JP2003342292A - Method for controlling protein - Google Patents

Method for controlling protein

Info

Publication number
JP2003342292A
JP2003342292A JP2002147147A JP2002147147A JP2003342292A JP 2003342292 A JP2003342292 A JP 2003342292A JP 2002147147 A JP2002147147 A JP 2002147147A JP 2002147147 A JP2002147147 A JP 2002147147A JP 2003342292 A JP2003342292 A JP 2003342292A
Authority
JP
Japan
Prior art keywords
protein
nanoparticles
spp
embedded
controlling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002147147A
Other languages
Japanese (ja)
Other versions
JP4100499B2 (en
Inventor
Kazunari Akiyoshi
一成 秋吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2002147147A priority Critical patent/JP4100499B2/en
Priority to PCT/JP2003/006257 priority patent/WO2003097672A1/en
Publication of JP2003342292A publication Critical patent/JP2003342292A/en
Application granted granted Critical
Publication of JP4100499B2 publication Critical patent/JP4100499B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for controlling an embedded protein (including peptide) by photic stimulation, used as a controlling means for a physiological function of the protein (including the peptide) by utilizing a nano-particle, so that the means for reversibly controlling the physiological function of the protein, or the like, is provided more simply than ever by utilizing the nano-particle. <P>SOLUTION: This method for controlling the embedded protein (including the peptide) by the photic stimulation includes a process in which the nano- particle comprising a hydrophilic polymer is modified with a photoresponsive compound (compound causing a structural change by the photic stimulation) to change the hydrophilic polymer into a hydrophobic polymer, and then the target protein (including the peptide) is embedded in the nano-particle comprising the formed hydrophobic polymer. The method is developed on a fact that a function homologous to a molecular chaperone function to the target protein is realized by utilizing control of dynamic association of an associating molecule which responds to the photic stimulation, after utilization of the photic stimulation as a means for controlling a reversible change between hydrophilicity and hydrophobicicity is investigated. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ナノ粒子を利用し
た蛋白質の生理的機能の制御手段に関する。詳しくは、
親水性高分子を光応答性化合物(光刺激により構造変化
をおこし親水性-疎水性を制御しえる化合物)で修飾
し、得られた両親性高分子の形成するナノ粒子内に目的
蛋白質(ペプチドを含む)を取り込む工程を含むことを
特徴とする光刺激による包埋蛋白質(ペプチドを含む)
の制御方法に関する。さらに詳しくは、この制御手段を
利用したナノ粒子内に取り込まれた包埋蛋白質(ペプチ
ドを含む)について以下の少なくとも一の機能を達成す
ることに関する。 1)蛋白質(ペプチドを含む)の生体内運搬、 2)蛋白質(ペプチドを含む)の保存・安定化、 3)蛋白質(ペプチドを含む)の精製、 4)酵素・基質反応性の制御、 5)抗原・抗体反応の制御。
TECHNICAL FIELD The present invention relates to a means for controlling physiological functions of proteins using nanoparticles. For more information,
The hydrophilic polymer is modified with a photo-responsive compound (a compound that can change the structure by photostimulation to control the hydrophilicity-hydrophobicity), and the target protein (peptide Embedded protein (including peptides) by photostimulation, which comprises a step of incorporating
Control method. More specifically, the present invention relates to achieving at least one of the following functions for embedded proteins (including peptides) incorporated into nanoparticles using this control means. 1) Transport of protein (including peptide) in vivo, 2) Storage and stabilization of protein (including peptide), 3) Purification of protein (including peptide), 4) Control of enzyme / substrate reactivity, 5) Control of antigen / antibody reaction.

【0002】[0002]

【従来の技術】遺伝子工学技術の研究課題の中心が遺伝
子構造解析から遺伝子機能解析へと急速に展開してきて
いる。細胞内におけるタンパク質はそれが単独で機能し
ている訳ではなく、多種多様なタンパク質因子、核酸、
低分子種や細胞膜成分等の協調した相互作用のもとで進
行し、さらにそれらの総和として生物学的機能が営まれ
ているものと考えられている。ポストゲノム計画の中心
課題の一つは、これらの多種多様な個々のタンパク質因
子について、それらの複合体としての構造と機能との関
係を解析することである。ここから得られる成果は、構
造生物学や生化学を含む基礎生物学から応用としての医
薬の開発・生産に至る広い分野に極めて重要な知見を提
供することになろう。
2. Description of the Related Art The main research subject of genetic engineering technology is rapidly expanding from gene structure analysis to gene function analysis. Proteins in cells do not function independently, but a wide variety of protein factors, nucleic acids,
It is considered that they proceed under the coordinated interaction of low molecular species and cell membrane components, and the biological functions are performed as the sum of them. One of the central tasks of the post-genome project is to analyze the relationship between the structure and function of these various individual protein factors as a complex. The results obtained here will provide extremely important knowledge to a wide range of fields from basic biology including structural biology and biochemistry to the development and production of pharmaceuticals as applications.

【0003】遺伝子操作による人工機能蛋白質の創生
や、ポストゲノム研究における新規蛋白質の機能解析に
関連して、蛋白質のフォールディング制御・細胞内封入
体からの目的蛋白質の回収に関する研究の重要性は高
い。生体において蛋白質のフォールディングを制御して
いる分子シャペロンはin vitroにおいても有効だが、入
手が困難なことから一般的な手法の開発が望まれてい
る。変性剤によって可溶化した変性蛋白質は、透析〔S.
M. West, J.B. Chaudhuri, J. A. Howell, Biotechnol
ogy and Bioengineering, 1998, 57(5),590-599〕など
により変性剤を希釈することである程度のフォールディ
ングが成されるがその効率は悪い。
In connection with the creation of artificially functional proteins by genetic engineering and the functional analysis of novel proteins in post-genome research, research on protein folding control and recovery of target proteins from intracellular inclusion bodies is highly important. . A molecular chaperone that controls protein folding in the living body is effective in vitro, but it is difficult to obtain it, so development of a general method is desired. The denatured protein solubilized by the denaturing agent is dialyzed (S.
M. West, JB Chaudhuri, JA Howell, Biotechnol
Ogy and Bioengineering, 1998, 57 (5), 590-599] and the like dilute the denaturing agent to some extent, but its efficiency is poor.

【0004】これまでに変性剤希釈の際、凝集を抑制す
る添加剤として、界面活性剤〔Shobha Tandon, Paul M.
Horowits, The Journalof Biological Chemistry, 198
6, 261(33), 15615-15681〕〔Shobha Tandon, Paul M.H
orowits, The Journal of Biological Chemistry, 198
7, 262(10), 4486-4491〕〔GustavoZardeneta, Paul M.
Horowits, The Journal of Biological Chemistry, 19
92, 267(9),5811-5816〕、スクロース〔P. Valax, G. G
eorgiou, in protein folding , G. Georgiou,Ed.,ACS
Symposium series, Washington D. C., 1991, 470, pp9
7〕、シクロデキストリン〔N.Karuppiah, A. Sharma, B
iochem. Biophys. Res. Commun., 1995, 211, 60-6
6〕、トリフルオロエタノール〔K. Shiraki, K. Nishik
awa, Y. Goto, J. Mol. Biol., 1995, 245, 180-194〕、
〔PatriziaPolverino de Laureto, Martina Donadi, El
ena Scaramella, Erica Frare, AngeloFontana, Biochi
micaet Biophysica Acta, 2001, 1548, 29-37〕、L-ア
ルギニン〔H. Lilie, E.Schwarz, R. Rudolph, Curr. o
pin. Biotechnol., 1999, 9, 497-501〕〔 J. Buchner,
R.Rudolph, Bio/Technology, 1991, 9, 157-162〕〔Ur
ich Brinkman, Johannes Buchner,Tra Pastan, Proc. N
atl. Acdd. Sci. USA, 1992, 89, 3075-3079〕〔F. Pec
orari, A. C.Tissot, A. Plucktun, J. Mol. Biol., 19
99, 285, 1831-1843〕〔Kouhei Tsumoto,Katsutoshi Sh
inoki, Hidemasa Kondo, Makoto Uchikawa, Takeo Juj
i, Izumi Kumagai,Journal of Immunological Methods,
1998, 219, 119-129〕、プロリン〔Fan-Guo Meng,Yong
-Doo Park, Hai-Meng Zhou, The International Journa
l of Biochemistry andCell Biology, 2001, 33, 701-7
09〕、グリセロール〔Fan-Guo Meng, Yong-Doo Park, H
ai-MengZhou, The International Journal of Biochemi
stry and Cell Biology, 2001, 33,701-709〕のような
低分子化合物やPEO〔Jeffrey L. Cleland, Theodore W.
Randolph, The Journal ofBiological Chemistry, 199
2, 267(5), 3147-3153〕〔Jeffrey L. Cleland, Cheste
rHedgepeth, Daniel I. C. Wang, The Journal of Biol
ogical Chemistry, 1992,267(19), 13327-13334〕、ポ
リアミノ酸〔Jeffrey L. Cleland, Daniel I. Wang, in
Biocatalistdesign for stability and specificity,
M. Himmel, Ed., ACS Symposium Series,Washington D.
C., 1993, pp 151-166〕〔Jeffrey L. Cleland, in Pr
otein foliding invivo and in vitro, Jeffrey L. Cle
land, Ed., ACS Symposium Series, Washington D.C.,
1993, 526, pp 1〕、ヘパリン〔Fan-Guo Meng, Yong-Do
o Park, Hai-Meng Zhou, TheInternational Journal of
Biochemistry and Cell Biology, 2001, 33, 701-70
9〕のような水溶性高分子が報告されている。
Up to now, a surfactant [Shobha Tandon, Paul M.
Horowits, The Journalof Biological Chemistry, 198
6, 261 (33), 15615-15681] (Shobha Tandon, Paul MH
orowits, The Journal of Biological Chemistry, 198
7, 262 (10), 4486-4491) (Gustavo Zardeneta, Paul M.
Horowits, The Journal of Biological Chemistry, 19
92, 267 (9), 5811-5816], sucrose (P. Valax, G. G.
eorgiou, in protein folding, G. Georgiou, Ed., ACS
Symposium series, Washington DC, 1991, 470, pp9
7], cyclodextrin (N. Karuppiah, A. Sharma, B
iochem. Biophys. Res. Commun., 1995, 211, 60-6
6], trifluoroethanol [K. Shiraki, K. Nishik
awa, Y. Goto, J. Mol. Biol., 1995, 245, 180-194],
(Patrizia Polverino de Laureto, Martina Donadi, El
ena Scaramella, Erica Frare, AngeloFontana, Biochi
micaet Biophysica Acta, 2001, 1548, 29-37], L-arginine (H. Lilie, E. Schwarz, R. Rudolph, Curr. o.
pin.Biotechnol., 1999, 9, 497-501] (J. Buchner,
R. Rudolph, Bio / Technology, 1991, 9, 157-162] (Ur
ich Brinkman, Johannes Buchner, Tra Pastan, Proc. N
atl. Acdd. Sci. USA, 1992, 89, 3075-3079] (F. Pec
orari, ACTissot, A. Plucktun, J. Mol. Biol., 19
99, 285, 1831-1843) (Kouhei Tsumoto, Katsushishi Sh
inoki, Hidemasa Kondo, Makoto Uchikawa, Takeo Juj
i, Izumi Kumagai, Journal of Immunological Methods,
1998, 219, 119-129], Proline (Fan-Guo Meng, Yong
-Doo Park, Hai-Meng Zhou, The International Journa
l of Biochemistry and Cell Biology, 2001, 33, 701-7
09], Glycerol 〔Fan-Guo Meng, Yong-Doo Park, H
ai-MengZhou, The International Journal of Biochemi
stry and Cell Biology, 2001, 33, 701-709] and PEO (Jeffrey L. Cleland, Theodore W.
Randolph, The Journal of Biological Chemistry, 199
2, 267 (5), 3147-3153) 〔Jeffrey L. Cleland, Cheste
rHedgepeth, Daniel IC Wang, The Journal of Biol
ogical Chemistry, 1992, 267 (19), 13327-13334], polyamino acid (Jeffrey L. Cleland, Daniel I. Wang, in
Biocatalistdesign for stability and specificity,
M. Himmel, Ed., ACS Symposium Series, Washington D.
C., 1993, pp 151-166) (Jeffrey L. Cleland, in Pr
otein foliding invivo and in vitro, Jeffrey L. Cle
land, Ed., ACS Symposium Series, Washington DC,
1993, 526, pp 1], heparin (Fan-Guo Meng, Yong-Do
o Park, Hai-Meng Zhou, The International Journal of
Biochemistry and Cell Biology, 2001, 33, 701-70
Water-soluble polymers such as [9] have been reported.

