WO2012124293A1 - Multistage centrifugal compressor and turbo refrigeration machine using same - Google Patents

Multistage centrifugal compressor and turbo refrigeration machine using same Download PDF

Info

Publication number
WO2012124293A1
WO2012124293A1 PCT/JP2012/001552 JP2012001552W WO2012124293A1 WO 2012124293 A1 WO2012124293 A1 WO 2012124293A1 JP 2012001552 W JP2012001552 W JP 2012001552W WO 2012124293 A1 WO2012124293 A1 WO 2012124293A1
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
stage
impellers
centrifugal compressor
annular groove
Prior art date
Application number
PCT/JP2012/001552
Other languages
French (fr)
Japanese (ja)
Inventor
直人 阪井
隼人 坂本
正史 山内
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Publication of WO2012124293A1 publication Critical patent/WO2012124293A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/284Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • F04D17/122Multi-stage pumps the individual rotor discs being, one for each stage, on a common shaft and axially spaced, e.g. conventional centrifugal multi- stage compressors
    • F04D17/125Multi-stage pumps the individual rotor discs being, one for each stage, on a common shaft and axially spaced, e.g. conventional centrifugal multi- stage compressors the casing being vertically split
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/083Sealings especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/10Shaft sealings
    • F04D29/102Shaft sealings especially adapted for elastic fluid pumps

