JP2003340431A - Biological cleaning method and apparatus for polluted soil - Google Patents

Biological cleaning method and apparatus for polluted soil

Info

Publication number
JP2003340431A
JP2003340431A JP2002149679A JP2002149679A JP2003340431A JP 2003340431 A JP2003340431 A JP 2003340431A JP 2002149679 A JP2002149679 A JP 2002149679A JP 2002149679 A JP2002149679 A JP 2002149679A JP 2003340431 A JP2003340431 A JP 2003340431A
Authority
JP
Japan
Prior art keywords
soil
ventilation
contaminated soil
rate
oxygen concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002149679A
Other languages
Japanese (ja)
Other versions
JP3948614B2 (en
Inventor
Seiji Otsuka
誠治 大塚
Tatsuji Kawai
達司 河合
Akitoshi Iwamoto
晃敏 岩本
Akiko Sato
亜紀子 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2002149679A priority Critical patent/JP3948614B2/en
Publication of JP2003340431A publication Critical patent/JP2003340431A/en
Application granted granted Critical
Publication of JP3948614B2 publication Critical patent/JP3948614B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biological cleaning method and an apparatus for contaminated soil capable of controlling ventilation according as degradation activity of microorganisms. <P>SOLUTION: An oxygen analyzer 5 is disposed in the contaminated soil S and a decrease rate (δ[O<SB>2</SB>]/δt) of residual oxygen concentration [O<SB>2</SB>] is measured by using the oxygen analyzer 5. The contaminated soil S is cleaned while the ventilation volume into the contaminated soil S is controlled in accordance with the decrease rate (δ[O<SB>2</SB>]/δt). The oxygen consumption C<SB>02</SB>in the contaminated soil S is calculated from the decrease rate (δ[O<SB>2</SB>]/δt) of residual oxygen concentration [O<SB>2</SB>] and the soil air volume VSPACE of the contaminated soil S and the ventilation volume into the contaminated soil S is controlled in accordance with the oxygen consumption C<SB>02</SB>. Further preferably, a thermometer 6 is disposed in the contaminated soil S and a soil temperature TSOIL is measured by using the thermometer 6. The ventilation into the contaminated soil is then controlled in accordance with the oxygen consumption C<SB>02</SB>and the soil temperature TSOIL. The ventilation volume is preferably controlled by each of respective areas by disposing the oxygen analyzers 5 and/or the thermometers 6 into a plurality of the areas of the contaminated soil S. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は汚染土壌の生物浄化
方法及び装置に関し、とくに汚染土壌を土壌中の好気性
微生物の活性化に必要な酸素の供給により浄化する生物
浄化方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a biological purification method and apparatus for contaminated soil, and more particularly to a biological purification method and apparatus for purifying contaminated soil by supplying oxygen necessary for activation of aerobic microorganisms in the soil.

【0002】[0002]

【従来の技術】近年、工場等の産業施設跡地等で石油系
炭化水素化合物、ハロゲン化炭化水素化合物等による土
壌の汚染が問題となるケースが増えている。土壌は人の
生活や経済活動の基盤である土地を構成しており、汚染
土壌を放置すると直接摂取や地下水・農作物・魚介類等
を通じて人の健康に影響が及ぶ懸念がある。汚染土壌の
遮断・封じ込めが困難である場合や再開発事業等の支障
となる場合は、汚染土壌の浄化が必要となる。
2. Description of the Related Art In recent years, there has been an increasing number of cases where soil pollution by petroleum hydrocarbon compounds, halogenated hydrocarbon compounds, etc. has become a problem at sites such as industrial sites such as factories. Soil constitutes the land that is the basis of human life and economic activities, and if contaminated soil is left untreated, there is a concern that it may affect human health through direct intake, groundwater, agricultural products, seafood, etc. If it is difficult to block or contain the contaminated soil or if it interferes with the redevelopment project, it is necessary to clean the contaminated soil.

【0003】汚染土壌を浄化する技術の一つとして、土
壌中の汚染の原因となる物質(以下、汚染物質とい
う。)を土壌中に天然に存在する又は人為的に添加した
好気性の汚染物質分解微生物(以下、単に好気性微生物
という。)により分解して除去する生物処理法が開発さ
れている。生物処理法は汚染物質を直接分解する方法で
あり、二次廃棄物の発生がない、処理に要するエネルギ
ーが少ない、物理・化学的処理のみでは難しい低い濃度
まで浄化できる等の効果が期待されている。
As one of the techniques for purifying contaminated soil, an aerobic pollutant naturally existing in the soil or artificially added to the soil is a substance causing contamination in the soil (hereinafter referred to as pollutant). A biological treatment method has been developed in which a degrading microorganism (hereinafter, simply referred to as an aerobic microorganism) is decomposed and removed. The biological treatment method is a method of directly decomposing pollutants, and is expected to have effects such as no secondary waste generation, less energy required for treatment, and purification to low concentrations that are difficult to achieve by physical and chemical treatment alone. There is.

【0004】生物処理法では、土壌中の好気性微生物を
人為的に活性化するため、土壌中に窒素・リン等の栄養
物質と湿分とを供給すると共に、土壌への通気を適切に
管理する必要がある。土壌中の酸素(土壌空隙中の酸素
を含む。)は汚染物質の分解に伴い好気性微生物によっ
て消費されるので、通気量が少ないと土壌中の酸素濃度
が次第に低下して分解反応が進まなくなる。他方、多過
ぎる通気は経済的な土壌浄化を困難にするだけでなく、
エネルギーの浪費を招くので環境面からも好ましくな
い。
In the biological treatment method, since aerobic microorganisms in the soil are artificially activated, nutrients such as nitrogen and phosphorus and moisture are supplied to the soil, and aeration of the soil is appropriately controlled. There is a need to. Oxygen in soil (including oxygen in soil voids) is consumed by aerobic microorganisms along with the decomposition of pollutants, so if the amount of aeration is low, the oxygen concentration in soil will gradually decrease and the decomposition reaction will not proceed. . On the other hand, too much ventilation not only makes economic soil remediation difficult,
It is not preferable from the environmental point of view because it wastes energy.

【0005】例えば生物処理法の通気方法の一例とし
て、掘削した汚染土壌をパイル状に積み上げ、パイルの
下端部又は下端と頂端との中間部に敷設又は挿入した通
気管を介して強制的に空気(又は酸素)を圧入又は吸引
する強制通気法が実施されている。従来から、空気を吸
引する方式(空気吸引方式)の強制通気法では、吸引し
た排ガス中の酸素濃度を測定し、酸素濃度が5〜8%以
上20%以下(望ましくは15〜20%)となるように通気量
を制御することが行われている。
[0005] For example, as an example of aeration method of biological treatment method, excavated contaminated soil is piled up in a pile shape and forcedly aired through a ventilation pipe laid or inserted at the lower end of the pile or an intermediate portion between the lower end and the top end. A forced ventilation method is used in which (or oxygen) is injected or sucked. Conventionally, in the forced ventilation method of a method of sucking air (air suction method), the oxygen concentration in the sucked exhaust gas is measured, and the oxygen concentration is 5 to 8% or more and 20% or less (desirably 15 to 20%). The air flow rate is controlled so that

【0006】[0006]

【発明が解決しようとする課題】しかし、上述した排ガ
ス中の酸素濃度に基づく通気量の制御には次のような問
題点がある。
However, the above-mentioned control of the ventilation amount based on the oxygen concentration in the exhaust gas has the following problems.

【0007】(a)汚染土壌への通気は、土壌中の好気
性微生物の酸素消費すなわち汚染物質分解活性(以下、
単に分解活性ということがある。)に応じて制御するこ
とが適切且つ経済的である。しかし、排ガス中の酸素濃
度から好気性微生物の酸素消費量又は速度を正確に把握
することは困難である。例えば、土壌中に圧密や湿分変
化等が発生すると土壌中の通気状態が変化して排ガス中
の酸素濃度が変化する。また、土壌温度によっても微生
物の酸素消費速度が変化する。即ち、排ガス中の酸素濃
度のみに基づく制御では、好気性微生物の分解活性に応
じた通気を行うことは難しい。
(A) Aeration of contaminated soil is performed by oxygen consumption of aerobic microorganisms in the soil, that is, pollutant decomposition activity (hereinafter,
It may be simply called decomposition activity. ) Is suitable and economical. However, it is difficult to accurately grasp the oxygen consumption amount or rate of aerobic microorganisms from the oxygen concentration in the exhaust gas. For example, when consolidation or humidity change occurs in the soil, the ventilation state in the soil changes and the oxygen concentration in the exhaust gas changes. The oxygen consumption rate of microorganisms also changes depending on the soil temperature. That is, it is difficult to perform aeration according to the decomposition activity of aerobic microorganisms by the control based only on the oxygen concentration in the exhaust gas.

【0008】(b)汚染土壌への通気は土壌浄化の進行
に応じて制御することが適切且つ経済的である。浄化が
進行して土壌中の汚染物質濃度が減少してくると、微生
物の酸素消費が減少し、それに応じて排ガス中の酸素濃
度は上昇する。しかし、上述したように排ガス中の酸素
濃度は微生物の酸素消費以外の要因でも変動するので、
例えば過剰な通気による排ガス中の酸素濃度の上昇を微
生物の酸素消費の減少又は土壌中の汚染物質濃度の減少
と見誤るおそれがある。即ち、排ガス中の酸素濃度のみ
に基づく制御では土壌浄化の進行に応じた通気を行うこ
とも困難である。
(B) It is appropriate and economical to control the ventilation of the contaminated soil according to the progress of soil purification. As the purification progresses and the concentration of pollutants in the soil decreases, the oxygen consumption of microorganisms decreases, and the oxygen concentration in the exhaust gas increases accordingly. However, as described above, the oxygen concentration in the exhaust gas changes due to factors other than oxygen consumption by microorganisms,
For example, an increase in oxygen concentration in exhaust gas due to excessive ventilation may be mistaken for a decrease in oxygen consumption of microorganisms or a decrease in pollutant concentration in soil. That is, it is also difficult to perform ventilation according to the progress of soil purification by the control based only on the oxygen concentration in the exhaust gas.

【0009】(c)汚染土壌への通気は、土壌中へ空気
を圧入する方式(空気圧入方式)で行う場合もある。し
かし、上述した排ガス中の酸素濃度に基づく通気量の制
御は、空気吸引方式の通気では適用可能であるものの、
空気圧入方式の通気には適用できない。空気圧入方式で
は土壌表面全体から排ガスが噴出するため、排ガス中の
酸素濃度を測定する適当な方法がないからである。空気
圧入方式にも適用可能な通気の制御技術の開発が望まれ
ている。
(C) Aeration of contaminated soil may be performed by a method of injecting air into the soil (air intrusion method). However, although the control of the ventilation amount based on the oxygen concentration in the exhaust gas described above is applicable in the ventilation of the air suction method,
It cannot be used for air-pressurized ventilation. This is because, in the air injection method, exhaust gas is ejected from the entire soil surface, so there is no suitable method for measuring the oxygen concentration in the exhaust gas. It is desired to develop a ventilation control technology that can be applied to the air injection method.

【0010】そこで本発明の目的は、微生物の分解活性
に応じて通気を制御できる汚染土壌の生物浄化方法及び
装置を提供することにある。
Therefore, an object of the present invention is to provide a method and apparatus for biological purification of contaminated soil, which can control aeration according to the decomposition activity of microorganisms.

