JP2003340254A - Noncontact rotary apparatus - Google Patents

Noncontact rotary apparatus

Info

Publication number
JP2003340254A
JP2003340254A JP2002156170A JP2002156170A JP2003340254A JP 2003340254 A JP2003340254 A JP 2003340254A JP 2002156170 A JP2002156170 A JP 2002156170A JP 2002156170 A JP2002156170 A JP 2002156170A JP 2003340254 A JP2003340254 A JP 2003340254A
Authority
JP
Japan
Prior art keywords
temperature superconductor
magnet
magnetic
high temperature
rotating device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002156170A
Other languages
Japanese (ja)
Inventor
Hiroyasu Nomachi
博康 野町
Yuji Okubo
勇治 大久保
Yoshitaka Ito
佳孝 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2002156170A priority Critical patent/JP2003340254A/en
Publication of JP2003340254A publication Critical patent/JP2003340254A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a noncontact rotary apparatus capable of obtaining a pin stopping force the nature of which is capturing a magnetic field and capable of obtaining a stable magnetic levitation even if a big rotary torque is enforced between a high-temperature superconductor and a magnetically levitating magnet. <P>SOLUTION: The noncontact rotary apparatus, consisting of a freezer 11, the high-temperature superconductor 14 which is provided with a pin stopping point 20 and is refrigerated by the freezer 11, the magnetically levitating magnet 16 which is separated from the high-temperature superconductor 14 and is magnetically levitated, a driven magnet 18 which is rotated with the magnetically levitating magnet 16, and a driving magnet 19 which gives rotation by magnetic force and being separated from the driven magnet 18, is provided with a ferromagnetic body 13 which guides a magnetic force from the magnetically levitating magnet 16 to the pin stopping point 20 of the high-temperature superconductor 14 when magnetizing the high-temperature superconductor, and the ferromagnetic body is arranged at an opposite position to the magnetically levitating magnet 16 and at a position sandwiching the high-temperature superconductor 14 between the magnet 16. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】高温超電導体のピン止め力を
利用して、非接触で回転し、又は非接触で撹拌ができる
非接触回転装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-contact rotating device capable of non-contact rotation or non-contact stirring by utilizing the pinning force of a high temperature superconductor.

【0002】[0002]

【従来の技術】本発明に関する従来技術として、特開2
000−124030号公報に開示されている非接触回
転装置100がある。図4の従来の非接触回転装置10
0は、熱移動を遮断する真空室101内に冷凍部102
と冷凍が可能な高温超電導体103を配設して、磁気浮
上磁石104と磁気浮上磁石104と被駆動磁石105
を連結する回転軸106と撹拌翼を有する被駆動磁石1
05とを非接触回転部109とし、その非接触回転部1
09が高温超電導体103のピン止め力で浮上し、駆動
源107により駆動磁石108を回し、被駆動磁石10
5に磁気力で回転を与える、また回転中の環境変化によ
り非接触回転部が変位したとき、変位センサー111、
112から変位制御手段113へ信号を送り制御して態
勢をととのえることができる。
2. Description of the Related Art As a prior art relating to the present invention, Japanese Patent Laid-Open No.
There is a non-contact rotating device 100 disclosed in Japanese Patent Publication No. 000-12430. Conventional non-contact rotating device 10 of FIG.
0 is a freezing unit 102 in a vacuum chamber 101 that blocks heat transfer.
A magnetic levitation magnet 104, a magnetic levitation magnet 104, and a driven magnet 105 are provided by arranging a high temperature superconductor 103 capable of freezing.
Driven magnet 1 having a stirring blade and a rotating shaft 106 for connecting
And 05 as a non-contact rotary unit 109, and the non-contact rotary unit 1
09 is floated by the pinning force of the high temperature superconductor 103, and the driving magnet 107 is rotated by the driving source 107 to drive the driven magnet 10.
5 is rotated by a magnetic force, and when the non-contact rotating part is displaced due to an environmental change during rotation, the displacement sensor 111,
A signal can be sent from 112 to the displacement control means 113 to control it, and the posture can be maintained.

【0003】[0003]

【発明が解決しようとする課題】しかしながら従来の非
接触回転装置100では、図5に示すように磁気浮上磁
石104からの磁力線を高温超電導体103内の非超電
導相であるピン止め点105が十分に捕捉できないとい
う問題があった。磁気浮上磁石104からの磁力線をピ
ン止め点105で十分に捕捉できないと、高温超電導体
103と磁気浮上磁石104の間に大きな回転トルクが
働いた場合に、磁場を捕捉する性質であるピン止め力が
十分に得られずに、安定浮上できないという問題があ
る。
However, in the conventional non-contact rotating device 100, the line of magnetic force from the magnetic levitation magnet 104 has a sufficient pinning point 105 which is a non-superconducting phase in the high temperature superconductor 103 as shown in FIG. There was a problem that could not be captured. If the lines of magnetic force from the magnetic levitation magnet 104 cannot be sufficiently captured at the pinning point 105, the pinning force that is a property of capturing a magnetic field when a large rotational torque acts between the high temperature superconductor 103 and the magnetic levitation magnet 104. Is not sufficiently obtained, and there is a problem that stable ascent cannot be achieved.