Definitions

  • the present invention relates to a multi-stage compressor in which at least two centrifugal impellers are provided side by side in the axial direction of a rotary shaft, and the gas compressed by the front stage impeller is further compressed by the rear stage impeller.
  • a centrifugal turbo compressor imparts energy to a gas by a rotating centrifugal impeller (hereinafter simply referred to as an impeller) to increase its pressure. Since there is a certain restriction between the flow rate of the gas flowing through the impeller flow path and the pressure ratio, in order to achieve a higher pressure ratio, multiple impellers are connected in series and compressed in multiple stages. The formula is used.
  • the impeller and the rotating shaft are usually processed and fitted together in consideration of the manufacturing cost.
  • the inner diameter of the center hole of the impeller is made smaller than the outer diameter of the rotating shaft, and the rotating shaft is press-fitted here, or the impeller is heated and expanded (so-called shrink fitting). An interference fit is employed.
  • the back surface of the impeller since the back surface of the impeller has a planar shape perpendicular to the rotation axis, there is a possibility that a problem of stress concentration may occur at the boundary (heel portion) with the shaft portion. That is, generally, in a disk rotating at a high speed, a tensile stress ⁇ r in the radial direction is generated directly by centrifugal force as shown in FIG. 5, and this also causes a tensile stress ⁇ ⁇ in the circumferential direction. appear. And in the part where there is an impeller with a large outer diameter, the stress becomes large as shown on the right side of the figure, while on the shaft part with a small outer diameter, the stress becomes small as shown on the left side of the figure. If the back surface of the impeller is planar, the stress distribution state changes abruptly at the boundary with the shaft portion, and a problem due to stress concentration is likely to occur.
  • the back surface of the impeller is gradually raised on the inner peripheral side, and a curved shape that gently connects to the shaft portion may be considered. Will become longer in the axial direction.
  • the gas flow is directed from the outer peripheral side of the front impeller toward the suction port on the inner peripheral side of the adjacent rear impeller.
  • the return channel must be provided so as to be folded, and if the gas flow is to be smoothly folded, the interval between adjacent impellers will naturally increase.
  • an object of the present invention is to increase the rotation speed of the multistage centrifugal compressor and to reduce the dimension in the rotation axis direction as much as possible.
  • the present invention provides a multi-stage centrifugal system in which at least two centrifugal impellers are arranged in the axial direction of the rotary shaft, and the gas compressed by the front impeller is further compressed by the rear impeller.
  • the compressor is the target.
  • the front stage and rear stage impellers are arranged back to back and formed integrally with the rotary shaft, and a housing that accommodates the front stage and the rear stage impeller includes a front stage suction port facing the axial direction of the front stage impeller, and a front stage impeller.
  • the discharge passage and the suction port at the latter stage are communicated with each other through a gas guide passage.
  • the rotating shaft and the front and rear impellers may be integrally formed of, for example, a metal material.
  • an annular groove that is open toward the outer peripheral side may be formed between the two impellers.
  • heat treatment for example, quenching is required for iron-based materials and solution treatment is used for aluminum alloys
  • an annular groove between two impellers is required. If a large diameter impeller is manufactured, heat treatment can be performed up to the center of the rotating shaft.
  • the housing is provided with an annular partition wall portion for partitioning the storage chambers of the front and rear impellers so as to be inserted from the outer peripheral side of the annular groove portion.
  • a seal may be provided between a portion on the inner peripheral side and a portion on the inner peripheral side of the annular groove portion. That is, a seal must be provided between the front and rear impeller housing chambers having different pressures in order to reduce gas leakage, but if this seal is provided on the inner peripheral side of the annular groove, its outer periphery Compared with the provision at the side portion, the area of the leakage gap is small, which is advantageous in terms of improving the sealing performance and cost.
  • the inner circumferential diameter of the annular groove is preferably as small as possible, but if the inner diameter is too small, stress concentration tends to be a problem, so the inner diameter of the annular groove is You may set larger than the outer diameter of a rotating shaft. Further, in order to alleviate the stress concentration at the inner circumferential end of the annular groove, the groove width at least at the inner circumferential side of the annular groove may be gradually reduced toward the inner circumferential side.
  • the multistage centrifugal compressor As described above, according to the multistage centrifugal compressor according to the present invention, at least two front-stage and rear-stage impellers are arranged back to back and integrally formed with the rotating shaft, and the rear-stage impeller is discharged from the discharge channel on the outer periphery of the front-stage impeller.
  • the axial dimension of the multistage compressor can be shortened as much as possible while increasing the rotation speed of the impeller.
  • FIG. 6 is a view corresponding to FIG. 1 according to another embodiment in which no annular groove is provided between the impellers. It is explanatory drawing showing the stress distribution state of the rotating disc.
  • the multistage centrifugal compressor 1 is shown in FIG. 1 in a case of two stages. After compressing the gas R1 sucked in the compressor front stage 1F on the left side of FIG. The compressor is further compressed by the rear stage 1R of the compressor on the right side.
  • the compressor front stage 1F includes a front stage impeller 4 and a front stage housing 5 that accommodates the front stage impeller 4, and the compressor rear stage 1R similarly includes a rear stage impeller 6 and a housing 7.
  • two impellers 4 and 6 at the front stage and the rear stage are integrated back to back, and the rotary shaft 8 is also integrated to form the rotor 9.
  • Both the front and rear housings 5 and 7 are formed by casting, for example, using a metal material, and the rear wall of the front housing 5 and the front wall of the rear housing 7 are overlapped and integrated,
  • the rotor 9 is accommodated in the interior.
  • An opening 50 having a circular cross section is formed at substantially the center of the two overlapped walls, and the impeller 4 in the previous stage is accommodated by the annular partition wall 10 fitted in the inner periphery of the opening 50.
  • a front impeller housing chamber 51 and a rear impeller housing chamber 71 for housing the rear impeller 6 are partitioned.
  • the front housing 5 is provided with a suction port 52 having a circular cross section that communicates with the front impeller housing chamber 51 and opens in front of the impeller 4.
  • the front half of the rotary shaft 8 communicates with the suction port 52.
  • An intake passage portion 53 extends forward so as to surround the.
  • a diffuser 54 is provided concentrically so as to surround the outer periphery of the impeller 4 and communicated with the outer peripheral side of the impeller accommodating chamber 51, and a spiral volute 55 (scroll) is provided so as to surround the periphery. Is also provided.
  • the diffuser 54 and the volute 55 surround the outer periphery of the front impeller 4 and constitute a discharge flow path for the front discharge gas R2.
  • the rear housing 7 is also provided with an impeller accommodating chamber 71, a suction port 72, an intake passage portion 73, a diffuser 74 and a volute 75, and the rear stage impeller 6 surrounds the outer periphery of the rear impeller 6 by the volute 75 and the diffuser 74.
  • a discharge flow path for the discharge gas R3 is configured.
  • an intermediate duct 57 is provided as a gas guiding channel for guiding the upstream discharge gas R2 from the outlet of the upstream volute 55 to the inlet 73a of the downstream intake passage 73.
  • the vane is provided in each of the diffusers 54 and 74 shown in FIG. 1, the vane may not be provided.
  • the rotor 9 housed in the front and rear housings 5 and 7 is, as an example, the axis of the rotating shaft 8 that extends in a generally horizontal direction (the left-right direction in FIG. 1, the left side being the front and the right side also being the rear).
  • the two impellers 4 and 6 are integrated in a back-to-back arrangement substantially from the center to a little rearward.
  • the two impellers 4 and 6 are provided so as to expand toward the center of the rotating shaft 8, in other words, radially outward as they approach each other.
  • the front impeller 4 that appears on the left front side in FIG. 2 is a concave curved surface in which the surface of the hub 40 gradually increases in diameter from the front to the rear, and a plurality of blades 41 that extend radially on the inner and outer peripheries are arranged around each other.
  • the hubs 40 are juxtaposed over the entire circumference of the hub 40 with an interval in the direction.
  • the blade 41 is curved so that the outer peripheral side of the hub 40 is positioned on the rear side in the rotational direction of the impeller 4.
  • the blade 41 is relatively short over the inner and outer periphery of the hub 40, and the inner peripheral end is extended toward the outer peripheral surface of the rotating shaft 8 and is curved forward in the rotational direction of the impeller 4.
  • the relatively long ones are arranged alternately.
  • the rear impeller 6 located in the right back of FIG. 2 is basically the same structure as the front impeller 4 and will not be described.
  • Reference numeral 60 is assigned to the hub of the impeller 6, and reference numeral 61 is assigned to the blade.
  • the rotor 9 composed of the two impellers 4 and 6 and the rotating shaft 8 is obtained by cutting a workpiece integrally formed by casting using a metal material, for example, when machining the surfaces of the hubs 40 and 60. Then, the blades 41 and 61 are cut out. The workpiece is then subjected to heat treatment (quenching for iron-based materials, solution treatment for aluminum alloys, etc.) before, during, or during the machining process.
  • annular groove 90 is formed between the two impellers 4 and 6 and is opened toward the outer peripheral side so as to separate them.
  • the bottom surface of the annular groove 90 that is, the innermost peripheral surface thereof is located slightly outward from the outer peripheral surface of the rotary shaft 8 in the radial direction of the rotary shaft 8. If the annular groove 90 is formed in this way, the distance from the bottom surface to the central portion of the rotating shaft 8 is shortened as can be seen from FIG. 1, so that the rotating shaft can be located even between the two impellers 4 and 6. Heat treatment can be effectively performed up to the center of 8.
  • tensile stresses ⁇ r and ⁇ ⁇ are generated in both the radial direction and the circumferential direction by the centrifugal force on the disk that rotates at high speed.
  • the tensile stresses ⁇ r and ⁇ ⁇ also increase at a portion having a large outer diameter, while the tensile stresses ⁇ r and ⁇ ⁇ also decrease at a portion having a small outer diameter such as the bottom of the annular groove 90.
  • This stress difference increases as the annular groove 90 becomes deeper, and the stress distribution state may change suddenly at the bottom of the annular groove 90 to cause stress concentration.
  • the depth of the annular groove 90 that is, the inner peripheral diameter thereof is made larger than the outer diameter of the rotary shaft 8, and the change in stress at the bottom portion is alleviated as a U-shaped cross section as a whole. is doing. That is, as shown in an enlarged view in FIG. 3, the annular groove 90 inclines the side surface 90 a so that the groove width gradually decreases from the outer periphery toward the inner periphery, and the inner peripheral end portion (in FIG. 3). A curved portion 90c that is curved so as to be smoothly connected to the bottom surface 90b is formed at the lower end portion, and the centrifugal stress can be gradually changed in the curved portion 90c.
  • An annular partition wall 10 is inserted into the annular groove 90 from the outer peripheral side (upper side in FIG. 3) to partition the front impeller housing chamber 51 and the rear impeller housing chamber 71. Yes. That is, in the opening 50 of the double wall at the center of the housings 5 and 7, a ring groove is formed over the entire circumference of the inner peripheral surface, and the ridge 10 a on the outer peripheral surface of the partition wall 10 is fitted therein. ing. Although illustration is omitted, the partition wall 10 is composed of two halved members, which are inserted into the annular grooves 90 of the rotor 9 and accommodated in the housings 5 and 7 in a state of being fitted to each other.
  • the side surface of the partition wall 10 is inclined in the same manner as the side surface 90a of the adjacent annular groove 90, and the thickness of the partition wall 10 gradually decreases from the outer peripheral end toward the inner peripheral side.
  • a labyrinth seal 11 is provided between the inner peripheral end face 10 b of the partition wall 10 and the bottom face 90 b of the annular groove 90, and the higher-pressure impeller housing chamber 71 leads to the front-stage impeller housing chamber 51. Gas leakage is suppressed.
  • the labyrinth seal 11 has an annular fin formed of an elastic material such as metal or resin as is well known in the art in the axial direction on the inner peripheral end face 10b of the partition wall 10 on the fixed side in the example of FIG. A plurality of them are mounted and fixed side by side.
  • the labyrinth seal 11 is provided between the inner peripheral end face 10b of the partition wall 10 and the bottom face 90b of the annular groove 90, the diameter thereof is small and the seal area can be reduced. This is also advantageous in terms of cost.
  • the rotor 9 in which the two impellers 4 and 6 are integrated is connected to a drive source which is an electric motor 12 as an example by the rotating shaft 8.
  • the front half of the rotary shaft 8 extends along the intake passage 53 of the front housing 5 and is rotatably supported by the bearing 13.
  • the bearing 13 is supported by a plurality of stays 14 extending from the inner wall of the front intake passage portion 53 toward the inner peripheral side.
  • the rear half of the rotating shaft 8 extends along the intake passage 73 of the rear housing 7 and is rotatably supported by the bearing 15.
  • the bearing 15 is also supported by a plurality of stays 14 extending from the inner wall of the intake passage portion 73 at the rear stage toward the inner peripheral side. Further, the bearing 15 can receive a thrust force acting in the axial direction of the rotary shaft 8 as the impellers 4 and 6 rotate. In the present embodiment, since the front and rear impellers 4 and 6 are back to back, the thrust force of both is reduced, and the bearing 15 is not loaded with a large thrust force.
  • the front end portion of the rotary shaft 8 extending forward from the front stage bearing 13 is connected to the tip portion of the output shaft 120 (hereinafter referred to as a motor shaft) of the electric motor 12.
  • a motor shaft the tip portion of the output shaft 120 (hereinafter referred to as a motor shaft) of the electric motor 12.
  • flanges are formed at the front end portion of the rotating shaft 8 and the rear end portion of the motor shaft 120, and are overlapped and fastened.
  • the electric motor 12 is disposed on the upstream side of a relatively low pressure and a low temperature, which is advantageous for ensuring durability.
  • the upstream discharge gas R2 flowing through the intermediate duct 57 is greatly bent along the intermediate duct 57 and flows into the intake passage 73 at the rear stage from the inlet 73a. 1 flows from the right side to the left side in FIG. 1 and is sucked from the suction port 72 into the rear impeller accommodating chamber 71 and then pushed outward in the radial direction by the rotation of the rear impeller 6. In this way, kinetic energy is applied to flow into the rear diffuser 74, and the gas having an increased temperature and pressure, that is, the rear discharge gas R3 flows through the rear volute 75 and is discharged from its outlet to a discharge duct (not shown).
  • the upstream discharge gas R2 flowing through the intermediate duct 57 is greatly bent along the intermediate duct 57 and flows into the intake passage 73 at the rear stage from the inlet 73a. 1 flows from the right side to the left side in FIG. 1 and is sucked from the suction port 72 into the rear impeller accommodating chamber 71 and then pushed outward in the radial
  • the two impellers 4 and 6 at the front stage and the rear stage are arranged back to back and formed as the integral rotor 9 together with the rotary shaft 8.
  • unbalanced vibration caused by the shift of the center of gravity of the heel portion does not occur, and the problem of stress concentration at the heel portion is avoided, and an unprecedented high rotation speed can be realized.
  • an intermediate duct 57 that guides the upstream discharge gas R2 from the compressor front stage 1F to the compressor rear stage 1R passes from the volute 55 on the outer periphery of the front stage impeller 4 to the rear of the rear stage impeller 6, and the two impellers 4, 6 has only an annular groove 90 into which the partition wall 10 is inserted, so that the distance between the two impellers 4 and 6 can be minimized, thereby further reducing the axial dimension of the compressor 1. it can.
  • a relatively deep annular groove 90 is formed between the front and rear impellers 4 and 6.
  • the depth of the annular groove 90 is as follows. May be made shallower, or the annular groove 90 may not be provided as shown in FIG.
  • the dimension of the rotor 9 can be further reduced in the axial direction.
  • the labyrinth seal 11 is provided between the two impellers 4 and 6. Since a certain width or more is required to ensure sufficient sealing performance, the effect of shortening the dimensions is limited. In addition, it is not limited to the labyrinth seal 11, You may use seals other than this.
  • a volute may be provided only on the pipe, or a gas may be directly discharged to the duct without providing a volute.
  • the electric motor 12 may be configured with the front end portion of the rotary shaft 8 of the compressor 1 inserted into the electric motor 12, that is, the motor shaft of the electric motor 12. It is also possible to integrate 120 and the rotating shaft 8. In this case, there is a possibility that the axial dimension can be further reduced as compared with the case where the front end portion of the rotating shaft 8 is fastened to the front end portion of the motor shaft 120 as in the above-described embodiment.
  • the use of the multistage centrifugal compressor according to the present invention may be applied to various devices such as a refrigerator, a liquefaction device, and a compressor for a gas turbine.
  • the multistage centrifugal compressor according to the present invention has a high pressure ratio and an axial dimension that can be shortened as much as possible by increasing the rotation speed, and thus has high industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

A rotor (9) is formed integrally with a rotary shaft (8) by arranging a front-stage and a rear-stage impeller (4, 6) back to back. A front-stage intake port (52), front-stage discharge flow paths (54, 55) arranged at the outer periphery of the front-stage impeller (4), a rear-stage intake port (72), and rear-stage discharge flow paths (74, 75) arranged at the outer periphery of the rear-stage impeller (6) are provided in housings (5, 7), which house this rotor, and the front-stage discharge flow path (55) and the rear-stage intake port (72) communicate by means of a gas flow channel (57). When the rotor (9) is formed with a metal material, a circular groove (90) opening toward the outer peripheral side can be formed between the front-stage and rear-stage impellers (4, 6).

