JP2003340314A - Gravity separation method for particles - Google Patents

Gravity separation method for particles

Info

Publication number
JP2003340314A
JP2003340314A JP2002151669A JP2002151669A JP2003340314A JP 2003340314 A JP2003340314 A JP 2003340314A JP 2002151669 A JP2002151669 A JP 2002151669A JP 2002151669 A JP2002151669 A JP 2002151669A JP 2003340314 A JP2003340314 A JP 2003340314A
Authority
JP
Japan
Prior art keywords
particles
specific gravity
sedimentation
particle size
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002151669A
Other languages
Japanese (ja)
Other versions
JP4012963B2 (en
Inventor
Tatsuya Oki
達也 大木
Koki Yotsumoto
弘毅 四元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002151669A priority Critical patent/JP4012963B2/en
Publication of JP2003340314A publication Critical patent/JP2003340314A/en
Application granted granted Critical
Publication of JP4012963B2 publication Critical patent/JP4012963B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance separation accuracy by expanding an equal settling particle size ratio by a vibrtation field even if sufficient adjustment of a particle size is not performed beforehand, with respect to polydisperse fine particles with a particles size of 50 μm or less difficult in gravity separation heretofore. <P>SOLUTION: In a gravity separation method for particles performing the gravity separation of particles with high specific gravity and particles with low specific gravity, settling velocity difference due to the magnitude of specific gravities of particles is utilized. Vibration is applied in the settling direction of particles, and the setting delay of particles with low specific gravity is made larger than that of particles with high specific gravity corresponding to the specific gravities of particles and the frequency and amplitude of vibration, to expand the equal settling ratio being the particle size ratio of particles different in specific gravity settled at the same velocity. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、鉱業、各種産業分
野の製造工程およびリサイクル工程等の各種産業分野に
関し、特に懸濁液中の粒子の比重分離法に関し、特に沈
降速度差を利用した粒子の比重分離における等速沈降比
の拡大方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to various industrial fields such as mining, manufacturing processes in various industrial fields, and recycling processes, and more particularly to a method for separating specific gravity of particles in a suspension, and in particular particles utilizing a sedimentation velocity difference. The present invention relates to a method for expanding the constant velocity sedimentation ratio in the separation of specific gravity of.

【0002】[0002]

【従来の技術】比重の異なる2種以上の粒子に対し、水
中での沈降速度差を利用して分離する装置(ジグ、テー
ブル、サイクロン等およびその改良装置)が産業分野の
各所で利用されている。水中における粒子の沈降速度
は、粒子の比重と粒径(投影断面積)の両方に依存する
ことから、比重が大きく粒径が小さい粒子と、比重が小
さく粒径が大きい粒子では、同じ速度で沈降するものが
存在する。同速度で沈降する異比重粒子の粒径比を等速
沈降比と呼ぶ。
2. Description of the Related Art Devices (jigs, tables, cyclones, etc. and their improved devices) for separating two or more particles having different specific gravities by utilizing the difference in sedimentation velocity in water are used in various places in the industrial field. There is. Since the sedimentation velocity of particles in water depends on both the specific gravity of the particles and the particle size (projected cross-sectional area), particles with large specific gravity and small particle size and particles with small specific gravity and large particle size have the same speed. Some settle. The particle size ratio of particles of different specific gravity that settle at the same rate is called the constant velocity settling ratio.

【0003】沈降速度差を利用する全ての分離装置で
は、比重の大きな粒子(「高比重粒子」又は「重粒子」
ともいう。)を下方に比重の小さな粒子(「低比重粒
子」又は「軽粒子」ともいう。)を上方に集め分離を達
成させるため、事前に等速沈降比内に粒度調整しなけれ
ば、軽粒子が下方に、あるいは重粒子が上方に混入して
精度良く分離することができない。数mm〜数cm程度
の粒子を分離する際には、比較的容易に粒度調整が可能
であるが、数100μm以下、特に50μm以下の粒子
を等速沈降比内に粒度調整することは、工業的には極め
て困難である。
In all separation devices that utilize the difference in sedimentation velocity, particles with a large specific gravity (“high specific gravity particles” or “heavy particles”) are used.
Also called. ) In the lower part and particles with a small specific gravity (also called “low specific gravity particle” or “light particle”) are collected in the upper part to achieve separation. In addition, or heavy particles are mixed in the upper part and cannot be separated accurately. When separating particles of about several mm to several cm, the particle size can be adjusted relatively easily, but it is industrially possible to adjust the particle size of particles of several 100 μm or less, especially 50 μm or less within the constant velocity sedimentation ratio. Is extremely difficult to do.