【0004】本発明は、高温超電導体103と磁気浮上
磁石104の間に大きな回転トルクが働いた場合にも、
磁場を捕捉する性質であるピン止め力が十分に得られ、
安定した磁気浮上可能な非接触回転装置を提供すること
を課題とする。
According to the present invention, even when a large rotating torque is applied between the high temperature superconductor 103 and the magnetic levitation magnet 104,
Sufficient pinning force, which is the property of capturing the magnetic field, is obtained,
An object of the present invention is to provide a non-contact rotating device capable of stable magnetic levitation.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
の請求項1の発明は、「冷却手段と、ピン止め点を備え
前記冷却手段により冷却される高温超電導体と、前記高
温超電導体と離間して磁気浮上する磁気浮上磁石と、前
記磁気浮上磁石と一体で回転する被駆動磁石と、前記被
駆動磁石と離間して磁気力で回転を与える駆動磁石と、
からなる非接触回転装置において、前記高温超電導体の
着磁時に前記磁気浮上磁石からの磁力線を前記高温超電
導体の前記ピン止め点へ導くための磁場補助部材を備
え、前記磁場補助部材は前記磁気浮上磁石と対向して前
記高温超電導体を挟み込む位置に配設されること」を特
徴とする。
According to the invention of claim 1 for solving the above-mentioned problems, "a cooling means, a high temperature superconductor having pinning points and cooled by the cooling means, and a high temperature superconductor, A magnetic levitation magnet which is separated and magnetically levitated, a driven magnet which rotates integrally with the magnetic levitation magnet, and a drive magnet which is separated from the driven magnet and is rotated by a magnetic force.
In the non-contact rotating device, the magnetic field assisting member for guiding the magnetic force line from the magnetic levitation magnet to the pinning point of the high temperature superconductor at the time of magnetizing the high temperature superconductor, It is arranged at a position facing the levitation magnet and sandwiching the high temperature superconductor. ”

【0006】請求項1の発明では、高温超電導体の着磁
時に磁気浮上磁石からの磁力線を高温超電導体のピン止
め点へ導くための磁場補助部材を前記磁気浮上磁石と対
向して前記高温超電導体を挟み込む位置に配設すること
で、磁気浮上磁石からの磁力線の多くは高温超電導体の
ピン止め点に捕捉され記憶される。磁力線の多くが高温
超電導体のピン止め点に捕捉され記憶されると、磁気浮
上磁石と高温超電導体のピン止め力が向上し、高温超電
導体と磁気浮上磁石の間に大きな回転トルクが働いた場
合にも、安定した磁気浮上が可能になる。
According to the first aspect of the present invention, the magnetic field auxiliary member for guiding the magnetic field lines from the magnetic levitation magnet to the pinning point of the high temperature superconductor at the time of magnetizing the high temperature superconductor faces the magnetic levitation magnet and faces the high temperature superconductor. By arranging the body at a position sandwiching it, most of the magnetic lines of force from the magnetic levitation magnet are captured and stored at the pinning points of the high temperature superconductor. When most of the lines of magnetic force were captured and stored at the pinning points of the high-temperature superconductor, the pinning force between the magnetic levitation magnet and the high-temperature superconductor improved, and a large rotational torque worked between the high-temperature superconductor and the magnetic levitation magnet. In this case, stable magnetic levitation is possible.

【0007】また、上記課題を解決するための請求項2
の発明は、「前記磁場補助部材は強磁性体又は電磁石で
あること」を特徴とする。
A second aspect of the present invention for solving the above problems.
Is characterized in that the magnetic field assisting member is a ferromagnetic material or an electromagnet.

【0008】請求項2の発明では、磁場補助部材は強磁
性体又は電磁石である。強磁性体又は電磁石は磁気浮上
磁石からの磁力線を高温超電導体のピン止め点へ導くた
め、強磁性体又は電磁石を磁気浮上磁石と対向して高温
超電導体を挟み込む位置に配設することで、安定した磁
気浮上が可能になる。
In the invention of claim 2, the magnetic field assisting member is a ferromagnetic material or an electromagnet. Since the ferromagnetic material or electromagnet guides the magnetic field lines from the magnetic levitation magnet to the pinning point of the high temperature superconductor, by arranging the ferromagnetic material or electromagnet at a position facing the magnetic levitation magnet and sandwiching the high temperature superconductor, Stable magnetic levitation is possible.

【0009】また、上記課題を解決するための請求項3
の発明は、「前記強磁性体は永久磁石又は軟磁性体であ
ること」を特徴とする。
A third aspect of the present invention for solving the above problems.
The invention of "is characterized in that the ferromagnetic material is a permanent magnet or a soft magnetic material."