Description

多段遠心圧縮機およびこれを用いたターボ冷凍機Multistage centrifugal compressor and turbo refrigerator using the same
 本発明は、回転シャフトの軸方向に並んで少なくとも2つの遠心インペラが設けられ、前段のインペラによって圧縮した気体を後段のインペラによってさらに圧縮するようにした多段圧縮機に関する。 The present invention relates to a multi-stage compressor in which at least two centrifugal impellers are provided side by side in the axial direction of a rotary shaft, and the gas compressed by the front stage impeller is further compressed by the rear stage impeller.
 従来より知られているように遠心式のターボ圧縮機は、回転する遠心インペラ(以下、単にインペラと呼ぶ)によって気体にエネルギを与え、その圧力を上昇させるようにしたものである。インペラの流路を流れる気体の流量と圧力比との間には一定の制約があるので、より高い圧力比を実現するためには複数のインペラを直列に接続して、多段階に圧縮する多段式のものが用いられる。 As is conventionally known, a centrifugal turbo compressor imparts energy to a gas by a rotating centrifugal impeller (hereinafter simply referred to as an impeller) to increase its pressure. Since there is a certain restriction between the flow rate of the gas flowing through the impeller flow path and the pressure ratio, in order to achieve a higher pressure ratio, multiple impellers are connected in series and compressed in multiple stages. The formula is used.
 ここで一般的に遠心圧縮機では、インペラの回転数が高くなるほど大きな圧力比が得られるので、前記のような多段式のものにおいて各段それぞれの圧力比を大きくすることにより、段数を減らして小型化したり部品点数を削減することが可能になる。このため従来より多段式の遠心圧縮機において高回転化の要請はあるが、構造上の制約から高回転化には限界があった。 Here, in general, in a centrifugal compressor, a larger pressure ratio is obtained as the number of revolutions of the impeller increases. Therefore, in the multistage type as described above, the number of stages is reduced by increasing the pressure ratio of each stage. It becomes possible to reduce the size and the number of parts. For this reason, there has been a demand for higher rotation in conventional multistage centrifugal compressors, but there has been a limit to higher rotation due to structural limitations.
 すなわち、遠心圧縮機では製作コストなどを考慮して通常、インペラと回転シャフトを別々に加工し、嵌め合わせるようにしている。この場合、インペラの中心孔の内径を回転シャフトの外径よりも小さめにしておき、ここに回転シャフトを圧入したり、或いはインペラを加熱し膨張させてから嵌め合わせたりする(焼き嵌め)、いわゆる締まり嵌めが採用される。 That is, in the centrifugal compressor, the impeller and the rotating shaft are usually processed and fitted together in consideration of the manufacturing cost. In this case, the inner diameter of the center hole of the impeller is made smaller than the outer diameter of the rotating shaft, and the rotating shaft is press-fitted here, or the impeller is heated and expanded (so-called shrink fitting). An interference fit is employed.
 ところが、インペラの回転数が高くなると遠心力が加速度的に増大することから、締め代が不足気味になる。すなわち、高速回転するインペラは遠心力によって膨張し、その中心孔の内周面が回転シャフトの外周面から浮き気味になるため、インペラの重心が回転中心からずれてしまい、不釣り合い振動が発生するおそれがあった。しかも、高速回転するインペラの中心孔の内周面には、円周方向に大きな引っ張り応力が作用するので、高回転化に伴い強度上の問題が発生するおそれもあった。 However, if the impeller rotation speed increases, the centrifugal force increases at an accelerated rate, so the tightening margin is insufficient. In other words, the impeller that rotates at a high speed expands due to centrifugal force, and the inner peripheral surface of the center hole appears to float from the outer peripheral surface of the rotating shaft, so that the center of gravity of the impeller deviates from the center of rotation and unbalance vibration occurs. There was a fear. In addition, since a large tensile stress acts in the circumferential direction on the inner peripheral surface of the central hole of the impeller that rotates at a high speed, there is a possibility that a problem in strength may occur as the rotation speed increases.
 この点について特許文献1に開示される遠心圧縮機では、回転シャフトの軸方向に並ぶ複数のインペラのそれぞれに、回転シャフトの一部をなすシャフト部を一体に設けることで、前記の不具合が発生しないようにしている。そして、各段のインペラのシャフト部を同一軸線上に並べて、隣り合うシャフト部の端部同士を連結させることにより、複数段のインペラを継ぎ合わせて多段ロータを構成している。 In this regard, in the centrifugal compressor disclosed in Patent Document 1, the above-described problem occurs by providing a shaft portion forming a part of the rotating shaft integrally with each of the plurality of impellers arranged in the axial direction of the rotating shaft. I try not to. And the shaft part of the impeller of each stage is arranged on the same axis line, and the end parts of the adjacent shaft parts are connected to each other, so that a plurality of impellers are joined together to constitute a multistage rotor.
特開2003-293988号公報Japanese Patent Laid-Open No. 2003-293988
 しかしながら、前記従来例では隣り合うインペラの間にシャフト部を連結するための嵌合部を設けなくてはならず、作業性を考慮すれば或る程度のスペースが必要なことから、シャフトの軸心の方向(軸方向)にロータの寸法が大きくなるきらいがある。 However, in the conventional example, it is necessary to provide a fitting portion for connecting the shaft portion between the adjacent impellers, and a certain amount of space is required in consideration of workability. There is a tendency that the dimension of the rotor increases in the direction of the center (axial direction).
 また、インペラの背面が回転軸心に直交する平面状であるから、シャフト部との境目(ヒール部)において応力集中の問題が生じるおそれがある。すなわち、一般に、高速で回転する円板には、図5に表すように遠心力によって直接的に半径方向への引張応力σが発生するとともに、これにより円周方向にも引張応力σθが発生する。そして、外径の大きなインペラがある部位では図の右側に示すように応力が大きくなる一方、外径の小さなシャフト部では図の左側に示すように応力が小さくなるから、前記従来例のようにインペラの背面が平面状であると、シャフト部との境目で応力の分布状態が急激に変化することで、応力集中による問題が生じやすいのである。 In addition, since the back surface of the impeller has a planar shape perpendicular to the rotation axis, there is a possibility that a problem of stress concentration may occur at the boundary (heel portion) with the shaft portion. That is, generally, in a disk rotating at a high speed, a tensile stress σ r in the radial direction is generated directly by centrifugal force as shown in FIG. 5, and this also causes a tensile stress σ θ in the circumferential direction. appear. And in the part where there is an impeller with a large outer diameter, the stress becomes large as shown on the right side of the figure, while on the shaft part with a small outer diameter, the stress becomes small as shown on the left side of the figure. If the back surface of the impeller is planar, the stress distribution state changes abruptly at the boundary with the shaft portion, and a problem due to stress concentration is likely to occur.
 このような応力集中による問題を回避するためには、例えばインペラの背面を内周側で徐々に隆起させて、なだらかにシャフト部に繋がるような湾曲形状にすることも考えられるが、こうするとロータがますます軸方向に長くなってしまう。 In order to avoid such a problem due to stress concentration, for example, the back surface of the impeller is gradually raised on the inner peripheral side, and a curved shape that gently connects to the shaft portion may be considered. Will become longer in the axial direction.
 また、前記従来例の多段ロータでは複数段のインペラが全て同じ向きで並んでいることから、前段のインペラの外周側から隣接する後段のインペラの内周側の吸込口に向かって気体の流れを折り返すようにリターンチャンネルを設けなくてはならず、気体の流れがスムーズに折り返されるようにしようとすれば、自ずと隣り合うインペラ同士の間隔が大きくなってしまう。 Further, in the multistage rotor of the conventional example, since the plurality of impellers are all arranged in the same direction, the gas flow is directed from the outer peripheral side of the front impeller toward the suction port on the inner peripheral side of the adjacent rear impeller. The return channel must be provided so as to be folded, and if the gas flow is to be smoothly folded, the interval between adjacent impellers will naturally increase.
 かかる点に着目して本発明は、多段遠心圧縮機の高回転化を図り、且つその回転軸方向の寸法を可及的に短縮することが目的である。 Focusing on this point, an object of the present invention is to increase the rotation speed of the multistage centrifugal compressor and to reduce the dimension in the rotation axis direction as much as possible.
 前記の目的を達成すべく本発明は、回転シャフトの軸方向に並んで少なくとも2つの遠心インペラが設けられ、前段のインペラによって圧縮した気体を後段のインペラによってさらに圧縮するように構成された多段遠心圧縮機が対象である。 In order to achieve the above object, the present invention provides a multi-stage centrifugal system in which at least two centrifugal impellers are arranged in the axial direction of the rotary shaft, and the gas compressed by the front impeller is further compressed by the rear impeller. The compressor is the target.
 そして、前記前段および後段のインペラを互いに背中合わせに配置して前記回転シャフトと一体に形成するとともに、これらを収容するハウジングには、前段のインペラの軸方向に対向する前段の吸込口と、前段のインペラの外周に配置された前段の吐出流路と、後段のインペラの軸方向に対向する後段の吸込口と、後段のインペラの外周に配置された後段の吐出流路とを設けて、前記前段の吐出流路と前記後段の吸込口とを気体導流路によって連通する構成とした。 The front stage and rear stage impellers are arranged back to back and formed integrally with the rotary shaft, and a housing that accommodates the front stage and the rear stage impeller includes a front stage suction port facing the axial direction of the front stage impeller, and a front stage impeller. A front-stage discharge flow path disposed on the outer periphery of the impeller, a rear-stage suction port facing the axial direction of the rear-stage impeller, and a rear-stage discharge flow path disposed on the outer periphery of the rear-stage impeller. The discharge passage and the suction port at the latter stage are communicated with each other through a gas guide passage.
 かかる構成の多段遠心圧縮機では、少なくとも2つのインペラが背中合わせになって、回転シャフトと一体化されているので、従来一般的なもののようにインペラの重心が回転中心からずれることがなく、不釣り合い振動が発生する心配はない。インペラと回転シャフトとの境目に応力集中の生じるヒール部が形成されることもなく、高回転化に有利になる。 In a multistage centrifugal compressor having such a configuration, at least two impellers are back-to-back and integrated with the rotary shaft, so that the center of gravity of the impeller does not deviate from the center of rotation unlike conventional ones and is unbalanced. There is no worry of vibration. A heel portion where stress concentration occurs at the boundary between the impeller and the rotating shaft is not formed, which is advantageous for high rotation.
 また、前記した従来例(特許文献1)の多段ロータのように隣り合うインペラの間で回転シャフトに継ぎ目(嵌合部)が設けられることもないし、前段の吐出流路から気体が流入する気体導流路は、後段のインペラの後方で後段の吸込口に連通されているから、2つのインペラの間に気体導流路を設けるスペースは不要である。よって、多段圧縮機の軸方向の寸法は可及的に短縮可能である。 Further, there is no provision of a joint (fitting portion) on the rotating shaft between the adjacent impellers as in the multistage rotor of the above-described conventional example (Patent Document 1), and the gas flows in from the discharge channel in the previous stage. Since the guide channel is communicated with the rear suction port behind the rear impeller, a space for providing the gas guide channel between the two impellers is unnecessary. Therefore, the axial dimension of the multistage compressor can be shortened as much as possible.