【0004】従来の微粒子用比重分離機は、遠心場を付
与して粒子の沈降速度(移動速度)を増大させる仕組み
が備わっているものが多い。しかし、遠心力は全ての粒
子に同様に付与されるため、分離に要する時間の短縮は
できるが、等速沈降比を変化させることはできない。し
たがって、従来技術では、特に多分散系(粒度幅の広
い)微粒子の高精度な比重分離は不可能であった。
Many of the conventional specific gravity separators for fine particles are provided with a mechanism for imparting a centrifugal field to increase the sedimentation velocity (moving velocity) of the particles. However, since the centrifugal force is similarly applied to all particles, the time required for separation can be shortened, but the constant velocity sedimentation ratio cannot be changed. Therefore, in the prior art, it was impossible to perform highly accurate specific gravity separation of polydisperse (wide particle size) fine particles.

【0005】[0005]

【発明が解決しようとする課題】本発明は、沈降速度差
を利用する比重分離方法において、比重分離前の粒度調
整を不要、あるいはその負担を軽減するとともに、微粒
子を比重分離する際の分離精度向上を可能にする異比重
粒子の等速沈降比拡大法を実現する。
DISCLOSURE OF THE INVENTION The present invention provides a method for separating a specific gravity by utilizing the difference in sedimentation velocity, which makes it unnecessary to reduce the particle size adjustment before the specific gravity separation or reduce the burden thereof, and to improve the separation accuracy in the specific gravity separation of fine particles. To realize a constant velocity sedimentation ratio expansion method for particles of different specific gravity that enables improvement.

【0006】[0006]

【課題を解決するための手段】本発明は上記課題を解決
するために、粒子の比重の大小による沈降速度差を利用
し、高比重粒子と低比重粒子を比重分離する粒子の比重
分離方法において、粒子の沈降方向に振動を与え、粒子
の比重、振動の周波数、振幅に応じて低比重粒子の沈降
遅延を高比重粒子よりも大きくして、同速度で沈降する
異比重粒子の粒径比である等速沈降比を拡大することを
特徴とする粒子の比重分離方法を提供する。
In order to solve the above-mentioned problems, the present invention provides a method for separating the specific gravity of high specific gravity particles and low specific gravity particles by utilizing the difference in sedimentation velocity depending on the specific gravity of the particles. Vibration is applied in the sedimentation direction of particles, and the sedimentation delay of low-density particles is made larger than that of high-density particles according to the specific gravity of particles, the frequency and amplitude of vibration, and the particle size ratio of different-density particles that sediment at the same speed. And a method for separating specific gravity of particles, which is characterized by expanding the constant velocity sedimentation ratio.

【0007】本発明は上記課題を解決するために、粒子
の比重の大小による沈降速度差を利用し、高比重粒子と
低比重粒子を比重分離する粒子の比重分離方法におい
て、粒子の沈降方向に振動を与え、レイノルズ数を0.
1より大きくするとともに、粒子の比重、振動の周波
数、振幅に応じて低比重粒子の沈降遅延を高比重粒子よ
りも大きくして、同速度で沈降する異比重粒子の粒径比
である等速沈降比を拡大することを特徴とする粒子の比
重分離方法を提供する。
In order to solve the above problems, the present invention utilizes a difference in sedimentation velocity depending on the magnitude of the specific gravity of the particles, and in the method for separating the specific gravity of particles by separating the high specific gravity particles and the low specific gravity particles from each other in the sedimentation direction of the particles. Vibration is applied and the Reynolds number is set to 0.
1, the particle size ratio of different specific gravity particles that settle at the same speed by increasing the sedimentation delay of low specific gravity particles larger than high specific gravity particles according to the specific gravity of particles, frequency and amplitude of vibration. Provided is a method for separating specific gravity of particles, which is characterized by expanding a sedimentation ratio.

【0008】上記異比重粒子を、拡大した等速沈降比の
粒径の範囲に予め粒径を揃えることを特徴とする。
The different specific gravity particles are characterized in that the particle diameters are made uniform in advance within the range of the particle diameter of the expanded constant velocity sedimentation ratio.

【0009】[0009]

【発明の実施の形態】本発明の実施の形態を実施例に基
づいて図面を参照して以下説明する。まず、本発明の原
理について説明する。種々の粒径を持つ高比重粒子と低
比重粒子を水中に放つと、図1に示すように同じ粒径で
あれば高比重粒子が速く沈降し、同じ比重であれば粒径
が大きい粒子が速く沈降する。これらの中には、異なる
粒径を持つ高比重粒子と低比重粒子で同じ沈降速度を有
するものが存在する。同一速度で沈降する高比重粒子の
粒径Aと、低比重粒子の粒径Bの比、B/Aを等速沈降
比と呼ぶ。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below based on examples with reference to the drawings. First, the principle of the present invention will be described. When high specific gravity particles and low specific gravity particles having various particle diameters are released into water, high specific gravity particles settle quickly if they have the same particle diameter, and particles having large particle diameters if they have the same specific gravity, as shown in FIG. Settles quickly. Among these, high specific gravity particles and low specific gravity particles having different particle sizes have the same sedimentation velocity. The ratio of the particle size A of the high specific gravity particles that settle at the same speed to the particle size B of the low specific gravity particles, B / A, is called the constant velocity settling ratio.