【0005】Gellmanらは界面活性剤とシクロデキスト
リン〔 David Rozema, Samuel H. Gellman, J. Am. Che
m. Soc.1995, 117, 2373-2374〕〔David Rozema, Samue
l H.Gellman, Biochemistry, 1996, 35,15760-15771〕
〔David L. Daugherty, DavidRozame, Peter E. Hanso
n, Samuel H.Gellman, The Journal of Bioligical Che
mistry, 1998, 273(51), 33961-33971〕を用いた分子シ
ャペロン類似のtwo-step systemを報告している。この
系においてサイクロアミロース〔Sachiko Machida, Set
suko Ogawa, Shi Xiaohua,Takeshi Takada, Kazutoshi
Fujii, Kiyoshi Hayashi, FEBS Letters, 2000, 486,13
1-135〕もシクロデキストリンと同様の効果を示す報告
もある。
Gellman et al. [Surfactant and cyclodextrin [David Rozema, Samuel H. Gellman, J. Am. Che.
m. Soc. 1995, 117, 2373-2374) 〔David Rozema, Samue
l H. Gellman, Biochemistry, 1996, 35, 15760-15771)
〔David L. Daugherty, David Rozame, Peter E. Hanso
n, Samuel H. Gellman, The Journal of Bioligical Che
mistry, 1998, 273 (51), 33961-33971] has been reported as a two-step system similar to the molecular chaperone. In this system, cycloamylose [Sachiko Machida, Set
suko Ogawa, Shi Xiaohua, Takeshi Takada, Kazutoshi
Fujii, Kiyoshi Hayashi, FEBS Letters, 2000, 486,13
1-135] has also been reported to have the same effect as cyclodextrin.

【0006】本発明者は、親水性の多糖類に数Wt%の疎
水基をグラフト状に導入した疎水化多糖〔K. Akiyoshi,
S. Degichi, H. Tajima, T.Nishikawa, J. Sunamoto,
Macromolecules, 1997, 30, 857-861〕〔K. Akiyoshi,
J. Sunamoto,Supermolecularscience, 1996, 3, 157-16
3〕〔T. Nishikawa, K. Akiyoshi, J.Sunamoto, Macrom
olecules, 1997, 27, 7654-7659〕〔T. Nishikawa, K.
Akiyoshi, J.Sunamoto, Journal of American Chemistr
y Society, 1996, 118, 6110-6115〕〔K.Akiyoshi, T.
Nishikawa, S. Shichibe, J. Sunamoto, Chem. Lett.,
1995, 707-708〕からなるナノ微粒子が蛋白質のホスト
として機能すること、そしてシクロデキストリンを用い
ることで分子シャペロン類似の機能を有することを明ら
かにしてきた〔KazunariAkiyoshi, Yoshihiro Sasaki,
Junzo Sunamoto, Bioconjugate Chemistry, 1999,10
(3), 321-324〕。
[0006] The present inventor has found that a hydrophobized polysaccharide [K. Akiyoshi,
S. Degichi, H. Tajima, T. Nishikawa, J. Sunamoto,
Macromolecules, 1997, 30, 857-861] (K. Akiyoshi,
J. Sunamoto, Supermolecularscience, 1996, 3, 157-16
3) 〔T. Nishikawa, K. Akiyoshi, J. Sunamoto, Macrom
olecules, 1997, 27, 7654-7659) (T. Nishikawa, K.
Akiyoshi, J. Sunamoto, Journal of American Chemistr
y Society, 1996, 118, 6110-6115) (K. Akiyoshi, T.
Nishikawa, S. Shichibe, J. Sunamoto, Chem. Lett.,
1995, 707-708] have been shown to function as a protein host, and to have a function similar to that of a molecular chaperone by using cyclodextrin [Kazunari Akiyoshi, Yoshihiro Sasaki,
Junzo Sunamoto, Bioconjugate Chemistry, 1999,10
(3), 321-324].

【0007】[0007]

【発明が解決しようとする課題】本発明の課題は、ナノ
粒子を利用した蛋白質(ペプチドを含む)の生理的機能
の制御手段を提供することである。つまり、ナノ粒子を
利用して、蛋白質等の生理機能を可逆的に制御するため
のより簡便な手段を提供することである。
An object of the present invention is to provide means for controlling physiological functions of proteins (including peptides) using nanoparticles. That is, it is to provide a simpler means for reversibly controlling physiological functions of proteins and the like using nanoparticles.

【0008】[0008]

【課題を解決するための手段】本発明者は、ナノ粒子の
性状について種々検討の結果、親水性と疎水性の可逆的
変化を制御するための手段として光刺激を利用すること
を検討し、この光刺激により応答する会合性分子の動的
会合制御を利用すれば、蛋白質に対する分子シャペロン
機能と同等の機能が達成できることを見出し本発明を完
成した。つまり、本発明は、「 1.親水性高分子を光応答性化合物(光刺激により構造
変化をおこし親水性-疎水性を制御しえる化合物)で修
飾し、得られた両親性高分子の形成するナノ粒子内に目
的蛋白質(ペプチドを含む)を取り込む工程を含むこと
を特徴とする光刺激による包埋蛋白質(ペプチドを含
む)の制御方法 2.ナノ粒子が、粒径50-100nmである、前項1の制御方
法。 3.ナノ粒子が、多糖プルランである、前項2の制御方
法。 4.光応答性化合物が、スピロピラン基である前項1-
3の何れか一に記載の制御方法。 5.制御が、光刺激によっておこなわれ、これにより蛋
白質のリフォールディングが制御される前項1-4の何
れか一に記載の制御方法。 6.制御によって、ナノ粒子内に取り込まれた包埋蛋白
質(ペプチドを含む)について以下の少なくとも一の機
能を達成する前項1-5の何れか一に記載の制御方法。 1)蛋白質(ペプチドを含む)の生体内運搬、 2)蛋白質(ペプチドを含む)の保存・安定化、 3)蛋白質(ペプチドを含む)の精製、 4)酵素・基質反応性の制御、 5)抗原・抗体反応の制御。 7.前項1-5の何れか一に記載の制御方法で調製され
る蛋白質(ペプチドを含む)包埋ナノ粒子を含有する製
剤。 8.前項7の製剤の製造方法。」 からなる。
Means for Solving the Problems As a result of various studies on the properties of nanoparticles, the present inventor studied the use of photostimulation as a means for controlling the reversible changes in hydrophilicity and hydrophobicity, It has been found that a function equivalent to the molecular chaperone function for proteins can be achieved by utilizing the dynamic association control of associative molecules that respond to light stimulus, and completed the present invention. That is, the present invention provides "1. Formation of an amphiphilic polymer obtained by modifying a hydrophilic polymer with a photoresponsive compound (a compound capable of controlling a hydrophilic-hydrophobic property by causing a structural change by photostimulation). 2. A method for controlling an embedded protein (including peptide) by photostimulation, which comprises a step of incorporating a target protein (including peptide) into the nanoparticle 2. The nanoparticles have a particle size of 50-100 nm, The control method of the preceding clause 1. 3. The control method of the preceding clause 2, wherein the nanoparticles are polysaccharide pullulan 4. The preceding clause 1-wherein the photoresponsive compound is a spiropyran group
The control method according to any one of 3 above. 5. The control method according to any one of items 1 to 4 above, wherein the control is performed by photostimulation, and thereby the refolding of the protein is controlled. 6. 6. The control method according to any one of items 1 to 5 above, which achieves at least one of the following functions for the embedded protein (including peptide) incorporated into the nanoparticles by control. 1) Transport of protein (including peptide) in vivo, 2) Storage and stabilization of protein (including peptide), 3) Purification of protein (including peptide), 4) Control of enzyme / substrate reactivity, 5) Control of antigen / antibody reaction. 7. A preparation containing protein (including peptide) embedded nanoparticles prepared by the control method according to any one of 1 to 5 above. 8. A method for producing the preparation according to the preceding paragraph 7. It consists of.

【0009】[0009]

【発明の実施の形態】本発明のナノ粒子の調製法は広く
公知である。例えばWO00/12564(高純度疎水
性基含有多糖類およびその製造方法)に開示がある。そ
れによると、第1段階反応は、炭素数12-50の水酸
基含有炭化水素またはステロールと、OCN-R1-NC
O(式中、R1は炭素数1-50の炭化水素基である。)
で表されるジイソシアナート化合物とを反応させて、炭
素数12-50の水酸基含有炭化水素またはステロール
が1分子反応したイソシアナート基含有疎水性化合物を
製造する。第2段階反応は、前記第1段階反応で得られ
たイソシアナート基含有疎水性化合物と多糖類とをさら
に反応させて、疎水性基として炭素数12-50の炭化
水素基またはステリル基を含有する疎水性基含有多糖類
を製造する。この第2段階反応の反応生成物をケトン系
溶媒で精製して高純度疎水性基含有多糖類の製造が可能
である。
DETAILED DESCRIPTION OF THE INVENTION Methods for preparing the nanoparticles of the present invention are widely known. For example, it is disclosed in WO00 / 12564 (polysaccharide containing high-purity hydrophobic group and method for producing the same). According to it, the first-step reaction is a hydroxyl group-containing hydrocarbon or sterol having 12-50 carbon atoms and OCN-R1-NC.
O (In the formula, R1 is a hydrocarbon group having 1 to 50 carbon atoms.)
By reacting with a diisocyanate compound represented by the following formula to produce an isocyanate group-containing hydrophobic compound in which one molecule of a hydroxyl group-containing hydrocarbon or sterol having 12 to 50 carbon atoms has reacted. In the second-step reaction, the isocyanate group-containing hydrophobic compound obtained in the first-step reaction is further reacted with a polysaccharide to contain a hydrocarbon group having 12 to 50 carbon atoms or a steryl group as a hydrophobic group. To produce a hydrophobic group-containing polysaccharide. The reaction product of this second-step reaction can be purified with a ketone solvent to produce a high-purity hydrophobic group-containing polysaccharide.

【0010】本発明の光応答性化合物(光刺激により構
造変化をおこす化合物)での修飾は、上記炭素数12-
50の水酸基含有炭化水素またはステロールが1分子反
応したイソシアナート基含有疎水性化合物の代わりに、
フォトクロミズムに伴って親水性・疎水性の可逆変換や
大きな構造変化を引起す化合物が利用される。その代表
的な化合物は本発明の実施例で示したスピロピランであ
るがこれに限定されない。例えば、アゾベンゼン基やト
リフェニルメタン基が例示される。
The modification with the photoresponsive compound of the present invention (a compound which undergoes a structural change by photostimulation) is carried out by the above-mentioned carbon number 12-
Instead of 50 hydroxyl group-containing hydrocarbons or sterols that have reacted one molecule, an isocyanate group-containing hydrophobic compound,
A compound that causes a reversible conversion of hydrophilicity / hydrophobicity or a large structural change accompanying photochromism is used. The representative compound is spiropyran shown in the examples of the present invention, but is not limited thereto. For example, an azobenzene group and a triphenylmethane group are exemplified.

【0011】使用されうる親水性の多糖類としては、プ
ルラン、アミロペクチン、アミロース、デキストラン、
ヒドロキシエチルセルロース、ヒドロキシエチルデキス
トラン、マンナン、レバン、イヌリン、キチン、キトサ
ン、キシログルカンおよび水溶性セルロースからなる群
より選択される1種以上である。
Hydrophilic polysaccharides that can be used include pullulan, amylopectin, amylose, dextran,
It is one or more selected from the group consisting of hydroxyethyl cellulose, hydroxyethyl dextran, mannan, levan, inulin, chitin, chitosan, xyloglucan and water-soluble cellulose.

【0012】光応答性化合物置換親水性多糖類の合成
は、親水性多糖類としてプルランを利用した場合、分子
量108,000のプルランに100単糖あたり光応答性化合物が
1-20個、好ましくは1-10個、より好ましくは1-
5個置換)が例示される。得られる疎水化高分子の性状
は、蛋白質のサイズや疎水性の程度により、光応答性化
合物及びコレステロール又炭化水素の置換量を換え変更
可能である。疎水性をコントロールするためには、光応
答性化合物に加えて、炭素数10-30、好ましくは炭
素数12-20程度のアルキル基を少量導入することも
好適である。組合せの調製は、粒子径、光応答性(感受
性)、可溶化性等を実験的繰り返しにより確認し、達成
可能である。
In the synthesis of a photoresponsive compound-substituted hydrophilic polysaccharide, when pullulan is used as a hydrophilic polysaccharide, 1-20 photoresponsive compounds per 100 monosaccharides, preferably 1- 10 pieces, more preferably 1-
5 substitutions) are illustrated. The properties of the resulting hydrophobized polymer can be changed by changing the substitution amounts of the photoresponsive compound and cholesterol or hydrocarbon depending on the size and the degree of hydrophobicity of the protein. In order to control the hydrophobicity, it is also suitable to introduce a small amount of an alkyl group having 10 to 30 carbon atoms, preferably about 12 to 20 carbon atoms, in addition to the photoresponsive compound. The preparation of the combination can be achieved by confirming the particle size, photoresponsiveness (sensitivity), solubilization property and the like by experimental repetition.

【0013】本発明で使用するナノ粒子は、粒径50-100
nmである。
The nanoparticles used in the present invention have a particle size of 50-100.
nm.

【0014】ナノ粒子への目的蛋白質(ペプチドを含
む)の取り込みは、目的蛋白質の変性状態あるいは未フ
ォールデイング状態のものとナノ粒子を接触させ行う。
無細胞蛋白質合成系を利用した包埋法においては、mR
NAの存在する相に共存させる。例えば、mRNAの約
1-1000μgに対して1-0.01mgのナノ粒子を
添加する。但し、この添加量は、蛋白産生量との比率、
取込み効率を考慮し、随時変更可能である。細胞蛋白質
合成系においては、分泌型であればそのまま或は化学的
変性剤との共存下でナノ粒子と接触させる。また、非分
泌型或は細胞内での凝集体化がおこるものであれば、細
胞を破壊し、凝集体等を化学的変性剤で可溶化した後、
ナノ粒子と接触させる。その使用適量は、対象蛋白質等
の量・分子量によって適宜実験的繰り返しにより決定さ
れるが、一般的には、対象蛋白質等の重量:ナノ粒子重
量=1:0.1-10の比率で、好適には1:1-5であ
る。
The target protein (including peptide) is incorporated into the nanoparticles by bringing the nanoparticles into contact with the target protein in a denatured state or an unfolded state.
In the embedding method using the cell-free protein synthesis system, mR
Coexist in the phase where NA exists. For example, 1-0.01 mg of nanoparticles is added to about 1-1000 μg of mRNA. However, this added amount is a ratio with the protein production amount,
It can be changed at any time considering the uptake efficiency. In the cell protein synthesis system, if it is a secretory type, it is brought into contact with the nanoparticles as it is or in the presence of a chemical modifier. In addition, if non-secretory type or aggregation in cells occurs, after destroying the cells and solubilizing the aggregates with a chemical denaturant,
Contact with nanoparticles. The appropriate amount to be used is appropriately determined by experimental repetition depending on the amount and molecular weight of the target protein and the like, but in general, a ratio of weight of the target protein, etc.:nanoparticle weight = 1: 0.1-10 is preferable. Is 1: 1-5.

【0015】本発明の蛋白質合成系とは、広く遺伝子工
学技術を応用した蛋白質合成手段及び天然の蛋白質合成
手段をも対象とし、合成される蛋白質等が凝集等により
変性してしまう、或は細胞内に封入された状態にあるも
のなど、蛋白質等の変性-リフォールデイングが可能な
全てを意味する。
The protein synthesizing system of the present invention is intended for a protein synthesizing means and a natural protein synthesizing means to which genetic engineering technology is widely applied, and the synthesized protein or the like is denatured due to aggregation or the like, or cell It means all possible denaturation-refolding of proteins etc. such as those encapsulated inside.

【0016】本発明の典型的な系は、大腸菌、酵母、枯
草菌、昆虫細胞、動物細胞、植物細胞等の自体公知の宿
主を利用し遺伝子組換え技術によって形質転換した系に
よる蛋白質等の合成である。
The typical system of the present invention is the synthesis of proteins and the like by a system transformed by a gene recombination technique using a host known per se such as Escherichia coli, yeast, Bacillus subtilis, insect cells, animal cells and plant cells. Is.

【0017】形質転換は、自体公知の手段が広く応用さ
れ、例えばレプリコンとして、プラスミド、染色体、ウ
イルス等を利用して宿主の形質転換が行われる。より好
ましい系としては、遺伝子の安定性を考慮するならば、
染色体内へのインテグレート法であるが、簡便には核外
遺伝子を利用した自律複製系の利用である。ベクター
は、選択した宿主の種類により選別され、発現目的の遺
伝子配列と複製そして制御に関する情報を担持した遺伝
子配列とを構成要素とする。
For the transformation, a means known per se is widely applied. For example, a replicon is used to transform a host using a plasmid, a chromosome, a virus or the like. As a more preferable system, if the stability of the gene is considered,
Although it is an integration method into chromosomes, it is simply the use of an autonomous replication system utilizing an extranuclear gene. The vector is selected according to the type of host selected, and has a gene sequence for expression and a gene sequence carrying information on replication and control as its components.

【0018】適当な宿主の代表的なものには、細菌細
胞、例えば連鎖球菌属(streptococci)、ブドウ球菌属
(staphylococci)、大腸菌(E.coli)、ストレプトミ
セス属菌(Streptomyces)および枯草菌(Bacillussubt
ilis)細胞;真菌細胞、例えば酵母細胞およびアスペル
ギルス属(Aspergillus)細胞;昆虫細胞、例えばドロ
ソフィラS2(DrosophilaS2)およびスポドプテラSf
9(SpodopteraSf9)細胞;動物細胞例えばCHO、C
OS、HeLa、C127、3T3、BHK、293お
よびボウズ(Bows)メラノーマ細胞;ならびに植物細胞
等がある。
Representative of suitable hosts include bacterial cells such as streptococci, staphylococci, E. coli, Streptomyces and Bacillus subtilis. Bacillussubt
ilis) cells; fungal cells such as yeast cells and Aspergillus cells; insect cells such as Drosophila S2 and Spodoptera Sf
9 (Spodoptera Sf9) cells; animal cells such as CHO, C
OS, HeLa, C127, 3T3, BHK, 293 and Bows melanoma cells; and plant cells and the like.

【0019】ベクターには、染色体、エピソームおよび
ウイルス由来のベクター、例えば細菌プラスミド由来、
バクテリオファージ由来、トランスポゾン由来、酵母エ
ピソーム由来、挿入エレメント由来、酵母染色体エレメ
ント由来、例えばバキュロウイルス、パポバウイルス、
例えばSV40、ワクシニアウイルス、アデノウイル
ス、鶏痘ウイルス、仮性狂犬病ウイルスおよびレトロウ
イルス等のウイルス由来のベクター、ならびにそれらを
組み合わせたベクター、例えばプラスミドおよびバクテ
リオファージの遺伝学的エレメント由来のベクター、例
えばコスミドおよびファージミド等がある。
Vectors include those derived from chromosomes, episomes and viruses, such as bacterial plasmids,
Bacteriophage origin, transposon origin, yeast episome origin, insertion element origin, yeast chromosomal element origin such as baculovirus, papovavirus,
Vectors derived from viruses such as SV40, vaccinia virus, adenovirus, fowlpox virus, pseudorabies virus and retroviruses, and vectors combining them, such as plasmids and vectors derived from genetic elements of bacteriophage, such as cosmids and There are phagemids and the like.

【0020】形質転換体は、自体公知の各々の宿主の培
養条件に最適な条件を選択して培養される。かくして、
培養により目的とする蛋白質等が形質転換体の培養培地
中に分泌される場合は、該培地中に本発明のナノ粒子を
存在させナノ粒子中に蛋白質等を取込む。蛋白質等が形
質転換体の細胞内に生成される場合(分泌されない状
態)、細胞内に封入された状態(凝集体化した状態)、
或は既にフォールディングされた状態では、まず細胞を
溶解し及び/若しくは蛋白質等を化学変性剤で可溶化
し、次いで、ナノ粒子と接触させてナノ粒子中に蛋白質
等を取込ませた後、これを回収する。
The transformant is cultivated by selecting the optimum conditions for culturing conditions of each host known per se. Thus,
When the target protein or the like is secreted into the culture medium of the transformant by culturing, the nanoparticles of the present invention are allowed to exist in the medium, and the protein or the like is incorporated into the nanoparticles. When a protein or the like is produced in the transformant cell (non-secreted state), it is encapsulated in the cell (aggregated state),
Alternatively, in the already-folded state, the cells are first lysed and / or the protein or the like is solubilized with a chemical denaturant, and then the nanoparticles are brought into contact with the protein or the like to incorporate the protein or the like. Collect.

【0021】以上のようにして、ナノ粒子に取り込まれ
た蛋白質等は、ナノ粒子を分離し、蛋白質個々の性状に
おうじた安定化及び生理的条件下で、その使用目的に応
じて調製される。つまり包埋された蛋白質等が、光刺激
でナノ粒子の性状・構造が変化することで、遊離され、
リフォールディングにより生理活性を取り戻す。この制
御手段は、例えば以下のような蛋白質等の制御に利用さ
れる。好適な蛋白質としては、公知のTPA、IFN(α、γ
等)、CSF(M-、GM-等)、血液凝固因子(例えば、第VI
II、IX、XIII因子等)が例示されるが、これに限定され
ない。
As described above, the protein and the like incorporated into the nanoparticles are prepared according to the purpose of use by separating the nanoparticles and stabilizing under physiological conditions and physiological conditions according to the individual properties of the protein. . In other words, the embedded proteins are released by changing the properties and structure of nanoparticles by photostimulation,
Regains physiological activity by refolding. This control means is used, for example, to control the following proteins and the like. Suitable proteins include known TPA, IFN (α, γ
Etc.), CSF (M-, GM-, etc.), blood coagulation factors (eg, VI
II, IX, factor XIII, etc.), but are not limited thereto.