【0011】[0011]

【課題を解決するための手段】本発明者は、汚染土壌中
の好気性微生物の分解活性を判断するため、汚染土壌中
の残存酸素濃度を測定することに注目した。例えば無通
気時の土壌中の残存酸素は専ら土壌中の好気性微生物の
汚染物質分解過程で消費されて減少するので、残存酸素
濃度の減少速度は好気性微生物の酸素消費速度とみなす
ことができる。即ち、無通気時の土壌中の残存酸素濃度
減少速度を測定すれば、土壌中の好気性微生物の分解活
性を判断できる。また、例えば通気量が一定であれば、
通気時における土壌中の残存酸素濃度の減少速度から土
壌中の好気性微生物の分解活性をある程度推定できる。
本発明は、この知見に基づく研究開発の結果、完成に至
ったものである。
The present inventor has paid attention to measuring the residual oxygen concentration in the contaminated soil in order to judge the degrading activity of aerobic microorganisms in the contaminated soil. For example, since residual oxygen in soil without air is exclusively consumed and reduced in the process of decomposing pollutants by aerobic microorganisms in soil, the rate of decrease in residual oxygen concentration can be regarded as the rate of oxygen consumption by aerobic microorganisms. . That is, the activity of decomposing aerobic microorganisms in the soil can be determined by measuring the rate of decrease in the residual oxygen concentration in the soil without aeration. Also, for example, if the air flow rate is constant,
Degradation activity of aerobic microorganisms in soil can be estimated to some extent from the rate of decrease of residual oxygen concentration in soil during aeration.
The present invention has been completed as a result of research and development based on this knowledge.

【0012】図1のブロック図及び図2の流れ図を参照
するに、本発明による汚染土壌の生物浄化方法は、汚染
土壌Sを土壌中の好気性微生物への通気により浄化する
方法において、汚染土壌S中に酸素計5を設け、残存酸
素濃度[O2]の減少速度(δ[O 2]/δt)を酸素計5で測
定し(図2のステップ205〜207参照)、その減少速度
(δ[O2]/δt)の測定値に基づき汚染土壌Sへの通気
量を制御してなるものである。
See the block diagram of FIG. 1 and the flow chart of FIG.
In addition, the method for biological purification of contaminated soil according to the present invention is
Purify soil S by aeration of aerobic microorganisms in the soil
In the method, an oxygen meter 5 is provided in the contaminated soil S to remove residual acid.
Elementary concentration [O2] Decrease rate (δ [O 2] / Δt) is measured with an oxygen meter 5.
(See steps 205 to 207 in Fig. 2) and the rate of decrease
(Δ [O2] / Δt) Aeration to the contaminated soil S based on the measured value
The amount is controlled.

【0013】好ましくは、残存酸素濃度[O2]の減少速度
(δ[O2]/δt)と汚染土壌Sの土壌空気容積VSPACE
から汚染土壌S中の酸素消費量CO2を算出し(図2のス
テップ208参照)、その酸素消費量CO2の算出値に基づき
汚染土壌Sへの通気量を制御する。更に好ましくは、汚
染土壌S中に温度計6を設け、温度計6で土壌温度TS
OILを測定し、酸素消費量CO2と土壌温度TSOILとに基づ
き汚染土壌Sへの通気量を算出する(図2のステップ20
9参照)。望ましくは、残存酸素濃度[O2]の減少速度
(δ[O2]/δt)を無通気時に測定する。酸素計5及び
/又は温度計6を汚染土壌S中の複数部位に設け、汚染
土壌Sへの通気量を各部位毎に制御することが望まし
い。
Preferably, the oxygen consumption amount C O2 in the contaminated soil S is calculated from the decrease rate (δ [O 2 ] / δt) of the residual oxygen concentration [O 2 ] and the soil air volume V SPACE of the contaminated soil S. (Refer to step 208 of FIG. 2), the aeration amount to the contaminated soil S is controlled based on the calculated value of the oxygen consumption amount C O2 . More preferably, a thermometer 6 is provided in the contaminated soil S, and the soil temperature T S is measured by the thermometer 6.
The OIL is measured, and the air flow rate to the contaminated soil S is calculated based on the oxygen consumption C O2 and the soil temperature T SOIL (step 20 in FIG. 2).
See 9). Desirably, the rate of decrease of the residual oxygen concentration [O 2 ] (δ [O 2 ] / δt) is measured without aeration. It is desirable to provide the oxygen meter 5 and / or the thermometer 6 at a plurality of sites in the contaminated soil S and control the amount of ventilation to the contaminated soil S for each site.

【0014】また図1のブロック図を参照するに、本発
明による汚染土壌の生物浄化装置は、汚染土壌Sに通気
する通気装置1、汚染土壌S中に設ける酸素計5、及び
残存酸素濃度[O2]の減少速度(δ[O2]/δt)を酸素計
5で測定し且つその減少速度(δ[O2]/δt)の測定値
に基づき通気装置1の通気量を制御する制御装置10を備
えてなるものである。
Further, referring to the block diagram of FIG. 1, the biological purification apparatus for polluted soil according to the present invention has a ventilation device 1 for ventilating the polluted soil S, an oxygen meter 5 provided in the polluted soil S, and a residual oxygen concentration [ Control for measuring the rate of decrease of O 2 ] (δ [O 2 ] / δt) with an oximeter 5 and controlling the ventilation rate of the ventilation device 1 based on the measured value of the rate of decrease (δ [O 2 ] / δt). The device 10 is provided.

【0015】好ましくは、制御装置10により、残存酸素
濃度[O2]の減少速度(δ[O2]/δt)と汚染土壌Sの土
壌空気容積VSPACEとから汚染土壌S中の酸素消費量CO2
を算出し且つその酸素消費量CO2の算出値に基づき通気
装置1の通気量を制御する。更に好ましくは、汚染土壌
S中に土壌温度TSOILを測定する温度計6を設け、制御
装置10により、酸素消費量CO2と土壌温度TSOILとに基づ
き通気装置1の通気量を算出する。望ましくは、残存酸
素濃度[O2]の減少速度(δ[O2]/δt)を無通気時に測
定する。
Preferably, the controller 10 determines the amount of oxygen consumption in the contaminated soil S from the decreasing rate (δ [O 2 ] / δt) of the residual oxygen concentration [O 2 ] and the soil air volume V SPACE of the contaminated soil S. C O2
Is calculated and the ventilation amount of the ventilation device 1 is controlled based on the calculated value of the oxygen consumption amount C O2 . More preferably, a thermometer 6 for measuring the soil temperature T SOIL is provided in the contaminated soil S, and the controller 10 calculates the ventilation amount of the ventilation device 1 based on the oxygen consumption amount C O2 and the soil temperature T SOIL . Desirably, the rate of decrease of the residual oxygen concentration [O 2 ] (δ [O 2 ] / δt) is measured without aeration.

【0016】[0016]

【発明の実施の形態】図1は、地盤中から掘削して積み
上げた汚染土壌Sの浄化に本発明を適用した実施例を示
す。図示例では、掘削後に適当な栄養塩等の栄養物質を
添加して混合した汚染土壌Sを浄化ヤードYにパイルと
して積み上げ、汚染土壌Sの湿度を適当に保ちつつ、通
気装置1により汚染土壌パイルへ通気している。以下図
1を参照して本発明装置を説明するが、本発明の適用範
囲は掘削した汚染土壌Sの浄化に限定されず、図3のよ
うに汚染地盤Eの浄化(以下、原位置浄化ということが
ある。)にも適用可能である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment in which the present invention is applied to the purification of contaminated soil S excavated from the ground and piled up. In the illustrated example, the contaminated soil S mixed with a nutrient substance such as a suitable nutrient salt after excavation is piled up as a pile in the purification yard Y, and the ventilation device 1 keeps the humidity of the contaminated soil S appropriate while the contaminated soil pile is piled up. Is vented to. Hereinafter, the apparatus of the present invention will be described with reference to FIG. 1, but the scope of application of the present invention is not limited to the purification of the excavated contaminated soil S, but the purification of the contaminated soil E as shown in FIG. Sometimes, it is also applicable.

【0017】図示例の通気装置1は、送風機(ブロア)
4と流量調節弁2付き多孔通気管3とを有する。各通気
管3を汚染土壌Sの水平断面上に並べて挿入し、送風機
4及び通気管3経由で空気を吸引することによりパイル
表面から土壌S中へ空気を供給する。但し、通気管3の
数や配置、調節弁の有無、孔の数等は図示例に限定され
ず、例えば通気管3を浄化ヤードYに敷設し、汚染土壌
Sの下端面から空気を吸引してもよい。また、汚染土壌
Sの通気抵抗の大きさやパイルの高さに応じて汚染土壌
Sの下端部と中間部との2段又は3段以上に通気管3を
設けることができる。図示例は空気吸引方式の通気装置
1を示すが、本発明は通気装置1を空気圧入方式とした
場合にも適用可能である。空気圧入方式の場合は、空気
又は酸素ガスを供給することができる。
The ventilation device 1 in the illustrated example is a blower.
4 and a porous ventilation pipe 3 with a flow rate control valve 2. Air is supplied from the pile surface into the soil S by inserting the ventilation pipes 3 side by side on the horizontal section of the contaminated soil S and sucking air through the blower 4 and the ventilation pipe 3. However, the number and arrangement of the ventilation pipes 3, the presence or absence of control valves, the number of holes, etc. are not limited to the illustrated examples, and for example, the ventilation pipes 3 are laid in the purification yard Y and air is sucked from the lower end surface of the contaminated soil S. May be. Further, the ventilation pipes 3 can be provided in two or three or more stages between the lower end and the middle of the contaminated soil S depending on the size of the ventilation resistance of the contaminated soil S and the height of the pile. Although the illustrated example shows the air suction type ventilation device 1, the present invention is also applicable to the case where the ventilation device 1 is of the air pressure type. In the case of the air pressure injection method, air or oxygen gas can be supplied.

【0018】また本発明の生物浄化装置は、通気装置1
と共に、汚染土壌S中に設置する酸素計5を有する。例
えば、汚染土壌Sを積み上げていく途中の適当な部位に
酸素計5を埋設する。汚染土壌Sに通気状態が異なる複
数の部分がある場合は、酸素計5を各部分にそれぞれ設
けることが望ましい。図示例では複数の酸素計5を、隣
接する通気管3の中間部位に、通気管3の挿入断面とパ
イル頂面との中間高さとなるように、通気管3の長さ方
向に沿って配置している(図1(A)及び(B)参
照)。必要に応じて通気管3とパイル側面との間に酸素
計5を設けてもよい。但し、酸素計5の数や配置は図示
例に限定されず、汚染土壌Sの通気特性や通気管3の配
置位置、パイルの高さ等に応じて適当な部位に酸素計5
を配置できる。
Further, the biological purification device of the present invention comprises a ventilation device 1.
In addition, it has an oxygen meter 5 installed in the contaminated soil S. For example, the oxygen meter 5 is buried in an appropriate portion on the way of stacking the contaminated soil S. When the contaminated soil S has a plurality of parts with different ventilation states, it is desirable to provide the oxygen meter 5 in each part. In the illustrated example, a plurality of oximeters 5 are arranged along the length direction of the ventilation pipe 3 at an intermediate portion between the adjacent ventilation pipes 3 so as to have an intermediate height between the insertion cross-section of the ventilation pipe 3 and the pile top surface. (See FIGS. 1A and 1B). If necessary, an oxygen meter 5 may be provided between the ventilation pipe 3 and the side surface of the pile. However, the number and arrangement of the oximeters 5 are not limited to the example shown in the figure, and the oximeters 5 may be arranged at appropriate positions according to the ventilation characteristics of the contaminated soil S, the arrangement position of the ventilation pipe 3, the height of the pile, and the like.
Can be placed.