【0010】請求項3の発明では、強磁性体は永久磁石
又は軟磁性体である。永久磁石としては、Sm−Co、
Nd−Fe−B、Sm−Fe−Nが使用可能で、軟磁性
体としては、パーメンジュール(Fe−50Co−2
V)、電磁軟鉄(Fe)、ケイ素鋼(Fe−3Si)、
鉄−アルミ(Fe−3.5Al)、センダスト(Fe−
9.5Si−5.5Al)、メタグラス2605SC
(Fe−3B−2Si−0.5C)、2605S2(F
e−3B−5Si)が使用可能である。
In the invention of claim 3, the ferromagnetic material is a permanent magnet or a soft magnetic material. As the permanent magnet, Sm-Co,
Nd-Fe-B and Sm-Fe-N can be used, and as the soft magnetic material, permendur (Fe-50Co-2
V), electromagnetic soft iron (Fe), silicon steel (Fe-3Si),
Iron-aluminum (Fe-3.5Al), sendust (Fe-
9.5Si-5.5Al), Metaglass 2605SC
(Fe-3B-2Si-0.5C), 2605S2 (F
e-3B-5Si) can be used.

【0011】また、上記課題を解決するための請求項4
の発明は、「前記冷却手段は冷凍機で、前記冷凍機は上
記高温超電導体を冷却するためのコールドヘッドを備え
ること」を特徴とする。
A fourth aspect for solving the above problems.
The present invention is characterized in that "the cooling means is a refrigerator, and the refrigerator is provided with a cold head for cooling the high temperature superconductor".

【0012】請求項4の発明では、冷凍手段にコールド
ヘッドを備える冷凍機を使用する。コールドヘッドは、
磁場補助部材と熱接触し、磁場補助部材は高温超電導体
と熱接触して、コールドヘッドからの寒冷が高温超電導
体へ伝達される。冷凍機としては、高温超電導体を超電
導遷移温度以下に冷却することが可能なGM冷凍機、パ
ルス管冷凍機、スターリング冷凍機等が使用可能であ
る。冷却手段に冷凍機を使用することで、連続したピン
止め力を得ることが可能になる。
According to the fourth aspect of the invention, a refrigerator provided with a cold head as the refrigerating means is used. Cold head
The magnetic field assisting member is in thermal contact with the high temperature superconductor, and the cold from the cold head is transferred to the high temperature superconductor. As the refrigerator, a GM refrigerator, a pulse tube refrigerator, a Stirling refrigerator or the like capable of cooling a high temperature superconductor to a superconducting transition temperature or lower can be used. By using a refrigerator as the cooling means, it becomes possible to obtain a continuous pinning force.

【0013】また、上記課題を解決するための請求項5
の発明は、「前記磁場補助部材と前記高温超電導体と前
記コールドヘッドは断熱容器に内設されること」を特徴
とする。
A fifth aspect for solving the above problems.
The present invention is characterized in that "the magnetic field assisting member, the high temperature superconductor and the cold head are internally provided in a heat insulating container".

【0014】請求項5の発明では、磁場補助部材と高温
超電導体とコールドヘッドを断熱容器に内設すること
で、高温超電導体を効率よく超電導遷移温度以下に冷却
することが可能になる。断熱容器内を真空にすると、外
部から高温超電導体への熱伝達による熱の侵入を防止で
き、また断熱容器により高温超電導体への輻射による熱
の侵入を防止できる。高温超電導体への熱の侵入が防げ
ると、冷凍機の運転負荷を低減できる。
According to the invention of claim 5, the magnetic field assisting member, the high temperature superconductor and the cold head are provided in the heat insulating container, whereby the high temperature superconductor can be efficiently cooled to the superconducting transition temperature or lower. When the inside of the heat insulating container is evacuated, heat can be prevented from entering due to heat transfer from the outside to the high temperature superconductor, and the heat insulating container can prevent heat from entering due to radiation to the high temperature superconductor. Preventing heat from entering the high-temperature superconductor can reduce the operating load of the refrigerator.

【0015】また、課題を解決するための請求項6は、
「前記高温超電導体は溶融法により製作され、その主成
分がRE−Ba−Cu−Oで、REはY、La、Nd、
Sm、Eu、Gd、Er、YbDy、Hoの少なくとも
1種類又は2種類以上の組み合わせであること」を特徴
とする。
Further, claim 6 for solving the problem is
"The high temperature superconductor is manufactured by a melting method, the main component is RE-Ba-Cu-O, and RE is Y, La, Nd,
Sm, Eu, Gd, Er, YbDy, Ho is a combination of at least one kind or two kinds or more ”.

【0016】請求項6の発明では、高温超電導体は溶融
法により作製したRE−Ba−Cu−O系超電導体を用
いることが好ましい。一旦融点以上に加熱して溶融し再
び凝固させる溶融法で合成したRE−Ba−Cu−O系
超電導体は、結晶粒が粗大で、かつ、超電導となる母相
に絶縁相が微細に分散した組織を有している。この絶縁
相がピン止め点として働くため、ピン止め力の強い超電
導体が得られ、非接触回転装置としての性能が向上す
る。
In the sixth aspect of the invention, it is preferable that the high-temperature superconductor is an RE-Ba-Cu-O-based superconductor produced by a melting method. The RE-Ba-Cu-O-based superconductor synthesized by the melting method in which the material is once heated to a temperature equal to or higher than the melting point and then melted and solidified again has coarse crystal grains, and the insulating phase is finely dispersed in the matrix that becomes superconducting. Have an organization. Since this insulating phase acts as a pinning point, a superconductor having a strong pinning force is obtained, and the performance as a non-contact rotating device is improved.