 前記回転シャフトと前段および後段のインペラとは例えば金属材料によって一体に形成してもよく、この場合には2つのインペラの間に外周側に向かって開放された円環状の溝部を形成してもよい。一般的にインペラを金属材料によって形成する場合には熱処理(例えば鉄系材料なら焼き入れ、アルミ合金なら溶体化処理など)が必要になるが、前記のように2つのインペラの間に円環状溝部を形成すれば、大径のインペラを製造する場合でも回転シャフトの中心部まで熱処理を施すことができる。 The rotating shaft and the front and rear impellers may be integrally formed of, for example, a metal material. In this case, an annular groove that is open toward the outer peripheral side may be formed between the two impellers. Good. In general, when the impeller is formed of a metal material, heat treatment (for example, quenching is required for iron-based materials and solution treatment is used for aluminum alloys) is required. However, as described above, an annular groove between two impellers is required. If a large diameter impeller is manufactured, heat treatment can be performed up to the center of the rotating shaft.
 その場合に前記ハウジングには、前記円環状溝部に対しその外周側から挿入されるようにして、前段および後段のインペラの各収容室を仕切る円環状の仕切壁部を設けて、この仕切壁部の内周側の部分と前記円環状溝部の内周側の部分との間にシールを設けてもよい。すなわち、互いに圧力の異なる前段および後段のインペラ収容室間は気体の漏洩を減らすためにシールを設けなくてはならないが、このシールを円環状溝部の内周側の部位に設ければ、その外周側の部位に設けるのに比べて漏洩隙間面積が小さくて済み、シール性を高める上でも、またコスト面でも有利になる。 In this case, the housing is provided with an annular partition wall portion for partitioning the storage chambers of the front and rear impellers so as to be inserted from the outer peripheral side of the annular groove portion. A seal may be provided between a portion on the inner peripheral side and a portion on the inner peripheral side of the annular groove portion. That is, a seal must be provided between the front and rear impeller housing chambers having different pressures in order to reduce gas leakage, but if this seal is provided on the inner peripheral side of the annular groove, its outer periphery Compared with the provision at the side portion, the area of the leakage gap is small, which is advantageous in terms of improving the sealing performance and cost.
 前記の熱処理およびシール性の両方の観点から、前記円環状溝部の内周径は小さいほど好ましいが、あまり内周径が小さいと応力集中が問題になりやすいから、円環状溝部の内周径は回転シャフトの外径よりも大きく設定してもよい。また、円環状溝部の内周端部における応力集中を緩和するために、少なくとも円環状溝部の内周側の部分における溝幅が内周側に向かって徐々に小さくなるような形状としてもよい。 From the viewpoints of both the heat treatment and the sealing properties, the inner circumferential diameter of the annular groove is preferably as small as possible, but if the inner diameter is too small, stress concentration tends to be a problem, so the inner diameter of the annular groove is You may set larger than the outer diameter of a rotating shaft. Further, in order to alleviate the stress concentration at the inner circumferential end of the annular groove, the groove width at least at the inner circumferential side of the annular groove may be gradually reduced toward the inner circumferential side.
 以上より、本発明に係る多段遠心圧縮機によると、少なくとも前段および後段の2つのインペラを背中合わせに配置して回転シャフトとも一体に形成し、その前段のインペラの外周の吐出流路から後段のインペラの後方の吸込口まで気体導流路を設けたことで、インペラの高回転化を図りつつ、多段圧縮機の軸方向の寸法を可及的に短縮できる。 As described above, according to the multistage centrifugal compressor according to the present invention, at least two front-stage and rear-stage impellers are arranged back to back and integrally formed with the rotating shaft, and the rear-stage impeller is discharged from the discharge channel on the outer periphery of the front-stage impeller. By providing the gas guide flow path to the rear suction port, the axial dimension of the multistage compressor can be shortened as much as possible while increasing the rotation speed of the impeller.
本発明の実施の形態に係る多段遠心圧縮機の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the multistage centrifugal compressor which concerns on embodiment of this invention. インペラおよび回転シャフトの一体化されたロータの斜視図である。It is a perspective view of the rotor with which the impeller and the rotating shaft were integrated. ロータの円環状溝および仕切壁の相互の位置関係を表した拡大図である。It is an enlarged view showing the mutual positional relationship of the annular groove of a rotor, and a partition wall. インペラの間に円環状溝を設けない他の実施形態に係る図1相当図である。FIG. 6 is a view corresponding to FIG. 1 according to another embodiment in which no annular groove is provided between the impellers. 回転する円板の応力分布状態を表した説明図である。It is explanatory drawing showing the stress distribution state of the rotating disc.
 以下、添付の図面を参照しながら本発明の実施形態について説明する。なお、以下では全ての図を通じて同一または相当する要素には同一の参照符号を付し、その重複説明は省略する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In the following description, the same or corresponding elements are denoted by the same reference symbols throughout all the drawings, and redundant description thereof is omitted.
 本発明の実施の形態に係る多段遠心式の圧縮機1は、一例として2段の場合を図1に表すと、この図1の左側の圧縮機前段1Fで吸い込んだ気体R1を圧縮した後に、同右側の圧縮機後段1Rでさらに圧縮するように構成されている。圧縮機前段1Fは、前段のインペラ4と、これを収容する前段のハウジング5とを備え、圧縮機後段1Rも同様に後段のインペラ6およびハウジング7を備えている。詳しくは後述するが、本実施形態では前段および後段の2つのインペラ4,6が背中合わせで一体化され、さらに回転シャフト8も一体化されてロータ9を形成している。 As an example, the multistage centrifugal compressor 1 according to the embodiment of the present invention is shown in FIG. 1 in a case of two stages. After compressing the gas R1 sucked in the compressor front stage 1F on the left side of FIG. The compressor is further compressed by the rear stage 1R of the compressor on the right side. The compressor front stage 1F includes a front stage impeller 4 and a front stage housing 5 that accommodates the front stage impeller 4, and the compressor rear stage 1R similarly includes a rear stage impeller 6 and a housing 7. As will be described in detail later, in the present embodiment, two impellers 4 and 6 at the front stage and the rear stage are integrated back to back, and the rotary shaft 8 is also integrated to form the rotor 9.
 前記前段および後段のハウジング5,7は、いずれも金属材料を用いて例えば鋳造などにより成形したもので、前段のハウジング5の後壁と後段のハウジング7の前壁とを重ね合わせて一体化し、その内部にロータ9を収容している。そうして重ね合わされた2枚の壁のほぼ中央に断面円形の開口部50が形成され、その開口部50の内周に嵌め込まれた円環状の仕切壁10によって、前段のインペラ4を収容する前段のインペラ収容室51と、後段のインペラ6を収容する後段のインペラ収容室71とが仕切られている。 Both the front and rear housings 5 and 7 are formed by casting, for example, using a metal material, and the rear wall of the front housing 5 and the front wall of the rear housing 7 are overlapped and integrated, The rotor 9 is accommodated in the interior. An opening 50 having a circular cross section is formed at substantially the center of the two overlapped walls, and the impeller 4 in the previous stage is accommodated by the annular partition wall 10 fitted in the inner periphery of the opening 50. A front impeller housing chamber 51 and a rear impeller housing chamber 71 for housing the rear impeller 6 are partitioned.
 また、前段のハウジング5には、前段のインペラ収容室51に連通してインペラ4の前方に開口する断面円形の吸込口52が設けられ、この吸込口52に連通して回転シャフト8の前半部を取り囲むよう前方に向かって吸気通路部53が延びている。一方、インペラ収容室51の外周側に連通して前段のハウジング5には、インペラ4の外周を取り囲むよう同心状にデフューザ54が設けられ、その周りを取り囲むように渦巻き状のボリュート55(スクロール)も設けられている。これらデフューザ54およびボリュート55が、前段のインペラ4の外周を取り囲んで、前段吐出気体R2の吐出流路を構成している。 The front housing 5 is provided with a suction port 52 having a circular cross section that communicates with the front impeller housing chamber 51 and opens in front of the impeller 4. The front half of the rotary shaft 8 communicates with the suction port 52. An intake passage portion 53 extends forward so as to surround the. On the other hand, a diffuser 54 is provided concentrically so as to surround the outer periphery of the impeller 4 and communicated with the outer peripheral side of the impeller accommodating chamber 51, and a spiral volute 55 (scroll) is provided so as to surround the periphery. Is also provided. The diffuser 54 and the volute 55 surround the outer periphery of the front impeller 4 and constitute a discharge flow path for the front discharge gas R2.
 同様に後段のハウジング7にもインペラ収容室71、吸込口72、吸気通路部73、デフューザ74およびボリュート75が設けられていて、後段のインペラ6の外周を取り囲むボリュート75とデフューザ74とによって、後段吐出気体R3の吐出流路が構成されている。そして、前段のボリュート55の出口から後段の吸気通路部73の入り口73aまで前段吐出気体R2を導く気体導流路としての中間ダクト57が配設されている。なお、図1に表れているデフューザ54,74にはそれぞれベーンが設けられているが、ベーンは設けなくてもよい。 Similarly, the rear housing 7 is also provided with an impeller accommodating chamber 71, a suction port 72, an intake passage portion 73, a diffuser 74 and a volute 75, and the rear stage impeller 6 surrounds the outer periphery of the rear impeller 6 by the volute 75 and the diffuser 74. A discharge flow path for the discharge gas R3 is configured. Further, an intermediate duct 57 is provided as a gas guiding channel for guiding the upstream discharge gas R2 from the outlet of the upstream volute 55 to the inlet 73a of the downstream intake passage 73. In addition, although the vane is provided in each of the diffusers 54 and 74 shown in FIG. 1, the vane may not be provided.
 -ロータの構造-
 前記の前段および後段のハウジング5,7内に収容されるロータ9は、一例として概ね水平方向(図1の左右方向であり、左側を前方、右側を後方ともいう)に延びる回転シャフト8の軸心8aの方向(軸方向)において、ほぼ中央部から少し後寄りにかけて2つのインペラ4,6を背中合わせに並べて一体化したものである。図2にも表れているように2つのインペラ4,6は、回転シャフト8の中央寄りに向かって、言い換えると互いに近接するほど半径方向外方へ広がるように設けられている。
-Rotor structure-
The rotor 9 housed in the front and rear housings 5 and 7 is, as an example, the axis of the rotating shaft 8 that extends in a generally horizontal direction (the left-right direction in FIG. 1, the left side being the front and the right side also being the rear). In the direction of the core 8a (axial direction), the two impellers 4 and 6 are integrated in a back-to-back arrangement substantially from the center to a little rearward. As shown in FIG. 2, the two impellers 4 and 6 are provided so as to expand toward the center of the rotating shaft 8, in other words, radially outward as they approach each other.