【0019】酸素計5は、例えば汚染土壌S中へ挿入す
る細いサンプリングパイプを有し、汚染土壌Sから吸引
したガス中の酸素濃度を測定する一般的な酸素センサ
(例えばポーラログラフ式やガルバニ電池式)とするこ
とができる。但し、ガス吸引式の酸素センサは、バッチ
測定を繰り返すため測定時間がかかり、ガス吸引が土壌
中の酸素濃度に影響を与えるおそれがあり、またセンサ
自体の酸素消費により測定誤差が生じ得る等の問題点が
ある。本発明で用いる酸素計5の好ましい一例は、酸素
の自己消費量が少ない蛍光式酸素計である。蛍光式酸素
計は、特殊な有機物質への近紫外線照射時に発生する蛍
光の強度が酸素濃度に応じて減衰する現象を利用したも
のであり、酸素を消費せずにリアルタイムに汚染土壌S
中の酸素濃度を測定できる。
The oximeter 5 has, for example, a thin sampling pipe inserted into the contaminated soil S, and a general oxygen sensor (for example, a polarographic type or a galvanic cell type) for measuring the oxygen concentration in the gas sucked from the contaminated soil S. ) Can be. However, the gas suction type oxygen sensor requires a long measurement time because the batch measurement is repeated, and gas suction may affect the oxygen concentration in the soil, and measurement error may occur due to oxygen consumption of the sensor itself. There is a problem. A preferable example of the oximeter 5 used in the present invention is a fluorescence oximeter which consumes less oxygen. The fluorescence oximeter utilizes a phenomenon in which the intensity of fluorescence generated when a special organic substance is irradiated with near-ultraviolet light is attenuated according to the oxygen concentration, and the contaminated soil S is consumed in real time without consuming oxygen.
The oxygen concentration in the inside can be measured.

【0020】更に本発明の生物浄化装置は、通気装置1
及び酸素計5に接続された制御装置10を有する。制御装
置10は、酸素計5の測定値を入力して通気装置1の流量
調節弁2及び/又は送風機4を制御する。図示例の制御
装置10は、記憶手段20と通気制御手段30と入力手段32と
表示手段33とを有する。記憶手段20に通気量24、通気時
間25、無通気時間26等を記憶し、その通気量24、通気時
間25、無通気時間26等に基づき通気制御手段30が通気装
置1の通気を制御する。入力手段32は、後述する汚染物
質の分解反応式22や残存汚染物質の経時的濃度変化23等
を入力するキーボードやマウス等を含む。また表示手段
33の一例は、酸素計5の測定値や通気装置1の通気量24
等を表示するディスプレイである。
Further, the biological purifying device of the present invention comprises a ventilation device 1.
And a control device 10 connected to the oximeter 5. The control device 10 inputs the measurement value of the oximeter 5 and controls the flow control valve 2 and / or the blower 4 of the ventilation device 1. The control device 10 of the illustrated example includes a storage unit 20, a ventilation control unit 30, an input unit 32, and a display unit 33. The storage means 20 stores the ventilation amount 24, the ventilation time 25, the no ventilation time 26, etc., and the ventilation control means 30 controls the ventilation of the ventilation device 1 based on the ventilation amount 24, the ventilation time 25, the no ventilation time 26, etc. . The input means 32 includes a keyboard, a mouse, etc. for inputting a decomposition reaction formula 22 of pollutants, a change 23 in the concentration of remaining pollutants over time, and the like, which will be described later. Display means
One example of 33 is the measured value of the oxygen meter 5 and the ventilation volume of the ventilation device 1 of 24.
It is a display that displays, etc.

【0021】図示例の制御装置10は、酸素計5の測定値
を入力して土壌S中の残存酸素濃度[O2]の減少速度(δ
[O2]/δt)を測定する減少速度測定手段12、減少速度
(δ[O2]/δt)と汚染土壌Sの土壌空気容積VSPACE
から汚染土壌S中の酸素消費量CO2を算出する酸素消費
量算出手段13、及び減少速度(δ[O2]/δt)又は酸素
消費量CO2に基づき記憶手段20の通気量24を更新する更
新手段14を有する。例えば制御装置10をコンピュータと
し、減少速度測定手段12、酸素消費量算出手段13、更新
手段14、及び通気制御手段30をコンピュータの内蔵プロ
グラムとすることができる。
The control device 10 of the illustrated example inputs the measured value of the oxygen meter 5 and decreases the residual oxygen concentration [O 2 ] in the soil S (δ).
[O 2] / δt) decrease rate measuring means 12 for measuring the reduction rate (δ [O 2] / δt ) and contaminated soil oxygen consumption C O2 contaminated soil S from the soil air volume V SPACE of S It has an oxygen consumption calculating means 13 for calculating, and an updating means 14 for updating the ventilation amount 24 of the storage means 20 based on the rate of decrease (Δ [O 2 ] / Δt) or the oxygen consumption C O2 . For example, the control device 10 may be a computer, and the decrease rate measuring means 12, the oxygen consumption calculating means 13, the updating means 14, and the ventilation control means 30 may be a computer built-in program.

【0022】なお図示例の生物浄化装置は、土壌Sの温
度TSOILを測定する温度計6と、汚染土壌Sに供給する
空気の温度TAIRを測定する温度計7とを有する。温度計
6及び7を制御装置10に接続し、上述した減少速度(δ
[O2]/δt)又は酸素消費量C O2に加えて土壌温度TSOIL
及び空気温度TAIRに基づき通気量24を更新すれば、土壌
温度TSOILと空気温度TAIRとの間に温度差がある場合
に、その温度差に起因する通気量24の過剰又は不足を避
けることができる。但し、温度計6、7は本発明に必須
のものではない。
The biological purification apparatus in the illustrated example is designed to control the temperature of the soil S.
Degree TSOILSupply thermometer 6 to measure soil and contaminated soil S
Air temperature TAIRAnd a thermometer 7 for measuring. thermometer
6 and 7 are connected to the control unit 10, and the above-mentioned decreasing speed (δ
[O2] / Δt) or oxygen consumption C O2In addition to soil temperature TSOIL
And air temperature TAIRIf you update the ventilation rate 24 based on
Temperature TSOILAnd air temperature TAIRIf there is a temperature difference between
In addition, avoiding excess or shortage of ventilation volume 24 due to the temperature difference.
You can kick. However, the thermometers 6 and 7 are essential to the present invention.
Not the one.

【0023】次に、図2の流れ図を参照して、制御装置
10による通気装置1の制御方法を説明する。先ずステッ
プ203において、制御装置10の通気制御手段30により通
気装置1の流量調節弁2及び/又は送風機4を初期通気
量に調節し、汚染土壌Sの浄化を開始する。酸素計5で
酸素濃度を測定し、汚染土壌S中の酸素濃度が所定濃度
以上(例えば20%以上)になるまで通気を継続する。所
定酸素濃度が得られるように通気装置1の初期通気量を
適当に定め、又は通気開始後に通気量を適当に調節する
ことができる。なお、図2のステップ201、202及び204
については後述する。
Next, referring to the flow chart of FIG.
A method of controlling the ventilation device 1 by 10 will be described. First, in step 203, the ventilation control means 30 of the control device 10 adjusts the flow rate control valve 2 and / or the blower 4 of the ventilation device 1 to the initial ventilation amount, and the purification of the contaminated soil S is started. The oxygen concentration is measured by the oximeter 5, and ventilation is continued until the oxygen concentration in the contaminated soil S reaches a predetermined concentration or higher (for example, 20% or higher). The initial ventilation amount of the ventilation device 1 can be appropriately set so that a predetermined oxygen concentration can be obtained, or the ventilation amount can be appropriately adjusted after the start of ventilation. Note that steps 201, 202 and 204 in FIG.
Will be described later.

【0024】所定酸素濃度が得られた後、ステップ205
において通気装置1を停止し、ステップ206において酸
素計5により無通気時の残存酸素濃度[O2]の変化を測定
する。酸素計5の測定値の一例を図4のグラフに示す。
同グラフから分かるように、残存酸素濃度[O2]は無通気
時間の経過に応じて減少する。その減少速度は(1)式の
ように表わすことができる。(1)式において、[O2]0は通
気停止直後の初期残存酸素濃度(≒上記所定濃度)、t
は無通気の経過時間、kは酸素消費速度係数を表わす。
(1)式を積分することにより(2)式が導かれる。(2)式に
おいて、[O2]Mは時間M経過後(例えばM日後)の残存
酸素濃度、DO2は初期残存酸素濃度と時間M経過後の残
存酸素濃度との差を表わす。
After the predetermined oxygen concentration is obtained, step 205
At step 206, the aeration device 1 is stopped, and at step 206, the oxygen meter 5 measures the change in the residual oxygen concentration [O 2 ] when there is no ventilation. An example of the measured value of the oximeter 5 is shown in the graph of FIG.
As can be seen from the graph, the residual oxygen concentration [O 2 ] decreases with the passage of the non-aeration time. The rate of decrease can be expressed as in equation (1). In the equation (1), [O 2 ] 0 is the initial residual oxygen concentration immediately after the ventilation is stopped (≈the above predetermined concentration), t
Represents the elapsed time of no ventilation, and k represents the oxygen consumption rate coefficient.
Equation (2) is derived by integrating equation (1). In the equation (2), [O 2 ] M represents the residual oxygen concentration after the lapse of time M (for example, after M days), and D O2 represents the difference between the initial residual oxygen concentration and the residual oxygen concentration after the lapse of time M.

【0025】[0025]

【数1】 [Equation 1]

【0026】ステップ207において、例えば図4の測定
値に基づき(1)式の定数[O2]0及びkを定めることによ
り、残存酸素濃度[O2]の減少速度(δ[O2]/δt)を測
定する。図1の減少速度測定手段12の一例は、酸素計5
の測定値から(1)式の定数[O2]0及びkを定めるプログラ
ムである。無通気時の残存酸素濃度[O2]の減少速度(δ
[O2]/δt)から酸素計周囲の好気性微生物の分解活性
を判断できる。即ち、減少速度(δ[O2]/δt)に基づ
き汚染土壌Sへの通気を制御すれば、好気性微生物の分
解活性に応じた通気が可能となる。なお、例えば通気量
が一定であれば通気時における土壌中の残存酸素濃度の
減少速度から土壌中の好気性微生物の分解活性をある程
度判断することも可能であり、この場合はステップ205
で通気装置1を停止する必要はない。
In step 207, for example, by determining the constants [O 2 ] 0 and k in the equation (1) based on the measured values shown in FIG. 4, the rate of decrease of the residual oxygen concentration [O 2 ] (δ [O 2 ] / δt) is measured. An example of the decrease rate measuring means 12 of FIG.
It is a program that determines the constants [O 2 ] 0 and k of the equation (1) from the measured values of. Decrease rate of residual oxygen concentration [O 2 ] (δ
From [O 2 ] / δt), the decomposition activity of aerobic microorganisms around the oxygen meter can be judged. That is, by controlling the aeration to the contaminated soil S based on the rate of decrease (δ [O 2 ] / δt), the aeration according to the decomposition activity of aerobic microorganisms becomes possible. Note that, for example, if the aeration amount is constant, it is also possible to determine the degrading activity of aerobic microorganisms in the soil to some extent from the rate of decrease in the residual oxygen concentration in the soil during aeration, and in this case, step 205
It is not necessary to stop the ventilation device 1 at.