【0017】また、課題を解決するための請求項7は、
「前記高温超電導体は添加物としてAg、Au、Pt、
Ceの少なくとも1種類以上を含むこと」を特徴とす
る。
Further, claim 7 for solving the problem is
"The high-temperature superconductor contains Ag, Au, Pt,
It includes at least one or more types of Ce ”.

【0018】請求項7の発明では、高温超電導体はA
g、Au、Pt、Ceの少なくとも1種類以上を含むこ
とが好ましい。Ag、Auは超電導相と反応せずに超電
導母相内に析出し、超電導遷移温度などの超電導特性を
損なうことなく、セラミックスである超電導体の機械的
強度を向上させる。従って、非接触回転装置としての信
頼性が向上する。Pt、Ceを含有した超電導体は、母
相である超電導相に絶縁相がより微細に分散しており、
より強いピン止め力を示す。従って、非接触回転装置と
しての性能が向上する。
In the invention of claim 7, the high temperature superconductor is A
It is preferable to contain at least one kind of g, Au, Pt, and Ce. Ag and Au precipitate in the superconducting matrix without reacting with the superconducting phase, and improve the mechanical strength of the ceramic superconductor without impairing the superconducting properties such as the superconducting transition temperature. Therefore, the reliability of the non-contact rotating device is improved. In the superconductor containing Pt and Ce, the insulating phase is finely dispersed in the superconducting phase which is the mother phase,
It shows stronger pinning force. Therefore, the performance as a non-contact rotating device is improved.

【0019】[0019]

【発明の実施の形態】本発明の非接触回転装置の実施形
態を図面に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a non-contact rotating device of the present invention will be described with reference to the drawings.

【0020】(第1実施形態)図1は本発明の非接触回
転装置で、冷凍手段である冷凍機11と、冷凍機11に
設けられ寒冷を発生するコールドヘッド12と、コール
ドヘッド12と熱接触する磁場補助部材である強磁性体
13と、強磁性体13と熱接触する高温超電導体14
と、コールドヘッド12と強磁性体13と高温超電導体
14を内設する断熱容器15と、高温超電導体14と離
間して磁気浮上する磁気浮上磁石16と、磁気浮上磁石
16と一体で回転する回転軸17と、回転軸17と一体
で回転する被駆動磁石18と、被駆動磁石18と離間し
て磁気力で回転を与える駆動磁石19と、磁気浮上磁石
16に固設して容器21内の液体を撹拌する撹拌翼22
と、からなる。
(First Embodiment) FIG. 1 shows a non-contact rotating device of the present invention, which is a refrigerator 11 as a refrigerating means, a cold head 12 provided in the refrigerator 11 for generating cold, a cold head 12 and heat. Ferromagnetic material 13 which is a magnetic field assisting member in contact, and high temperature superconductor 14 in thermal contact with ferromagnetic material 13.
A heat insulating container 15 in which a cold head 12, a ferromagnetic material 13 and a high temperature superconductor 14 are installed, a magnetic levitation magnet 16 which is magnetically levitated apart from the high temperature superconductor 14, and the magnetic levitation magnet 16 rotates integrally. The rotary shaft 17, a driven magnet 18 which rotates integrally with the rotary shaft 17, a drive magnet 19 which is separated from the driven magnet 18 and is rotated by a magnetic force, and a magnetic levitation magnet 16 which is fixedly installed in the container 21. Stirring blade 22 for stirring the liquid of
And consists of.

【0021】冷凍機11は、コールドヘッド12を備え
るGM冷凍機を使用したが、高温超電導体を超電導遷移
温度以下に冷却することが可能な、例えばパルス管冷凍
機、スターリング冷凍機であってもよい。
Although the GM refrigerator having the cold head 12 is used as the refrigerator 11, even a high temperature superconductor capable of cooling to below the superconducting transition temperature, for example, a pulse tube refrigerator or a Stirling refrigerator is used. Good.

【0022】強磁性体13はサイズがφ30×t15
(mm)の軟磁性体で、パーメンジュール(Fe−50
Co−2V)を使用した。軟磁性体としては、この他に
ケイ素鋼(Fe−3Si)、鉄−アルミ(Fe−3.5
Al)、センダスト(Fe−9.5Si−5.5A
l)、メタグラス2605SC(Fe−3B−2Si−
0.5C)、2605S2(Fe−3B−5Si)が使
用可能で、また永久磁石としては、Sm−Co、Nd−
Fe−B、Sm−Fe−Nが使用可能である。
The size of the ferromagnetic body 13 is φ30 × t15.
(Mm) soft magnetic material, permendur (Fe-50
Co-2V) was used. Other soft magnetic materials include silicon steel (Fe-3Si) and iron-aluminum (Fe-3.5).
Al), sendust (Fe-9.5Si-5.5A)
l), Metaglass 2605SC (Fe-3B-2Si-
0.5C), 2605S2 (Fe-3B-5Si) can be used, and as permanent magnets, Sm-Co, Nd-
Fe-B and Sm-Fe-N can be used.