 図2の左手前に表れている前段のインペラ4は、ハブ40の表面が前方から後方へ向かって徐々に拡径する凹曲面からなり、その内外周に放射状に延びる複数のブレード41が互いに周方向に間隔を空けて、ハブ40の全周に亘って並設されている。軸方向に見るとブレード41は、ハブ40の外周側ほどインペラ4の回転方向後側に位置するよう湾曲している。また、一例として図2のインペラ4ではブレード41は、ハブ40の内外周に亘る相対的に短いものと、内周端が回転シャフト8の外周面にかけて延長され且つインペラ4の回転方向前側に湾曲した相対的に長いものとが交互に並んでいる。 The front impeller 4 that appears on the left front side in FIG. 2 is a concave curved surface in which the surface of the hub 40 gradually increases in diameter from the front to the rear, and a plurality of blades 41 that extend radially on the inner and outer peripheries are arranged around each other. The hubs 40 are juxtaposed over the entire circumference of the hub 40 with an interval in the direction. When viewed in the axial direction, the blade 41 is curved so that the outer peripheral side of the hub 40 is positioned on the rear side in the rotational direction of the impeller 4. Further, as an example, in the impeller 4 of FIG. 2, the blade 41 is relatively short over the inner and outer periphery of the hub 40, and the inner peripheral end is extended toward the outer peripheral surface of the rotating shaft 8 and is curved forward in the rotational direction of the impeller 4. The relatively long ones are arranged alternately.
 図2の右奥に位置する後段のインペラ6は基本的に前段のインペラ4と同じ構造なので、その説明は省略する。インペラ6のハブには符号60を、ブレードには符号61を付す。それら2つのインペラ4,6と回転シャフト8とからなるロータ9は、金属材料を用いて例えば鋳造により一体成形したワークに切削加工を施したものであり、ハブ40,60の表面を加工する際に、ブレード41、61が削り出される。そして、加工前後もしくは加工工程中にワークには熱処理(鉄系材料ならば焼き入れ、アルミ合金ならば溶体化処理など)が施される。 The rear impeller 6 located in the right back of FIG. 2 is basically the same structure as the front impeller 4 and will not be described. Reference numeral 60 is assigned to the hub of the impeller 6, and reference numeral 61 is assigned to the blade. The rotor 9 composed of the two impellers 4 and 6 and the rotating shaft 8 is obtained by cutting a workpiece integrally formed by casting using a metal material, for example, when machining the surfaces of the hubs 40 and 60. Then, the blades 41 and 61 are cut out. The workpiece is then subjected to heat treatment (quenching for iron-based materials, solution treatment for aluminum alloys, etc.) before, during, or during the machining process.
 また、前記ロータ9において2つのインペラ4,6の間には、両者を分離するように外周側に向かって開放された円環状溝90が形成されている。円環状溝90の底面、即ちその最内周面は、回転シャフト8の半径方向について該回転シャフト8の外周面よりもやや外方に位置している。こうして円環状溝90を形成すれば、図1から判るようにその底面から回転シャフト8の中心部までの間隔が短くなるので、2つのインペラ4,6に挟まれた部位であっても回転シャフト8の中心部まで効果的に熱処理を施すことができる。 In the rotor 9, an annular groove 90 is formed between the two impellers 4 and 6 and is opened toward the outer peripheral side so as to separate them. The bottom surface of the annular groove 90, that is, the innermost peripheral surface thereof is located slightly outward from the outer peripheral surface of the rotary shaft 8 in the radial direction of the rotary shaft 8. If the annular groove 90 is formed in this way, the distance from the bottom surface to the central portion of the rotating shaft 8 is shortened as can be seen from FIG. 1, so that the rotating shaft can be located even between the two impellers 4 and 6. Heat treatment can be effectively performed up to the center of 8.
 このことはインペラ4,6の直径が例えば50cm以上など、高回転型としては比較的大きな場合に有効であり、インペラ4,6が小さな場合は円環状溝90がなくても有効な熱処理が行える。また、熱処理の観点からは円環状溝90は深い(内周径が小さい)ことが望ましいが、一方で円環状溝90が深くなれば、その側面と底面との境目において応力集中の問題が生じるおそれがある。 This is effective when the impellers 4 and 6 have a relatively large diameter, for example, 50 cm or more, and when the impellers 4 and 6 are small, effective heat treatment can be performed without the annular groove 90. . From the viewpoint of heat treatment, it is desirable that the annular groove 90 is deep (inner diameter is small). On the other hand, if the annular groove 90 is deep, a problem of stress concentration occurs at the boundary between the side surface and the bottom surface. There is a fear.
 すなわち、図5を参照して上述したように、高速で回転する円板には遠心力によって半径方向および円周方向の双方に引張応力σ、σθが発生し、インペラ4,6のように外径の大きな部位では引張応力σ、σθも大きくなる一方、円環状溝90の底部のように外径の小さな部位では引張応力σ、σθも小さくなる。この応力の差は円環状溝90が深くなるほど大きくなり、その底部では応力の分布状態が急変して応力集中を引き起こすおそれがある。 That is, as described above with reference to FIG. 5, tensile stresses σ r and σ θ are generated in both the radial direction and the circumferential direction by the centrifugal force on the disk that rotates at high speed. On the other hand, the tensile stresses σ r and σ θ also increase at a portion having a large outer diameter, while the tensile stresses σ r and σ θ also decrease at a portion having a small outer diameter such as the bottom of the annular groove 90. This stress difference increases as the annular groove 90 becomes deeper, and the stress distribution state may change suddenly at the bottom of the annular groove 90 to cause stress concentration.
 この点につき本実施形態では円環状溝90の深さ、即ちその内周径を回転シャフト8の外径よりも大きくするとともに、全体としてU字状の断面形状としてその底部における応力の変化を緩和している。すなわち、図3に拡大して表すように円環状溝90は、その外周から内周に向かって徐々に溝幅が狭くなるように側面90aを傾斜させるとともに、その内周端部(図3の下端部)にて底面90bになだらかに繋がるように湾曲させたアール部90cを形成しており、このアール部90cにおいて遠心応力を徐々に変化させることができる。 In this regard, in the present embodiment, the depth of the annular groove 90, that is, the inner peripheral diameter thereof is made larger than the outer diameter of the rotary shaft 8, and the change in stress at the bottom portion is alleviated as a U-shaped cross section as a whole. is doing. That is, as shown in an enlarged view in FIG. 3, the annular groove 90 inclines the side surface 90 a so that the groove width gradually decreases from the outer periphery toward the inner periphery, and the inner peripheral end portion (in FIG. 3). A curved portion 90c that is curved so as to be smoothly connected to the bottom surface 90b is formed at the lower end portion, and the centrifugal stress can be gradually changed in the curved portion 90c.
 そして、前記の円環状溝90にはその外周側(図3の上側)から円環状の仕切壁10が挿入されて、前段のインペラ収容室51と後段のインペラ収容室71との間を仕切っている。すなわち、ハウジング5,7中央の二重壁の開口部50には、内周面の全周に亘って輪溝が形成されており、ここに仕切壁10の外周面の凸条10aが嵌め込まれている。なお、図示は省略するが仕切壁10は半割り状の2つの部材からなり、それぞれをロータ9の円環状溝90に挿入して互いに嵌め合わせた状態でハウジング5,7に収容する。 An annular partition wall 10 is inserted into the annular groove 90 from the outer peripheral side (upper side in FIG. 3) to partition the front impeller housing chamber 51 and the rear impeller housing chamber 71. Yes. That is, in the opening 50 of the double wall at the center of the housings 5 and 7, a ring groove is formed over the entire circumference of the inner peripheral surface, and the ridge 10 a on the outer peripheral surface of the partition wall 10 is fitted therein. ing. Although illustration is omitted, the partition wall 10 is composed of two halved members, which are inserted into the annular grooves 90 of the rotor 9 and accommodated in the housings 5 and 7 in a state of being fitted to each other.
 また、前記仕切壁10の側面は近接する円環状溝90の側面90aと同様に傾斜しており、仕切壁10の厚みはその外周端から内周側に向かって徐々に小さくなっている。そして、その仕切壁10の内周端面10bと円環状溝90の底面90bとの間にラビリンスシール11が設けられて、より高圧になる後段のインペラ収容室71から前段のインペラ収容室51への気体の漏洩を抑制している。 Further, the side surface of the partition wall 10 is inclined in the same manner as the side surface 90a of the adjacent annular groove 90, and the thickness of the partition wall 10 gradually decreases from the outer peripheral end toward the inner peripheral side. A labyrinth seal 11 is provided between the inner peripheral end face 10 b of the partition wall 10 and the bottom face 90 b of the annular groove 90, and the higher-pressure impeller housing chamber 71 leads to the front-stage impeller housing chamber 51. Gas leakage is suppressed.
 ラビリンスシール11は、公知の如く金属や例えば樹脂のような弾性を有する材料で形成された円環状のフィンが、図3の例では固定側である仕切壁10の内周端面10bに軸方向に並んで複数、装着固定されてなる。こうしてラビリンスシール11を仕切壁10の内周端面10bと円環状溝90の底面90bとの間に設ければ、その直径が小さく、シール面積が小さくて済むので、シール性を高める上でも、またコスト面でも有利になる。 The labyrinth seal 11 has an annular fin formed of an elastic material such as metal or resin as is well known in the art in the axial direction on the inner peripheral end face 10b of the partition wall 10 on the fixed side in the example of FIG. A plurality of them are mounted and fixed side by side. Thus, if the labyrinth seal 11 is provided between the inner peripheral end face 10b of the partition wall 10 and the bottom face 90b of the annular groove 90, the diameter thereof is small and the seal area can be reduced. This is also advantageous in terms of cost.
 前記のように2つのインペラ4,6の一体化されたロータ9は回転シャフト8によって、一例として電動モータ12である駆動源に連結されている。回転シャフト8の前半部は前段のハウジング5の吸気通路部53に沿って延びていて、軸受13によって回転自在に支持されている。この軸受13は、前段の吸気通路部53の内壁から内周側に向かって延びる複数本のステー14によって支持されている。 As described above, the rotor 9 in which the two impellers 4 and 6 are integrated is connected to a drive source which is an electric motor 12 as an example by the rotating shaft 8. The front half of the rotary shaft 8 extends along the intake passage 53 of the front housing 5 and is rotatably supported by the bearing 13. The bearing 13 is supported by a plurality of stays 14 extending from the inner wall of the front intake passage portion 53 toward the inner peripheral side.
 一方、回転シャフト8の後半部は後段のハウジング7の吸気通路部73に沿って延びていて、軸受15によって回転自在に支持されている。この軸受15も後段の吸気通路部73の内壁から内周側に向かって延びる複数本のステー14によって支持されている。また、軸受15は、インペラ4,6の回転に伴い回転シャフト8の軸方向に作用するスラスト力を受け止めることができる。なお、本実施形態では前段および後段のインペラ4,6が背中合わせになっているので、両者のスラスト力は減殺され、軸受15には大きなスラスト力は負荷されない。 On the other hand, the rear half of the rotating shaft 8 extends along the intake passage 73 of the rear housing 7 and is rotatably supported by the bearing 15. The bearing 15 is also supported by a plurality of stays 14 extending from the inner wall of the intake passage portion 73 at the rear stage toward the inner peripheral side. Further, the bearing 15 can receive a thrust force acting in the axial direction of the rotary shaft 8 as the impellers 4 and 6 rotate. In the present embodiment, since the front and rear impellers 4 and 6 are back to back, the thrust force of both is reduced, and the bearing 15 is not loaded with a large thrust force.
 そして、前記前段の軸受13よりも前方に延びる回転シャフト8の前端部が、電動モータ12の出力シャフト120(以下、モータシャフトと呼ぶ)の先端部に連結されている。一例として回転シャフト8の前端部およびモータシャフト120の後端部にはそれぞれフランジが形成され、互いに重ね合わされて締結されている。言い換えると、電動モータ12は比較的低圧で低温の前段側に配置されており、このことは耐久性を確保する上で有利になる。なお、耐久性が問題とならない場合は、電動モータ12を後段側に配置してもよい。 The front end portion of the rotary shaft 8 extending forward from the front stage bearing 13 is connected to the tip portion of the output shaft 120 (hereinafter referred to as a motor shaft) of the electric motor 12. As an example, flanges are formed at the front end portion of the rotating shaft 8 and the rear end portion of the motor shaft 120, and are overlapped and fastened. In other words, the electric motor 12 is disposed on the upstream side of a relatively low pressure and a low temperature, which is advantageous for ensuring durability. In addition, when durability does not become a problem, you may arrange | position the electric motor 12 in a back | latter stage side.
 -圧縮機の動作-
 かかる構成の多段遠心圧縮機1において電動モータ12が動作するとロータ9、即ち、回転シャフト8と前段および後段のインペラ4,6とが高速で回転する。2つのインペラ4,6は回転シャフト8と一体であるから、回転速度が高くてもインペラ4,6の重心が回転中心からずれることはなく、このずれによって不釣り合い振動が喚起されることもない。また、2つのインペラ4,6は背中合わせになっていて、回転シャフト8との境目にヒール部が形成されることがないので、応力集中による問題が起きる心配も少ない。
-Compressor operation-
When the electric motor 12 operates in the multistage centrifugal compressor 1 having such a configuration, the rotor 9, that is, the rotating shaft 8 and the front and rear impellers 4 and 6 rotate at high speed. Since the two impellers 4 and 6 are integral with the rotating shaft 8, the center of gravity of the impellers 4 and 6 does not deviate from the center of rotation even when the rotational speed is high, and this deviation does not cause unbalanced vibration. . Further, since the two impellers 4 and 6 are back to back and a heel portion is not formed at the boundary with the rotating shaft 8, there is little fear of problems due to stress concentration.
 そうして前段のインペラ4が高速で回転すると、これにより前段の吸気通路部53内の圧力が低下して気体が吸い込まれる。この吸込気体R1は前段の吸気通路部53を図1の左側から右側に向かって流れ、吸込口52から前段のインペラ収容室51に吸い込まれる。そして、前段のインペラ4の回転によって半径方向外方に押し流され、運動エネルギを与えられた気体が前段のデフューザ54へ流入し、その流速が圧力に変換される。こうして温度および圧力の上昇した気体、即ち前段吐出気体R2が前段のボリュート55を周方向に流れて、その出口から中間ダクト57に吐出される。 Thus, when the front impeller 4 rotates at a high speed, the pressure in the front intake passage portion 53 is reduced, and gas is sucked. This suction gas R1 flows from the left side of FIG. 1 toward the right side of the intake passage portion 53 in the front stage, and is sucked into the front stage impeller housing chamber 51 from the suction port 52. Then, the gas impelled radially outward by the rotation of the impeller 4 at the front stage and given kinetic energy flows into the diffuser 54 at the front stage, and the flow velocity is converted into pressure. Thus, the gas whose temperature and pressure have increased, that is, the front-stage discharge gas R2 flows in the circumferential direction through the front-stage volute 55 and is discharged from the outlet to the intermediate duct 57.
 中間ダクト57を流れる前段吐出気体R2は、この中間ダクト57に沿って大きく曲げられ、後段の吸気通路部73にその入り口73aから流入する。そしてその吸気通路部73を図1の右側から左側に向かって流れ、吸込口72から後段のインペラ収容室71に吸い込まれた後に、後段のインペラ6の回転によって半径方向外方に押し流される。こうして運動エネルギを与えられて後段のデフューザ74へ流入し、温度および圧力の上昇した気体、即ち後段吐出気体R3が後段のボリュート75を流通して、その出口から吐出ダクト(不図示)に吐出される。 The upstream discharge gas R2 flowing through the intermediate duct 57 is greatly bent along the intermediate duct 57 and flows into the intake passage 73 at the rear stage from the inlet 73a. 1 flows from the right side to the left side in FIG. 1 and is sucked from the suction port 72 into the rear impeller accommodating chamber 71 and then pushed outward in the radial direction by the rotation of the rear impeller 6. In this way, kinetic energy is applied to flow into the rear diffuser 74, and the gas having an increased temperature and pressure, that is, the rear discharge gas R3 flows through the rear volute 75 and is discharged from its outlet to a discharge duct (not shown). The
 以上、説明したように本実施形態の多段遠心圧縮機1は、前段および後段の2つのインペラ4,6を背中合わせに配置し、回転シャフト8とともに一体のロータ9として形成したので、インペラ4,6の重心のずれに起因する不釣り合い振動が生じず、また、ヒール部の応力集中の問題も回避されて、従来にない高回転化を実現できる。 As described above, in the multistage centrifugal compressor 1 of the present embodiment, the two impellers 4 and 6 at the front stage and the rear stage are arranged back to back and formed as the integral rotor 9 together with the rotary shaft 8. As a result, unbalanced vibration caused by the shift of the center of gravity of the heel portion does not occur, and the problem of stress concentration at the heel portion is avoided, and an unprecedented high rotation speed can be realized.
 こうして前段および後段のインペラ4,6の高回転化によって、圧縮機前段1Fおよび圧縮機後段1Rのそれぞれで圧力比を高めることができるので、従来までは3段若しくは4段の段落が必要であった高い圧縮圧を2段で実現することが可能になり、この段数の削減によって圧縮機1の寸法が軸方向について大幅に短縮される。 By increasing the rotation speed of the front and rear impellers 4 and 6 in this way, the pressure ratio can be increased in each of the compressor front stage 1F and the compressor rear stage 1R. Thus, until now, a three-stage or four-stage paragraph has been required. In addition, it is possible to realize a high compression pressure in two stages, and by reducing the number of stages, the dimensions of the compressor 1 are significantly shortened in the axial direction.
 さらに、圧縮機前段1Fから圧縮機後段1Rへ前段吐出気体R2を導く中間ダクト57は、前段のインペラ4の外周のボリュート55から後段のインペラ6の後方に回り込ませており、2つのインペラ4,6の間には仕切壁10の挿入される円環状溝90があるだけなので、それら2つのインペラ4,6同士の間隔も極小化でき、これにより圧縮機1の軸方向寸法をより一層、短縮できる。 Further, an intermediate duct 57 that guides the upstream discharge gas R2 from the compressor front stage 1F to the compressor rear stage 1R passes from the volute 55 on the outer periphery of the front stage impeller 4 to the rear of the rear stage impeller 6, and the two impellers 4, 6 has only an annular groove 90 into which the partition wall 10 is inserted, so that the distance between the two impellers 4 and 6 can be minimized, thereby further reducing the axial dimension of the compressor 1. it can.
 -その他の実施形態-
 上述した実施形態の説明はあくまで例示に過ぎず、本発明、その適用物またはその用途を何ら制限するものではない。例えば上述の実施形態では図1、2に表れているように、前段および後段のインペラ4,6の間に比較的深い円環状溝90を形成しているが、この円環状溝90の深さはもっと浅くしてもよいし、一例を図4に表すように円環状溝90は設けなくてもよい。
-Other embodiments-
The description of the above-described embodiment is merely an example, and does not limit the present invention, its application, or its use. For example, in the above-described embodiment, as shown in FIGS. 1 and 2, a relatively deep annular groove 90 is formed between the front and rear impellers 4 and 6. The depth of the annular groove 90 is as follows. May be made shallower, or the annular groove 90 may not be provided as shown in FIG.
 そうして円環状溝90を設けないことにより、ロータ9の寸法をさらに軸方向に短縮できる可能性があるが、この場合には、図4に表れているようにロータ9の外周に沿って2つのインペラ4,6の間にラビリンスシール11を設けることになる。十分なシール性を確保するためには或る程度以上の幅が必要であるから、寸法短縮の効果は限定的なものとなる。なお、ラビリンスシール11に限定されず、これ以外のシールを用いてもよい。 Thus, by not providing the annular groove 90, there is a possibility that the dimension of the rotor 9 can be further reduced in the axial direction. In this case, as shown in FIG. The labyrinth seal 11 is provided between the two impellers 4 and 6. Since a certain width or more is required to ensure sufficient sealing performance, the effect of shortening the dimensions is limited. In addition, it is not limited to the labyrinth seal 11, You may use seals other than this.
 また、図には表さないが、前段および後段のインペラ4,6の外周全体を取り囲むようにデフューザ54,55およびボリュート74,75を設ける必要もなく、例えばインペラ4,6の外周の一部にのみボリュートを設けてもよいし、ボリュートを設けずに直接、気体をダクトに吐出するように構成してもよい。 Although not shown in the drawing, it is not necessary to provide the diffusers 54 and 55 and the volutes 74 and 75 so as to surround the entire outer periphery of the front and rear impellers 4 and 6, for example, a part of the outer periphery of the impellers 4 and 6. A volute may be provided only on the pipe, or a gas may be directly discharged to the duct without providing a volute.
 さらに、図には表さないが、圧縮機1の回転シャフト8の前端部分を電動モータ12の内部に挿入した状態で当該電動モータ12を構成することも、即ち、当該電動モータ12のモータシャフト120と回転シャフト8とを一体化することも可能である。こうすれば、上述した実施形態のように回転シャフト8の前端部をモータシャフト120の先端部に締結するのに比べて、さらに軸方向寸法を短縮できる可能性がある。 Further, although not shown in the drawing, the electric motor 12 may be configured with the front end portion of the rotary shaft 8 of the compressor 1 inserted into the electric motor 12, that is, the motor shaft of the electric motor 12. It is also possible to integrate 120 and the rotating shaft 8. In this case, there is a possibility that the axial dimension can be further reduced as compared with the case where the front end portion of the rotating shaft 8 is fastened to the front end portion of the motor shaft 120 as in the above-described embodiment.
 また、本発明に係る多段遠心圧縮機の用途は、例えば冷凍機、液化装置、ガスタービン用圧縮機等、種々の装置に適用することが考えられる。 Also, the use of the multistage centrifugal compressor according to the present invention may be applied to various devices such as a refrigerator, a liquefaction device, and a compressor for a gas turbine.
 以上の如く本発明に係る多段遠心圧縮機は、高回転化によって圧力比が向上し、軸方向の寸法を可及的に短縮可能なものであり、産業上の利用可能性は高い。 As described above, the multistage centrifugal compressor according to the present invention has a high pressure ratio and an axial dimension that can be shortened as much as possible by increasing the rotation speed, and thus has high industrial applicability.
1     多段遠心圧縮機
4     前段のインペラ
5     前段のハウジング
 52   前段の吸込口
 54   前段のデフューザ(前段の吐出流路)
 55   前段のボリュート(前段の吐出流路)
 57   中間ダクト(気体導流路)
6     後段のインペラ
7     後段のハウジング
 72   後段の吸込口
 74   後段のデフューザ(後段の吐出流路)
 75   後段のボリュート(後段の吐出流路)
8     回転シャフト
8a    軸心
9     ロータ
 90   円環状溝(円環状の溝部)
10    仕切壁(円環状の仕切壁部)
11    ラビリンスシール
12    電動モータ
 120  出力シャフト(モータシャフト)
DESCRIPTION OF SYMBOLS 1 Multistage centrifugal compressor 4 Front stage impeller 5 Front stage housing 52 Front stage inlet 54 Front stage diffuser (front stage discharge flow path)
55 Pre-volute (pre-discharge channel)
57 Intermediate duct (gas channel)
6 Rear stage impeller 7 Rear stage housing 72 Rear stage suction port 74 Rear stage diffuser (rear stage discharge flow path)
75 Second-stage volute (second-stage discharge flow path)
8 Rotating shaft 8a Axis 9 Rotor 90 Toroidal groove (annular groove)
10 partition wall (circular partition wall)
11 Labyrinth seal 12 Electric motor 120 Output shaft (motor shaft)

Claims (6)

  1.  回転シャフトの軸方向に並んで少なくとも2つの遠心インペラが設けられ、前段のインペラによって圧縮した気体を後段のインペラによってさらに圧縮するように構成された多段遠心圧縮機であって、
     前記前段および後段のインペラが互いに背中合わせに配置されて前記回転シャフトと一体に形成されており、
     ハウジングには、前記前段のインペラの軸方向に対向する前段の吸込口と、当該前段のインペラの外周に配置された前段の吐出流路と、前記後段のインペラの軸方向に対向する後段の吸込口と、当該後段のインペラの外周に配置された後段の吐出流路と、が設けられ、
     前記前段の吐出流路と前記後段の吸込口とが気体導流路によって連通されていることを特徴とする多段遠心圧縮機。
    A multistage centrifugal compressor provided with at least two centrifugal impellers arranged in the axial direction of the rotating shaft, and configured to further compress the gas compressed by the front impeller by the rear impeller;
    The front and rear impellers are arranged back to back and formed integrally with the rotating shaft;
    The housing includes a front suction port facing the front impeller in the axial direction, a front discharge passage disposed on the outer periphery of the front impeller, and a rear suction facing the axial direction of the rear impeller. A mouth, and a subsequent discharge channel disposed on the outer periphery of the latter impeller,
    The multistage centrifugal compressor, wherein the upstream discharge channel and the downstream suction port are communicated with each other by a gas guiding channel.
  2.  前記回転シャフトと前段および後段のインペラとが金属材料により一体に形成され、当該前段および後段のインペラの間には外周側に向かって開放された円環状の溝部が形成されている、請求項1の多段遠心圧縮機。 2. The rotary shaft and the front and rear impellers are integrally formed of a metal material, and an annular groove that is open toward the outer peripheral side is formed between the front and rear impellers. Multistage centrifugal compressor.
  3.  前記ハウジングには、前記円環状溝部に対しその外周側から挿入されて、前記前段および後段のインペラの各収容室を仕切る円環状の仕切壁部が設けられ、当該仕切壁部の内周側の部分と前記円環状溝部の内周側の部分との間にシールが設けられている、請求項2の多段遠心圧縮機。 The housing is provided with an annular partition wall portion that is inserted from the outer peripheral side with respect to the annular groove portion and divides each storage chamber of the front and rear impellers, and is provided on the inner peripheral side of the partition wall portion. The multistage centrifugal compressor according to claim 2, wherein a seal is provided between the portion and a portion on the inner peripheral side of the annular groove portion.
  4.  前記円環状溝部の内周径が前記回転シャフトの外径よりも大きい、請求項2または3のいずれかの多段遠心圧縮機。 The multistage centrifugal compressor according to any one of claims 2 and 3, wherein an inner peripheral diameter of the annular groove is larger than an outer diameter of the rotary shaft.
  5.  前記円環状溝部は、少なくともその内周側の部分における溝幅が内周側に向かって徐々に小さくなる形状とされている、請求項2~4のいずれか1つの多段遠心圧縮機。 The multi-stage centrifugal compressor according to any one of claims 2 to 4, wherein the annular groove portion has a shape in which a groove width in at least an inner peripheral side portion gradually decreases toward an inner peripheral side.
  6.  前記請求項1~5のいずれか1つに記載の多段遠心圧縮機を用いたことを特徴とするターボ冷凍機。 A turbo refrigerator using the multistage centrifugal compressor according to any one of claims 1 to 5.
PCT/JP2012/001552 2011-03-16 2012-03-07 Multistage centrifugal compressor and turbo refrigeration machine using same WO2012124293A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011057848A JP5722673B2 (en) 2011-03-16 2011-03-16 Multistage centrifugal compressor and turbo refrigerator using the same
JP2011-057848 2011-03-16

Publications (1)

Publication Number Publication Date
WO2012124293A1 true WO2012124293A1 (en) 2012-09-20

Family

ID=46830385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001552 WO2012124293A1 (en) 2011-03-16 2012-03-07 Multistage centrifugal compressor and turbo refrigeration machine using same

Country Status (2)

Country Link
JP (1) JP5722673B2 (en)
WO (1) WO2012124293A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017005477A1 (en) * 2015-07-07 2017-01-12 Danfoss Commercial Compressors A centrifugal compressor having a inter-stage arrangement
US20170175754A1 (en) * 2015-12-21 2017-06-22 General Electric Company Apparatus for pressurizing a fluid within a turbomachine and method of operating the same
US11885349B1 (en) 2022-08-18 2024-01-30 Pratt & Whitney Canada Corp. Compressor having a dual-impeller
CN117823452A (en) * 2023-12-12 2024-04-05 南京磁谷科技股份有限公司 Low axial load impeller mounting structure, magnetic suspension compressor and air inlet compression method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3074622B1 (en) * 2017-12-04 2021-07-30 Ifp Energies Now DEVICE FOR COMPRESSION OF A FLUID DRIVEN BY AN ELECTRIC MACHINE WITH A ROTOR SHAFT HAVING AN AMAGNETIC FRET
JP2022011812A (en) 2020-06-30 2022-01-17 三菱重工コンプレッサ株式会社 Impeller of rotary machine and rotary machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS627998A (en) * 1985-05-24 1987-01-14 エイ/エス コングスベルグ ヴア−ペンフアブリク Impeller for centrifugal compressor
JPH11257293A (en) * 1998-03-11 1999-09-21 Kobe Steel Ltd Control device of centrifugal compressor
JP2001263291A (en) * 2000-03-15 2001-09-26 Ishikawajima Harima Heavy Ind Co Ltd Rotation supporting structure of high speed motor driven compressor
JP2001323899A (en) * 2000-05-16 2001-11-22 Ishikawajima Harima Heavy Ind Co Ltd High speed motor driven compressor and assembling method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS627998A (en) * 1985-05-24 1987-01-14 エイ/エス コングスベルグ ヴア−ペンフアブリク Impeller for centrifugal compressor
JPH11257293A (en) * 1998-03-11 1999-09-21 Kobe Steel Ltd Control device of centrifugal compressor
JP2001263291A (en) * 2000-03-15 2001-09-26 Ishikawajima Harima Heavy Ind Co Ltd Rotation supporting structure of high speed motor driven compressor
JP2001323899A (en) * 2000-05-16 2001-11-22 Ishikawajima Harima Heavy Ind Co Ltd High speed motor driven compressor and assembling method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017005477A1 (en) * 2015-07-07 2017-01-12 Danfoss Commercial Compressors A centrifugal compressor having a inter-stage arrangement
FR3038665A1 (en) * 2015-07-07 2017-01-13 Danfoss Commercial Compressors
CN107850080A (en) * 2015-07-07 2018-03-27 丹佛斯商用压缩机公司 Centrifugal compressor with interstage seal arrangement
US10619645B2 (en) 2015-07-07 2020-04-14 Danfoss A/S Centrifugal compressor having an inter-stage sealing arrangement
US20170175754A1 (en) * 2015-12-21 2017-06-22 General Electric Company Apparatus for pressurizing a fluid within a turbomachine and method of operating the same
US10718346B2 (en) * 2015-12-21 2020-07-21 General Electric Company Apparatus for pressurizing a fluid within a turbomachine and method of operating the same
US11885349B1 (en) 2022-08-18 2024-01-30 Pratt & Whitney Canada Corp. Compressor having a dual-impeller
CN117823452A (en) * 2023-12-12 2024-04-05 南京磁谷科技股份有限公司 Low axial load impeller mounting structure, magnetic suspension compressor and air inlet compression method

Also Published As

Publication number Publication date
JP5722673B2 (en) 2015-05-27
JP2012193653A (en) 2012-10-11

Similar Documents

Publication Publication Date Title
JP5722673B2 (en) Multistage centrifugal compressor and turbo refrigerator using the same
WO2014115417A1 (en) Centrifugal rotation machine
JP2017525890A (en) Centrifugal compressor with integral intercooling
JP2016017408A (en) Variable nozzle unit and variable displacement turbocharger
US20160108920A1 (en) Centrifugal compressor
WO2013128539A1 (en) Rotary machine
WO2018181343A1 (en) Centrifugal compressor
JP5905315B2 (en) Centrifugal compressor
WO2016051835A1 (en) Centrifugal compressor
JP6405590B2 (en) Compressor
JP2024086911A (en) Impeller and centrifugal compressor
US10670025B2 (en) Centrifugal compressor
JP2008303766A (en) Rotary fluid machine and seal device for rotary fluid machine
WO2015041174A1 (en) Rotating machine
JP5316486B2 (en) Barrel-type centrifugal compressor
WO2018155546A1 (en) Centrifugal compressor
JP2014152637A (en) Centrifugal compressor
KR101368408B1 (en) Reaction type turbine
JP2012137091A (en) Centrifugal compressor casing
GB2366333A (en) Multi-stage/regenerative centrifugal compressor
JP6768172B1 (en) Centrifugal compressor
RU2641797C2 (en) Supersonic compressor and method associated with it
JP6402504B2 (en) Centrifugal compressor
CN103423171B (en) Turbocompressor
KR100320207B1 (en) Turbo compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12757341

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12757341

Country of ref document: EP

Kind code of ref document: A1