【0010】沈降速度差を利用した比重分離法は、原則
として低比重粒子を上方で、高比重粒子を下方で回収す
る。図の点線を分離の境界と考えると、高比重粒子のう
ち粒径Aより大きな物は、粒径Aの粒子より沈降速度が
速いためすべて下方で回収され、逆に軽比重粒子のうち
粒径Bより小さな物は、粒径Bの粒子より沈降速度が遅
いのですべて上方で回収される。
In the specific gravity separation method utilizing the difference in sedimentation speed, in principle, low specific gravity particles are recovered in the upper part and high specific gravity particles are recovered in the lower part. Considering the dotted line in the figure as the boundary of separation, all the particles having a higher specific gravity than the particle size A are collected downward because the sedimentation speed is faster than the particles having the particle size A. All the particles smaller than B have a slower sedimentation speed than the particles of particle size B, and thus are all collected above.

【0011】しかし、高比重粒子のうち粒径Aより小さ
な径をもつ粒子aは、低比重粒子とともに上方で回収さ
れてしまい、同様に低比重粒子のうち粒径Bより大きな
径をもつ粒子bは、高比重粒子とともに下方で回収され
てしまうので、分離精度の低下を招く。
However, among the high specific gravity particles, the particle a having a diameter smaller than the particle size A is recovered above together with the low specific gravity particles, and similarly, the low specific gravity particle b having a diameter larger than the particle size B. Is collected below together with the particles having a high specific gravity, resulting in a decrease in separation accuracy.

【0012】したがって、比重分離によって高比重粒子
と低比重粒子に精度良く分離するためには、予め粒子群
を粒径A〜Bの範囲内に粒度調整しておかなければなけ
ればならい。言い換えれば、比重分離に供する粒子群の
最大径と最小径の比を等速沈降比内に収めなければなら
ない。すなわち、等速沈降比は、比重分離における適用
粒度幅を意味する。
Therefore, in order to accurately separate the high specific gravity particles and the low specific gravity particles by the specific gravity separation, it is necessary to adjust the particle size of the particle group in advance within the range of particle sizes A to B. In other words, the ratio between the maximum diameter and the minimum diameter of the particle group to be subjected to the specific gravity separation must be within the constant velocity sedimentation ratio. That is, the constant velocity sedimentation ratio means the applied particle size width in the specific gravity separation.

【0013】ところで、等速沈降比は、流体である水の
流れの状態によってそれぞれ以下のような数式1及び数
式2で表すことが一般化されている。
By the way, it is generalized that the constant velocity sedimentation ratio is expressed by the following equations 1 and 2 depending on the state of the flow of water which is a fluid.

【0014】[0014]

【数1】 [Equation 1]

【0015】[0015]

【数2】 [Equation 2]

【0016】この数式1、2に従って考えると、比重4
の粒子と比重2の粒子を水中で分離するとき、粒径1c
mの粒子は流れの状態がニュートン域となるので、等速
沈降比は3となり、例えば粒径1〜3cmの範囲に事前
に粒度調整すればよく、これは容易に行うことが可能で
ある。しかし、粒径20μmの粒子ではストークス域と
なり、等速沈降比は1.73となる。
Considering the formulas 1 and 2, the specific gravity is 4
Particle size of 1c when water particles and particles with specific gravity of 2 are separated in water
Since the particle of m has a flow state in the Newton region, the constant velocity sedimentation ratio is 3, and the particle size may be adjusted in advance within a range of, for example, 1 to 3 cm, which can be easily performed. However, particles having a particle diameter of 20 μm are in the Stokes region, and the constant velocity sedimentation ratio is 1.73.

【0017】すなわち、この場合には例えば粒径20〜
35μmの範囲に粒度調整しければならず、工業的にこ
の範囲に粒度調整することは困難である。事実上50μ
m以下の微粒子を高精度に分離することが不可能であっ
た。このように微粒子の比重分離においては、等速沈降
比を少しでも拡大することが分離精度の向上につなが
る。
That is, in this case, for example, the particle size is 20 to
The particle size must be adjusted within the range of 35 μm, and it is difficult to industrially adjust the particle size within this range. Virtually 50μ
It was impossible to separate fine particles of m or less with high precision. Thus, in the specific gravity separation of fine particles, increasing the constant velocity sedimentation ratio as much as possible leads to improvement in separation accuracy.

【0018】一方、水中を沈降する1種の粒子に対し、
鉛直方向に水を振動させると、図2に示すように、粒子
の沈降速度の遅延が起きることは一般に知られている。
本発明では、比重の異なる2種の粒子を同一の振動場に
置いた際、粒径の大きな粒子の方が大きな流体抵抗を受
け、粒径の小さな粒子に比べ沈降速度遅延の度合いが大
となることを応用した方法である。その結果、静止流体
中で等速度沈降する比重大・粒径小の粒子(重粒子)と
比重小・粒径大の粒子(軽粒子)は、振動流体中では軽
粒子の方が沈降速度の遅延が大きくなり、等速沈降比の
拡大が起きる。
On the other hand, for one kind of particles settling in water,
It is generally known that when water is vibrated in the vertical direction, the sedimentation velocity of particles is delayed as shown in FIG.
According to the present invention, when two kinds of particles having different specific gravities are placed in the same vibration field, particles having a large particle size receive a larger fluid resistance, and the degree of sedimentation velocity delay is larger than that of particles having a small particle size. This is a method that applies As a result, for particles with a specific gravity and small particle size (heavy particles) that settle at a constant velocity in a stationary fluid and particles with a small specific gravity and large particle size (light particles), the light particles have a lower sedimentation velocity in the oscillating fluid. The delay increases and the constant velocity settling ratio increases.

【0019】一方、流れの状態は、レイノルズ数により
ニュートン域(レイノルズ数500以上)、アレン域
(レイノルズ数2〜500)、ストークス域(レイノル
ズ数2以下)に分類される。従来の研究では、粒子が終
末速度で沈降する際、粒子近傍の流体の流れがニュート
ン域に属するような、粒径数mm〜数cmの粒子を対象
とした沈降遅延しか検討されていない。さらに、レイノ
ルズ数が小さくストークス域に属するような微粒子の沈
降に対しては、沈降遅延がほとんど起きないとされてき
た。
On the other hand, the flow state is classified into a Newton region (Reynolds number of 500 or more), an Allen region (Reynolds number of 2 to 500), and a Stokes region (Reynolds number of 2 or less) according to the Reynolds number. In the conventional studies, when the particles settle at the terminal velocity, only the settling delay for particles having a particle size of several mm to several cm is examined so that the fluid flow near the particles belongs to the Newton region. Further, it has been considered that the sedimentation delay hardly occurs in the sedimentation of fine particles having a small Reynolds number and belonging to the Stokes region.

【0020】しかし、アレン域はもちろんのこと、微粒
子に対して粒子沈降時のレイノルズ数が0.1を越える
ような振動場におくといわゆるストークス域であるにも
かかわらず、厳密にはストークスの式から僅かに逸脱す
るために沈降の遅延が起こる。
However, not only in the Allen region, but when placed in an oscillating field in which the Reynolds number at the time of particle precipitation exceeds 0.1 for fine particles, strictly speaking, the Stokes A slight deviation from the equation causes a delay in settling.

【0021】例えば、レイノルズ数が概ね0.2以上と
なるような振動(粒子の粒径、比重によるが、例えば、
周波数500Hz以上、振幅100μm以上の正弦波あ
るいは方形波など。周波数を倍にすれば、振幅を半減さ
せても概ね同様な振動場を与えることができる。)を水
に与えると、いわゆるストークス域であるにもかかわら
ず、厳密にはストークスの式から僅かに逸脱するために
沈降の遅延が起こる。
For example, vibrations such that the Reynolds number is about 0.2 or more (depending on the particle size and specific gravity of the particles, for example,
A sine wave or square wave with a frequency of 500 Hz or more and an amplitude of 100 μm or more. If the frequency is doubled, almost the same vibration field can be given even if the amplitude is halved. ) To water causes a delay in sedimentation due to a slight deviation from the Stokes equation, although it is in the so-called Stokes range.

【0022】ニュートン域同様、重粒子に比べ軽粒子の
方がこの遅延が大きくなるため、等速沈降比の拡大が起
きる。等速沈降比拡大の度合いは、周波数、振幅の増大
に伴う粒子近傍の流体のレイノルズ数増大とともに大き
くなる。
Similar to the Newton region, the delay is larger in the light particles than in the heavy particles, so that the constant velocity sedimentation ratio is expanded. The degree of expansion of the constant velocity sedimentation ratio increases as the Reynolds number of the fluid near the particles increases with increasing frequency and amplitude.

【0023】本発明は、粒子の比重の大小による沈降速
度差を利用し、高比重粒子と低比重粒子を比重分離する
粒子の比重分離方法において、粒子の沈降方向に振動を
与え、粒子の比重、振動の周波数、振幅に応じて低比重
粒子の沈降遅延を重粒子よりも大きくして、同速度で沈
降する異比重粒子の粒径比である等速沈降比を拡大する
ことを特徴とする粒子の比重分離方法である。
The present invention utilizes a difference in sedimentation velocity depending on the magnitude of the specific gravity of the particles, and in a method for separating the specific gravity of particles of high specific gravity and particles of low specific gravity, vibration is applied in the sedimentation direction of the particles to obtain the specific gravity of the particles. According to the frequency and amplitude of vibration, the settling delay of the low specific gravity particles is made larger than that of the heavy particles, and the constant velocity settling ratio, which is the particle size ratio of the different specific gravity particles settling at the same speed, is expanded. This is a method for separating specific gravity of particles.

【0024】この場合、粒子の沈降方向に振動を与え、
レイノルズ数を少なくとも0.1より大きくする。この
ようにすると、予め等速沈降比の異比重粒子の異なる粒
径の範囲を、広い範囲に揃え、広い範囲の粒径の粒子を
比重分離の対象とすることができる。
In this case, vibration is applied in the particle settling direction,
Reynolds number is at least greater than 0.1. By doing so, it is possible to arrange the range of different particle diameters of the particles of different specific gravity having the constant velocity sedimentation ratio to a wide range in advance, and to target the particles having the particle diameter of the wide range for the specific gravity separation.

【0025】要するに、本発明によれば、粒子の比重分
離方法において、粒子の沈降方向に振動を与えること
で、等速沈降比が拡大させて、粒子の比重分離を可能と
する高比重粒子と低比重粒子の粒径比が大きくなるとと
もに、流れの状態がストークス領域となる微細な粒子領
域の比重分離を可能とする、即ち粒子の比重分離方法に
おいて比重選別可能な対象粒径領域を広げることができ
る。
In short, according to the present invention, in the method for separating the specific gravity of particles, by applying vibration in the settling direction of the particles, the constant velocity settling ratio is expanded, and high specific gravity particles that enable specific gravity separation of particles are provided. As the particle size ratio of low specific gravity particles increases, it becomes possible to separate the specific gravity of fine particle regions where the flow state becomes the Stokes region, that is, to expand the target particle size region that can be selected by specific gravity in the particle specific gravity separation method. You can

【0026】(実験)これら等速沈降比拡大の検証は図
3に示す実験装置により実施した。図3において、この
実験装置1は、加振装置2と、加振装置2により加振さ
れるガラスセル3と、測定処理装置4とを有する。
(Experiment) The verification of expansion of the constant velocity sedimentation ratio was carried out by the experimental apparatus shown in FIG. In FIG. 3, the experimental device 1 includes a vibrating device 2, a glass cell 3 vibrated by the vibrating device 2, and a measurement processing device 4.

【0027】加振装置2は、徐振装置5と、徐振装置5
の上に設けた加振機6とから成り、この加振機6により
振動板7を介してガラスセル3内の水を上下方向に加振
するものである。加振機6は、アンプ8を介してファン
クションジェネレータ9に接続されている。
The vibration device 2 includes a vibration reducer 5 and a vibration reducer 5
The vibrating machine 6 provided above the vibrating plate 6 vibrates the water in the glass cell 3 through the vibrating plate 7 in the vertical direction. The shaker 6 is connected to the function generator 9 via the amplifier 8.

【0028】測定処理装置4は、ガラスセル3内に収容
されている粒子の混合された水を拡大して検知し検知画
像を撮影する顕微鏡10(光学顕微鏡を利用する。)を
備えた高速度カメラ11と、高速度カメラ制御部12
と、高速度カメラ11による画像信号を入力して粒子の
挙動を測定するコンピュータ13とから成る。さらに、
高速度カメラ制御部12は、モニター14及びオシロス
コープ15に接続されている。
The measurement processing device 4 is equipped with a microscope 10 (using an optical microscope) for enlarging and detecting water mixed with particles contained in the glass cell 3 and taking a detection image. Camera 11 and high-speed camera controller 12
And a computer 13 for inputting an image signal from the high-speed camera 11 to measure the behavior of particles. further,
The high-speed camera controller 12 is connected to the monitor 14 and the oscilloscope 15.

【0029】実験に際しては、ガラスセル3内に斜線部
(半断面図で示す)のように水を満たし、ガラスセル3
の上端の粒子投入部16から、試料粒子の懸濁液を静か
に投入する。ファンクションジェネレータ9により任意
の周波数、振幅、波形の波を発生させ、これをアンプで
増幅した後、その信号が加振機6に入力される。この信
号に従って振動板7が上下に振動し、ガラスセル3内に
満たされた水に振動場を生成させる。
In the experiment, the glass cell 3 was filled with water as indicated by the hatched portion (shown in a half cross-sectional view),
The sample particle suspension is gently charged from the particle charging unit 16 at the upper end of the. The function generator 9 generates a wave having an arbitrary frequency, amplitude, and waveform, which is amplified by an amplifier, and then the signal is input to the vibration exciter 6. The diaphragm 7 vibrates up and down in accordance with this signal, causing the water filled in the glass cell 3 to generate a vibration field.

【0030】水の振動場中を沈降する粒子の運動を、顕
微鏡10を介して高速度カメラ11で撮影し、この撮影
信号によって得られた撮像信号を制御用コンピュータ1
3に入力して、粒子の沈降軌跡および沈降速度を測定す
る。
The motion of particles settling in the vibration field of water is photographed by the high-speed camera 11 via the microscope 10, and the image pickup signal obtained by this photographed signal is used by the control computer 1.
Enter 3 to measure the sedimentation trajectory and sedimentation velocity of the particles.

【0031】(実験例)図4(a)(b)に実験例の結
果を示す。この実験例は、密度、粒度の異なる2種のガ
ラスビーズ(懸濁液濃度0.1%)を、静止水中および
周波数500Hz、振幅100μmの正弦波振動した水
中に投入した際の沈降軌跡を示したものである。
(Experimental Example) FIGS. 4A and 4B show the results of the experimental example. This experimental example shows a settling trajectory when two types of glass beads having different densities and particle sizes (suspension concentration 0.1%) were put into still water and water oscillated with a sinusoidal wave having a frequency of 500 Hz and an amplitude of 100 μm. It is a thing.

【0032】図4(a)(b)に示す実験結果では、比
重4.2と比重2.6の粒子では静止水中におけるスト
ークス域の等速沈降比が1.41であり、比重4.2、
粒径29.2μmの重粒子に対しては、比重2.6、粒
径41.3μmの軽粒子が等速で沈降する。
In the experimental results shown in FIGS. 4A and 4B, particles having a specific gravity of 4.2 and a specific gravity of 2.6 have a constant velocity sedimentation ratio of 1.41 in the Stokes region in still water, and a specific gravity of 4.2. ,
For heavy particles having a particle size of 29.2 μm, light particles having a specific gravity of 2.6 and a particle size of 41.3 μm settle at a constant velocity.

【0033】すなわち、粒径41.3μm以上の軽粒子
は、粒径29.2μmの重粒子より早く沈降するため、
これらの混合粒子群を比重分離すると、これらはともに
重粒子側(下方)に回収され静止水中では分離できな
い。
That is, since light particles having a particle size of 41.3 μm or more settle faster than heavy particles having a particle size of 29.2 μm,
When these mixed particle groups are separated by specific gravity, they are both collected on the heavy particle side (downward) and cannot be separated in still water.

【0034】図4(b)は、軽粒子として比重2.6、
粒径44.7μmの粒子を用いた実験例であるが、この
実験例の結果では、静止水中の沈降速度は1910μm
/sとなり、重粒子の沈降速度1640μm/sよりも
速く分離できないことを示している。
FIG. 4B shows that the light particles have a specific gravity of 2.6,
This is an experimental example using particles having a particle size of 44.7 μm. The result of this experimental example shows that the sedimentation velocity in still water is 1910 μm.
/ S, which indicates that the heavy particles cannot be separated faster than the sedimentation speed of 1640 μm / s.

【0035】ここに振動場を与えると、粒子近傍の流体
のレイノルズ数が大きくなり、ストークスの式から逸脱
して沈降速度の遅延が起きる。このとき、粒径の大きな
軽粒子の方がより大きな流体抵抗を受けるために、遅延
の度合いも大きくなる。図の結果では、重粒子の沈降速
度1420μm/sに対し、軽粒子は1280μm/s
となり、沈降速度の逆転が起きている。すなわち、静止
水中では分離できない44.7μmの軽粒子が分離可能
となることを示している。
When an oscillating field is applied here, the Reynolds number of the fluid in the vicinity of the particles becomes large, which deviates from the Stokes equation and delays the sedimentation velocity. At this time, the light particles having a large particle size are subjected to a larger fluid resistance, so that the degree of delay is also increased. The results of the figure show that the sedimentation velocity of heavy particles is 1420 μm / s, whereas that of light particles is 1280 μm / s.
And the reversal of the sedimentation rate has occurred. That is, it shows that light particles of 44.7 μm, which cannot be separated in still water, can be separated.

【0036】この実験条件下で軽粒子が1420μm/
sとなる粒径は47.3μm程度と試算され、等速沈降
比が1.41から1.62に拡大したことを意味する。
この等速沈降比拡大は、振動の周波数が高く振幅が大き
いほど、また分離対象の粒子の比重差が大きいほど顕著
となる。また、水の変わりに他の粘性流体を用いても、
その粘度に応じて静止流体中の沈降速度は異なるが、振
動による等速沈降比の拡大は同様にして起きる。
Under the experimental conditions, the light particles were 1420 μm /
The particle size of s is estimated to be about 47.3 μm, which means that the constant velocity sedimentation ratio is increased from 1.41 to 1.62.
The expansion of the constant velocity sedimentation ratio becomes more significant as the frequency of vibration is higher and the amplitude is larger, and as the difference in specific gravity between the particles to be separated is larger. Also, if you use other viscous fluid instead of water,
Although the sedimentation velocity in the stationary fluid differs depending on the viscosity, the expansion of the constant velocity sedimentation ratio due to vibration similarly occurs.

【0037】以上、本発明の実施の形態を実施例に基づ
いて説明したが、本発明は特にこのような実施例に限定
されることなく、特許請求の範囲記載の技術的事項の範
囲内でいろいろな実施例があることは言うまでもない。
Although the embodiment of the present invention has been described above based on the examples, the present invention is not particularly limited to such examples and within the scope of the technical matters described in the claims. It goes without saying that there are various embodiments.

【0038】[0038]

【発明の効果】以上の構成である本発明によれば、従来
型比重分離装置において、粒子の沈降方向に振動場を与
えれば、粒子の比重、振動の周波数、振幅に応じて軽粒
子の沈降遅延が重粒子よりも大きくなり、等速沈降比が
拡大して、事前の粒度調整の負担を不要あるいは軽減す
ることが可能である。
According to the present invention having the above-described structure, in the conventional specific gravity separator, if a vibration field is applied in the sedimentation direction of the particles, the sedimentation of the light particles according to the specific gravity of the particles, the frequency and the amplitude of vibration. The delay becomes larger than that of heavy particles, and the constant velocity sedimentation ratio increases, so that it is possible to eliminate or reduce the burden of particle size adjustment in advance.

【0039】特に、これまで比重分離することが困難で
あった50μm以下の多分散微粒子に対しては、事前に
十分な粒度調整が行えなくとも、振動場による等速沈降
比の拡大により分離精度を向上させることが可能とな
る。
In particular, for polydisperse fine particles of 50 μm or less, which have been difficult to be separated by specific gravity, separation accuracy can be increased by expanding the constant velocity sedimentation ratio by a vibration field, even if sufficient particle size adjustment cannot be performed in advance. It becomes possible to improve.

【図面の簡単な説明】[Brief description of drawings]

【図1】比重分離による等速沈降比の概念を説明する図
である。
FIG. 1 is a diagram for explaining the concept of constant velocity sedimentation ratio by specific gravity separation.

【図2】振動水による等速沈降比の拡大の概念を説明す
る図である。
FIG. 2 is a diagram illustrating a concept of expansion of a constant velocity sedimentation ratio by vibrating water.

【図3】本発明を実証する実験装置を説明する図であ
る。
FIG. 3 is a diagram illustrating an experimental device that demonstrates the present invention.

【図4】本発明の実験結果の一例を説明する図である。FIG. 4 is a diagram illustrating an example of an experimental result of the present invention.

【符号の説明】[Explanation of symbols]

1 実験装置 2 加振装置 4 測定処理装置 6 加振機 10 顕微鏡 11 高速度カメラ 16 粒子投入部 1 Experimental device 2 Vibration device 4 Measurement processor 6 shaker 10 microscope 11 High-speed camera 16 Particle input section

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 粒子の比重の大小による沈降速度差を
利用し、高比重粒子と低比重粒子を比重分離する粒子の
比重分離方法において、 粒子の沈降方向に振動を与え、粒子の比重、振動の周波
数、振幅に応じて低比重粒子の沈降遅延を高比重粒子よ
りも大きくして、同速度で沈降する異比重粒子の粒径比
である等速沈降比を拡大することを特徴とする粒子の比
重分離方法。
1. A method for separating the specific gravity of particles, in which high specific gravity particles and low specific gravity particles are subjected to specific gravity separation by utilizing the difference in sedimentation velocity depending on the magnitude of specific gravity of particles, vibration is applied in the sedimentation direction of the particles, and specific gravity and vibration of the particles are given. Particles characterized by increasing the sedimentation delay of low-density particles larger than that of high-density particles according to the frequency and amplitude of the particles, and expanding the constant velocity sedimentation ratio, which is the particle size ratio of different-density particles that sediment at the same speed. Specific gravity separation method.
【請求項2】 粒子の比重の大小による沈降速度差を
利用し、高比重粒子と低比重粒子を比重分離する粒子の
比重分離方法において、 粒子の沈降方向に振動を与え、レイノルズ数を0.1よ
り大きくするとともに、粒子の比重、振動の周波数、振
幅に応じて低比重粒子の沈降遅延を高比重粒子よりも大
きくして、同速度で沈降する異比重粒子の粒径比である
等速沈降比を拡大することを特徴とする粒子の比重分離
方法。
2. In a method for separating specific gravity of particles by separating specific gravity of high specific gravity particles and low specific gravity particles by utilizing the difference in sedimentation velocity depending on the specific gravity of particles, vibration is applied in the sedimentation direction of the particles, and Reynolds number of 0. 1, the particle size ratio of different specific gravity particles that settle at the same speed by increasing the sedimentation delay of low specific gravity particles larger than high specific gravity particles according to the specific gravity of particles, frequency and amplitude of vibration. A method for separating specific gravity of particles, characterized by expanding the sedimentation ratio.
【請求項3】 上記異比重粒を等速沈降比の粒径の範
囲に予め粒径を揃えることを特徴とする請求項1又は2
記載の粒子の比重分離方法。
3. The particle size of the different-specific-gravity particles is made uniform in advance within the range of the particle size of the constant velocity sedimentation ratio.
The method for separating specific gravity of particles as described.
JP2002151669A 2002-05-27 2002-05-27 Specific gravity separation method for particles Expired - Lifetime JP4012963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002151669A JP4012963B2 (en) 2002-05-27 2002-05-27 Specific gravity separation method for particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002151669A JP4012963B2 (en) 2002-05-27 2002-05-27 Specific gravity separation method for particles

Publications (2)

Publication Number Publication Date
JP2003340314A true JP2003340314A (en) 2003-12-02
JP4012963B2 JP4012963B2 (en) 2007-11-28

Family

ID=29769177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002151669A Expired - Lifetime JP4012963B2 (en) 2002-05-27 2002-05-27 Specific gravity separation method for particles

Country Status (1)

Country Link
JP (1) JP4012963B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005063982A1 (en) * 2003-12-29 2005-07-14 Universal Bio Research Co., Ltd. Method of detecting target substance
JP2006239678A (en) * 2005-02-02 2006-09-14 National Institute Of Advanced Industrial & Technology Separation device and separation method for particle
JP2008107484A (en) * 2006-10-24 2008-05-08 Seiko Epson Corp Method for manufacturing electrophoretic display sheet, electrophoretic display device and electronic equipment
JP2008231158A (en) * 2007-03-16 2008-10-02 Dainippon Toryo Co Ltd Preparation method of coating
DE102008005063A1 (en) 2007-07-13 2009-01-15 National Institute Of Advanced Industrial Science And Technology Particle e.g. jigs, separation apparatus for use in e.g. mining industry, has particle supply cylinders with valve for discharging particles in suspension towards centrifugation vessel filled beforehand with water
US7988610B2 (en) 2006-07-25 2011-08-02 National Institute Of Advanced Industrial Science And Technology Particle separation apparatus and method
CN105983479A (en) * 2015-03-19 2016-10-05 株式会社吴羽 Method of recovering metallic foreign matter and method of inspecting metallic foreign matter of polymer

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005063982A1 (en) * 2003-12-29 2005-07-14 Universal Bio Research Co., Ltd. Method of detecting target substance
JP2005192439A (en) * 2003-12-29 2005-07-21 Universal Bio Research Co Ltd Method for detecting target substance
JP4732683B2 (en) * 2003-12-29 2011-07-27 ユニバーサル・バイオ・リサーチ株式会社 Target substance detection method
JP2006239678A (en) * 2005-02-02 2006-09-14 National Institute Of Advanced Industrial & Technology Separation device and separation method for particle
US7988610B2 (en) 2006-07-25 2011-08-02 National Institute Of Advanced Industrial Science And Technology Particle separation apparatus and method
JP2008107484A (en) * 2006-10-24 2008-05-08 Seiko Epson Corp Method for manufacturing electrophoretic display sheet, electrophoretic display device and electronic equipment
JP2008231158A (en) * 2007-03-16 2008-10-02 Dainippon Toryo Co Ltd Preparation method of coating
DE102008005063A1 (en) 2007-07-13 2009-01-15 National Institute Of Advanced Industrial Science And Technology Particle e.g. jigs, separation apparatus for use in e.g. mining industry, has particle supply cylinders with valve for discharging particles in suspension towards centrifugation vessel filled beforehand with water
CN105983479A (en) * 2015-03-19 2016-10-05 株式会社吴羽 Method of recovering metallic foreign matter and method of inspecting metallic foreign matter of polymer

Also Published As

Publication number Publication date
JP4012963B2 (en) 2007-11-28

Similar Documents

Publication Publication Date Title
Zhou et al. Controlling the motion of multiple objects on a Chladni plate
US4523682A (en) Acoustic particle separation
Arora et al. Cavitation inception on microparticles: A self-propelled particle accelerator
Wang et al. A review of the mechanisms and models of bubble-particle detachment in froth flotation
Babick Suspensions of colloidal particles and aggregates
US20190271633A1 (en) Droplet sorting device, droplet sorting method and program
González et al. Precise measurements of particle entrainment in a standing-wave acoustic field between 20 and 3500 Hz
US10139330B2 (en) Method and system for analyzing solid matter containing liquids and monitoring or controlling processes containing such liquids
JP4012963B2 (en) Specific gravity separation method for particles
JP2016530519A (en) Adjusting the timing and / or phase of separating and / or charging droplets from a fluid stream in a flow cytometer
Cheng et al. The particle detachment process in flotation
Vainshtein et al. The effect of centreline particle concentration in a wave tube
Lu et al. Insights into agglomeration and separation of fly-ash particles in a sound wave field
Mikhailov et al. Dynamic Modeling of an Active Damper.
WO2006105616A1 (en) Method for microfluidic mixing and mixing device
Dain et al. Dynamics of suspended particles in a two-dimensional high-frequency sonic field
Vekteris et al. Experimental investigation of processes in acoustic cyclone separator
Wang et al. Dielectrophoresis microsystem with integrated flow cytometers for on‐line monitoring of sorting efficiency
Ding et al. Mechanism of the hydrophobic particles with different sizes detaching from the oscillating bubble surface
Nosenko et al. New radio-frequency setup for studying large 2D complex plasma crystals
US3506119A (en) Method and apparatus for classifying by gravity a granular material mixture
Detloff et al. Centrifugal separation in tube and disc geometries: experiments and theoretical models
Leung Separation of dispersed suspension in rotating test tube
Schwarz Rotation of particles by ultrasonic manipulation
CN109647557A (en) Direct particle separating chips based on the micro- vortex of induced charge electric osmose and the preparation method and application thereof and separation method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070814

R150 Certificate of patent or registration of utility model

Ref document number: 4012963

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term