【0023】高温超電導体14は、15重量%のAg2
O(酸化銀)と0.5重量%のPt(白金)を添加して
溶融法で作製したSm−Ba−Cu−O系である。サイ
ズはφ36×t15(mm)である。
The high temperature superconductor 14 contains 15% by weight of Ag2.
It is an Sm-Ba-Cu-O system prepared by a melting method by adding O (silver oxide) and 0.5 wt% Pt (platinum). The size is φ36 × t15 (mm).

【0024】断熱容器15は、材質がSUS304で、
強磁性体13と高温超電導体14とコールドヘッド12
を内設する。断熱容器15の内部は、外部からの熱の侵
入をできる限り防ぐために、真空状態にある。
The heat insulating container 15 is made of SUS304,
Ferromagnetic material 13, high temperature superconductor 14 and cold head 12
Is installed internally. The inside of the heat insulating container 15 is in a vacuum state in order to prevent heat from entering from the outside as much as possible.

【0025】磁気浮上磁石16は、高温超電導体14の
上方で断熱容器15の外で容器22の内部に高温超電導
体14との距離が一定になるように配置される。材質は
Nd−Fe−B、サイズはφ40×t15(mm)であ
る。
The magnetic levitation magnet 16 is arranged above the high temperature superconductor 14 outside the heat insulating container 15 and inside the container 22 so that the distance to the high temperature superconductor 14 is constant. The material is Nd-Fe-B, and the size is φ40 × t15 (mm).

【0026】図2は第1実施形態の非接触回転装置の磁
力線の状態を示したものである。高温超電導体14は内
部には非超電導相であるピン止め点20を備える。強磁
性体13は、磁気浮上磁石16に対向して高温超電導体
14を挟み込む位置に配設される。尚、図5の従来の非
接触回転装置の磁気浮上の状態とは、上下が逆の構成で
ある。
FIG. 2 shows the state of magnetic force lines of the non-contact rotating device of the first embodiment. The high temperature superconductor 14 has a pinning point 20 which is a non-superconducting phase inside. The ferromagnetic body 13 is arranged so as to face the magnetic levitation magnet 16 and sandwich the high-temperature superconductor 14. It should be noted that the configuration is upside down from the magnetic levitation state of the conventional non-contact rotating device of FIG.

【0027】高温超電導体14が磁場を捕捉するメカニ
ズムを説明すると、高温超電導体14に外部から図示し
ない着磁装置により磁場を印加しながら超電導遷移温度
以下に冷却して着磁すると、定まった量の磁場が磁力線
1本の単位(量子化磁束)となって、多くの磁力線の形
で高温超電導体14の内部に侵入する。この磁力線は高
温超電導体14の内部に分散するピン止め点20に捕捉
され、外部の磁場が無くなっても磁場が高温超電導体1
4内部に記憶されて残る。高温超電導体14のピン止め
点20が磁力線を捕捉する力(ピン止め力)は、高温超
電導体14の材料固有の特性であり、一般に低温になる
ほど強くなる。そのため、超電導体を冷却して低い温度
にすれば、ピン止め力は向上し、高温超電導体14が捕
捉できる磁場は多くなる。本発明では、高温超電導体1
4の下方(強磁性体13は、磁気浮上磁石16に対向し
て高温超電導体14を挟み込む位置)に強磁性体13が
配設されるため、磁気浮上磁石16からの磁力線の多く
は高温超電導体14の内部のピン止め点20に捕捉され
記憶された状態になる。
The mechanism by which the high-temperature superconductor 14 captures a magnetic field will be described. When a magnetic field is applied to the high-temperature superconductor 14 from the outside by a magnetizing device (not shown), the high-temperature superconductor 14 is cooled to a temperature below the superconducting transition temperature and magnetized. Magnetic field becomes a unit of one magnetic force line (quantized magnetic flux) and penetrates into the high temperature superconductor 14 in the form of many magnetic force lines. The lines of magnetic force are captured by the pinning points 20 dispersed inside the high-temperature superconductor 14, and even if the external magnetic field disappears, the magnetic field is high-temperature superconductor 1.
4 It is stored and remains inside. The force (pinning force) by which the pinning points 20 of the high-temperature superconductor 14 capture the magnetic lines of force is a characteristic peculiar to the material of the high-temperature superconductor 14, and generally becomes stronger as the temperature becomes lower. Therefore, if the superconductor is cooled to a low temperature, the pinning force is improved and the magnetic field that can be captured by the high temperature superconductor 14 is increased. In the present invention, the high temperature superconductor 1
4, the ferromagnetic body 13 is arranged below the magnetic levitation magnet 16 (a position where the ferromagnetic body 13 faces the magnetic levitation magnet 16 and sandwiches the high temperature superconductor 14). Therefore, most of the magnetic field lines from the magnetic levitation magnet 16 are high temperature superconducting materials. It is captured and stored in the pinning point 20 inside the body 14.