【0027】図2のステップ208〜209は、残存酸素濃度
[O2]の減少速度(δ[O2]/δt)に基づき汚染土壌Sへ
の通気量Qを算出する方法の一例を示す。ステップ207
で測定した減少速度(δ[O2]/δt)をM日間について
積分すれば、好気性微生物がM日間に消費する酸素濃度
DO2(%単位)を算出できる((2)式)。更に、消費する
酸素濃度DO2と汚染土壌Sの土壌空気容積VSPACEと気体
の状態方程式とから(3)式により、汚染土壌SのM日間
の酸素消費量CO2を算出できる。なお(3)式では、温度計
6の出力を土壌温度TSOIL(℃)とし、土壌Sの体積VP
(この場合はパイル体積、リットル単位)と土壌S全体
に対する気相の体積比(=φ−φWT)との積を土壌空気
容積VSPACEとし、土壌Sの全体の酸素消費量が均等であ
ると仮定した。(3)式におけるφは土壌Sの間隙率(気
相と液相とを含む。)、φWTは間隙率φと飽和度Sr(間
隙全体に対する液相の体積比)との積(=φ×Sr)を表
わす。
Steps 208 to 209 in FIG. 2 are the residual oxygen concentration.
Shows an example of a method of calculating the airflow amount Q of [O 2] to decrease the speed ([delta] [O 2] / .DELTA.t) based on the contaminated soil S in. Step 207
If the rate of decrease (δ [O 2 ] / δt) measured in step 3 is integrated over M days, the oxygen concentration consumed by aerobic microorganisms during M days
D O2 (% unit) can be calculated (Equation (2)). Furthermore, from the oxygen concentration D O2 to be consumed, the soil air volume V SPACE of the contaminated soil S, and the equation of state of gas, the oxygen consumption C O2 of the contaminated soil S for M days can be calculated by the equation (3). In the equation (3), the output of the thermometer 6 is the soil temperature T SOIL (° C), and the volume S P of the soil S is
The product of (volume in piles in this case, in liters) and the volume ratio of the gas phase to the entire soil S (= φ−φ WT ) is the soil air volume V SPACE, and the oxygen consumption of the entire soil S is equal. I assumed. In the equation (3), φ is the porosity of the soil S (including the gas phase and the liquid phase), and φ WT is the product of the porosity φ and the saturation degree Sr (the volume ratio of the liquid phase to the entire pore) (= φ. × Sr).

【0028】図2のステップ208は、(2)及び(3)式によ
り汚染土壌Sの酸素消費量CO2を算出する処理を示す。
通気装置1で酸素ガスを圧入方式により供給する場合
は、例えばステップ208で算出した酸素消費量CO2(M日
間当たり)又はCO2/M(1日当たり)を汚染土壌Sへの
通気量(流量)Qとし、ステップ209において更新手段1
4により記憶手段20の通気量24を更新する。
Step 208 in FIG. 2 shows a process for calculating the oxygen consumption amount C O2 of the contaminated soil S by the equations (2) and (3).
When oxygen gas is supplied by the aeration device 1 by the press-fitting method, for example, the oxygen consumption amount C O2 (per M days) or C O2 / M (per day) calculated in step 208 is passed to the contaminated soil S (flow rate (flow rate)). ) Q and update means 1 in step 209
The ventilation amount 24 of the storage means 20 is updated by 4.

【0029】図2のステップ209は、ステップ208で算出
した酸素消費量CO2を空気で賄う場合に、(4)式により必
要な空気量VAIRを算出する処理を示す。なお同式では、
空気中の酸素体積比率を20.9%とし、温度計7の出力を
空気温度TAIR(℃)とした。空気量VAIRをM日間で供給
するとした場合、(5)式により1日当たりの通気量Qを
算出できる。通気装置1で空気を圧入方式により供給す
る場合は、例えば(4)式の空気量VAIR(M日間当たり)
又は(5)式のVAIR/M(1日当たり)を汚染土壌Sへの通
気量(流量)Qとし、ステップ209において更新手段14
により記憶手段20の通気量24を更新することができる。
Step 209 of FIG. 2 shows a process of calculating the required air amount V AIR by the equation (4) when the oxygen consumption amount C O2 calculated in step 208 is covered by air. In the same equation,
The oxygen volume ratio in the air was 20.9%, and the output of the thermometer 7 was the air temperature T AIR (° C). When the air volume V AIR is supplied in M days, the daily air flow rate Q can be calculated by the equation (5). When air is supplied by the ventilator 1 by a press-fitting method, for example, the air volume V AIR of (4) formula (per M days)
Alternatively, V AIR / M (per day) in the equation (5) is set as the air flow rate (flow rate) Q to the contaminated soil S, and the updating means 14 is set in step 209.
Thus, the ventilation amount 24 of the storage means 20 can be updated.

【0030】ステップ214において、通気制御手段30に
より通気装置1の流量調節弁2及び/又は送風機4を記
憶手段20の通気量24に調節して通気を再開する。ステッ
プ208又は209で算出した酸素消費量CO2又は空気量VAIR
は、いわば通気停止時点の汚染土壌Sを浄化するための
必要最小限の通気量Qである。その通気量Qで通気を再
開すれば、不必要な通気を避けて経済的に汚染土壌Sの
浄化を進めることができる。更に、土壌浄化の進行に応
じてステップ205〜209及び214を繰り返し、土壌浄化の
進行に応じて必要最小限の通気量Qを更新することがで
きる。
In step 214, the ventilation control means 30 adjusts the flow rate control valve 2 and / or the blower 4 of the ventilation device 1 to the ventilation amount 24 of the storage means 20 to restart the ventilation. Oxygen consumption C O2 or air amount V AIR calculated in step 208 or 209
Is, so to speak, the minimum required ventilation amount Q for purifying the contaminated soil S at the time when ventilation is stopped. If the ventilation is restarted with the ventilation amount Q, it is possible to avoid unnecessary ventilation and economically proceed with the purification of the contaminated soil S. Furthermore, steps 205 to 209 and 214 can be repeated according to the progress of soil purification, and the minimum required ventilation amount Q can be updated according to the progress of soil purification.

【0031】例えば、油で汚染された土壌Sを浄化する
場合、汚染土壌S中の酸素濃度が5%程度であれば好気
性微生物の分解活性上の問題は生じないことが知られて
いる。従って、ステップ205〜209の無通気時に図4のよ
うに土壌S中の酸素濃度を5%程度まで減少させ、その
後前記最小限の通気量Qにより土壌S中の酸素濃度を5
%程度に維持すれば、極めて経済的な汚染土壌の浄化が
期待できる。
For example, when purifying the soil S contaminated with oil, it is known that if the oxygen concentration in the contaminated soil S is about 5%, no problem occurs in the decomposition activity of aerobic microorganisms. Therefore, the oxygen concentration in the soil S is reduced to about 5% as shown in FIG. 4 when no ventilation is performed in steps 205 to 209, and thereafter the oxygen concentration in the soil S is reduced to 5% by the minimum aeration amount Q.
If maintained at about%, it is possible to expect extremely economical purification of contaminated soil.

【0032】また、前記最小限の通気量Qで通気を再開
した後、暫くは土壌S中の酸素濃度は一定(例えば5%
程度)に保たれるが、土壌浄化の進行に応じて好気性微
生物の酸素消費量は徐々に減少する。このため、通気再
開後の酸素濃度を酸素計5で測定し、酸素濃度が所定濃
度(例えば20%)まで増加したときはステップ205へ戻
り、通気を停止した上でステップ205〜209により記憶手
段20の通気量24を土壌浄化に応じて更新し、ステップ21
4で更新された通気量で通気を再開するサイクルを繰り
返す。
After restarting ventilation with the minimum ventilation amount Q, the oxygen concentration in the soil S remains constant (for example, 5%) for a while.
However, the oxygen consumption of aerobic microorganisms gradually decreases with the progress of soil remediation. For this reason, the oxygen concentration after resumption of ventilation is measured by the oximeter 5, and when the oxygen concentration increases to a predetermined concentration (for example, 20%), the process returns to step 205, the ventilation is stopped, and the storage means is executed by steps 205 to 209. Update airflow rate 24 of 20 according to soil remediation and step 21
Repeat the cycle to restart ventilation with the air volume updated in 4.

【0033】但し、ステップ209及び214の更新時及び通
気再開時における通気量は前記最小限の通気量Qに限ら
ず、それ以外の適当な通気量とすることができる。例え
ば、後述するように本発明によれば通気再開後の酸素濃
度の増加傾向に基づき汚染土壌Sへの通気量を調節可能
であるから、例えば残存酸素濃度[O2]の減少速度(δ[O
2]/δt)に基づき適当な通気量Qで通気を再開し、通
気再開後に酸素濃度の増加傾向に基づき通気量Qを調節
することにより、好気性微生物の分解活性に応じて通気
を制御することも可能である。
However, the ventilation amount at the time of renewing and restarting the ventilation of steps 209 and 214 is not limited to the above-mentioned minimum ventilation amount Q, but may be any other appropriate ventilation amount. For example, as will be described later, according to the present invention, the amount of ventilation to the contaminated soil S can be adjusted based on the increasing tendency of the oxygen concentration after resumption of ventilation, so that, for example, the rate of decrease of the residual oxygen concentration [O 2 ] (δ [ O
2 ] / δt), the ventilation is restarted at an appropriate ventilation Q, and after the ventilation is restarted, the ventilation Q is adjusted based on the increasing tendency of the oxygen concentration, thereby controlling the ventilation according to the decomposing activity of aerobic microorganisms. It is also possible.

【0034】また、ステップ205〜209及び214の繰り返
し方法はこの例に限定されず、例えば後述するように記
憶手段20の通気時間25と無通気時間26とに基づいて前記
サイクルを制御してもよい。本発明による通気装置1の
制御方法を従来のPID制御等と組み合わせることも考
えられる。即ち、ステップ214において前記最小限の通
気量Qによる通気再開後は、従来のPID制御により汚
染土壌S中の酸素濃度が目標値となるように通気を制御
することができる。
Further, the repeating method of steps 205 to 209 and 214 is not limited to this example, and the cycle may be controlled based on the ventilation time 25 and the non-venting time 26 of the storage means 20, for example, as described later. Good. It is also conceivable to combine the method for controlling the ventilation device 1 according to the present invention with conventional PID control or the like. That is, after restarting the ventilation with the minimum ventilation amount Q in step 214, the ventilation can be controlled by the conventional PID control so that the oxygen concentration in the contaminated soil S reaches the target value.

【0035】本発明によれば、汚染土壌への通気を汚染
土壌中の好気性微生物の分解活性に応じて制御すること
ができ、必要最小限の通気により土壌浄化を経済的に進
めることができる。また、土壌浄化の進行に応じて必要
最小限の通気量を更新することにより、土壌浄化の進行
に応じた適切且つ経済的な通気を行うことができる。し
かも本発明は、空気吸引方式だけでなく、空気(又は酸
素)圧入方式にも適用可能である。また、後述する通気
時間及び無通気時間の制御等と組み合わせることによ
り、汚染土壌に対する通気の自動制御も期待できる。
According to the present invention, the aeration to the contaminated soil can be controlled according to the decomposing activity of aerobic microorganisms in the contaminated soil, and the soil purification can be economically promoted by the necessary minimum aeration. . Further, by updating the minimum required ventilation amount according to the progress of soil purification, it is possible to perform appropriate and economical ventilation according to the progress of soil purification. Moreover, the present invention is applicable not only to the air suction method but also to the air (or oxygen) injection method. In addition, automatic control of ventilation to contaminated soil can be expected by combining with the control of ventilation time and non-venting time, which will be described later.

【0036】こうして本発明の目的である「微生物の汚
染物質分解活性に応じて通気を制御できる汚染土壌の生
物浄化方法及び装置」の提供が達成できる。
Thus, the object of the present invention is to provide the "method and apparatus for biological purification of contaminated soil in which aeration can be controlled according to the activity of microorganisms to decompose pollutants".

【0037】上述した(3)式では、汚染土壌Sの全体の
酸素消費量が均等であると仮定して酸素消費量CO2を算
出したが、実際には汚染土壌S中の汚染物質濃度の異な
る部位毎に好気性微生物の酸素消費量CO2は相異する。
従って、汚染土壌S中の複数部位に酸素計5を(好まし
くは温度計6と共に)設け、各部位毎に図2の流れ図に
従って通気量Qを制御することが望ましい。
In the above equation (3), the oxygen consumption amount C O2 was calculated assuming that the oxygen consumption amount of the entire contaminated soil S was equal. Oxygen consumption C O2 of aerobic microorganisms differs at different sites.
Therefore, it is desirable to provide the oxygen meter 5 (preferably together with the thermometer 6) at a plurality of sites in the contaminated soil S and control the ventilation amount Q for each site according to the flowchart of FIG.