【0022】1)蛋白質(ペプチドを含む)の生体内運
搬 これは、所謂、ターゲティング治療に関する。目的蛋白
質を、粒子内に包埋し、経口或は注射によって生体内に
蛋白質等包埋ナノ粒子を投与し、粒子を目標組織、目標
細胞、癌細胞等に移動させ、目標部位に到着後、光刺激
により粒子構造を変化させ、包埋蛋白質等を遊離させ、
リフォールディング後に生物活性を発揮させるというも
のである。この方法で、活性タンパク質の生体内移動中
の失活或は副作用が制御可能である。簡便には、腸内の
特別の部位での蛋白質等の活性化のために経口投与し、
そしてそれに続く光照射で腸内のターゲット部位での活
性化を達成する。注射薬としては、ナノ粒子の表面を目
標組織・細胞との親和性を考慮した修飾を施し、例えば
モノクローナル抗体等、その親和性により目標部位に蛋
白質等包埋ナノ粒子を集積させ、その後光刺激により粒
子構造を変化させ、包埋蛋白質等を遊離させ、リフォー
ルディング後に生物活性を発揮させるというものであ
る。この方法で、活性タンパク質の生体内移動中の失活
或は副作用が制御可能である。
1) In vivo delivery of proteins (including peptides) This relates to so-called targeting therapy. The target protein is embedded in the particles, and the nanoparticles embedded with the protein or the like are administered in vivo by oral or injection, and the particles are moved to target tissues, target cells, cancer cells, etc., and after arriving at the target site, Change the particle structure by light stimulation and release the embedded proteins etc.,
It is to exert biological activity after refolding. In this way, the inactivation or side effects of the active protein during its transfer in vivo can be controlled. Conveniently, it is orally administered to activate proteins etc. at specific sites in the intestine,
Then, subsequent irradiation with light achieves activation at the target site in the intestine. As an injectable drug, the surface of the nanoparticles is modified in consideration of the affinity with the target tissue / cell, and nanoparticles such as monoclonal antibodies are used to accumulate the protein-embedded nanoparticles at the target site and then photostimulate. Change the particle structure, release the embedded protein and the like, and exert biological activity after refolding. In this way, the inactivation or side effects of the active protein during its transfer in vivo can be controlled.

【0023】2)蛋白質(ペプチドを含む)の保存・安
定化 フォールディングの状態で、安定性に乏しい蛋白質等の
安定化のための手段としても好ましい結果を導く。蛋白
質等を主成分とする製剤には、医薬品、化粧品、食品等
様々のものがある。目的とする蛋白質等が、放置すれば
不可逆的に変性・凝集を起こす場合、本ナノ粒子の中に
目的蛋白質等を閉じ込め、用事、光刺激で目的蛋白質等
を遊離させ、目的の生理学的機能を発揮させる。
2) Preservation / stabilization of proteins (including peptides) In the folded state, preferable results are obtained as a means for stabilizing proteins having poor stability. There are various pharmaceuticals, cosmetics, foods, and the like, which are mainly composed of proteins and the like. If the target protein, etc. undergoes irreversible denaturation / aggregation if left unattended, trap the target protein, etc. in the nanoparticles, and release the target protein, etc. by errand or light stimulation to achieve the desired physiological function. Let it work.

【0024】3)蛋白質(ペプチドを含む)の精製 目的の蛋白質等が遺伝子工学的に生産される場合、蛋白
質等の合成後、細胞外分泌されずインクリュージョンボ
ディーの状態になる場合に有効である。細胞を溶解し変
性剤で目的蛋白質等を変性させ、ナノ粒子中に取込み、
回収し、その後、適当な生理的条件下で光刺激を与えて
ナノ粒子の構造を変化させ、目的蛋白質等をリフォール
ディングさせて回収することができる。無細胞タンパク
質合成手段或は分泌系の細胞内蛋白質合成手段にあって
は、合成系にナノ粒子を共存させ、合成されてくる蛋白
質等をナノ粒子内に連続的に取込み、その後、ナノ粒子
を分離回収して、適当な生理的条件下で光刺激を与えて
ナノ粒子の構造を変化させ、目的蛋白質等をリフォール
ディングさせて回収することができる。
3) Purification of proteins (including peptides) It is effective when the target protein or the like is produced by genetic engineering, and when it is not secreted extracellularly after synthesis of the protein or the like and becomes an inclusivity body. . Lyse the cells, denature the target protein with a denaturing agent, and incorporate into nanoparticles.
It can be recovered and then subjected to light stimulation under appropriate physiological conditions to change the structure of the nanoparticles and refold the target protein and the like to recover. In the cell-free protein synthesis means or secretory intracellular protein synthesis means, nanoparticles are allowed to coexist in the synthesis system, and the synthesized proteins and the like are continuously incorporated into the nanoparticles, and then the nanoparticles are It can be separated and recovered, and subjected to light stimulation under appropriate physiological conditions to change the structure of the nanoparticles, and refold and recover the target protein and the like.

【0025】4)酵素・基質反応性の制御 酵素又は基質を、ナノ粒子内に包埋させておけば、酵素
反応の制御が用事まで可能である。ナノ粒子内に包埋さ
れた酵素又は基質は、不活性状態として、相手側との交
差が制御される。例えば、試薬として一体化製剤として
製品化した場合に、光刺激を受けて初めてナノ粒子が構
造を変化させ、包埋目的酵素又は基質を遊離させ、その
結果、酵素反応が初めて開始できる系にしておけば、製
剤の効率化・簡略化が達成できる。また、酵素の保存安
定性の確保のためにナノ粒子内に酵素を包埋しておき、
用事光刺激で目的酵素をナノ粒子から遊離させて反応系
におくことも可能である。
4) Enzyme / Substrate Reactivity Control If the enzyme or substrate is embedded in the nanoparticles, it is possible to control the enzymatic reaction. The enzyme or substrate embedded in the nanoparticles is in an inactive state, and the crossing with the partner is controlled. For example, when it is commercialized as an integrated preparation as a reagent, the nanoparticles change the structure only when they are stimulated by light to release the target enzyme or substrate for embedding, and as a result, make the system where the enzyme reaction can start for the first time. If this is done, the efficiency and simplification of the formulation can be achieved. Also, in order to ensure the storage stability of the enzyme, the enzyme is embedded in the nanoparticles,
It is also possible to release the target enzyme from the nanoparticles by photostimulation and place it in the reaction system.

【0026】5)抗原・抗体反応の制御 抗原又は抗体を、ナノ粒子内に包埋しておけば、抗原・
抗体反応の制御が可能である。抗原抗体反応を利用した
試薬、医薬において、用事光刺激で目的抗体又は抗原を
ナノ粒子から遊離させて反応系におくことも可能であ
る。
5) Control of antigen-antibody reaction If the antigen or antibody is embedded in the nanoparticles,
It is possible to control the antibody reaction. In a reagent or medicine using an antigen-antibody reaction, it is also possible to release the target antibody or antigen from the nanoparticles by photostimulation and put them in the reaction system.

【0027】[0027]

【実施例】以下、本発明を実施例によりさらに具体的に
説明するが、下記の実施例は本発明についての具体的認
識を得る一助とみなすべきものであり、本発明の範囲は
下記の実施例により何ら限定されるものではない。
EXAMPLES The present invention will be described in more detail with reference to the following examples, but the following examples should be regarded as an aid for obtaining a concrete recognition of the present invention, and the scope of the present invention is as follows. It is not limited in any way.

【0028】[0028]

【実施例1】親水性の多糖類であるプルランを使い、こ
れにスピロピラン基を導入したスピロピラン置換プルラ
ン(SpP)を合成した。
Example 1 Using pullulan, which is a hydrophilic polysaccharide, spiropyran-substituted pullulan (SpP) having a spiropyran group introduced therein was synthesized.

【0029】(試料) Acetone (Wako pure chemical industry. Ltd., 特級) 1-(β-Carboxyethyl)-3',3'-dimethyl-6-nitrospiro(io
dorine-2',2'[2H-1]benzopyran(Spi-COOH)((株)環境化
学センター) N,N'-dicyclocarbodiimide(DCC) (Peptide instutute.
Inc.) 4-Dimethylaminopyridine(DMAP) (Wako pure chemical
industry. Ltd., 特級) Dimethyl Sulfoxide(DMSO), dehydrated (Wako pure ch
emical industry. Ltd.有機合成用) Pullulan (Hayashibara biochemical laboratories. In
c.)
(Sample) Acetone (Wako pure chemical industry. Ltd., special grade) 1- (β-Carboxyethyl) -3 ', 3'-dimethyl-6-nitrospiro (io
dorine-2 ', 2' [2H-1] benzopyran (Spi-COOH) (Environmental Chemistry Center, Ltd.) N, N'-dicyclocarbodiimide (DCC) (Peptide instutute.
Inc.) 4-Dimethylaminopyridine (DMAP) (Wako pure chemical
industry. Ltd., special grade) Dimethyl Sulfoxide (DMSO), dehydrated (Wako pure ch
emical industry. Ltd. Organic synthesis) Pullulan (Hayashibara biochemical laboratories. In
c.)

【0030】(SpPの合成)SpPの合成スキーム及び構造
式を以下に示す。式中、Rで示したのがスピロピラン基
で、紫外光(UV)・可視光(VIS)の照射や熱によって
構造を変化させる化合物である(化1)。この化合物は
種々の有機溶媒中で、UV照射により、シス体(閉環型、S
piro型)からトランス体への変換が起こり、同時にノニ
オン性から両性イオン状態(開環型、Mer型)となる。こ
れは可視領域に強い吸収を持ち、メロシアニン型色素の
分子構造で準安定状態とされ、熱を加える事によりSpir
o型に戻る。また、Mer型の吸収帯の波長光で刺激する事
によってもSpiro型に戻る。このような性質をフォトク
ロミズム(photochromism)と言う。
(Synthesis of SpP) The synthetic scheme and structural formula of SpP are shown below. In the formula, R is a spiropyran group, which is a compound whose structure is changed by irradiation with ultraviolet light (UV) / visible light (VIS) or heat (chemical formula 1). This compound was exposed to UV irradiation in various organic solvents to give the cis-form (closed ring type, S-type).
conversion from the piro type) to the trans form occurs, and at the same time, the nonionic to zwitterionic state (open ring type, Mer type). It has a strong absorption in the visible region, is in a metastable state due to the molecular structure of the merocyanine type dye, and when heat is applied, the Spir
o Return to type. In addition, it can be returned to the Spiro type by stimulating with light of a wavelength in the Mer type absorption band. Such a property is called photochromism.

【0031】[0031]

【化1】 [Chemical 1]

【0032】プルラン(Mw=108,000)を一晩70℃で減圧
乾燥させた。これを70℃で一晩減圧乾燥させ、frame dr
yしたナス型フラスコに1.00g(glucoseunit 6.18mmol)
秤取し、そこへDehydrated DMSOを20ml加え、窒素気流
下、常温で2時間撹拌を行い溶解させた。別のよく乾燥
させたナス型フラスコにスピロピランのカルボン酸誘導
体(Spi-COOH)(run1,2, 587mg, 1.54mmol、run3,1174m
g, 3.08mmol)、DCC (run1,2, 318mg, 1.54mmol、run3 6
36mg, 3.08mmol)を秤取し、DehydratedDMSOを10ml加
え、窒素気流下、室温で2時間撹拌した。
Pullulan (Mw = 108,000) was dried under reduced pressure at 70 ° C. overnight. This was dried under reduced pressure at 70 ° C overnight and frame dr
1.00g (glucoseunit 6.18mmol) in the eggplant type flask
Weighed, 20 ml of Dehydrated DMSO was added thereto, and stirred for 2 hours at room temperature under nitrogen flow to dissolve. In another well-dried eggplant-shaped flask, carboxylic acid derivative of spiropyran (Spi-COOH) (run1,2, 587mg, 1.54mmol, run3,1174m
g, 3.08mmol), DCC (run1,2, 318mg, 1.54mmol, run3 6
(36 mg, 3.08 mmol) was weighed, 10 ml of Dehydrated DMSO was added, and the mixture was stirred under a nitrogen stream at room temperature for 2 hours.