【0028】尚、本発明では高温超電導体14の着磁後
も、強磁性体13を磁気浮上磁石16に対向して高温超
電導体14を挟み込む位置とするが、高温超電導体14
の着磁後に強磁性体13を取り除くことも可能である。
この場合でも、磁気浮上磁石16からの磁力線の多くは
高温超電導体14の内部のピン止め点20に捕捉され記
憶された状態になる。
In the present invention, although the high-temperature superconductor 14 is positioned so as to face the magnetic levitation magnet 16 and sandwich the high-temperature superconductor 14 even after the high-temperature superconductor 14 is magnetized.
It is also possible to remove the ferromagnetic material 13 after the magnetization.
Even in this case, most of the magnetic force lines from the magnetic levitation magnet 16 are captured and stored in the pinning points 20 inside the high temperature superconductor 14.

【0029】本発明の第1実施形態では、高温超電導体
14の着磁時に磁気浮上磁石16からの磁力線を高温超
電導体14のピン止め点20へ導くための強磁性体13
を磁気浮上磁石16と対向して高温超電導体14を挟み
込む位置に配設することで、磁気浮上磁石16からの磁
力線の多くは高温超電導体14のピン止め点20に捕捉
され記憶される。磁力線の多くが高温超電導体14のピ
ン止め点20に捕捉され記憶されると、磁気浮上磁石1
6と高温超電導体14のピン止め力が向上し、高温超電
導体14と磁気浮上磁石16の間に大きな回転トルクが
働いた場合にも、安定した磁気浮上が可能になる。
In the first embodiment of the present invention, the ferromagnetic body 13 for guiding the magnetic force lines from the magnetic levitation magnet 16 to the pinning points 20 of the high temperature superconductor 14 when the high temperature superconductor 14 is magnetized.
Is arranged at a position sandwiching the high-temperature superconductor 14 so as to face the magnetic levitation magnet 16, most of the magnetic lines of force from the magnetic levitation magnet 16 are captured and stored in the pinning points 20 of the high-temperature superconductor 14. When most of the lines of magnetic force are captured and stored in the pinning points 20 of the high temperature superconductor 14, the magnetic levitation magnet 1
6 and the pinning force of the high temperature superconductor 14 are improved, and stable magnetic levitation is possible even when a large rotational torque acts between the high temperature superconductor 14 and the magnetic levitation magnet 16.

【0030】また、冷凍手段にコールドヘッド12を備
える冷凍機11を使用することで、連続したピン止め力
を得ることが可能になる。
Further, by using the refrigerator 11 having the cold head 12 as the refrigerating means, it becomes possible to obtain a continuous pinning force.

【0031】また、強磁性体13と高温超電導体14と
コールドヘッド12を断熱容器15に内設することで、
高温超電導体14を効率よく超電導遷移温度以下に冷却
することが可能になる。断熱容器内15を真空にする
と、外部から高温超電導体14への熱伝達による熱の侵
入を防止でき、また断熱容器15により高温超電導体1
4への輻射による熱の侵入を防止できる。高温超電導体
14への熱の侵入が防げると、冷凍機11の運転負荷を
低減できる。
Further, by providing the ferromagnetic body 13, the high temperature superconductor 14 and the cold head 12 in the heat insulating container 15,
It becomes possible to efficiently cool the high-temperature superconductor 14 to the superconducting transition temperature or lower. When the inside of the heat insulating container 15 is evacuated, heat can be prevented from entering due to heat transfer from the outside to the high temperature superconductor 14, and the heat insulating container 15 prevents the high temperature superconductor 1
It is possible to prevent heat from entering the 4 due to radiation. When heat can be prevented from entering the high-temperature superconductor 14, the operating load of the refrigerator 11 can be reduced.

【0032】本発明の第1実施形態では、従来の非接触
回転装置においては、容器21に水を1リットル以上充
填すると、撹拌翼22による安定浮上しての撹拌が困難
であったが、本発明では水20リットル以上を充填して
も安定浮上した撹拌が可能になる。
In the first embodiment of the present invention, in the conventional non-contact rotating device, when the container 21 was filled with 1 liter or more of water, it was difficult to stably stir by the stirring blades 22. In the invention, even if 20 liters or more of water is filled, stable floating stirring can be achieved.

【0033】(第2実施形態)図3は本発明の第2実施
形態で、第1実施形態と共通する部分については説明を
省略する。第2実施形態では磁場補助部材として電磁石
23を用いたこと、断熱容器を用いないことが第1実施
形態との主な違いである。電磁石23は、コイル24と
軟磁性体25とから構成される。その他の構成は第1実
施形態と同じである。
(Second Embodiment) FIG. 3 shows a second embodiment of the present invention, and the description of the portions common to the first embodiment will be omitted. The main difference from the first embodiment is that the electromagnet 23 is used as the magnetic field assisting member in the second embodiment and that the heat insulating container is not used. The electromagnet 23 is composed of a coil 24 and a soft magnetic body 25. Other configurations are the same as those in the first embodiment.