【0038】例えば、図1において複数の酸素計5の設
置位置近傍にそれぞれ連通する複数の流量調節弁2付き
通気管3を設け、図2の流れ図に従って各酸素計5の測
定値により通気量24を更新し、各部位毎に対応する流量
調節弁2を調節する。複数の通気管3に対する送風機4
を共通とするか、又は各部位毎に別々の送風機4を設け
る。汚染土壌Sの汚染物質濃度の異なる部位毎にそれぞ
れ独立に通気を制御することにより、一層適切且つ経済
的な土壌浄化が期待できる。
For example, in FIG. 1, a plurality of ventilation pipes 3 with flow rate control valves 2 are provided in the vicinity of the installation positions of a plurality of oximeters 5, respectively, and the aeration amount 24 is measured according to the flow chart of FIG. Is updated and the flow rate control valve 2 corresponding to each part is adjusted. Blower 4 for a plurality of ventilation pipes 3
Or a separate blower 4 is provided for each part. By controlling the aeration independently for each part of the contaminated soil S having different pollutant concentrations, more appropriate and economical soil purification can be expected.

【0039】なお図1の例では、多孔通気管3a、3b、3c
の各々の間に、それらの長さ方向に沿って複数の酸素計
5を配置している。この場合は、通気管3a、3bの間の各
酸素計5の最小測定値に基づいて通気管3a、3bに対する
通気量を制御し、通気管3b、3cの間の各酸素計5の最小
測定値に基づいて通気管3b、3cに対する通気量を制御す
ることができる。
In the example of FIG. 1, the porous ventilation pipes 3a, 3b, 3c
, A plurality of oximeters 5 are arranged along each of the lengths. In this case, the amount of ventilation to the ventilation pipes 3a and 3b is controlled based on the minimum measurement value of each oxygen meter 5 between the ventilation pipes 3a and 3b, and the minimum measurement of each oxygen meter 5 between the ventilation pipes 3b and 3c is controlled. The amount of ventilation to the ventilation pipes 3b and 3c can be controlled based on the value.

【0040】[0040]

【実施例】図2のステップ210〜213は、無通気時の残存
酸素濃度[O2]の減少速度(δ[O2]/δt)に基づき土壌
浄化の進行状況を把握し、その進行状況に応じて通気装
置1の通気時間(及び/又は無通気時間)の制御と浄化
完了の検出とを行う処理を示す。この場合はステップ20
1において、例えば(12)式に示すような汚染土壌S中の
汚染物質の好気性微生物による分解反応式を定め、制御
装置10の記憶手段20に記憶する。
[Examples] Steps 210 to 213 in FIG. 2 grasp the progress of soil purification based on the rate of decrease (δ [O 2 ] / δt) of the residual oxygen concentration [O 2 ] when there is no aeration, and the progress The process of controlling the ventilation time (and / or non-venting time) of the ventilation device 1 and detecting the completion of purification according to the above. In this case step 20
In 1, a formula for decomposing a pollutant in a contaminated soil S by an aerobic microorganism is determined as shown in formula (12) and stored in the storage means 20 of the control device 10.

【0041】[0041]

【化1】 CaHb+(a+b/4)O2→aCO2+(b/2)H2O ……………………………………(11) C6H7.5+7.875O2→6CO2+3.75H2O …………………………………………(12)[Chemical formula 1] C a H b + (a + b / 4) O 2 → a CO 2 + (b / 2) H 2 O …………………………………… (11) C 6 H 7.5 +7 .875O 2 → 6CO 2 + 3.75H 2 O ………………………………………… (12)

【0042】例えば汚染物質が油である場合、理論的に
は(11)式に示すように、油の組成の分析結果((11)式の
炭化水素化合物CaHbの化学式)から汚染物質1モルを分
解するのに必要な酸素量(a+b/4)を推定できる。しか
し実際の土壌浄化における汚染物質分解反応の酸素量
は、汚染物質が完全に分解せずに様々な中間代謝物に変
化するため、理論上の酸素量(a+b/4)とは一致しない
ことが多い。従って、室内実験等により、好気性微生物
の分解による汚染土壌S中の残存汚染物質及び残存酸素
の経時的濃度変化を測定し、汚染土壌S中の汚染物質の
好気性微生物による分解反応式を定める必要がある。
(12)式は実験的に定めた汚染物質分解反応式の一例を示
す。
For example, when the pollutant is oil, theoretically, as shown in the formula (11), 1 mol of the pollutant is calculated from the analysis result of the composition of the oil (chemical formula of the hydrocarbon compound CaHb in the formula (11)). The amount of oxygen (a + b / 4) required to decompose can be estimated. However, the oxygen content of the pollutant decomposition reaction in actual soil remediation does not match the theoretical oxygen content (a + b / 4) because the pollutant is not completely decomposed and changes into various intermediate metabolites. Many. Therefore, by performing indoor experiments, etc., the time-dependent concentration changes of residual pollutants and residual oxygen in the contaminated soil S due to the decomposition of aerobic microorganisms are measured, and the decomposition reaction formula of the pollutants in the contaminated soil S by the aerobic microorganisms is determined. There is a need.
Equation (12) shows an example of an experimentally determined pollutant decomposition reaction equation.

【0043】(12)式のように汚染物質分解反応式が定ま
れば、残存酸素濃度[O2]の減少速度(δ[O2]/δt)か
ら汚染物質の分解速度(δDCaHb/δt)を算出できる
(ステップ210)。図5のグラフは実験的に測定した好
気性微生物の分解による汚染土壌S中の残存汚染物質の
経時的濃度変化の測定値を示し、汚染物質の分解速度
(δDCaHb/δt)は同グラフの傾き(土壌浄化速度)に
相当する。同グラフから分かるように、汚染物質の分解
速度は汚染土壌S中の残存汚染物質濃度の低下に応じて
減少する。即ち、汚染物質の分解速度から土壌浄化の進
行の程度を把握することでき、汚染物質の分解速度に基
づきそれ以降の土壌浄化に必要な通気時間や土壌浄化の
完了を判断することができる。
If the pollutant decomposition reaction equation is defined as in the equation (12), the rate of decrease of the residual oxygen concentration [O 2 ] (δ [O 2 ] / δt) can be calculated from the pollutant decomposition rate ( δD CaHb / δt). ) Can be calculated (step 210). The graph of FIG. 5 shows experimentally measured values of changes over time in the concentration of residual pollutants in contaminated soil S due to the decomposition of aerobic microorganisms, and the decomposition rate of pollutants ( δD CaHb / δt) is shown in the graph. It corresponds to the slope (soil cleaning rate). As can be seen from the graph, the decomposition rate of pollutants decreases as the concentration of residual pollutants in the polluted soil S decreases. That is, the degree of progress of soil purification can be grasped from the decomposition rate of pollutants, and the aeration time required for soil purification thereafter and the completion of soil purification can be determined based on the decomposition rate of pollutants.

【0044】例えば、分解速度が大きい場合は汚染土壌
S中の残存汚染物質濃度が高いと推定でき、短時間の通
気で好気性微生物の分解活性が大きく変化するので、通
気時間を短くして図2の流れ図のサイクルを短時間で繰
り返す。他方、分解速度が小さい場合は汚染土壌S中の
残存汚染物質濃度が低いと推定でき、好気性微生物の分
解活性も小さいので、通気時間を長くすることができ
る。また分解速度が小さい場合は、土壌S中の酸素濃度
が不必要に増加しないように無通気時間を十分に確保す
るか、又は間欠的に通気することが望ましい。このよう
な分解速度に応じた通気時間・無通気時間は、予め実験
的に定めて記憶手段20に記憶しておくことができる。
For example, when the decomposition rate is high, it can be estimated that the concentration of residual pollutants in the contaminated soil S is high, and the decomposition activity of aerobic microorganisms changes greatly in a short time of aeration. Repeat the cycle of the flow chart of 2 in a short time. On the other hand, when the decomposition rate is low, it can be estimated that the concentration of residual pollutants in the contaminated soil S is low, and the decomposition activity of aerobic microorganisms is also small, so that the aeration time can be lengthened. When the decomposition rate is low, it is desirable to secure a sufficient non-venting time or to ventilate the soil S intermittently so that the oxygen concentration in the soil S does not unnecessarily increase. The ventilation time / non-venting time depending on the decomposition rate can be experimentally determined in advance and stored in the storage means 20.

【0045】好ましくは、ステップ202において図5の
ような残存汚染物質の経時的濃度変化の測定値を制御装
置10の記憶手段20に記憶し、ステップ210で算出した汚
染物質の分解速度と記憶手段20の経時的濃度変化(図5
のグラフの傾き)とから、ステップ211において土壌S
中の残存汚染物質濃度を検出する。残存汚染物質濃度が
分かれば、それ以降の土壌浄化に必要な通気時間や土壌
浄化の完了を容易に判断することができ、土壌浄化の更
なる省エネルギー化が期待できる。残存汚染物質濃度に
応じた通気時間・無通気時間や浄化完了の残存汚染物質
濃度も、予め記憶手段20に記憶しておくことができる。
Preferably, in step 202, the measured value of the time-dependent concentration change of the remaining pollutant as shown in FIG. 5 is stored in the storage means 20 of the control device 10, and the pollutant decomposition rate and the storage means calculated in step 210 are stored. 20 Concentration change over time (Fig. 5
(Gradient of the graph) and the soil S in step 211
Detect the concentration of residual pollutants in. If the residual pollutant concentration is known, it is possible to easily determine the ventilation time required for soil purification after that and the completion of soil purification, and further energy saving of soil purification can be expected. The aeration time / non-aeration time according to the residual pollutant concentration and the residual pollutant concentration after completion of purification can be stored in the storage means 20 in advance.

【0046】図1の制御装置10は、記憶手段20に汚染物
質の分解反応式22(例えば(12)式)と残存汚染物質の経
時的濃度変化23の測定値(例えば図5のグラフ)とを記
憶している。また、無通気時の残存酸素濃度[O2]の減少
速度(δ[O2]/δt)と記憶手段20の分解反応式22とか
ら土壌S中の汚染物質分解速度を検出する分解速度検出
手段15、及び汚染物質の分解速度と記憶手段20の経時的
濃度変化23とから土壌S中の残存汚染物質濃度を検出す
る残存汚染物質濃度検出手段16を有する。図2のステッ
プ210において分解速度検出手段15により土壌S中の汚
染物質の分解速度を算出し、ステップ211において残存
汚染物質濃度検出手段16により土壌S中の残存汚染物質
濃度を検出する。ステップ212において、残存汚染物質
濃度に基づき土壌浄化を終了するか否かを判断し、土壌
浄化を継続する場合はステップ213へ進む。ステップ213
において更新手段14により記憶手段20の通気時間25、無
通気時間26を更新し、ステップ214において通気制御手
段30により更新された通気量24、通気時間25、無通気時
間26に基づいて通気装置1による通気を再開する。
The control device 10 of FIG. 1 stores in the storage means 20 the decomposition reaction formula 22 (for example, formula (12)) of pollutants and the measured value of the concentration change 23 of residual pollutants with time (for example, the graph of FIG. 5). I remember. Further, the decomposition rate detection for detecting the decomposition rate of pollutants in the soil S from the decrease rate (δ [O 2 ] / δt) of the residual oxygen concentration [O 2 ] when there is no aeration and the decomposition reaction formula 22 of the storage means 20. It has means 15 and residual pollutant concentration detection means 16 for detecting the residual pollutant concentration in the soil S from the decomposition rate of pollutants and the time-dependent concentration change 23 of the storage means 20. In step 210 of FIG. 2, the decomposition rate detecting means 15 calculates the decomposition rate of the pollutant in the soil S, and in step 211 the residual pollutant concentration detecting means 16 detects the residual pollutant concentration in the soil S. In step 212, it is determined based on the residual pollutant concentration whether or not the soil purification should be ended, and if the soil purification should be continued, the process proceeds to step 213. Step 213
In the ventilation device 1, the ventilation time 25 and the non-ventilation time 26 of the storage device 20 are updated by the updating device 14, and the ventilation amount 24, the ventilation time 25, and the non-ventilation time 26 are updated by the ventilation control device 30 in step 214. To resume ventilation.

【0047】図2のステップ215〜217は、汚染土壌S中
の通気時の酸素濃度増加傾向に基づき汚染土壌Sの見か
けの通気性を検出する処理を示す。汚染土壌Sの浄化で
は時間の経過と共に圧密や水分過剰等により土壌空隙が
減少し、浄化開始当初と浄化途中とでは同じ圧で通気し
た場合でも土壌Sの通気状況が変化することがある。土
壌空隙が減少すると、気流のショートパス等により汚染
土壌全体への酸素供給が不均等になって浄化効率低下の
原因となる。ステップ215〜217では、通気時の酸素濃度
の増加傾向から土壌Sの見かけの通気性(土壌中の空隙
率=土壌S中の土壌空気容積VSPACE/土壌Sの体積VP
を検出している。
Steps 215 to 217 of FIG. 2 show a process for detecting the apparent air permeability of the contaminated soil S based on the tendency of the oxygen concentration in the contaminated soil S to increase during aeration. In the purification of the contaminated soil S, the soil voids decrease due to compaction, excess water, etc. with the passage of time, and the ventilation state of the soil S may change at the beginning of purification and during the purification even when the same pressure is used. When the voids in the soil decrease, oxygen supply to the entire contaminated soil becomes non-uniform due to a short path of air flow, etc., which causes a reduction in purification efficiency. In steps 215 to 217, the apparent air permeability of the soil S (porosity in the soil = soil air volume V SPACE in the soil S / volume S P of the soil S) from the increasing tendency of the oxygen concentration during aeration.
Is being detected.

【0048】図2の流れ図では、先ずステップ204にお
いて初期通気量の通気時に土壌S中の酸素濃度の変化を
酸素計5で測定し、次にステップ215において通気再開
時の土壌S中の酸素濃度の変化を酸素計5で測定する。
図6は初期通気時及び通気再開時における酸素濃度変化
の測定値の一例を示し、図中の実線グラフは初期通気時
の酸素濃度変化の一例、点線グラフは通気再開後の酸素
濃度変化の一例を表わす。点線グラフは実線グラフに比
し酸素濃度増加率(図6のグラフの傾き)が大きいが、
この理由は、浄化開始当初は未だ圧密等が発生していな
いのに対し通気再開時には圧密や水分過剰等により見か
けの通気性が減少したことにある。
In the flow chart of FIG. 2, first, in step 204, the change in oxygen concentration in the soil S during the initial ventilation is measured by the oximeter 5, and then in step 215, the oxygen concentration in the soil S when the ventilation is restarted. Is measured with an oxygen meter 5.
FIG. 6 shows an example of the measured values of the oxygen concentration change at the time of initial ventilation and when the ventilation is restarted. The solid line graph in the figure is an example of the oxygen concentration change at the time of initial ventilation, and the dotted line graph is an example of the oxygen concentration change after the restart of ventilation. Represents The dotted line graph has a larger oxygen concentration increase rate (slope of the graph in FIG. 6) than the solid line graph,
The reason for this is that, although consolidation and the like have not yet occurred at the beginning of purification, apparent breathability has decreased due to consolidation and excess water when ventilation was resumed.

【0049】図1の制御装置10は、通気時に汚染土壌S
中の酸素濃度増加速度を測定する増加速度測定手段17
と、その増加速度に基づき土壌Sの見かけの通気性を検
出する通気性検出手段18とを有する。また、記憶手段20
に初期通気時の通気量と酸素濃度増加速度との関係を記
憶している。図2のステップ216において、増加速度測
定手段17が例えば図6の点線グラフの傾きから通気再開
時の酸素濃度増加速度を測定し、ステップ217において
通気性検出手段18が記憶手段40の初期通気時の酸素濃度
増加速度との比較により土壌Sの見かけの通気性を検出
する。
The control device 10 shown in FIG.
Increasing rate measuring means 17 for measuring the increasing rate of oxygen concentration in the inside
And the air permeability detecting means 18 for detecting the apparent air permeability of the soil S based on the increasing speed. Also, the storage means 20
The relationship between the air flow rate during the initial aeration and the oxygen concentration increase rate is stored in. In step 216 of FIG. 2, the increasing rate measuring means 17 measures the oxygen concentration increasing rate at the time of restarting ventilation, for example, from the slope of the dotted line graph of FIG. The apparent air permeability of the soil S is detected by comparison with the rate of increase in oxygen concentration.

【0050】見かけの通気性を検知するためには同じ通
気量での酸素濃度増加速度を比較することが望ましい
が、通気再開時の通気量Qが初期通気量と異なる場合で
も、初期通気量と酸素濃度増加速度との関係から、初期
の見かけの通気性が維持されていると仮定した場合の再
開時の通気量Qに対する酸素濃度増加速度を算出するこ
とができる。通気性検出手段18は、前記仮定した場合の
酸素濃度増加速度の算出値と実際の通気再開時における
酸素濃度増加速度の測定値とを比較することにより、土
壌Sの見かけの通気性の変化を検出することができる。
例えば、見かけの通気性の低下に基づき土壌空隙の減
少、即ち汚染土壌S中の圧密や水分過剰等の発生を検出
する。
In order to detect the apparent air permeability, it is desirable to compare the oxygen concentration increasing rates with the same air flow rate. However, even if the air flow rate Q at the time of restarting air flow differs from the initial air flow rate, From the relationship with the oxygen concentration increase rate, it is possible to calculate the oxygen concentration increase rate with respect to the ventilation amount Q at the time of restarting, assuming that the initial apparent air permeability is maintained. The breathability detecting means 18 compares the calculated value of the oxygen concentration increase rate under the above assumption with the measured value of the oxygen concentration increase rate at the time when the actual ventilation is restarted to determine the apparent change in the air permeability of the soil S. Can be detected.
For example, the decrease of soil voids, that is, the occurrence of consolidation or excess water in the contaminated soil S is detected based on the apparent decrease in air permeability.

【0051】なお、通気時の土壌S中の酸素濃度増加速
度は、圧密や水分過剰等だけでなく好気性微生物の分解
活性によっても変化する。しかし、微生物による酸素消
費量が小さい場合は、微生物の活性による酸素濃度変化
を事実上無視できる。また上述したように、本発明では
無通気時の残存酸素濃度[O2]の減少速度(δ[O2]/δ
t)から汚染物質の分解速度(δDCaHb/δt)、即ち微
生物の分解活性を算出できるので、微生物の活性による
酸素濃度変化を考慮しつつ、通気再開時の酸素濃度増加
速度から土壌Sの見かけの通気性の変化を検出すること
が可能である。
The rate of increase in oxygen concentration in the soil S during aeration varies depending on not only compaction and excess water content but also the decomposition activity of aerobic microorganisms. However, when oxygen consumption by microorganisms is small, changes in oxygen concentration due to the activity of microorganisms can be virtually ignored. Further, as described above, in the present invention, the rate of decrease of the residual oxygen concentration [O 2 ] when no gas is passed (δ [O 2 ] / δ
The decomposition rate of pollutants ( δD CaHb / δt), that is, the decomposition activity of microorganisms can be calculated from t). Therefore, while considering the oxygen concentration change due to the activity of microorganisms, the apparent rate of soil S It is possible to detect changes in the air permeability of the.

【0052】見かけの通気性の低下が正常とみなせない
場合(異常時)は、汚染土壌Sの切り返し等の対策をと
る必要がある。見かけの通気性の低下が正常とみなせる
範囲内であれば、通気量の調節により見かけの通気性を
初期状態に復帰させることも可能である。例えば図2の
流れ図では、ステップ218において通気性検出手段18が
土壌Sの見かけの通気性の変化に基づき適切な通気圧
(図1の場合は吸引圧)を求め、通気制御手段30により
通気装置1の通気量(吸引量)を調節している。このよ
うな土壌Sの見かけの通気性の変化に応じた適正な通気
量は、予め実験的に定めて記憶手段20に記憶しておくこ
とができる。
When the apparent reduction in air permeability cannot be regarded as normal (at the time of abnormality), it is necessary to take measures such as turning back the contaminated soil S. If the reduction in apparent air permeability is within a range that can be regarded as normal, it is possible to restore the apparent air permeability to the initial state by adjusting the air flow rate. For example, in the flow chart of FIG. 2, in step 218, the air permeability detecting means 18 obtains an appropriate air pressure (suction pressure in the case of FIG. 1) based on the change in the apparent air permeability of the soil S, and the air permeability control means 30 causes the air permeability device 30 to operate. The ventilation amount (suction amount) of 1 is adjusted. Such an appropriate ventilation amount according to the change in the apparent permeability of the soil S can be experimentally determined in advance and stored in the storage unit 20.

【0053】ステップ215〜218の見かけの通気性の検出
を適当な時間間隔で繰り返すことにより、酸素計5の周
辺における圧密等の発生を早期に検知して、残存酸素濃
度[O 2]の減少速度(δ[O2]/δt)が測定できなくなる
事態の発生を避けることができる。また、圧密等による
浄化効率の低下を避けつつ、本発明による経済的な土壌
浄化を継続することが可能となる。なお、記憶手段20の
通気圧27を通気性検出手段18により更新し、記憶手段20
の通気圧27に基づき通気制御手段30により通気装置1の
通気量を制御してもよい。
Detection of Apparent Breathability in Steps 215-218
By repeating the procedure at appropriate time intervals,
Occurrence of consolidation, etc. is detected early and residual oxygen concentration is detected.
Degree [O 2] Decrease rate (δ [O2] / Δt) cannot be measured
It is possible to avoid the occurrence of a situation. Also, due to consolidation, etc.
Economical soil according to the present invention while avoiding reduction of purification efficiency
It becomes possible to continue the purification. The storage means 20
The ventilation pressure 27 is updated by the ventilation detection means 18, and the storage means 20 is updated.
Of the ventilation device 1 by the ventilation control means 30 based on the ventilation pressure 27 of
The ventilation rate may be controlled.

【0054】以上、掘削した汚染土壌Sの浄化に本発明
を適用した場合について説明したが、図3に示すように
本発明を原位置浄化に適用することも可能である。同図
では、汚染地盤Eの汚染土壌S中に測定井8と通気井9
とを隣接して穿ち、測定井8に酸素計5及び/又は温度
計6を挿入し(同図(B)参照)、通気井9に通気装置
1を、通気管3の挿入により連結している。測定井8の
酸素計5及び/又は温度計6の測定値、即ち前述した残
存酸素濃度減少速度(δ[O2]/δt)、酸素濃度増加速
度及び/又は土壌温度に基づき、図2の流れ図に従って
各通気井9への通気を制御することができる。
Although the case where the present invention is applied to the purification of the excavated contaminated soil S has been described above, the present invention can also be applied to the in-situ purification as shown in FIG. In the figure, a measurement well 8 and an aeration well 9 are provided in the contaminated soil S of the contaminated ground E.
And adjacent to each other, insert the oxygen meter 5 and / or the thermometer 6 into the measuring well 8 (see FIG. 2B), and connect the ventilation device 1 to the ventilation well 9 by inserting the ventilation pipe 3. There is. Based on the measured values of the oxygen meter 5 and / or the thermometer 6 of the measurement well 8, that is, the residual oxygen concentration decrease rate (δ [O 2 ] / δt), the oxygen concentration increase rate, and / or the soil temperature shown in FIG. The ventilation to each ventilation well 9 can be controlled according to the flow chart.

【0055】[0055]

【発明の効果】以上説明したように、本発明による汚染
土壌の生物浄化方法及び装置は、汚染土壌を土壌中の好
気性微生物への通気により浄化する方法において、汚染
土壌中に酸素計を設け、その酸素計で残存酸素濃度の減
少速度を測定し、その減少速度に基づき汚染土壌への通
気を制御するので、次の顕著な効果を奏する。
As described above, the biological purification method and apparatus for polluted soil according to the present invention is a method for purifying polluted soil by aeration of aerobic microorganisms in the soil, and an oxygen meter is provided in the polluted soil. The rate of decrease of the residual oxygen concentration is measured by the oximeter, and the ventilation of the contaminated soil is controlled based on the rate of decrease, so that the following remarkable effects are obtained.

【0056】(イ)汚染土壌中の好気性微生物の分解活
性に応じて通気を制御するので、必要最小限の通気によ
り土壌浄化を経済的に進めることができる。 (ロ)土壌浄化の進行に応じて必要最小限の通気量を更
新すれば、土壌浄化の進行に応じた適切且つ経済的な通
気を行うことができる。 (ハ)土壌中から空気を吸引する通気方式だけでなく、
土壌中へ空気又は酸素を圧入する通気方式にも適用可能
である。 (ニ)残存酸素濃度の減少速度に基づき通気時間の長さ
や通気開始・停止の間隔も制御することが可能である。 (ホ)通気量・通気時間・無通気時間の制御を組み合わ
せることにより、汚染土壌の浄化の自動制御への寄与が
期待できる。 (ヘ)通気時の汚染土壌中の酸素濃度の増加速度から、
汚染土壌中の見かけの通気性を検出し、圧密や水分過剰
等による気流のショートパスの発生を検出できる。 (ト)掘削した汚染土壌の浄化に限らず、地盤中に在る
汚染土壌の原位置浄化にも適用可能である。
(A) Since the aeration is controlled according to the decomposing activity of aerobic microorganisms in the contaminated soil, soil purification can be economically promoted by the minimum necessary aeration. (B) By updating the minimum necessary ventilation amount according to the progress of soil purification, it is possible to perform appropriate and economical ventilation according to the progress of soil purification. (C) Not only the ventilation method of sucking air from the soil,
It is also applicable to an aeration method in which air or oxygen is pressed into the soil. (D) It is possible to control the length of the ventilation time and the interval between the start and stop of ventilation, based on the rate of decrease of the residual oxygen concentration. (E) Combining control of air flow rate, ventilation time, and non-ventilation time can be expected to contribute to automatic control of purification of contaminated soil. (F) From the rate of increase of oxygen concentration in contaminated soil during aeration,
It is possible to detect the apparent air permeability in the contaminated soil and to detect the occurrence of a short path of the air flow due to compaction or excessive water content. (G) Not only the purification of excavated contaminated soil, but also the in-situ purification of contaminated soil existing in the ground.

【図面の簡単な説明】[Brief description of drawings]

【図1】は、本発明による一実施例の説明図である。FIG. 1 is an explanatory diagram of an embodiment according to the present invention.

【図2】は、本発明方法の流れ図の一例の説明図であ
る。
FIG. 2 is an explanatory view of an example of a flow chart of the method of the present invention.

【図3】は、本発明による他の実施例の説明図である。FIG. 3 is an explanatory diagram of another embodiment according to the present invention.

【図4】は、無通気時の汚染土壌中の酸素濃度変化を示
すグラフの一例である。
FIG. 4 is an example of a graph showing a change in oxygen concentration in a contaminated soil when there is no aeration.

【図5】は、実験的に測定した汚染土壌中の残存汚染物
質の経時的濃度変化を示すグラフの一例である。
FIG. 5 is an example of a graph showing changes over time in concentration of residual pollutants in contaminated soil measured experimentally.

【図6】は、無通気時及び通気時の汚染土壌中の酸素濃
度変化を示すグラフの一例である。
FIG. 6 is an example of a graph showing changes in oxygen concentration in contaminated soil with and without aeration.

【符号の説明】[Explanation of symbols]

1…通気装置 2…流量調節弁 3…(多孔)通気管 4…送風機 5…酸素計 6、7…温度計 8…測定井 9…通気井 10…制御装置 12…減少速度測定手段 13…酸素消費量算出手段 14…更新手段 15…分解速度検出手段 16…残存汚染物質濃度検出手段 17…増加速度測定手段 18…通気性検出手段 20…記憶手段 21…汚染土壌容積 22…分解反応式 23…経時的濃度変化 24…通気量 25…通気時間 26…無通気時間 27…通気圧 30…通気制御手段 32…入力手段 33…表示手段 E…汚染地盤 S…汚染土壌 Y…浄化ヤード 1 ... Ventilation device 2 ... Flow control valve 3 ... (perforated) ventilation pipe 4 ... Blower 5 ... Oxygen meter 6, 7 ... Thermometer 8 ... Measuring well 9 ... Ventilation well 10 ... Control device 12 ... Decrease speed measuring means 13 ... Oxygen consumption calculation means 14 ... Update means 15 Decomposition rate detection means 16 ... Residual contaminant concentration detection means 17 ... Increase speed measuring means 18 ... Breathability detecting means 20 ... Memory means 21 ... Contaminated soil volume 22 ... Decomposition reaction formula 23 ... Concentration change over time 24 ... aeration amount 25 ... aeration time 26… No ventilation time 27… Ventilation pressure 30 ... Ventilation control means 32 ... Input means 33 ... Display means E: Contaminated ground S: Contaminated soil Y ... Purification yard

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩本 晃敏 東京都港区元赤坂一丁目2番7号 鹿島建 設株式会社内 (72)発明者 佐藤 亜紀子 東京都港区元赤坂一丁目2番7号 鹿島建 設株式会社内 Fターム(参考) 4B029 AA03 AA27 BB02 BB06 CC07 EA18 EA20 4B065 AA01X AA57X BC34 BC39 CA56 4D004 AA41 AB02 AB05 AC07 CA19 CC02 DA01 DA02 DA06 DA10 DA12 DA16 DA17    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Akitoshi Iwamoto             Kashima-ken, 1-2-7 Moto-Akasaka, Minato-ku, Tokyo             Inside the corporation (72) Inventor Akiko Sato             Kashima-ken, 1-2-7 Moto-Akasaka, Minato-ku, Tokyo             Inside the corporation F-term (reference) 4B029 AA03 AA27 BB02 BB06 CC07                       EA18 EA20                 4B065 AA01X AA57X BC34 BC39                       CA56                 4D004 AA41 AB02 AB05 AC07 CA19                       CC02 DA01 DA02 DA06 DA10                       DA12 DA16 DA17

Claims (21)