【0033】プルラン溶液にDMAPを30mg加えた後、スピ
ロピラン溶液を加え、窒素気流下、35℃で40時間撹拌し
た。溶液の色は濃い紫色であった。反応終了後、反応溶
液を過剰のアセトンに対して混合し、再沈殿による精製
を行った。得られた化合物は薄紫色の固体であった。構
造の確認及び置換率の決定はIRスペクトル(ShimazuFT-I
R 8100S)、1HNMR(JOEL 400MHz)、元素分析によって行な
った。(収率:run1 85.5%, run2 85.0%, run3-a43.2%,
run3-b 47.2%)
After adding 30 mg of DMAP to the pullulan solution, the spiropyran solution was added, and the mixture was stirred at 35 ° C. for 40 hours under a nitrogen stream. The color of the solution was deep purple. After the reaction was completed, the reaction solution was mixed with excess acetone and purified by reprecipitation. The obtained compound was a light purple solid. The IR spectra (Shimazu FT-I
R 8100S), 1HNMR (JOEL 400MHz), and elemental analysis. (Yield: run1 85.5%, run2 85.0%, run3-a43.2%,
run3-b 47.2%)

【0034】以上の結果より、親水性の多糖プルランに
100単糖あたり0.4、1.4、2.8、6.8個のスピロピラン基
を導入したスピロピラン置換プルラン(SpP)(Spiropyra
nbearing pullulan)(SpP 0.4, 1.4, 2.6, 6.8)の合成
に成功した。以下、100単糖あたりX個のスピロピランが
導入されたSpPをSpPXと呼ぶ。
From the above results, hydrophilic polysaccharide pullulan was obtained.
Spiropyran-substituted pullulan (SpP) containing 0.4, 1.4, 2.8 and 6.8 spiropyran groups per 100 monosaccharides (Spiropyra
nbearing pullulan) (SpP 0.4, 1.4, 2.6, 6.8) was successfully synthesized. Hereinafter, SpP in which X spiropyrans are introduced per 100 monosaccharides is referred to as SpPX.

【0035】[0035]

【実施例2】スピロピラン置換プルラン(SpP)の会合挙
動 実施例1で合成したSpPの水溶液中におけるフォトクロ
ミズムや会合挙動について検討した。
Example 2 Association Behavior of Spiropyran-Substituted Pullulan (SpP) The photochromism and association behavior of the SpP synthesized in Example 1 in an aqueous solution were examined.

【0036】(試料) 2-[4-(2-Hydroxyethyl)-1-piperazinyl]ethanesulfonic
acid(HEPES)(Wako purechemical industry. Ltd.) Hydrochloride(HCl)(Wako pure chemical industry. Lt
d.,精密分析用) Sodium chloride(NaCl)( Wako pure chemical industr
y. Ltd.) Spiropyran bearing pullulan(SpP 0.4, 1.4, 2.6, 6.
8)(実施例1で合成)
(Sample) 2- [4- (2-Hydroxyethyl) -1-piperazinyl] ethanesulfonic
acid (HEPES) (Wako purechemical industry. Ltd.) Hydrochloride (HCl) (Wako pure chemical industry.Lt
d., For precision analysis) Sodium chloride (NaCl) (Wako pure chemical industr
y. Ltd.) Spiropyran bearing pullulan (SpP 0.4, 1.4, 2.6, 6.
8) (synthesized in Example 1)

【0037】(溶液の調製)SpPの薄紫色固体を暗所に
おいて、buffer(100mM HEPES、pH7.5)に対して加熱撹拌
(50℃)することで溶解させ、不純物を取り除くため得ら
れた水溶液をフィルター(Sterileacrodisk 25, Gelman
science, pore size: 1.2μm, 0.45μm, 0.2μm)を用い
て濾過し、常温まで放置した。
(Preparation of Solution) The light purple solid of SpP was heated and stirred in a buffer (100 mM HEPES, pH 7.5) in the dark.
The solution obtained by dissolving at 50 ° C and removing the impurities was filtered with a filter (Sterileacro disk 25, Gelman
(science, pore size: 1.2 μm, 0.45 μm, 0.2 μm), and the mixture was allowed to stand at room temperature.

【0038】〔SEC-MALS(Multi angle laser light scc
atering)〕SEC-MALS及びRapid MALSの測定をした。SEC-
MALSとは、SECによって分離された成分について、RIに
よる検出とMALSによる検出を行う事で、溶出時間に対応
した各濃度について、18角度の光散乱強度を解析するこ
とによって、各成分のMw(重量平均分子量)および、Rw
(重量平均半径)を測定する事が出来る。RapidMALSで
はカラムにガードカラム(プレカラム)を用いる事で、カ
ラムとの相互作用を最小限に抑えつつ、サンプルの濃度
勾配を作り出す方法で、短時間(測定時間数分程度)で
解析することが出来る。
[SEC-MALS (Multi angle laser light scc
atering)] SEC-MALS and Rapid MALS were measured. SEC-
MALS is the component separated by SEC, which is detected by RI and by MALS, and by analyzing the light scattering intensity at 18 angles for each concentration corresponding to the elution time, Mw ( Weight average molecular weight) and Rw
(Weight average radius) can be measured. In RapidMALS, a guard column (pre-column) is used as the column, and it is possible to analyze in a short time (measurement time of about several minutes) by a method that creates a concentration gradient of the sample while minimizing the interaction with the column. .

【0039】(Rapid MALS、DLSによる会合挙動の評
価)SpPの水溶液中における会合挙動についてRapid MAL
S法やDLS測定よって検討を行なった。Rapid MALS測定に
は、TOSOH CCDP dualpump、TOSOH RI-8010 RI detecto
r、Wyatt tech. co. DAWN-E MALS detectorからなるシ
ステムを用い、カラムはTOSOHSWXLのガードカラム、流
速は1.0ml/min、溶離液は100mM HEPES、100mM NaCl、pH
7.5を用いた。サンプルはSpP1.4の薄紫色固体を、暗所
において、50℃、30minの加熱撹拌をする事で溶離液に
溶解させ、その後遮光したまま室温まで放冷することで
調製した。光刺激は、UV照射を8WUV lamp(254nm)(UVP,
8 watt handheld model UVM-18)、VIS照射を8W White
lightlamp(UVP, 8 watt handheld model UVM-18)を用い
て行った。測定サンプルの濃度は、0.25-2.5mg/ml、inj
ectionvolumeは、適当なピークの大きさになるように10
-100μlで行った。サンプルをカラムにアプライする際
に、フィルター(0.45μm)を用いて濾過した。サンプル
の屈折率増分dn/dcは、Wyatttech. co. Optilab DSP in
terferometric refractometerによって測定した値を用
いた。
(Evaluation of Association Behavior by Rapid MALS, DLS) On Association Behavior of SpP in Aqueous Solution Rapid MAL
The examination was conducted by S method and DLS measurement. For Rapid MALS measurement, TOSOH CCDP dualpump, TOSOH RI-8010 RI detecto
r, Wyatt tech.co.DAWN-E MALS detector system, column is TOSOHSWXL guard column, flow rate is 1.0 ml / min, eluent is 100 mM HEPES, 100 mM NaCl, pH
7.5 was used. A sample was prepared by dissolving a light purple solid of SpP1.4 in an eluent by heating and stirring at 50 ° C. for 30 min in a dark place, and then allowing it to cool to room temperature while shielded from light. The light stimulus is 8W UV lamp (254nm) (UVP,
8 watt handheld model UVM-18), VIS irradiation 8W White
It was performed using a light lamp (UVP, 8 watt handheld model UVM-18). The concentration of the measurement sample is 0.25-2.5mg / ml, inj
ection volume should be 10 so that the peak size is appropriate.
-100 μl. When applying the sample to the column, it was filtered using a filter (0.45 μm). The refractive index increment dn / dc of the sample is calculated by Wyatttech. Co. Optilab DSP in
The value measured by the terferometric refractometer was used.

【0040】動的光散乱(DLS)測定には、Otsuka Elec
tronics Co., Ltd., DLS-700を用いた。光源の波長は63
3nmのHe-Neレーザーで、温度は25.0±0.2℃で行った。
サンプルはSpP1.4の薄紫色固体を、暗所において、50
℃、30minの加熱撹拌をする事で緩衝液(100mMHEPES, pH
7.5)に溶解させ、その後遮光したまま室温まで放冷する
ことで調製した。得られた溶液はフィルター(0.45μm)
を用いて濾過した。光刺激は、UV照射を8WUV lamp(254n
m)(UVP, 8 watt handheld model UVM-18)、VIS照射を8
W White lightlamp(UVP, 8 watt handheld model UVM-1
8)を用いて行った。
For dynamic light scattering (DLS) measurement, Otsuka Elec
tronics Co., Ltd., DLS-700 was used. The wavelength of the light source is 63
A 3 nm He-Ne laser was used at a temperature of 25.0 ± 0.2 ° C.
The sample was a light purple solid of SpP1.4, 50 in the dark.
Buffer solution (100mM HEPES, pH
It was prepared by dissolving it in 7.5) and then allowing it to cool to room temperature while shielding it from light. The resulting solution is a filter (0.45 μm)
Filtered. The light stimulus is based on 8W UV lamp (254n
m) (UVP, 8 watt handheld model UVM-18), VIS irradiation 8
W White lightlamp (UVP, 8 watt handheld model UVM-1
8).

【0041】SpP水溶液の調製 種々の置換率のSpP(0.4、1.4、2.8、6.8)の水への溶
解性は、0.4-2.8のものは数mg/mlのとき少しの加熱撹拌
することで溶解し、6.8のものはほとんど溶解しなかっ
た。原料プルランは水に溶解することから、これは、ス
ピロピランの疎水性のため置換率の高いものでは、水へ
の溶解性が低くなったと考えられる。
Preparation of SpP Aqueous Solution Solubility of SpP (0.4, 1.4, 2.8, 6.8) with various substitution ratios in water was 0.4-2.8, which was dissolved by slightly heating and stirring at a few mg / ml. However, 6.8 was hardly dissolved. Since the raw material pullulan is soluble in water, it is considered that this is because the solubility of sprupyran was low in water with a high substitution rate because of its hydrophobicity.

【0042】SpPのフォトクロミズム SpP1.4の水溶液中で示すフォトクロミズムについて、UV
・VIS吸収スペクトルを追跡することによって検討した。
UV測定にはペルチェ式温度制御装置を装備したUVspectr
ophotometer (Hitachi, U-3300)を用いた。光刺激は、U
V照射を8W UV lamp (UVP, 8 watthandheld model UVM-1
8)、VIS照射を8W White light lamp (UVP, 8 watt hand
held modelUVM-18)を用いて行なった。サンプル調製
時、溶液の色は薄い赤色で、515nmにλmaxを持つUVスペ
クトルが得られた(MerI型)。これにUV照射するとλmax
が535nmに長波長シフトした(MerII型)。また、MerI
に可視光照射すると、溶液の薄い赤色は速やかに消失
し、閉環型のUVスペクトルが得られた(Spiro型)。これ
より、SpPは3種の状態を行き来するフォトクロミズムを
示すことがわかった。これをまとめると、水溶液中にお
けるSpPのフォトクロミズムは次のような相関が確認さ
れた。
Photochromism of SpP Regarding photochromism shown in an aqueous solution of SpP1.4, UV
-Investigated by tracing the VIS absorption spectrum.
UVspectr equipped with Peltier temperature controller for UV measurement
An ophotometer (Hitachi, U-3300) was used. Light stimulation is U
8V UV lamp (UVP, 8 watthandheld model UVM-1
8), VIS irradiation 8W White light lamp (UVP, 8 watt hand
held model UVM-18). Upon sample preparation, the color of the solution was pale red and a UV spectrum was obtained with λmax at 515 nm (Mer I type). When this is irradiated with UV, λmax
Wavelength shifted to 535 nm (Mer II type). Also, MerI
When the solution was irradiated with visible light, the pale red color of the solution rapidly disappeared, and a closed-ring UV spectrum was obtained (Spiro type). From this, it was found that SpP exhibits photochromism that moves between three states. In summary, the following correlations were confirmed for the photochromism of SpP in aqueous solution.