【0034】本発明の第2実施形態では第1実施形態と
同様に、高温超電導体14の着磁時に磁気浮上磁石16
からの磁力線を高温超電導体14のピン止め点20へ導
くための電磁石23を磁気浮上磁石16と対向して高温
超電導体14を挟み込む位置に配設することで、磁気浮
上磁石16からの磁力線の多くは高温超電導体14のピ
ン止め点20に捕捉され記憶される。磁力線の多くが高
温超電導体14のピン止め点20に捕捉され記憶される
と、磁気浮上磁石16と高温超電導体14のピン止め力
が向上し、高温超電導体14と磁気浮上磁石16の間に
大きな回転トルクが働いた場合にも、安定した磁気浮上
が可能になる。
In the second embodiment of the present invention, as in the first embodiment, the magnetic levitation magnet 16 is used when the high temperature superconductor 14 is magnetized.
The magnetic field from the magnetic levitation magnet 16 is arranged by arranging the electromagnet 23 for guiding the magnetic field line from the magnetic levitation magnet 16 to the pinning point 20 of the high temperature superconductor 14 at a position facing the magnetic levitation magnet 16 and sandwiching the high temperature superconductor 14. Many are captured and stored at pinning points 20 on the high temperature superconductor 14. When most of the lines of magnetic force are captured and stored in the pinning points 20 of the high-temperature superconductor 14, the pinning force between the magnetic levitation magnet 16 and the high-temperature superconductor 14 is improved, and the magnetic levitation magnet 16 and the magnetic levitation magnet 16 are separated from each other. Stable magnetic levitation is possible even when a large rotational torque is applied.

【0035】[0035]

【発明の効果】本発明は、高温超電導体と磁気浮上磁石
の間に大きな回転トルクが働いた場合にも、磁場を捕捉
する性質であるピン止め力が十分に得られ、安定した磁
気浮上可能な非接触回転装置を提供することができる。
According to the present invention, even when a large rotating torque is applied between the high-temperature superconductor and the magnetic levitation magnet, a sufficient pinning force, which is a property of capturing a magnetic field, is obtained, and stable magnetic levitation is possible. It is possible to provide a non-contact rotating device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施形態の非接触回転装置であ
る。
FIG. 1 is a non-contact rotating device according to a first embodiment of the present invention.

【図2】第1実施形態の非接触回転装置の磁力線の状態
を示したものである。
FIG. 2 shows a state of magnetic force lines of the non-contact rotating device of the first embodiment.

【図3】本発明の第2実施形態の非接触回転装置であ
る。
FIG. 3 is a non-contact rotating device according to a second embodiment of the present invention.

【図4】従来の非接触回転装置である。FIG. 4 is a conventional non-contact rotating device.

【図5】従来の非接触回転装置の磁力線の状態を示した
ものである。
FIG. 5 shows a state of magnetic force lines of a conventional non-contact rotating device.

【符号の説明】[Explanation of symbols]

11 冷凍機(冷凍手段) 13 強磁性体(磁場補助部材) 14 高温超電導体 16 磁気浮上磁石 18 被駆動磁石 19 駆動磁石 20 ピン止め点 11 Refrigerator (freezing means) 13 Ferromagnetic material (magnetic field auxiliary member) 14 High temperature superconductor 16 Magnetic levitation magnet 18 Driven magnet 19 Drive magnet 20 pinning points

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 冷却手段と、ピン止め点を備え前記冷却
手段により冷却される高温超電導体と、前記高温超電導
体と離間して磁気浮上する磁気浮上磁石と、前記磁気浮
上磁石と一体で回転する被駆動磁石と、前記被駆動磁石
と離間して磁気力で回転を与える駆動磁石と、からなる
非接触回転装置において、 前記高温超電導体の着磁時に前記磁気浮上磁石からの磁
力線を前記高温超電導体の前記ピン止め点へ導くための
磁場補助部材を備え、前記磁場補助部材は前記磁気浮上
磁石と対向して前記高温超電導体を挟み込む位置に配設
されること、を特徴とする非接触回転装置。
1. A cooling means, a high-temperature superconductor that is provided with a pinning point and is cooled by the cooling means, a magnetic levitation magnet that is magnetically levitated apart from the high-temperature superconductor, and the magnetic levitation magnet rotates integrally with the magnetic levitation magnet. In a non-contact rotating device including a driven magnet for rotating the driven magnet and a drive magnet that is separated from the driven magnet to rotate by a magnetic force, the magnetic flux from the magnetic levitation magnet is applied to the high temperature superconductor when the high temperature superconductor is magnetized. A non-contact type magnetic head, comprising: a magnetic field assisting member for guiding the pinning point of the superconductor, wherein the magnetic field assisting member is disposed at a position facing the magnetic levitation magnet and sandwiching the high temperature superconductor. Rotating device.
【請求項2】 前記磁場補助部材は強磁性体又は電磁石
であること、を特徴とする請求項1に記載の非接触回転
装置。
2. The non-contact rotating device according to claim 1, wherein the magnetic field assisting member is a ferromagnetic material or an electromagnet.
【請求項3】 前記強磁性体は永久磁石又は軟磁性体で
あること、を特徴とする請求項2に記載の非接触回転装
置。
3. The non-contact rotating device according to claim 2, wherein the ferromagnetic material is a permanent magnet or a soft magnetic material.
【請求項4】 前記冷却手段は冷凍機で、前記冷凍機は
上記高温超電導体を冷却するためのコールドヘッドを備
えること、を特徴とする請求項1乃至3のいずれかに記
載の非接触回転装置。
4. The non-contact rotation according to claim 1, wherein the cooling means is a refrigerator, and the refrigerator includes a cold head for cooling the high temperature superconductor. apparatus.
【請求項5】 前記磁場補助部材と前記高温超電導体と
前記コールドヘッドは断熱容器に内設されること、を特
徴とする請求項4に記載の非接触回転装置。
5. The non-contact rotating device according to claim 4, wherein the magnetic field assisting member, the high-temperature superconductor, and the cold head are provided inside a heat insulating container.
【請求項6】 前記高温超電導体は溶融法により製作さ
れ、その主成分がRE−Ba−Cu−Oで、REはY、
La、Nd、Sm、Eu、Gd、Er、YbDy、Ho
の少なくとも1種類又は2種類以上の組み合わせである
こと、を特徴とする請求項1乃至5のいずれかに記載の
非接触回転装置。
6. The high-temperature superconductor is manufactured by a melting method, the main component of which is RE-Ba-Cu-O, and RE is Y,
La, Nd, Sm, Eu, Gd, Er, YbDy, Ho
6. The non-contact rotating device according to claim 1, wherein the non-contact rotating device is at least one kind or a combination of two or more kinds.
【請求項7】 前記高温超電導体は添加物としてAg、
Au、Pt、Ceの少なくとも1種類以上を含むこと、
を特徴とする請求項6に記載の非接触回転装置。
7. The high temperature superconductor comprises Ag as an additive,
Contain at least one kind of Au, Pt, and Ce,
The non-contact rotating device according to claim 6.
JP2002156170A 2002-05-29 2002-05-29 Noncontact rotary apparatus Pending JP2003340254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002156170A JP2003340254A (en) 2002-05-29 2002-05-29 Noncontact rotary apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002156170A JP2003340254A (en) 2002-05-29 2002-05-29 Noncontact rotary apparatus

Publications (1)

Publication Number Publication Date
JP2003340254A true JP2003340254A (en) 2003-12-02

Family

ID=29772505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002156170A Pending JP2003340254A (en) 2002-05-29 2002-05-29 Noncontact rotary apparatus

Country Status (1)

Country Link
JP (1) JP2003340254A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006035098A (en) * 2004-07-27 2006-02-09 Aisin Seiki Co Ltd Non-contact agitator
KR101090013B1 (en) 2009-03-11 2011-12-05 한국수력원자력 주식회사 Agitator
CN111644110A (en) * 2020-04-26 2020-09-11 中国核电工程有限公司 A high temperature agitating unit for pyrolysis of radioactive organic waste liquid

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006035098A (en) * 2004-07-27 2006-02-09 Aisin Seiki Co Ltd Non-contact agitator
JP4581533B2 (en) * 2004-07-27 2010-11-17 アイシン精機株式会社 Non-contact stirrer
KR101090013B1 (en) 2009-03-11 2011-12-05 한국수력원자력 주식회사 Agitator
CN111644110A (en) * 2020-04-26 2020-09-11 中国核电工程有限公司 A high temperature agitating unit for pyrolysis of radioactive organic waste liquid

Similar Documents

Publication Publication Date Title
JP3961032B2 (en) Magnetic bearing device for rotor shaft
CA2055043C (en) Magnetic refrigerator
US4892863A (en) Electric machinery employing a superconductor element
Hirosawa et al. Magnetization and magnetic anisotropy of R2Co14B and Nd2 (Fe1− x Co x) 14B measured on single crystals
US20070080595A1 (en) Superconductive non-contact rotary device
JPH04240361A (en) Stationary type magnetic refrigerator
Clark Magnetostrictive RFe2 intermetallic compounds
JP2003340254A (en) Noncontact rotary apparatus
JPS6326312B2 (en)
JP2004023921A (en) Motive power or electric power generator
JPH09501761A (en) Thin film superconductor magnetic bearing
Senba et al. Characteristics of an electromagnetic levitation system using a bulk superconductor
US6451131B1 (en) Terbium-dysprosium-iron magnetostrictive materials and devices using these materials
JP4220733B2 (en) Superconducting magnetic bearing
JP3084132B2 (en) Magnetic levitation device
JP3631399B2 (en) Superconducting magnetizer
JP6960527B2 (en) Permanent magnet material processing method
JP3647683B2 (en) Manufacturing method of rotor
CN207706028U (en) A kind of magneto superconducting magnet wireless charging energy power supply
Szymura et al. Domain structure, magnetic and mechanical properties of Nd Fe B magnets with different grain size
Hütten Processing, structure, and property relationships in Nd-Fe-B magnets
Tang et al. High thermal stability of hot-deformed Nd–Fe–B magnets by spraying Pr70Cu30 powders on melt-spun powders
JPH10247753A (en) Superconducting device and control method thereof
JPH0620837A (en) Method of magnetizing superconductive bulk magnet
JP7040335B2 (en) Motor control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070921

A131 Notification of reasons for refusal

Effective date: 20071002

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071130

A02 Decision of refusal

Effective date: 20090512

Free format text: JAPANESE INTERMEDIATE CODE: A02