【特許請求の範囲】[Claims] 【請求項1】汚染土壌を土壌中の好気性微生物への通気
により浄化する方法において、汚染土壌中に酸素計を設
け、残存酸素濃度の減少速度を前記酸素計で測定し、該
減少速度の測定値に基づき汚染土壌への通気量を制御し
てなる汚染土壌の生物浄化方法。
1. A method for purifying a contaminated soil by aerating aerobic microorganisms in the soil, wherein an oxygen meter is provided in the contaminated soil, and a decrease rate of residual oxygen concentration is measured by the oxygen meter to measure the decrease rate. A biological purification method for contaminated soil, which comprises controlling the amount of ventilation to the contaminated soil based on measured values.
【請求項2】請求項1の浄化方法において、前記残存酸
素濃度の減少速度と汚染土壌の土壌空気容積とから土壌
中の酸素消費量を算出し、該酸素消費量の算出値に基づ
き汚染土壌への通気量を制御してなる汚染土壌の生物浄
化方法。
2. The purification method according to claim 1, wherein the oxygen consumption in the soil is calculated from the rate of decrease of the residual oxygen concentration and the soil air volume of the contaminated soil, and the contaminated soil is calculated based on the calculated value of the oxygen consumption. A biological purification method for contaminated soil by controlling the amount of ventilation to the soil.
【請求項3】請求項2の浄化方法において、汚染土壌中
に温度計を設け、前記温度計で土壌温度を測定し、前記
酸素消費量と土壌温度とに基づき汚染土壌への通気量を
算出してなる汚染土壌の生物浄化方法。
3. The purification method according to claim 2, wherein a thermometer is provided in the contaminated soil, the soil temperature is measured by the thermometer, and the aeration amount to the contaminated soil is calculated based on the oxygen consumption amount and the soil temperature. A biological purification method for contaminated soil.
【請求項4】請求項1から3の何れかの浄化方法におい
て、好気性微生物の分解による汚染土壌中の残存汚染物
質及び残存酸素の経時的濃度変化を測定して汚染土壌中
の汚染物質の好気性微生物による分解反応式を定め、前
記残存酸素濃度の減少速度と分解反応式とから土壌中の
残存汚染物質濃度を検出してなる汚染土壌の生物浄化方
法。
4. The purification method according to any one of claims 1 to 3, wherein the concentration of residual pollutants and residual oxygen in the polluted soil due to the decomposition of aerobic microorganisms is measured to measure the pollutants in the polluted soil. A biological purification method for contaminated soil, wherein a decomposition reaction formula by an aerobic microorganism is determined, and the residual pollutant concentration in the soil is detected from the reduction rate of the residual oxygen concentration and the decomposition reaction formula.
【請求項5】請求項4の浄化方法において、前記残存汚
染物質濃度に基づき汚染土壌への通気時間又は停止を制
御してなる汚染土壌の生物浄化方法。
5. The biological purification method for polluted soil according to claim 4, wherein the aeration time or stoppage to the polluted soil is controlled based on the residual pollutant concentration.
【請求項6】請求項1から5の何れかの浄化方法におい
て、前記残存酸素濃度の減少速度を無通気時に測定して
なる汚染土壌の生物浄化方法。
6. The biological purification method for polluted soil according to any one of claims 1 to 5, wherein the rate of decrease of the residual oxygen concentration is measured without aeration.
【請求項7】請求項1から6の何れかの浄化方法におい
て、土壌中の酸素濃度の増加速度を前記酸素計で測定
し、該増加速度の測定値に基づき汚染土壌の見かけの通
気性を検出してなる汚染土壌の生物浄化方法。
7. The purification method according to claim 1, wherein the rate of increase in oxygen concentration in the soil is measured by the oximeter, and the apparent air permeability of the contaminated soil is determined based on the measured value of the rate of increase. Method for biological purification of contaminated soil detected.
【請求項8】請求項7の浄化方法において、前記見かけ
の通気性により土壌空隙の減少を検出してなる汚染土壌
の生物浄化方法。
8. The method for purifying contaminated soil according to claim 7, wherein a decrease in soil voids is detected by the apparent air permeability.
【請求項9】請求項7又は8の浄化方法において、前記
見かけの通気性に基づき汚染土壌への通気量を制御して
なる汚染土壌の生物浄化方法。
9. The method for purifying contaminated soil according to claim 7 or 8, wherein the amount of ventilation to the contaminated soil is controlled based on the apparent air permeability.
【請求項10】請求項7から9の何れかの浄化方法にお
いて、前記酸素濃度の増加速度を初期通気時及び通気再
開時に測定し、両通気時の酸素濃度増加速度の比較によ
り通気再開時の見かけの通気性を検出してなる汚染土壌
の生物浄化方法。
10. The purification method according to any one of claims 7 to 9, wherein the rate of increase in oxygen concentration is measured at the time of initial ventilation and when ventilation is restarted, and the rate of increase in oxygen concentration at the time of restarting ventilation is compared by comparing the rate of increase in oxygen concentration during both ventilation. A biological purification method for contaminated soil by detecting apparent air permeability.
【請求項11】請求項1から10の何れかの浄化方法に
おいて、前記酸素計及び/又は温度計を汚染土壌中の複
数部位に設け、各部位毎に汚染土壌への通気を制御して
なる汚染土壌の生物浄化方法。
11. The purification method according to any one of claims 1 to 10, wherein the oximeter and / or thermometer are provided at a plurality of sites in the contaminated soil, and aeration of the contaminated soil is controlled for each site. Biological purification method for contaminated soil.
【請求項12】請求項1から11の何れかの浄化方法に
おいて、前記汚染土壌を汚染された地盤とし、該地盤中
に通気井と測定井とを穿ち、前記測定井に酸素計及び/
又は温度計を挿入し、前記通気井に通気装置を連結して
なる汚染土壌の生物浄化方法。
12. The purification method according to any one of claims 1 to 11, wherein the contaminated soil is contaminated ground, a ventilation well and a measurement well are bored in the ground, and an oxygen meter and / or
Alternatively, a method for biological purification of contaminated soil, in which a thermometer is inserted and a ventilation device is connected to the ventilation well.
【請求項13】汚染土壌に通気する通気装置、汚染土壌
中に設ける酸素計、及び残存酸素濃度の減少速度を前記
酸素計で測定し且つ該減少速度の測定値に基づき前記通
気装置の通気量を制御する制御装置を備えてなる汚染土
壌の生物浄化装置。
13. An aeration device for aerating a contaminated soil, an oxygen meter provided in the contaminated soil, and a rate of decrease of residual oxygen concentration measured by the oxygen meter, and an aeration amount of the aeration device based on the measured value of the decrease rate. A bioremediation device for polluted soil, comprising a control device for controlling.
【請求項14】請求項13の浄化装置において、前記制
御装置により、前記残存酸素濃度の減少速度と汚染土壌
の土壌空気容積とから土壌中の酸素消費量を算出し且つ
該酸素消費量の算出値に基づき前記通気装置の通気量を
制御してなる汚染土壌の生物浄化装置。
14. The purifying apparatus according to claim 13, wherein the controller calculates the oxygen consumption in the soil from the decreasing rate of the residual oxygen concentration and the soil air volume of the contaminated soil, and calculates the oxygen consumption. A biological purification device for contaminated soil, wherein the ventilation amount of the ventilation device is controlled based on the value.
【請求項15】請求項14の浄化装置において、汚染土
壌中に土壌温度を測定する温度計を設け、前記制御装置
により前記酸素消費量と土壌温度とに基づき前記通気装
置の通気量を算出してなる汚染土壌の生物浄化装置。
15. The purification device according to claim 14, wherein a thermometer for measuring soil temperature is provided in the contaminated soil, and the controller calculates the ventilation amount of the ventilation device based on the oxygen consumption amount and the soil temperature. A biological purification device for contaminated soil.
【請求項16】請求項13から15の何れかの浄化装置
において、前記制御装置に汚染土壌中の汚染物質の好気
性微生物による分解反応式を記憶し、前記制御装置によ
り前記残存酸素濃度の減少速度と分解反応式とから土壌
中の残存汚染物質の分解速度を算出し且つ該分解速度の
算出値に基づき前記通気装置の通気時間又は停止を制御
してなる汚染土壌の生物浄化装置。
16. The purifying apparatus according to claim 13, wherein the controller stores a decomposition reaction formula of a pollutant in contaminated soil by aerobic microorganisms, and the controller reduces the residual oxygen concentration. A biological purification apparatus for polluted soil, which calculates a decomposition rate of residual pollutants in soil from a speed and a decomposition reaction formula, and controls aeration time or stop of the aeration device based on the calculated value of the decomposition rate.
【請求項17】請求項16の浄化装置において、前記制
御装置に汚染土壌中の好気性微生物の分解による残存汚
染物質の経時的濃度変化の測定値を記憶し、前記制御装
置により前記残存汚染物質の分解速度の算出値と経時的
濃度変化の測定値とから残存汚染物質濃度を検出し且つ
検出した残存汚染物質濃度に基づき前記通気装置の通気
時間又は停止を制御してなる汚染土壌の生物浄化装置。
17. The purification apparatus according to claim 16, wherein the controller stores a measured value of a change in concentration of residual pollutants with time due to decomposition of aerobic microorganisms in polluted soil, and the controller controls the residual pollutants. Biodegradation of contaminated soil by detecting residual pollutant concentration from the calculated decomposition rate and measured concentration change over time, and controlling the ventilation time or stoppage of the aeration device based on the detected residual pollutant concentration apparatus.
【請求項18】請求項13から17の何れかの浄化装置
において、前記制御装置により前記残存酸素濃度の減少
速度を無通気時に測定してなる汚染土壌の生物浄化装
置。
18. The biological purification apparatus for polluted soil according to any one of claims 13 to 17, wherein the control device measures the rate of decrease of the residual oxygen concentration during no ventilation.
【請求項19】請求項13から18の何れかの浄化装置
において、前記制御装置により、通気時の酸素濃度の増
加速度を前記酸素計で測定し且つ該増加速度の測定値に
基づき前記通気装置の通気量を制御してなる汚染土壌の
生物浄化装置。
19. The purifying apparatus according to any one of claims 13 to 18, wherein the control device measures an increasing rate of oxygen concentration during aeration with the oximeter and based on the measured value of the increasing rate. A bioremediation device for contaminated soil by controlling the air flow rate.
【請求項20】請求項19の浄化装置において、前記制
御装置により前記酸素濃度の増加速度を初期通気時及び
通気再開時に測定し、両通気時の酸素濃度増加速度の比
較により通気再開時の見かけの通気性を検出してなる汚
染土壌の生物浄化装置。
20. The purifying apparatus according to claim 19, wherein the control device measures the rate of increase of the oxygen concentration at the time of initial ventilation and at the time of restarting ventilation, and by comparing the oxygen concentration increasing rates at the time of both ventilation, the apparent appearance at restarting ventilation. Bioremediation device for polluted soil by detecting air permeability of the soil.
【請求項21】請求項13から20の何れかの浄化装置
において、前記酸素計を蛍光式酸素計としてなる汚染土
壌の生物浄化装置。
21. The biological purification apparatus for polluted soil according to claim 13, wherein the oximeter is a fluorescence oximeter.
JP2002149679A 2002-05-23 2002-05-23 Biological purification method and apparatus for contaminated soil Expired - Fee Related JP3948614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002149679A JP3948614B2 (en) 2002-05-23 2002-05-23 Biological purification method and apparatus for contaminated soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002149679A JP3948614B2 (en) 2002-05-23 2002-05-23 Biological purification method and apparatus for contaminated soil

Publications (2)

Publication Number Publication Date
JP2003340431A true JP2003340431A (en) 2003-12-02
JP3948614B2 JP3948614B2 (en) 2007-07-25

Family

ID=29767763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002149679A Expired - Fee Related JP3948614B2 (en) 2002-05-23 2002-05-23 Biological purification method and apparatus for contaminated soil

Country Status (1)

Country Link
JP (1) JP3948614B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006092950A1 (en) * 2005-02-28 2006-09-08 Obayashi Corporation Method of purifying polluted soil
JP2010000456A (en) * 2008-06-20 2010-01-07 Kurita Water Ind Ltd Method for estimating oil concentration of soil or ground water
WO2010106155A3 (en) * 2009-03-19 2011-01-06 Universiteit Gent Remediation of polluted materials or sites
JP2011072923A (en) * 2009-09-30 2011-04-14 Kurita Water Ind Ltd Method for purifying contaminated soil or ground water
JP2011140019A (en) * 2009-12-13 2011-07-21 Kajima Corp Laminating-type method and system for purifying contaminated soil
JP2014034028A (en) * 2012-08-10 2014-02-24 Kumagai Gumi Co Ltd Polluted soil purifier
KR101368285B1 (en) * 2010-09-01 2014-02-28 (주)세와비전 Recovery System for Polluted Soil And Operatio Methods Thereof
JP2016159214A (en) * 2015-02-27 2016-09-05 株式会社熊谷組 Contaminated soil remediation simulation method
CN114199928A (en) * 2020-09-17 2022-03-18 中国石油天然气集团有限公司 Detection method for detecting ventilation of soil

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006092950A1 (en) * 2005-02-28 2006-09-08 Obayashi Corporation Method of purifying polluted soil
JP5145034B2 (en) * 2005-02-28 2013-02-13 株式会社大林組 Purification method for contaminated soil
KR101284966B1 (en) * 2005-02-28 2013-07-10 닛신세이훈 가부시키가이샤 Method of purifying polluted soil
JP2010000456A (en) * 2008-06-20 2010-01-07 Kurita Water Ind Ltd Method for estimating oil concentration of soil or ground water
WO2010106155A3 (en) * 2009-03-19 2011-01-06 Universiteit Gent Remediation of polluted materials or sites
JP2011072923A (en) * 2009-09-30 2011-04-14 Kurita Water Ind Ltd Method for purifying contaminated soil or ground water
JP2011140019A (en) * 2009-12-13 2011-07-21 Kajima Corp Laminating-type method and system for purifying contaminated soil
KR101368285B1 (en) * 2010-09-01 2014-02-28 (주)세와비전 Recovery System for Polluted Soil And Operatio Methods Thereof
JP2014034028A (en) * 2012-08-10 2014-02-24 Kumagai Gumi Co Ltd Polluted soil purifier
JP2016159214A (en) * 2015-02-27 2016-09-05 株式会社熊谷組 Contaminated soil remediation simulation method
CN114199928A (en) * 2020-09-17 2022-03-18 中国石油天然气集团有限公司 Detection method for detecting ventilation of soil

Also Published As

Publication number Publication date
JP3948614B2 (en) 2007-07-25

Similar Documents

Publication Publication Date Title
Gribbins et al. Effect of media nitrogen concentration on biofilter performance
Kliewer et al. Water table management effects on denitrification and nitrous oxide evolution
Hodge et al. Treatment of hydrocarbon fuel vapors in biofilters
Peng et al. N2O production by ammonia oxidizing bacteria in an enriched nitrifying sludge linearly depends on inorganic carbon concentration
JP2003340431A (en) Biological cleaning method and apparatus for polluted soil
US20120014749A1 (en) Remediation of polluted materials or sites
Santos et al. Conversion of chemical scrubbers to biotrickling filters for VOCs and H 2 S treatment at low contact times
Hosen et al. Effects of the depth of NO and N2O productions in soil on their emission rates to the atmosphere: analysis by a simulation model
KR101147430B1 (en) A biopile remediation system for contaminated soil, and the method thereof
US7282149B2 (en) Process for in situ bioremediation of subsurface contaminants
JP4281551B2 (en) Soil and groundwater contamination purification equipment and purification method
Weissenbacher et al. NOx monitoring of a simultaneous nitrifying–denitrifying (SND) activated sludge plant at different oxidation reduction potentials
Chen et al. Abiotic and biological mechanisms of nitric oxide removal from waste air in biotrickling filters
JP2009090183A (en) Cleaning method of soil and ground water, cultivation method of microorganism, and nutrient
JP4770767B2 (en) Soil and groundwater purification methods
JP3051047B2 (en) Purification method and purification system for contaminated soil using soil microorganisms
JP3403829B2 (en) Equipment for treating gas in waste landfill
EP1914015B1 (en) Method based on the use of a gas mixture for sizing systems of gas diffusion in groundwater and evaluating the aquifer contamination
JP5053127B2 (en) Method for confirming suitability of microorganisms for contaminated soil
Martin Jr et al. Design and performance characterization strategy using modeling for biofiltration control of odorous hydrogen sulfide
JP5165930B2 (en) Purification method for groundwater contamination
JP4788105B2 (en) Purification method for contaminated soil
Yang et al. Oxygen concentrations regulate NO, N 2 O, and N 2 kinetics and nitrogen transformation in a fluvo-aquic soil using a robotized incubation system
JP4099893B2 (en) In-situ anaerobic treatment method for organochlorine compounds in soil and / or groundwater
KR20140086012A (en) landfill gas sensor system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070412

R150 Certificate of patent or registration of utility model

Ref document number: 3948614

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160427

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees