JP2003342007A - Method for producing metal oxide fine particle and the metal oxide fine particle - Google Patents

Method for producing metal oxide fine particle and the metal oxide fine particle

Info

Publication number
JP2003342007A
JP2003342007A JP2002152764A JP2002152764A JP2003342007A JP 2003342007 A JP2003342007 A JP 2003342007A JP 2002152764 A JP2002152764 A JP 2002152764A JP 2002152764 A JP2002152764 A JP 2002152764A JP 2003342007 A JP2003342007 A JP 2003342007A
Authority
JP
Japan
Prior art keywords
metal
metal oxide
oxide fine
microwave
metal compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002152764A
Other languages
Japanese (ja)
Other versions
JP3612546B2 (en
Inventor
Shozo Yanagida
祥三 柳田
Yuji Wada
雄二 和田
Tetsushi Yamamoto
哲士 山本
Takayuki Kitamura
隆之 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Technology Licensing Organization Co Ltd
Original Assignee
Kansai Technology Licensing Organization Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Technology Licensing Organization Co Ltd filed Critical Kansai Technology Licensing Organization Co Ltd
Priority to JP2002152764A priority Critical patent/JP3612546B2/en
Publication of JP2003342007A publication Critical patent/JP2003342007A/en
Application granted granted Critical
Publication of JP3612546B2 publication Critical patent/JP3612546B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nanometer-order crystalline metal oxide and a method for producing whereby the particle size of the obtained metal oxide fine particle can be controlled. <P>SOLUTION: This method comprises hydrolyzing a hydrolyzable metal compound in a polyol solution containing it followed by irradiating with a microwave. The polyol includes polyhydric alcohols such as diols or triols and a mixture of a plurality of polyols. The hydrolyzable metal compound is generally a metal alkoxide, but includes a metal salt such as an acetate, chloride, oxalate, sulfate or nitrate depending on the type of metal. The metal compound may be a hydrate or a non-hydrate, and titanium, silicon, tin and zinc are cited as the metal. In the case of non-hydrated metal compound, hydrolysis is performed by adding water to the polyol solution. In the case of the hydrated compound, the hydrolysis may be performed by irradiating with the microwave having an output not grater than that of the above one. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、金属酸化物微粒
子を製造する方法に属し、特に光触媒、機能性電極、電
極触媒、固体触媒、ガスセンサ、太陽電池、フォトニッ
ク結晶などの分野に好適に利用されうる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing metal oxide fine particles, and is particularly suitable for use in the fields of photocatalyst, functional electrode, electrode catalyst, solid catalyst, gas sensor, solar cell, photonic crystal and the like. Can be done.

【0002】[0002]

【従来の技術】大きさがナノメーターオーダーの酸化チ
タンなどの金属酸化物は、光触媒、太陽電池、フォトニ
ック結晶として用いられる重要な材料である。この酸化
チタンのような金属酸化物の微粒子を得るために、金属
アルコキシドを加水分解する方法が知られている。この
加水分解法は、溶液中で酸化物が形成されることから、
固相反応に比べて組成を均一にしやすく、蒸着などに比
べてコストが低いなどの利点を有する。ところで、加水
分解直後の酸化物は、非晶質である場合が多く、非晶質
を利用することもあるが、種々の用途に用いるために
は、結晶化させる必要もある。
2. Description of the Related Art Metal oxides such as titanium oxide having a size of nanometer order are important materials used as photocatalysts, solar cells, and photonic crystals. A method of hydrolyzing a metal alkoxide in order to obtain fine particles of a metal oxide such as titanium oxide is known. Since this hydrolysis method forms an oxide in a solution,
Compared with solid-phase reaction, it has the advantages that it is easier to make the composition uniform, and the cost is lower than vapor deposition. By the way, the oxide immediately after hydrolysis is often amorphous, and the amorphous is sometimes used, but it is also necessary to crystallize it in order to use it for various purposes.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来の加水分
解法では加水分解時には微粒子であっても、結晶化させ
るために例えば500℃以上の高温に加熱すると、粒子
同士が結合してしまってナノメーターオーダーを維持す
ることができなかった。それ故、この発明の第一の課題
は、ナノメーターオーダーの結晶質の金属酸化物を提供
することにある。第二の課題は、得られる金属酸化物微
粒子の粒径を制御することのできる方法を提供すること
にある。
However, in the conventional hydrolysis method, even if the particles are fine particles at the time of hydrolysis, when they are heated to a high temperature of, for example, 500 ° C. or more to crystallize, the particles are bonded to each other and the I was unable to maintain the meter order. Therefore, the first object of the present invention is to provide a crystalline metal oxide on the order of nanometers. The second object is to provide a method capable of controlling the particle size of the obtained metal oxide fine particles.