【0043】まず、サンプル調製時においてスピロピラ
ンは開環型(MerI)であり、これは25℃暗所において数
時間安定であった。これにVIS照射すると、10分以内にS
piro型への構造変化が起こる(1)。そして、このSpir
o構造を加熱すると速やかにMerIに戻った(2)。これ
は逆フォトクロミズムである。また、Spiro型を暗所に
おいて放置すると、180分ほどでMerIに戻った(3)。
これにより、SpPは25℃暗所において、MerIが最も安定
な種であることが示唆される。Spiro型にUV照射すると1
0分ほどでMerIIになった(4)。これにVIS照射する
とこれは240分ほどかかってSpiro型へ戻った(5)。Me
rIにUV照射することでも5分ほどでMerIIになり
(6)、これを加熱すると、速やかにMerIへ戻った
(7)。MerIIは、MerIに比べλmaxが長波長シフト
していることや、(5)の構造変化の速度が非常に遅い
こと(スピロピランの開環型は分子同士がスタック構造
をとるとき、スピロ型への構造変化を著しく阻害する。
これは、開環型は平面構造であり、スピロ型は立体構造
であるためである)から、スピロピラン分子同士のスタ
ッキングによる会合が起こっていることが示唆される。
First, at the time of sample preparation, spiropyran was ring-opened (MerI), which was stable for several hours in the dark at 25 ° C. If this is irradiated with VIS, S within 10 minutes
Structural change to piro type occurs (1). And this Spir
o Heating the structure rapidly returned to MerI (2). This is reverse photochromism. When Spiro type was left in the dark, it returned to MerI in about 180 minutes (3).
This suggests that SpP is the most stable species of MerI in the dark at 25 ° C. UV irradiation of Spiro type 1
It became MerII in about 0 minutes (4). When this was irradiated with VIS, it took 240 minutes to return to the Spiro type (5). Me
UV irradiation of rI turned MerII in about 5 minutes (6), and when heated, it quickly returned to MerI (7). MerII has a longer wavelength shift of λmax than MerI, and the structural change rate of (5) is very slow. (Spiropyran ring-opening type has a It significantly inhibits structural changes.
This is because the ring-opening type has a planar structure, and the spiro type has a three-dimensional structure.), Suggesting that the spiropyran molecules are associated with each other by stacking.

【0044】SpPの会合挙動 サンプル調製時(MerI)のSpP1.4についてのRapid MALS
の解析結果から、Mw=1.54×106(g/mol)、Mw/Mn=1.64±
0.17、Rw=79.2 (nm)であることがわかった。主鎖となる
原料のプルランはMw=1.08×105 (g/mol)であることか
ら、SpPは水溶液中において10数分子が会合しているこ
とが示唆された。CHP集合体が分子量約45万、会合数が4
ほどであることから比べると、かなり大きな会合体を形
成していることがわかる。また、室温、暗所においてこ
の会合体は安定であった(スピロピラン分子も安定)。
Association behavior of SpP Rapid MALS for SpP1.4 during sample preparation (MerI)
From the analysis results of, Mw = 1.54 × 106 (g / mol), Mw / Mn = 1.64 ±
It was found that 0.17 and Rw = 79.2 (nm). Since the raw material of the main chain, pullulan, was Mw = 1.08 × 10 5 (g / mol), it was suggested that 10 or more molecules of SpP were associated in the aqueous solution. CHP aggregate has a molecular weight of about 450,000 and has 4 associations.
It can be seen from the fact that a considerably large aggregate is formed in comparison with the above. The aggregate was stable at room temperature and in the dark (the spiropyran molecule was also stable).

【0045】MerIにVIS照射(0, 1, 5, 10, 30, 60, 9
0min)したとき(1)、SpP1.4の会合体は分子量、粒径
は多少小さくなり、10数分子ほどの会合体を形成してい
る。このとき会合体の密度は多少大きくなっている。こ
のSpiro型を室温、暗所に放置(0-180min)すると除々にM
erIへと変化するが(3)、このとき会合体はほとんど
変化しなかった。次に10minのVIS照射によりSpiro型に
した種にUV照射すると(4)、会合体は10-30minをピー
クにして分子量、粒径ともに大きくなった。データ間に
ばらつきはあるが、最大で分子量約400万(SpPの会合数
は約40)ほどであった。このあと、除々に会合体は小さ
くなっていった。次にMerIにUV照射すると(6)、
(4)のときと同様に会合体は多少大きくなっていき、
その後小さくなっていったが、(4)ほど大きな変化は
見られなかった。そして、MerIにVIS照射(10min)する
ことでSpiroにしてから、UV照射(10min)することでMer
IIにして、その後VIS照射すると(5)、はじめ分子
量350万ほどであった会合体は、除々に小さくなってい
き、240minほどで分子量約170万ほどになった。これ
は、スピロピラン分子同士のスタッキングによる会合構
造(MerII)からSpiro構造への変換が遅いという結果と
も一致している。DLSによる結果より、RapidMALSによる
ものと同様の挙動を示していることが示唆される。濃度
が高くなるとSpP微粒子は多少大きくなるようである。
VIS irradiation on MerI (0, 1, 5, 10, 30, 60, 9
At 0 min) (1), the aggregate of SpP1.4 had a slightly smaller molecular weight and particle size, and formed aggregates of about 10 and several molecules. At this time, the density of the aggregates is slightly higher. When this Spiro type is left in the dark at room temperature (0-180 min), it gradually becomes M
It changed to erI (3), but the aggregate was hardly changed at this time. Next, UV irradiation of the Spiro-type seeds by VIS irradiation for 10 min (4) caused the aggregate to increase in molecular weight and particle size at a peak of 10-30 min. Although there was variation among the data, the maximum molecular weight was about 4 million (the number of SpP associations was about 40). After this, the aggregate gradually became smaller. Next, UV irradiation of MerI (6),
As in the case of (4), the aggregates become a little larger,
Although it became smaller after that, the change was not so large as in (4). Then, VIS irradiation (10 min) is applied to MerI to turn it into Spiro, and then UV irradiation (10 min) is applied to MerI.
When II was added and then VIS irradiation was performed (5), the aggregate having a molecular weight of about 3.5 million at first became gradually smaller, and the molecular weight became about 1.7 million in about 240 minutes. This is in agreement with the result that the conversion from the association structure (MerII) to the Spiro structure due to stacking of spiropyran molecules is slow. The DLS results suggest that it behaves similarly to RapidMALS. The higher the concentration, the larger the SpP particles appear to be.

【0046】以上の結果をまとめると、SpPは10数分子
から数10分子が集まってヒドロゲルナノ微粒子を形成
し、光刺激によって可逆的な会合挙動の変化をすること
がわかる。UV照射によって会合体が大きくなったり小さ
くなったりするのは、架橋領域のスピロピランの性質が
変化することによるものであると考えられる。
Summarizing the above results, it can be seen that 10 to several tens of molecules of SpP are aggregated to form hydrogel nanoparticles, and the reversible change of association behavior is caused by photostimulation. It is considered that the increase or decrease in size of the aggregate due to UV irradiation is due to a change in the properties of spiropyran in the crosslinked region.

【0047】[0047]

【実施例3】SpPを用いて、蛋白質のリフォールディン
グ効率を向上させること、またそこから得られるSpPと
蛋白質の相互作用に関する知見を得ることを目的として
検討した。モデル酵素としてはCSを用いた。コントロー
ルとして疎水化多糖-シクロデキストリンのシステムに
ついても検討を行なった。
[Example 3] The purpose of this study was to improve the protein refolding efficiency using SpP, and to obtain the knowledge about the interaction between SpP and the protein obtained therefrom. CS was used as a model enzyme. As a control, the system of hydrophobized polysaccharide-cyclodextrin was also examined.

【0048】(試料) Acethyl-CoA(Wako pure chemical industry. Ltd., 生
化学用) Choresterol bearing pullulan108-1.2(CHP108-1.2)(Sy
nthesized in this labo.) Dimethyl sulfoxide(DMSO) (Wako pure chemical indus
try. Ltd., 特級) 5,5'-Dithiobis(2-nitrobenzoic acid)(DTNB) (Wako pu
re chemical industry.Ltd.,SH基定量用) (±)Dithiothreitol(DTT) (Wako pure chemical indust
ry. Ltd., SH基酸化防止用) Ethylenediamine-N,N,N',N'-tetraacetic acid, disodi
um salt, dihydrate(EDTAゲNa)(Wako pure chemical in
dustry. Ltd.) Guanidine hydrochloride(GuHCl) (Wako pure chemical
industry. Ltd., 生化学用) Hydrochloride(HCl) (Wako pure chemical industry. L
td., 精密分析用) Hydroxypropyl-β-cyclodexitrin(HP-β-CD)(日本食品
化工(株)) Oxaloacetic acid(Wako pure chemical industry. Lt
d.) Phenol(Wako pure chemical industry. Ltd., 特級) Sodium chloride(NaCl) (Wako pure chemical industr
y. Ltd.) Spiropyran bearing pullulan1.4(SpP1.4) (Synthesize
d in this labo.) Sulfonic acid(Wako pure chemical industry. Ltd.,
精密分析用) Tris[hydroxymethyl]aminomethane(Trizma base) (Sigm
a chemical co.) Tris[hydroxymethyl]aminomethane hydrochloride(Triz
ma) (Sigma chemical co.) 以上の試薬の中で購入したものは精製せずそのまま用い
た。また本実験を通してbufferとして、150mM Tris-HC
l、0.75mM EDTA、pH7.6を用いた。
(Sample) Acethyl-CoA (Wako pure chemical industry. Ltd., for biochemistry) Choresterol bearing pullulan 108-1.2 (CHP108-1.2) (Sy
nthesized in this labo.) Dimethyl sulfoxide (DMSO) (Wako pure chemical indus
try. Ltd., special grade) 5,5'-Dithiobis (2-nitrobenzoic acid) (DTNB) (Wako pu
(re chemical industry.Ltd., for SH group determination) (±) Dithiothreitol (DTT) (Wako pure chemical indust
ry. Ltd., SH group oxidation prevention) Ethylenediamine-N, N, N ', N'-tetraacetic acid, disodi
um salt, dihydrate (EDTA Na) (Wako pure chemical in
dustry. Ltd.) Guanidine hydrochloride (GuHCl) (Wako pure chemical
industry. Ltd., Biochemistry) Hydrochloride (HCl) (Wako pure chemical industry. L
td., For precision analysis) Hydroxypropyl-β-cyclodexitrin (HP-β-CD) (Nippon Shokuhin Kako Co., Ltd.) Oxaloacetic acid (Wako pure chemical industry.Lt
d.) Phenol (Wako pure chemical industry. Ltd., special grade) Sodium chloride (NaCl) (Wako pure chemical industr
y. Ltd.) Spiropyran bearing pullulan1.4 (SpP1.4) (Synthesize
d in this labo.) Sulfonic acid (Wako pure chemical industry. Ltd.,
For precision analysis) Tris [hydroxymethyl] aminomethane (Trizma base) (Sigm
a chemical co.) Tris [hydroxymethyl] aminomethane hydrochloride (Triz
ma) (Sigma chemical co.) The above purchased reagents were used as they were without purification. Throughout this experiment, as a buffer, 150 mM Tris-HC
1, 0.75 mM EDTA, pH 7.6 was used.

【0049】(SpP溶液、CHP溶液の調製)SpP溶液は、S
pP1.4の薄紫色固体を暗所において、bufferに対して30m
in加熱撹拌(50℃)することで溶解させ、不純物を取り除
くため得られた水溶液をフィルター(Sterileacrodisk 2
5, Gelman science, pore size: 1.2μm, 0.45μm, 0.2
μm)を用いて濾過し、暗所下、常温まで放置することで
調製した。
(Preparation of SpP Solution and CHP Solution) The SpP solution is S
30m of pP1.4 light purple solid against buffer in the dark
In order to dissolve impurities by heating and stirring (50 ° C), remove the obtained aqueous solution with a filter (Sterileacro disk 2
5, Gelman science, pore size: 1.2 μm, 0.45 μm, 0.2
(μm), and the mixture was allowed to stand at room temperature in the dark to prepare.

【0050】〔Citrate Synthase(CS)〕CSは、解糖およ
び脂肪酸の分解によって生じたをTCAサイクルへ導くた
めの初発段階の酵素で、アセチル-CoAとオキサロ酢酸か
らクエン酸を合成する反応を触媒する。反応はアセチル
-CoAのメチル基のカルボアニオンとオキサロ酢酸のアル
ドール縮合である。CSはホモ二量体の蛋白質であり、サ
ブユニットは活性を持たない。また、サブユニット内に
5つのシステイン残基を有するが、ジスルフィド結合は
形成されていない。CSは4次構造の研究におけるモデル
蛋白質としてその物理化学的特性、アミノ酸の一次配
列、立体構造、活性点、基質結合部位などが詳細に検討
されてきた。
[Citrate Synthase (CS)] CS is an enzyme at the initial stage for introducing a product produced by glycolysis and fatty acid decomposition into the TCA cycle, and catalyzes a reaction of synthesizing citric acid from acetyl-CoA and oxaloacetic acid. To do. The reaction is acetyl
-Aldol condensation of the carbanion of the methyl group of CoA with oxaloacetate. CS is a homodimeric protein and its subunits are inactive. Also, in the subunit
It has 5 cysteine residues but no disulfide bonds are formed. As a model protein in the study of quaternary structure, CS has been studied in detail for its physicochemical properties, amino acid primary sequence, three-dimensional structure, active site, substrate binding site, and the like.

【0051】(CS溶液調製)CS(From porcine heart, M
Wsubunit=50,000)溶液はRocheから購入した懸濁液をbuf
ferに対して溶解させることで調製した。濃度の定量
は、280nmにおける吸光度を測定することによって行な
った(ε280nm=1.75ml・cm/mg)。また、CSの変性溶液は、
1.0mg/ml CS、6M GuHCl、40mM DTTになるようにbuffer
に溶解させ、25℃で1hインキュベーションすることによ
って得た。
(CS solution preparation) CS (From porcine heart, M
Wsubunit = 50,000) Solution is a buf suspension purchased from Roche
It was prepared by dissolving it in fer. The concentration was quantified by measuring the absorbance at 280 nm (ε280 nm = 1.75 ml · cm / mg). In addition, the denaturing solution of CS is
1.0mg / ml CS, 6M GuHCl, 40mM DTT buffer
It was obtained by incubating at 25 ° C. for 1 h.

【0052】(活性測定)CSの酵素活性の測定は基質溶
液(23μM、19μg/ml Acetyl-CoA、0.5mM、66μg/ml、Ox
ialoacetic acid、0.12mM、48μg/ml、DNTB)0.76mlとCS
溶液15μlを速やかに混合し、5s程撹拌した後、下記の
反応で生じるメルカプチドイオンの濃度増加を412nmの
吸光度を追跡した。吸光度が一次の傾きによって増加す
るが、この傾きを天然状態のそれと比較することで活性
回復率を見積もった。
(Activity measurement) The enzyme activity of CS was measured by a substrate solution (23 μM, 19 μg / ml Acetyl-CoA, 0.5 mM, 66 μg / ml, Ox).
ialoacetic acid, 0.12mM, 48μg / ml, DNTB) 0.76ml and CS
After rapidly mixing 15 μl of the solution and stirring for about 5 s, the increase in the concentration of mercaptide ion generated in the following reaction was monitored by measuring the absorbance at 412 nm. Although the absorbance increases with the first-order slope, the activity recovery rate was estimated by comparing this slope with that of the natural state.

【0053】(リフォールディング実験)CSは6M GuHCl
溶液中においてほぼランダムコイルに近い状態まで変性
する。このとき酵素活性は有さない。DTTはCSの持つジ
スルフィド結合を形成していないシステイン残基の非生
産的なジスルフィド形成を抑制するための還元剤であ
る。このCS変性溶液をbuffer、種々の濃度のSpP1.4溶
液、およびCHP溶液(1.0mg/ml)で50倍に希釈することで
リフォールディングを行わせ、希釈開始後(CHP系ではCD
添加後)の酵素活性を測定した。また、コントロールと
してSpPの原料であるプルランやスピロピランのカルボ
ン酸誘導体を用いてリフォールディング実験を行なっ
た。SpPを用いた系では、スピロピランのコンフォメー
ションがCSのリフォールディングに与える効果を検討す
るためにVIS(Whitelight)照射やUV(254nm)照射を行っ
た。光刺激には、UV照射を8W UV lamp (UVP, 8 watt ha
ndheld modelUVM-18)、VIS照射を8W White light lamp
(UVP, 8 watt handheld model UVM-18)を用いて行なっ
た。CHPを用いた系では、CS変性溶液をCHP溶液で希釈し
た後30min放置し、その後HP-β-CD(40mM)を添加してか
らの酵素活性を測定した。
(Refolding experiment) CS is 6M GuHCl
It denatures to a state close to a random coil in the solution. At this time, it has no enzyme activity. DTT is a reducing agent that suppresses unproductive disulfide formation of cysteine residues that CS does not form disulfide bonds. This CS denaturation solution is refolded by diluting it 50 times with buffer, various concentrations of SpP1.4 solution, and CHP solution (1.0 mg / ml).
The enzyme activity (after addition) was measured. Further, as a control, a refolding experiment was carried out using a carboxylic acid derivative of pullulan or spiropyran, which is a raw material of SpP. In the system using SpP, VIS (Whitelight) irradiation and UV (254 nm) irradiation were performed to examine the effect of the conformation of spiropyran on the refolding of CS. For light stimulation, UV irradiation is 8W UV lamp (UVP, 8 watt ha
ndheld model UVM-18), VIS irradiation 8W White light lamp
(UVP, 8 watt handheld model UVM-18). In the system using CHP, the CS denaturing solution was diluted with the CHP solution, allowed to stand for 30 minutes, and then HP-β-CD (40 mM) was added to measure the enzyme activity.

【0054】(化学変性CSのリフォールディング制御) SpPのシャペロン作用・コンフォメーション依存性 SpPがCSのリフォールディングに与える影響を検討する
にあたって、まず天然状態のCSにSpPが与える影響につ
いて検討した。 Spiroのものは10minのVIS照射をしてか
らCS溶液と混合し、MerIは遮光、MerIIは10minのUV
照射をしてから混合し、その後も照射を続けたものであ
る。SpP存在下、非存在下におけるCSの活性の変化がな
いことから、SpPナノ微粒子は、天然状態のCSと相互作
用しない、または、複合化のような相互作用があったと
しても、酵素活性には影響を与えないということが示唆
された。(表1) 表1 Sample Ralative enzyme activity No denaturation Naitve CS 1.00 SpP1.4(Spiro) 2.0mg/ml 0.99±0.02 (Mer) 0.98±0.05 Pullulan 1.01±0.02 After GuHCl denaturetion and dilution* No additive 0.34±0.02 Pullulan 0.37±0.04 Spi-COOH (Spiro) 0.32±0.06 Spi-COOH (Mer) 0.34±0.05 SpP1.4(Spiro) 1.0mg/ml 0.53±0.01 (Mer) 1.0mg/ml 0.10±0.03 (Spiro→Mer) 1.0mg/ml 0.58±0.04 (Mer→Spiro) 1.0mg/ml 0.81±0.01 * 変性化 CS 溶液 ([CS]=1.0mg/ml, 6M GuHCl, 400mM D
TT) は種々の溶液で50倍希釈された。緩衝液 : 150mM T
ris-HCl, 0.75mM EDTA, pH7.6.
(Refolding control of chemically modified CS) Chaperone action / conformation dependence of SpP In examining the effect of SpP on CS refolding, the effect of SpP on CS in the natural state was examined first. Spiro's is irradiated with VIS for 10 min and then mixed with CS solution, MerI is shaded, MerII is UV for 10 min.
After irradiation, they were mixed, and then irradiation was continued. Since there is no change in CS activity in the presence or absence of SpP, SpP nanoparticles do not interact with CS in the natural state or, even if there is an interaction such as conjugation, the enzyme activity does not increase. It has been suggested that does not affect. (Table 1) Table 1 Sample Ralative enzyme activity No denaturation Naitve CS 1.00 SpP1.4 (Spiro) 2.0mg / ml 0.99 ± 0.02 (Mer) 0.98 ± 0.05 Pullulan 1.01 ± 0.02 After GuHCl denaturetion and dilution * No additive 0.34 ± 0.02 Pullulan 0.37 ± 0.04 Spi-COOH (Spiro) 0.32 ± 0.06 Spi-COOH (Mer) 0.34 ± 0.05 SpP1.4 (Spiro) 1.0 mg / ml 0.53 ± 0.01 (Mer) 1.0 mg / ml 0.10 ± 0.03 (Spiro → Mer) 1.0 mg / ml 0.58 ± 0.04 (Mer → Spiro) 1.0mg / ml 0.81 ± 0.01 * Modified CS solution ([CS] = 1.0mg / ml, 6M GuHCl, 400mM D
TT) was diluted 50 times with various solutions. Buffer solution: 150mM T
ris-HCl, 0.75 mM EDTA, pH 7.6.

【0055】CSのリフォールディングにおけるSpPの効
果について検討した。Spiro、MerIの2つのコンフォメ
ーションについてリフォールディング実験を行なった。
用いた系は、変性溶液のCS濃度1.0mg/ml、希釈倍率は50
倍、SpP濃度は1.0mg/mlである。SpiroはSpP溶液調製
後、可視光照射(10min)し、変性CS溶液と混合後も可視
光照射し続けた。MerI型では、遮光条件下で行った。
また、プルラン(1.0mg/ml)やSpi-COOH(87.7μM、1.0mg/
mlのSpP1.4のスピロピランユニットと同濃度)のシャペ
ロン活性についても評価した。
The effect of SpP on CS refolding was examined. Refolding experiments were performed on two conformations of Spiro and MerI.
The system used was a denaturing solution with a CS concentration of 1.0 mg / ml and a dilution ratio of 50.
Double the SpP concentration is 1.0 mg / ml. Spiro was irradiated with visible light (10 min) after preparing the SpP solution, and continued to be irradiated with visible light even after mixing with the modified CS solution. For the MerI type, the test was performed under light-shielding conditions.
In addition, pullulan (1.0 mg / ml) and Spi-COOH (87.7 μM, 1.0 mg / ml)
The chaperone activity of the SpP1.4 spiropyran unit (the same concentration as ml) was also evaluated.

【0056】プルランやSpi-COOHにシャペロン活性は見
られなかった。この系において自発的なリフォールディ
ングは30%ほどであり、70%ほどのCSは正常なフォールデ
ィングやアセンブリーを成しえず、凝集したものと推察
される。SpPを用いた系では、最大活性回復を示したの
がMerIであり60%ほどであった。それに次いで、Spiro
が45%ほどであった。この二つの活性回復速度は、自発
的なものと比べて遅く、相互作用が示唆される結果とな
った。また、SpP系においては活性回復速度が自発的な
ものに比べ遅いことからSpPナノ微粒子とCSのリフォー
ルディング中間体との相互作用が示唆された。(表1、
図2)
No chaperone activity was found in pullulan or Spi-COOH. In this system, spontaneous refolding was about 30%, and about 70% of CS could not carry out normal folding or assembly, and are presumed to have aggregated. In the system using SpP, the maximum activity recovery was MerI, which was about 60%. Next to that, Spiro
Was about 45%. The recovery rates of these two activities were slower than those of spontaneous activity, suggesting an interaction. In addition, since the activity recovery rate in the SpP system was slower than that of the spontaneous activity, the interaction between the SpP nanoparticles and the CS refolding intermediate was suggested. (Table 1,
(Fig. 2)

【0057】次に、フォールディングの経過に伴って、
このSpPナノ微粒子のナノ空間の性質を光刺激すること
によって変化させることで、シャペロン作用がどのよう
に変化するかについて検討した(図2)。リフォールディ
ング初期にSpiroであったもので、すぐに遮光し除々にM
erIにしたものでは自発的なものが35%ほどであるのに
対して55%ほどであり、Spiro→Spiroの45%に比べて大
きな活性回復を示した。Spiroで30minほど放置してから
遮光したのはSpiro→Spiroとほぼ同様であった。
Next, with the progress of folding,
We examined how chaperone action changes by changing the nano-space properties of these SpP nanoparticles by photostimulation (Fig. 2). It was a Spiro at the beginning of refolding, and immediately shielded from light and gradually became M.
About 35% of the cases with erI were spontaneous, while about 55% showed a large recovery of activity compared to 45% of Spiro → Spiro. It was almost the same as Spiro → Spiro that it was left for 30 minutes with Spiro and then shielded from light.

【0058】リフォールディング初期にMerIであった
ものについてであるが、すぐにSpiroにしたものでは65
%ほどでMerI→MerIとほぼ同様であった。MerIで30m
inほどおいてからSpiroにしたものでは非常に大きな活
性回復が見られ、80%ほどであった。
Regarding the one that was MerI in the early stage of refolding, it was 65 when it was immediately changed to Spiro.
% Was almost the same as MerI → MerI. 30 meters at Mer I
In the case of using Spiro after a while, a very large activity recovery was observed, which was about 80%.

【0059】[0059]

【発明の効果】本検討では、化学変性状態にあるCSのリ
フォールディングの系における、SpPのシャペロン作用
について検討した。その結果、 1)変性蛋白質にフォールディングに適したナノ空間を提
供するとともに、複合化・放出を自発的に行なう 2)光刺激することによってフォールディングを行なうナ
ノ空間を、"よりフォールディングに適した環境"にする
ことが可能である といった特性を持つ人工分子シャペロンとして機能する
ことが見出された(図3)。すなはち、蛋白質とのアフ
ィニティーを光刺激により制御し、フォールディングを
促進しえることが明らかになった。この系では光刺激の
程度・間隔などによって種々の蛋白質に対して適した環
境を提供することが可能となることが期待される。ま
た、細胞内封入体からリフォールディングの系や、生体
外翻訳システムなどへの応用が期待される。
INDUSTRIAL APPLICABILITY In this study, the chaperone action of SpP in the refolding system of CS in a chemically denatured state was examined. As a result, 1) provide a denatured protein with a nanospace suitable for folding, and 2) spontaneously perform complexation / release, and 2) create a "nanospace suitable for folding" in a nanospace that undergoes folding by photostimulation. It has been found that it functions as an artificial molecular chaperone with the property that it can be modified (Fig. 3). That is, it has been clarified that the affinity with a protein can be controlled by light stimulation to promote folding. It is expected that this system will be able to provide an environment suitable for various proteins depending on the degree and interval of light stimulation. In addition, it is expected to be applied to the system of refolding from intracellular inclusions and in vitro translation system.

【図面の簡単な説明】[Brief description of drawings]

【図1】SpP1.4のフォトクロミズム(UV・VIS吸収スペ
クトル変化)を示す。
FIG. 1 shows the photochromism of SpP1.4 (UV / VIS absorption spectrum change).

【図2】SpP系の分子シャペロン作用の時間変化(活性
回復の時間変化)を示す。
FIG. 2 shows time-dependent changes in SpP-based molecular chaperone action (time-dependent recovery of activity).

【図3】光応答性人工分子シャペロンの作用機構を示
す。
FIG. 3 shows a mechanism of action of a photoresponsive artificial molecule chaperone.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) A61K 47/48 A61P 35/00 A61P 35/00 C12N 9/00 // C12N 9/00 C12P 21/02 C C12P 21/02 A61K 37/02 Fターム(参考) 4B050 CC02 CC03 GG04 KK15 LL01 4B064 AG01 CA19 CC24 DA01 4C076 AA65 AA95 BB11 CC27 EE30H FF21 GG21 4C084 AA03 AA11 BA44 DA19 DA22 DA24 DC15 DC16 DC20 DC21 MA01 MA05 MA37 MA66 NA13 ZB262 4H045 AA20 BA53 DA89 FA84 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) A61K 47/48 A61P 35/00 A61P 35/00 C12N 9/00 // C12N 9/00 C12P 21/02 C C12P 21/02 A61K 37/02 F-term (reference) 4B050 CC02 CC03 GG04 KK15 LL01 4B064 AG01 CA19 CC24 DA01 4C076 AA65 AA95 BB11 CC27 EE30H FF21 GG21 4C084 AA03 AA11 BA44 DA19 DA22 DA24 DC15 DC13 MA05 DC20 MA16 DC05 MA20 DC05 MA16 DC20 MA05 DC20 AA20 BA53 DA89 FA84

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】親水性高分子を光応答性化合物(光刺激に
より構造変化をおこし親水性-疎水性を制御しえる化合
物)で修飾し、得られた両親性高分子の形成するナノ粒
子内に目的蛋白質(ペプチドを含む)を取り込む工程を
含むことを特徴とする光刺激による包埋蛋白質(ペプチ
ドを含む)の制御方法。
1. A nanoparticle formed by modifying the hydrophilic polymer with a photoresponsive compound (a compound capable of controlling the hydrophilicity-hydrophobicity by causing a structural change by photostimulation) to form the resulting amphiphilic polymer. A method for controlling an embedded protein (including peptide) by photostimulation, which comprises a step of incorporating a target protein (including peptide) into the.
【請求項2】ナノ粒子が、粒径50-100nmである、請求項
1の制御方法。
2. The control method according to claim 1, wherein the nanoparticles have a particle size of 50-100 nm.
【請求項3】ナノ粒子が、多糖プルランである、請求項
2の制御方法。
3. The control method according to claim 2, wherein the nanoparticles are polysaccharide pullulan.
【請求項4】光応答性化合物が、スピロピラン基である
請求項1-3の何れか一に記載の制御方法。
4. The control method according to claim 1, wherein the photoresponsive compound is a spiropyran group.
【請求項5】制御が、光刺激によっておこなわれ、これ
により蛋白質のリフォールディングが制御される請求項
1-4の何れか一に記載の制御方法。
5. The control method according to any one of claims 1 to 4, wherein the control is performed by photostimulation, and thereby the refolding of the protein is controlled.
【請求項6】制御によって、ナノ粒子内に取り込まれた
包埋蛋白質(ペプチドを含む)について以下の少なくと
も一の機能を達成する請求項1-5の何れか一に記載の
制御方法。 1)蛋白質(ペプチドを含む)の生体内運搬、 2)蛋白質(ペプチドを含む)の保存・安定化、 3)蛋白質(ペプチドを含む)の精製、 4)酵素・基質反応性の制御、 5)抗原・抗体反応の制御。
6. The control method according to claim 1, which achieves at least one of the following functions for the embedded protein (including peptide) incorporated into the nanoparticles by control. 1) Transport of protein (including peptide) in vivo, 2) Storage and stabilization of protein (including peptide), 3) Purification of protein (including peptide), 4) Control of enzyme / substrate reactivity, 5) Control of antigen / antibody reaction.
【請求項7】請求項1-5の何れか一に記載の制御方法
で調製される蛋白質(ペプチドを含む)包埋ナノ粒子を
含有する製剤。
7. A preparation containing protein (including peptide) embedded nanoparticles prepared by the control method according to any one of claims 1 to 5.
【請求項8】請求項7の製剤の製造方法。8. A method for producing the formulation of claim 7.
JP2002147147A 2002-05-21 2002-05-22 Protein control method Expired - Fee Related JP4100499B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002147147A JP4100499B2 (en) 2002-05-22 2002-05-22 Protein control method
PCT/JP2003/006257 WO2003097672A1 (en) 2002-05-21 2003-05-20 Method for controlling protein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002147147A JP4100499B2 (en) 2002-05-22 2002-05-22 Protein control method

Publications (2)

Publication Number Publication Date
JP2003342292A true JP2003342292A (en) 2003-12-03
JP4100499B2 JP4100499B2 (en) 2008-06-11

Family

ID=29766456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002147147A Expired - Fee Related JP4100499B2 (en) 2002-05-21 2002-05-22 Protein control method

Country Status (1)

Country Link
JP (1) JP4100499B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006049032A1 (en) * 2004-11-01 2006-05-11 Tokyo Medical And Dental University Preparation of nanogel-apatite composite

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006049032A1 (en) * 2004-11-01 2006-05-11 Tokyo Medical And Dental University Preparation of nanogel-apatite composite
JPWO2006049032A1 (en) * 2004-11-01 2008-05-29 国立大学法人 東京医科歯科大学 Preparation of nanogel-apatite composite
JP5439650B2 (en) * 2004-11-01 2014-03-12 国立大学法人 東京医科歯科大学 Preparation of nanogel-apatite composite

Also Published As

Publication number Publication date
JP4100499B2 (en) 2008-06-11

Similar Documents

Publication Publication Date Title
Sawada et al. Cyclodextrin-responsive nanogel as an artificial chaperone for horseradish peroxidase
Carta et al. Solubilities of L-cystine, L-tyrosine, L-leucine, and glycine in aqueous solutions at various pHs and NaCl concentrations
Cummings et al. Tailoring enzyme activity and stability using polymer-based protein engineering
Pereira et al. Enhanced extraction of bovine serum albumin with aqueous biphasic systems of phosphonium-and ammonium-based ionic liquids
EP0056056B1 (en) Water soluble form of retinoids
Nomura et al. Thermoresponsive controlled association of protein with a dynamic nanogel of hydrophobized polysaccharide and cyclodextrin: heat shock protein-like activity of artificial molecular chaperone
Rodríguez-Martínez et al. Enzymatic activity and thermal stability of PEG-α-chymotrypsin conjugates
CN102575244B (en) Dissociation method and dissociation agent for avidin and biotin
JPS61249388A (en) Stabilized superoxide dismutase
Valdebenito et al. Bovine serum albumin as chain transfer agent in the acrylamide polymerization. Protein-polymer conjugates
Zhu et al. Determination of protein by hydroxypropyl-β-cyclodextrin sensitized fluorescence quenching method with erythrosine sodium as a fluorescence probe
JP2007191643A (en) Polyamino acid derivative imparted with fixability to living body
Gupta et al. Differential effect of surfactants tetra-n-butyl ammonium bromide and N-Cetyl-N, N, N-trimethyl ammonium bromide bound to nano-cellulose on binding and sustained release of some non-steroidal anti-inflammatory drugs
Sasaki et al. Construction of protein-crosslinked nanogels with vitamin B6 bearing polysaccharide
EP0471125B1 (en) Modified protease, method of producing the same and cosmetic compositions containing the modified protease
Friedman Protein crosslinking: biochemical and molecular aspects
King et al. Modulating growth factor release from hydrogels via a protein conformational change
Gao et al. Thiolated human serum albumin cross-linked dextran hydrogels as a macroscale delivery system
Deepankumar et al. Protein engineering for covalent immobilization and enhanced stability through incorporation of multiple noncanonical amino acids
Rariy et al. Protein refolding in predominantly organic media markedly enhanced by common salts
JP2003342292A (en) Method for controlling protein
US9770420B2 (en) Method for producing a polyglycerol nanogel for the encapsulation and release of biologically active substances
WO2012165356A1 (en) Thermosensitive polyamino acid or salt thereof
Muronetz et al. Interaction of antibodies and antigens conjugated with synthetic polyanions: on the way of creating an artificial chaperone
Kühlmeyer et al. Stabilisation of enzymes with polyvinylsaccharides I: physical stabilisation of horseradish peroxidase

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040303

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080312

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees