is obtained.

【0018】[0018]

【発明の効果】図6、図7の従来構造の一回転、一段式
の渦流形流体機械にあって要旨の説明に示したように、
気体渦流流路の構成において吸、排気口を区画する渦流
阻止壁の空間で、渦流加圧した流体が、吸気側に筒抜け
で漏気する爲、圧力上昇の不足排気風量の下落、排気温
度の高温化、等致命的な弊害が多い。又図8は図6、図
7の形態を積重ねて多段化しているが、前述した致命的
欠点はその儘、残ったままで製品構成しているので、大
きな欠点は倍加されポンプとしての機能を発揮できな
い。
As shown in the description of the gist of the conventional single-rotation, single-stage vortex type fluid machine shown in FIGS.
In the space of the vortex block wall that divides the intake and exhaust ports in the configuration of the gas vortex flow path, the vortex-pressurized fluid leaks to the intake side due to a hollow cylinder, the pressure rise is insufficient, the exhaust air volume drops, and the exhaust temperature There are many fatal problems such as high temperature. In FIG. 8, the configurations of FIG. 6 and FIG. 7 are stacked to form a multi-stage structure, but the fatal drawbacks described above are still left in the product structure, so the major drawbacks are doubled to function as a pump. Can not.

【0019】然るに本発明による螺旋渦流形流体機械に
あっては、羽根5を収納している気体渦流流路6は、ロ
ータ4の螺旋隔壁7とケーシング1、及びケーシングカ
バー2の円形内周面と側面とで圍まれた螺旋容積の中
で、螺旋状に渦流加圧を可能にした構造であると共に、
前記した従来形のような筒抜け空間をなくし、螺旋隔壁
7で、吸、排気口を完全分離しているから、加圧流体が
吸気側へ漏気することがなく、螺旋を画いた渦流となっ
て、吸気側から排気側へ軸方向に移動するので全体的な
漏れも少なく高効率を保持できる。又図5の如く積層に
して、3段 、5段と多段式にする形状は、シンプルな
構造を積層するので構成は簡単でコストは低減でき、前
記せる単体、高機能のロータを組合せるので高真空、高
圧力、低コストを実現できる。
In the spiral vortex type fluid machine according to the present invention, however, the gas vortex flow path 6 housing the blades 5 has the spiral partition wall 7 of the rotor 4, the casing 1, and the circular inner peripheral surface of the casing cover 2. In the spiral volume surrounded by the side surface and the side surface, the structure enables spiral vortex pressure, and
Since the hollow space like the above-mentioned conventional type is eliminated and the intake and exhaust ports are completely separated by the spiral partition wall 7, the pressurized fluid does not leak to the intake side and becomes a spiral vortex flow. Since the air moves from the intake side to the exhaust side in the axial direction, overall leakage is small and high efficiency can be maintained. In addition, as shown in FIG. 5, the multi-layered structure having three layers and five layers has a simple structure, so that the structure is simple and the cost can be reduced. High vacuum, high pressure and low cost can be realized.

【0020】[0020]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一段式螺旋渦流形流体機械の縦断面
図。
FIG. 1 is a vertical sectional view of a one-stage spiral vortex flow type fluid machine of the present invention.

【図2】本発明の一段式螺旋渦流形流体機械の横断面
図。
FIG. 2 is a cross-sectional view of the one-stage spiral vortex type fluid machine of the present invention.

【図3】本発明の螺旋渦流形流体機械のロータ正面図。FIG. 3 is a front view of a rotor of the spiral vortex type fluid machine of the present invention.

【図4】本発明の螺旋渦流形流体機械のロータの一部断
面した構成図。
FIG. 4 is a partial cross-sectional configuration diagram of a rotor of a spiral vortex type fluid machine of the present invention.

【図5】本発明の多段式螺旋渦流形流体機械の縦断面
図。
FIG. 5 is a vertical cross-sectional view of a multi-stage spiral vortex flow type fluid machine of the present invention.

【図6】従来の一段式渦流形流体機械の縦断面図。FIG. 6 is a vertical cross-sectional view of a conventional one-stage vortex type fluid machine.

【図7】従来の一段式渦流形流体機械の横断面、外形
図。
FIG. 7 is a cross-sectional view and outline drawing of a conventional one-stage eddy current type fluid machine.

【図8】従来の多段式渦流形流体機械の縦断面図。FIG. 8 is a vertical cross-sectional view of a conventional multistage vortex type fluid machine.

【図9】従来の螺旋式渦流形流体機械の縦断面図。FIG. 9 is a vertical cross-sectional view of a conventional spiral vortex type fluid machine.

【図10】従来の螺旋式渦流形流体機械の螺旋溝断面
図。
FIG. 10 is a cross sectional view of a spiral groove of a conventional spiral vortex type fluid machine.

【0021】[0021]

【符号の説明】[Explanation of symbols]

1………ケーシング 1A………ケーシ
ング円形内周面 2………ケーシングカバー 3………反動力側サイドカバー 又は動力側サイドカバー 4………ロータ 5………羽根 5A、5B………溝底、
外周円弧 6………気体渦流流路 6A………羽根間
渦流溝 7………螺旋隔壁 8………ロータ
アダブタ 8A………ロータ分割線 9………連結
ボルト 9A………ボルトタップ孔 9B………ボル
ト孔 11………ロータ軸 12………ロー
タ軸キー 13………半円弧面(ロータ) 14………吸気
口 15………排気口 16………カッ
プリング 20………モータ
1 ………… Casing 1A ………… Casing circular inner peripheral surface 2 ………… Casing cover 3 ………… Anti-power side cover or power side cover 4 ……… Rotor 5 ……… Blades 5A, 5B ……… Groove bottom,
Circumferential arc 6 ... Gas vortex flow path 6A ...... Vortex vortex groove between blades 7 ...... Helical partition 8 ...... Rotor adapter 8A ...... Rotor dividing line 9 ...... Connection bolt 9A ...... Bolt tap hole 9B ......... Bolt hole 11 ......... Rotor shaft 12 ......... Rotor shaft key 13 ......... Semi-circular surface (rotor) 14 ......... Intake port 15 ......... Exhaust port 16 ......... Coupling 20 ... …motor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】吸気口14と排気口15を設けたケーシン
グ1内に外周部に多数の羽根を備えたロータ4をモータ
中心で回転自在に支持した渦流形流体機械において、ケ
ーシング1に軸方向に長さをもつ円形内周面1Aを形成
すると共に、ロータ4には螺旋隔壁7を形成し、ロータ
4の螺旋隔壁7に、前記ケーシング1の円形内周面1A
に微小のすきまをもって対向する外周面を形成すると共
に、ロータ4の側面1Bも微小のすきまをもって内面を
対向する如くしたケーシング1及びケーシングカバー2
を装着し、螺旋隔壁7の両側外周には気体渦流流路6を
設けると共に、螺旋隔壁7間の軸方向中央に羽根間渦流
溝6Aを設け、螺旋隔壁7の両側には放射状に多数の羽
根5を構成し、ケーシング1に設けた吸気口14Bとケ
ーシングカバー2に設けた排気口15を螺旋隔壁7にて
分離させる構成で、ロータ4の回転によって、前記、気
体渦流流路6、羽根間渦流溝6A、羽根5に備えた溝底
円弧5Aと外周円弧5B、内に渦流を発生させ吸気した
流体を加圧させる構成を設けたことを特徴とする螺旋渦
流形流体機械。
1. A vortex type fluid machine in which a rotor 4 having a large number of blades on its outer periphery is rotatably supported around a motor in a casing 1 having an intake port 14 and an exhaust port 15, and an axial direction is provided in the casing 1. A circular inner peripheral surface 1A having a length, and a spiral partition wall 7 formed on the rotor 4, and the spiral partition wall 7 of the rotor 4 has a circular inner peripheral surface 1A.
The casing 1 and the casing cover 2 are formed such that the outer peripheral surfaces facing each other are formed with a minute clearance, and the side surfaces 1B of the rotor 4 are also opposed to the inner surface with a minute clearance.
The spiral swirl partition 7 is provided with gas swirl flow paths 6 on both outer peripheries, and an inter-blade swirl groove 6A is provided in the axial center between the spiral partition 7 and a large number of radial blades are provided on both sides of the spiral partition 7. 5, the intake port 14B provided in the casing 1 and the exhaust port 15 provided in the casing cover 2 are separated by the spiral partition 7, and the rotation of the rotor 4 causes the gas swirl flow path 6 and the blade gap to be separated from each other. A spiral vortex type fluid machine characterized in that a structure for generating a vortex and pressurizing the sucked fluid is provided in the vortex groove 6A, the groove bottom arc 5A and the outer peripheral arc 5B provided on the blade 5.
【請求項2】吸気口14と排気口15を設けケーシング
1内に外周部に多数の羽根を備えたロータ4をモータ中
心で回転自在に支持した渦流形流体機械にあって、ケー
シング1に軸方向に延びる長さをもつ円形内周面1Aを
形成すると共に、ロータ4には螺旋隔壁7を形成し、該
ロータ4の螺旋隔壁7に、前記ケーシング1の円形内周
面1Aに微小のすきまをもって対向する外周面を形成す
ると共に、螺旋隔壁7の両側外周には気体渦流流路6を
設け、螺旋隔壁7間の軸方向中央に羽根間渦流溝6Aを
形成し、該、螺旋隔壁7の両側には放射状に多数の羽根
5を構成し、ロータ4を複数個、軸方向に設け、各螺旋
隔壁7を連続させると共に一段ロータ4の側面3B及び
最終段ロータ4の側面2Bも微小のすきまをもって内面
を対向する如くした動力側サイドカバー、反動力側サイ
ドカバーを装着し、各ロータ4はロータ軸11及び連結
ボルト9で一体とさせる構成で、ロータ4を回転させる
ことによって吸気口14より吸気した流体は、各螺旋隔
壁7によって連結された気体渦流流路6、羽根間渦流溝
6A、羽根5に備えた溝底円弧5Aと外周円弧5B内に
渦流を発生させ、該渦流を直列に連通の上、無段階に連
続して加圧する構成としたことを特徴とする螺旋渦流形
流体機械。
2. A vortex type fluid machine in which a rotor 4 having an intake port 14 and an exhaust port 15 and having a large number of blades in the outer peripheral portion is rotatably supported around a motor in a casing 1. A circular inner peripheral surface 1A having a length extending in the direction is formed, and a spiral partition wall 7 is formed in the rotor 4, and a small clearance is formed in the circular inner peripheral surface 1A of the casing 1 in the spiral partition wall 7 of the rotor 4. With the outer peripheral surfaces facing each other, the gas swirl flow paths 6 are provided on both outer peripheries of the spiral partition wall 7, and the inter-blade swirl groove 6A is formed in the axial center between the spiral partition walls 7. A large number of blades 5 are radially formed on both sides, a plurality of rotors 4 are provided in the axial direction, each spiral partition wall 7 is continuous, and the side surface 3B of the first-stage rotor 4 and the side surface 2B of the final-stage rotor 4 are also minute gaps. With the inner surfaces facing each other A power side cover and a reaction side cover are attached, and each rotor 4 is integrated with the rotor shaft 11 and the connecting bolt 9. The fluid sucked from the intake port 14 by rotating the rotor 4 is A gas vortex flow path 6, an inter-blade vortex flow groove 6A connected by a partition wall 7, a vortex flow is generated in the groove bottom arc 5A and the outer peripheral arc 5B provided in the vane 5, and the vortex flow is communicated in series and continuously. A spiral vortex type fluid machine characterized by being configured to continuously pressurize.
JP2002195274A 2002-05-29 2002-05-29 Spiral vortex fluid machine Pending JP2003343478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002195274A JP2003343478A (en) 2002-05-29 2002-05-29 Spiral vortex fluid machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002195274A JP2003343478A (en) 2002-05-29 2002-05-29 Spiral vortex fluid machine

Publications (1)

Publication Number Publication Date
JP2003343478A true JP2003343478A (en) 2003-12-03

Family

ID=29774515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002195274A Pending JP2003343478A (en) 2002-05-29 2002-05-29 Spiral vortex fluid machine

Country Status (1)

Country Link
JP (1) JP2003343478A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109538765A (en) * 2018-11-05 2019-03-29 西安交通大学 A kind of reeded low amount of leakage straight-through labyrinth device of band

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109538765A (en) * 2018-11-05 2019-03-29 西安交通大学 A kind of reeded low amount of leakage straight-through labyrinth device of band
CN109538765B (en) * 2018-11-05 2021-02-02 西安交通大学 Low leakage straight-through labyrinth sealing device with groove

Similar Documents

Publication Publication Date Title
US7390163B2 (en) Radial flow turbine
JP5625117B2 (en) Reaction turbine
JP6353195B2 (en) Fixed disk and vacuum pump
TW201118256A (en) Vacuum pump
DK2751429T3 (en) TURBO COMPRESSOR AND USE.
WO2022062933A1 (en) Impeller and vortex-type air pump
WO2012124293A1 (en) Multistage centrifugal compressor and turbo refrigeration machine using same
WO2015041174A1 (en) Rotating machine
JP4050811B2 (en) Double flow type gas friction pump
JP2003343478A (en) Spiral vortex fluid machine
KR20080008663A (en) Turbocharger &amp; supercharger with double suction typed centrifugal compressor
JP2757922B2 (en) Centrifugal compressor
WO2022062932A1 (en) Impeller and vortex air pump
US5803713A (en) Multi-stage liquid ring vacuum pump-compressor
JPH0311193A (en) Vacuum pump
JP2004060626A (en) Multistage swirl type fluid machine
JPH02264196A (en) Turbine vacuum pump
JP2004116509A (en) Multiple stage vortex fluid machine
JPH11294185A (en) Multistage compressor structure
KR20010011629A (en) Diffuser for turbo compressor
JP2022129434A (en) Centrifugal rotary machine
KR20010010873A (en) Axial sealing structure for turbo compressor
JPS6385287A (en) Vacuum pump
KR200354857Y1 (en) Turbine with multistage impeller for an axis line
JPH05172091A (en) Vacuum pump