【0004】[0004]

【課題を解決するための手段】その課題を解決するため
に、この発明の金属酸化物微粒子を製造する方法は、加
水分解性の金属化合物を含むポリオール溶液中で、その
金属化合物を加水分解した後、マイクロ波を照射するこ
とを特徴とする。ここでポリオールとは、ジオール、ト
リオールなどの多価アルコール(脂肪族、芳香族を問わ
ない)及び複数種類のポリオールの混合物も含まれる。
加水分解性の金属化合物とは、一般的には金属アルコキ
シドであるが、金属の種類によっては酢酸塩、塩化物、
オキサレート、硫酸鉛、硝酸塩のような金属塩も含まれ
る。また、金属化合物は水和物でも非水和物でもよい。
金属としては、前記チタンの他、ケイ素、スズ、亜鉛な
どが挙げられる。金属化合物が非水和物の場合、加水分
解はポリオール溶液に水を添加することによってなされ
る。金属化合物が水和物の場合、加水分解は前記マイク
ロ波よりも高くない出力のマイクロ波を照射することに
よってもなされるし、並行して水を添加しても良い。
In order to solve the problem, the method for producing the metal oxide fine particles of the present invention is to hydrolyze the metal compound in a polyol solution containing a hydrolyzable metal compound. After that, it is characterized in that a microwave is applied. Here, the polyol includes polyhydric alcohols (whether aliphatic or aromatic) such as diols and triols, and a mixture of plural kinds of polyols.
The hydrolyzable metal compound is generally a metal alkoxide, but depending on the type of metal, acetate, chloride,
Also included are metal salts such as oxalate, lead sulfate, nitrates. Further, the metal compound may be a hydrate or a non-hydrate.
Examples of metals include titanium, silicon, tin, zinc, and the like. When the metal compound is non-hydrated, hydrolysis is done by adding water to the polyol solution. When the metal compound is a hydrate, the hydrolysis is carried out by irradiating with a microwave having an output not higher than the microwave, or water may be added in parallel.

【0005】加水分解性の金属化合物を含むポリオール
溶液中で、その金属化合物を加水分解すると、ポリオー
ルに囲まれた金属酸化物が生成する。この状態でマイク
ロ波を照射すると、溶媒であるポリオールが均等に熱せ
られ、生成した金属酸化物が結晶化する。しかも周囲に
ポリオールが存在するので粒子同士が結合することな
く、微粒子状態が維持される。マイクロ波とは、広くは
1GHz〜300GHzの電磁波を指し、通常は1GH
z〜10GHzである。溶媒としてのポリオールは、マ
イクロ波を吸収しやすく、熱発生効率が高いので、短時
間で結晶化させることを可能にする。この発明によれ
ば、添加する水の総量、マイクロ波を照射する時間、ポ
リオールの種類などを変えることにより、生成する金属
酸化物の粒径を制御することができる。一般的には水の
総量、マイクロ波照射時間あるいはポリオールの炭素数
が増すと粒径も大きくなる。従って、0.5nm〜50
nm、特に1nm〜15nmの範囲で所望の粒径の金属
酸化物結晶からなる微粒子が得られる。
When the metal compound is hydrolyzed in a polyol solution containing a hydrolyzable metal compound, a metal oxide surrounded by the polyol is produced. When microwaves are irradiated in this state, the polyol, which is the solvent, is heated uniformly, and the produced metal oxide crystallizes. Moreover, since the polyol is present around the particles, the particles are not bonded to each other and the fine particle state is maintained. The microwave generally refers to an electromagnetic wave of 1 GHz to 300 GHz, usually 1 GHz.
z to 10 GHz. Polyol as a solvent easily absorbs microwaves and has a high heat generation efficiency, and therefore can be crystallized in a short time. According to the present invention, the particle size of the metal oxide produced can be controlled by changing the total amount of water to be added, the time of microwave irradiation, the type of polyol, and the like. Generally, as the total amount of water, the microwave irradiation time or the carbon number of the polyol increases, the particle size also increases. Therefore, 0.5 nm to 50
In particular, fine particles of metal oxide crystals having a desired particle diameter in the range of 1 nm to 15 nm can be obtained.

【0006】[0006]

【実施例】−実施例1− マイクロ波照射装置として、周波数2.45GHz、最
大出力1.3kWのマグネトロンを備えたマイクロ電子
製のMMG−213VPマイクロ波装置を準備した。
EXAMPLES Example 1 As a microwave irradiation apparatus, an MMG-213VP microwave apparatus manufactured by Micro Electronics Co., Ltd. equipped with a magnetron having a frequency of 2.45 GHz and a maximum output of 1.3 kW was prepared.

【0007】内容積100mLの水晶製フラスコに窒素
雰囲気中で2mmolのテトライソプロポキシドチタニ
ウムTi(OiPr)4と1,4−ブタンジオール50mLを入
れた。この溶液の温度を熱電対によって測定しながら、
溶液に温度413Kで3分間200Wのマイクロ波を照
射した。溶液の温度は照射後2分以内に413Kに達し
た。その後、純水1mL、2mLまたは3mLを滴下
し、900Wの出力のマイクロ波を照射したところ、溶
液の温度は1分以内に513Kに達した。続いて溶液の
温度が513Kに維持されるように制御しながら、断続
的にマイクロ波を30分間照射した。添加水量が1mL
の場合だけ温度が513Kに達した後にマイクロ波の出
力を700Wに下げた。残りの照射時間中もその出力を
維持した。
2 mmol of tetraisopropoxide titanium Ti (OiPr) 4 and 50 mL of 1,4-butanediol were placed in a nitrogen atmosphere in a quartz flask having an internal volume of 100 mL. While measuring the temperature of this solution with a thermocouple,
The solution was irradiated with microwave of 200 W for 3 minutes at a temperature of 413K. The temperature of the solution reached 413 K within 2 minutes after irradiation. Then, 1 mL, 2 mL, or 3 mL of pure water was added dropwise and irradiated with a microwave having an output of 900 W, and the temperature of the solution reached 513 K within 1 minute. Subsequently, the microwave was intermittently irradiated for 30 minutes while controlling the temperature of the solution to be maintained at 513K. The amount of added water is 1 mL
Only when the temperature reached 513K, the microwave output was lowered to 700W. The output was maintained during the remaining irradiation time.

【0008】照射終了後、直ぐに溶液を冷却し、30m
Lのエタノールで希釈し、40000Gで10分間遠心
分離することによって、沈殿を生成した。得られた沈殿
をエタノールで二回超音波洗浄し、40000Gで10
分間遠心分離し、乾燥した。X線回折計(理学電機株式
会社製のMultiFlex)を用いて40kV−40mA、1
°(2θ)/minの条件でCu−KαのX線を沈殿に照射し
た。アナターゼ相の[101]回折ピークの半値幅から
デバイ−シェラー式に従って結晶の大きさを計算した。
式中、λCu-Kα1=0.154056nm、K=0.9とした。
計算結果を添加水量、マイクロ波照射時の温度、照射時
間とともに表1に示す。また、試料番号3の沈殿につい
ては透過型電子顕微鏡(日立株式会社製H−9000)
を用いて沈殿の画像を撮影した。撮影した写真を図1と
して示す。更に、この図1の範囲内に属する粒子から任
意に200個を選び、それらをサイズ毎に集計した結果
を図2に示す。
Immediately after irradiation, the solution was cooled to 30 m.
A precipitate was generated by diluting with L ethanol and centrifuging at 40000 G for 10 minutes. The obtained precipitate is ultrasonically washed twice with ethanol and then washed at 40,000 G for 10
Centrifuge for minutes and dry. Using an X-ray diffractometer (MultiFlex manufactured by Rigaku Denki Co., Ltd.), 40 kV-40 mA, 1
The precipitate was irradiated with X-rays of Cu-Kα under the condition of ° (2θ) / min. The crystal size was calculated from the full width at half maximum of the [101] diffraction peak of the anatase phase according to the Debye-Scherrer equation.
In the formula, λ Cu- K α1 = 0.154056 nm and K = 0.9.
The calculation results are shown in Table 1 together with the amount of added water, the temperature during microwave irradiation, and the irradiation time. Regarding the precipitation of sample No. 3, a transmission electron microscope (H-9000 manufactured by Hitachi, Ltd.)
An image of the precipitate was taken with. The photograph taken is shown in FIG. Further, FIG. 2 shows a result of arbitrarily selecting 200 particles from the particles belonging to the range of FIG. 1 and totaling them for each size.

【0009】[0009]

【表1】 [Table 1]

【0010】X線回折の結果、添加水量に関わらず、沈
殿はいずれも酸化チタンのアナターゼ相であり、表1に
見られるように、どの条件による試料も結晶サイズがナ
ノメーターオーダーであった。そして、添加水量以外の
条件が同一の場合、添加水量が増すにつれて結晶粒径が
大きくなっていた。尚、このうち試料番号1の結晶粒径
4.5nmは、図2における平均粒径5.8nmと一致
していることが認められる。従って、X線回折による結
晶粒径は、実際の結晶粒子群の平均値と解することがで
きる。
As a result of X-ray diffraction, regardless of the amount of added water, all the precipitates were anatase phase of titanium oxide, and as shown in Table 1, the sample under any condition had a crystal size of nanometer order. When the conditions other than the amount of added water were the same, the crystal grain size increased as the amount of added water increased. It should be noted that among them, the crystal grain size of sample No. 1 of 4.5 nm is found to match the average grain size of 5.8 nm in FIG. Therefore, the crystal grain size by X-ray diffraction can be understood as the average value of the actual crystal grain group.

【0011】−実施例2− 1,4−ブタンジオールに代えて1,5−ペンタンジオ
ールを溶媒として用い、マイクロ波の出力及び照射時間
を表2のように変更した以外は、実施例1と同様にして
酸化チタン微粒子を合成した。
Example 2 Example 1 was repeated except that 1,5-pentanediol was used as a solvent instead of 1,4-butanediol and the microwave output and irradiation time were changed as shown in Table 2. Similarly, titanium oxide fine particles were synthesized.

【0012】[0012]

【表2】 [Table 2]

【0013】本例で得られた沈殿も酸化チタンのアナタ
ーゼ相であることがX線回折によって同定された。そし
て、表2の試料番号4、7及び9を表1の試料番号1、
2及び3と各々対比して分かるように、他の条件が同じ
でも溶媒が1,4−ブタンジオールから1,5−ペンタ
ンジオールに代わっただけで、結晶粒径が増した。ま
た、表2の試料番号4、7及び9から、添加水量に伴っ
て結晶粒径が増すことは実施例1と同様であった。更に
また、表2の試料番号5、6及び7に見られるように、
添加水量及び温度が同じでも照射時間が増すに連れて、
結晶粒径が増した。
It was identified by X-ray diffraction that the precipitate obtained in this example was also in the anatase phase of titanium oxide. Then, the sample numbers 4, 7 and 9 of Table 2 are replaced with the sample numbers 1 and 1 of Table 1.
As can be seen by comparing with 2 and 3, respectively, even if the other conditions were the same, the crystal grain size increased only by changing the solvent from 1,4-butanediol to 1,5-pentanediol. Further, from the sample numbers 4, 7 and 9 in Table 2, the crystal grain size increased with the amount of added water, as in Example 1. Furthermore, as seen in sample numbers 5, 6 and 7 of Table 2,
Even if the amount of added water and the temperature are the same, as the irradiation time increases,
The crystal grain size increased.

【0014】[0014]

【発明の効果】以上のように、この発明によればナノメ
ーターオーダーで結晶性の良い金属酸化物微粒子を安価
に且つ迅速に得ることができる。また、粒径を所望の値
に制御することもできる。よって、結晶質の金属酸化物
微粒子を利用する各種分野において有益である。
As described above, according to the present invention, it is possible to quickly and inexpensively obtain metal oxide fine particles having good crystallinity on the order of nanometers. Further, the particle size can be controlled to a desired value. Therefore, it is useful in various fields in which crystalline metal oxide fine particles are used.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例1の試料番号3を透過型電子顕微鏡で
撮影した写真である。
FIG. 1 is a photograph of Sample No. 3 of Example 1 taken with a transmission electron microscope.

【図2】 上記写真に基づいて求めた粒度分布を示すグ
ラフである。
FIG. 2 is a graph showing a particle size distribution obtained based on the above photographs.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 北村 隆之 大阪府箕面市小野原東3丁目9−9−203 Fターム(参考) 4G042 DA01 DB11 DB15 DB38 DC03 DD04 DE09 DE14 4G047 CA02 CB06 CB08 CC03 CD04 CD07    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Takayuki Kitamura             3-9-9-203 Onohara East, Minoh City, Osaka Prefecture F-term (reference) 4G042 DA01 DB11 DB15 DB38 DC03                       DD04 DE09 DE14                 4G047 CA02 CB06 CB08 CC03 CD04                       CD07

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】加水分解性の金属化合物を含むポリオール
溶液中で、その金属化合物を加水分解した後、マイクロ
波を照射することを特徴とする金属酸化物微粒子を製造
する方法。
1. A method for producing fine metal oxide particles, which comprises hydrolyzing a metal compound in a polyol solution containing a hydrolyzable metal compound and then irradiating with microwaves.
【請求項2】前記金属化合物が非水和物であって、前記
加水分解がポリオール溶液に水を添加することによって
なされる請求項1に記載の方法。
2. The method of claim 1, wherein the metal compound is a non-hydrate and the hydrolysis is done by adding water to the polyol solution.
【請求項3】前記金属化合物が水和物であって、前記加
水分解が前記マイクロ波よりも高くない出力のマイクロ
波を照射することによってなされる請求項1に記載の方
法。
3. The method according to claim 1, wherein the metal compound is a hydrate, and the hydrolysis is performed by irradiating with a microwave having a power not higher than the microwave.
【請求項4】平均粒径が0.5nm〜50nmの金属酸
化物結晶からなることを特徴とする金属酸化物微粒子。
4. Fine metal oxide particles comprising a metal oxide crystal having an average particle size of 0.5 nm to 50 nm.
JP2002152764A 2002-05-27 2002-05-27 Method for producing metal oxide fine particles Expired - Fee Related JP3612546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002152764A JP3612546B2 (en) 2002-05-27 2002-05-27 Method for producing metal oxide fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002152764A JP3612546B2 (en) 2002-05-27 2002-05-27 Method for producing metal oxide fine particles

Publications (2)

Publication Number Publication Date
JP2003342007A true JP2003342007A (en) 2003-12-03
JP3612546B2 JP3612546B2 (en) 2005-01-19

Family

ID=29770022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002152764A Expired - Fee Related JP3612546B2 (en) 2002-05-27 2002-05-27 Method for producing metal oxide fine particles

Country Status (1)

Country Link
JP (1) JP3612546B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008518873A (en) * 2004-11-02 2008-06-05 ナノゲート エージー Synthesis of titanium dioxide nanoparticles
WO2008066095A1 (en) * 2006-11-30 2008-06-05 Andes Electric Co., Ltd. Process for production of metal oxide
WO2008105562A1 (en) 2007-03-01 2008-09-04 Canon Kabushiki Kaisha Metal coordination compound and production process thereof
WO2009007369A2 (en) * 2007-07-11 2009-01-15 Basf Se Method for the continuous production of nanoparticulate metal oxides in solvents containing polyol
WO2009013187A1 (en) * 2007-07-24 2009-01-29 Basf Se Microwave-induced process for preparing nanoparticulate metal oxides
JP2013019025A (en) * 2011-07-11 2013-01-31 National Institute Of Advanced Industrial Science & Technology Method for manufacturing metal microparticle
JP2013184830A (en) * 2012-03-06 2013-09-19 Nippon Steel & Sumikin Chemical Co Ltd Surface-modified metal oxide nanoparticle and method for producing the same
JP2016130369A (en) * 2016-02-10 2016-07-21 国立研究開発法人産業技術総合研究所 Metal fine particle manufacturing method and metal fine particle-containing solvent

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008518873A (en) * 2004-11-02 2008-06-05 ナノゲート エージー Synthesis of titanium dioxide nanoparticles
WO2008066095A1 (en) * 2006-11-30 2008-06-05 Andes Electric Co., Ltd. Process for production of metal oxide
JP2008137843A (en) * 2006-11-30 2008-06-19 Andes Denki Kk Metal oxide production method
WO2008105562A1 (en) 2007-03-01 2008-09-04 Canon Kabushiki Kaisha Metal coordination compound and production process thereof
JP2008214117A (en) * 2007-03-01 2008-09-18 Canon Inc Metal oxide particulates and their manufacturing method
WO2009007369A2 (en) * 2007-07-11 2009-01-15 Basf Se Method for the continuous production of nanoparticulate metal oxides in solvents containing polyol
WO2009007369A3 (en) * 2007-07-11 2009-03-19 Basf Se Method for the continuous production of nanoparticulate metal oxides in solvents containing polyol
WO2009013187A1 (en) * 2007-07-24 2009-01-29 Basf Se Microwave-induced process for preparing nanoparticulate metal oxides
JP2013019025A (en) * 2011-07-11 2013-01-31 National Institute Of Advanced Industrial Science & Technology Method for manufacturing metal microparticle
JP2013184830A (en) * 2012-03-06 2013-09-19 Nippon Steel & Sumikin Chemical Co Ltd Surface-modified metal oxide nanoparticle and method for producing the same
JP2016130369A (en) * 2016-02-10 2016-07-21 国立研究開発法人産業技術総合研究所 Metal fine particle manufacturing method and metal fine particle-containing solvent

Also Published As

Publication number Publication date
JP3612546B2 (en) 2005-01-19

Similar Documents

Publication Publication Date Title
Cavalcante et al. Growth mechanism of octahedron-like BaMoO4 microcrystals processed in microwave-hydrothermal: Experimental observations and computational modeling
Chandrappa et al. A hybrid electrochemical–thermal method for the preparation of large ZnO nanoparticles
JP6596347B2 (en) Method for producing vanadium dioxide
JP5463582B2 (en) Artificial superlattice particles
JP2010265144A (en) Method for producing composite tungsten oxide ultrafine particle
Ru et al. Microwave-assisted preparation of submicron-sized FeTiO3 powders
Cabello-Guzmán et al. Preliminary evaluation of the up-conversion emission of Y2O3: Er-Yb thin films prepared by a solid state photochemical deposition method
JP2003342007A (en) Method for producing metal oxide fine particle and the metal oxide fine particle
JP2018115093A (en) Rectangular parallelepiped monocrystalline sodium niobate particle and process for producing the same
Parvizian et al. Precursor chemistry of metal nitride nanocrystals
Chen et al. Crystallization, phase transition and optical properties of the rare-earth-doped nanophosphors synthesized by chemical deposition
Khan et al. Flame-synthesized Y 2 O 3: Tb 3+ nanocrystals as spectral converting materials
US20070231234A1 (en) Microwave assisted rapid gel combustion technique for producing ultrafine complex oxides and ceramic composites powders
Wang et al. Fabrication and morphology control of BaWO4 thin films by microwave assisted chemical bath deposition
Jemmali et al. Polycrystalline powder synthesis methods
Weidenkaff et al. Phase formation and phase transition of Ln1–xCaxCoO3–δ (Ln= La, Er) applied for bifunctional air electrodes
Mesaros et al. Synthesis of YTaO4: Nb thin films by chemical solution deposition
Chen et al. Toward materials-by-design: achieving functional materials with physical and chemical effects
Gaidamavičienė et al. Synthesis, a structural and thermoanalytical study of Ca1-xSrxMoO4 ceramic
JP6352210B2 (en) Method for producing perovskite oxynitride fine particles, perovskite oxynitride fine particles
Zhang et al. Facile synthesis of submicron BaTiO3 crystallites by a liquid–solid reaction method
Pholnak et al. Evolution and temperature dependence of ZnO formation by high power sonication
JP5267940B2 (en) Method for producing plate-like potassium lithium titanate
JP3981513B2 (en) Method for producing metal oxide
Da Silva et al. Bismuth zinc niobate pyrochlore Bi1. 5ZnNb1. 5O7 from a polymeric urea-containing precursor

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040408

Free format text: JAPANESE INTERMEDIATE CODE: A621

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20040416

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20040628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040917

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040924

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081105

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081105

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20091105

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20091105

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20101105

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111105

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees