JP2003336920A - Pulse tube refrigerator, energizing system using the pulse tube refrigerator, and method of using the pulse tube refrigerator - Google Patents

Pulse tube refrigerator, energizing system using the pulse tube refrigerator, and method of using the pulse tube refrigerator

Info

Publication number
JP2003336920A
JP2003336920A JP2002143303A JP2002143303A JP2003336920A JP 2003336920 A JP2003336920 A JP 2003336920A JP 2002143303 A JP2002143303 A JP 2002143303A JP 2002143303 A JP2002143303 A JP 2002143303A JP 2003336920 A JP2003336920 A JP 2003336920A
Authority
JP
Japan
Prior art keywords
pulse tube
tube refrigerator
refrigerator
energy storage
receiving member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002143303A
Other languages
Japanese (ja)
Other versions
JP4000364B2 (en
Inventor
Yoichi Matsubara
洋一 松原
Mitsugi Akita
調 秋田
Tomofumi Kasahara
奉文 笠原
Shinji Torii
慎治 鳥居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon University
Central Research Institute of Electric Power Industry
Original Assignee
Nihon University
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University, Central Research Institute of Electric Power Industry filed Critical Nihon University
Priority to JP2002143303A priority Critical patent/JP4000364B2/en
Publication of JP2003336920A publication Critical patent/JP2003336920A/en
Application granted granted Critical
Publication of JP4000364B2 publication Critical patent/JP4000364B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1406Pulse-tube cycles with pulse tube in co-axial or concentric geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1421Pulse-tube cycles characterised by details not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1425Pulse tubes with basic schematic including several pulse tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • F25D19/006Thermal coupling structure or interface

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Superconductive Dynamoelectric Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an energizing system capable of promoting a reduction in size of equipment and satisfactorily transferring heat to the connected portion of pulse tube refrigerators to a heat receiving member. <P>SOLUTION: In electric power storage equipment (energizing system) 1, the pulse tube refrigerators 10 are energized to store electric energy in an electric energy storage body (heat receiving member) 20. For this purpose, the pulse tube refrigerators 10 are allowed to function as current leads to directly connect the pulse tube refrigerators 10 to the electric energy storage body 20. Accordingly, the pulse tube generators 10 need not be electrically insulated from the energy storage body 20, and an insulation structure can be simplified to reduce the size. In addition, an insulation member between the pulse tube refrigerator 10 and the energy storage body 20 can be eliminated to prevent a heat loss from being almost produced, and an electric energy storage efficiency can be remarkably increased by satisfactorily cooling the connection part 28. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、パルス管冷凍機、
パルス管冷凍機を用いた通電システム、およびパルス管
冷凍機の使用方法に関する。
TECHNICAL FIELD The present invention relates to a pulse tube refrigerator,
The present invention relates to an energization system using a pulse tube refrigerator and a method of using the pulse tube refrigerator.

【0002】[0002]

【背景技術】近年、電力需要の増大に対する対策が種々
検討されている。その中の一つに、電力消費の少ない夜
間時の電力を電力貯蔵設備に貯蔵しておき、電力消費が
著しく、供給がおぼつかなくなる日中に、その貯蔵した
電力を使用するという技術が知られている。電力貯蔵設
備は、超電導からなるエネルギ蓄積体の両端に銅製の電
流リードを接続し、一方の電流リードから他方の電流リ
ードに向けて大電流を通電させ、両電流リード間に接続
されたエネルギ蓄積体に電気エネルギを蓄積する構造で
ある。この際、エネルギ蓄積体は超電導であるために、
真空のチャンバー内で低温状態に冷却されているが、電
力貯蔵設備の外部まで引き出された電流リードは、ビル
等の建物内に配線されるために室温とされている。ま
た、エネルギ蓄積体における電流リードとの接続部分
は、室温とされた電流リードを介して熱影響を受けやす
いため、冷凍機によって積極的に冷却されており、接続
部分での熱影響を抑えてエネルギ蓄積体の蓄積効率を向
上させている。
BACKGROUND ART In recent years, various measures for increasing the power demand have been studied. One of them is known as a technology that stores electric power at night with low power consumption in an electric power storage facility and uses the stored electric power during the day when the electric power consumption is remarkable and the supply becomes unclear. ing. Power storage equipment has copper current leads connected to both ends of an energy storage body made of superconductivity, and allows a large current to flow from one current lead to the other, leading to energy storage connected between both current leads. It is a structure that stores electrical energy in the body. At this time, since the energy storage body is superconducting,
Although it is cooled to a low temperature in a vacuum chamber, the current lead drawn to the outside of the electric power storage equipment is kept at room temperature because it is wired inside a building such as a building. Further, since the connection portion of the energy storage body with the current lead is easily affected by heat via the current lead at room temperature, it is actively cooled by the refrigerator, and the heat influence at the connection portion is suppressed. The energy storage efficiency is improved.

【0003】[0003]

【発明が解決しようとする課題】ところで、電流リード
とエネルギ蓄積体との接続部分は大電流が通電されてい
るため、この接続部分と冷凍機とを確実に電気絶縁する
必要がある。しかしながら、冷凍機としてGM(ギフォ
ード・マクマホン)サイクル冷凍機、あるいはスターリ
ングサイクル冷凍機を使用していた従来では、これらの
冷凍機に設けられた機械的可動機構や電気的制御機構ま
でも確実に絶縁する必要があり、絶縁構造が複雑になっ
て電力貯蔵設備が大型化するという問題があった。
By the way, since a large current is applied to the connecting portion between the current lead and the energy storage body, it is necessary to ensure electrical insulation between this connecting portion and the refrigerator. However, in the conventional case where a GM (Gifford-McMahon) cycle refrigerator or a Stirling cycle refrigerator is used as a refrigerator, it is possible to reliably insulate even a mechanical moving mechanism and an electric control mechanism provided in these refrigerators. However, there is a problem in that the insulation structure becomes complicated and the power storage facility becomes large.

【0004】また、電気絶縁に使用される絶縁部材は、
単に電気的に絶縁できればよいというのではなく、冷凍
機との熱交換を効率的に行うために、熱伝導性にも優れ
ている必要がある。しかし、絶縁部材を形成する材料は
一般的に、断熱部材として用いられるものが多く、冷凍
機との間を絶縁するのに適切ではない。従って、このこ
とが絶縁部材での熱損失となって接続部分を確実に冷却
できず、ひいては接続部分の熱影響を十分に抑えきれな
いという問題がある。
The insulating member used for electrical insulation is
It is not only necessary to be electrically insulated, but it is also necessary to have excellent thermal conductivity in order to efficiently exchange heat with the refrigerator. However, many materials that form the insulating member are generally used as a heat insulating member, and are not suitable for insulating the refrigerator. Therefore, this causes a heat loss in the insulating member, so that the connecting portion cannot be cooled reliably, and further, there is a problem that the thermal influence of the connecting portion cannot be sufficiently suppressed.

【0005】本発明の目的は、設備の小型化を促進で
き、かつ受熱部材との接続部分に良好に伝熱できるパル
ス管冷凍機、パルス管冷凍機を用いた通電システム、お
よびパルス管冷凍機の使用方法を提供することにある。
An object of the present invention is to promote miniaturization of equipment and to transfer heat well to a connecting portion with a heat receiving member, a pulse tube refrigerator, an energization system using the pulse tube refrigerator, and a pulse tube refrigerator. It is to provide the usage method of.

【0006】[0006]

【課題を解決するための手段】本発明の請求項1に係る
パルス管冷凍機は、両端で温度差のある一端側に受熱部
材が接続されるパルス管冷凍機であって、前記受熱部材
との間で通電可能に設けられていることを特徴とする。
ここで、パルス管冷凍機とは、受熱部材に低熱を伝達さ
せて冷却するものの他、高熱を伝達させて昇温(加熱)
するものも含む。
A pulse tube refrigerator according to claim 1 of the present invention is a pulse tube refrigerator in which a heat receiving member is connected to one end side where there is a temperature difference at both ends, and the heat receiving member It is characterized in that it can be energized between the two.
Here, the pulse tube refrigerator has a function of transmitting low heat to the heat receiving member to cool it, and also transmitting high heat to raise the temperature (heating).
Including those that do.

【0007】このようなパルス管冷凍機によれば、パル
ス管冷凍機自身に通電させるのであるが、このパルス管
冷凍機は、従来用いられていたGMサイクル冷凍機やス
ターリングサイクル冷凍機とは異なって機械的可動機構
および電気的制御機構を有しないうえ、パルス管冷凍機
そのものを電流リードとして機能させるので、パルス管
冷凍機と受熱部材とを何ら絶縁する必要がなく、絶縁構
造が大幅に簡素化され、小型化が促進される。また、パ
ルス管冷凍機と受熱部材とが直に接続されて通電可能に
設けられているから、従来の絶縁部材が不要になって熱
損失が殆ど生じない。このため、受熱部材とパルス管冷
凍機との接続部分が良好に冷却されたり、昇温される。
以上により、本発明の目的が達成される。
According to such a pulse tube refrigerator, the pulse tube refrigerator itself is energized, but this pulse tube refrigerator is different from the GM cycle refrigerator and the Stirling cycle refrigerator which have been used conventionally. Since there is no mechanical moving mechanism and electrical control mechanism and the pulse tube refrigerator itself functions as a current lead, there is no need to insulate the pulse tube refrigerator from the heat receiving member, and the insulation structure is greatly simplified. And miniaturization is promoted. Further, since the pulse tube refrigerator and the heat receiving member are directly connected to each other so that they can be energized, the conventional insulating member is not necessary and heat loss hardly occurs. Therefore, the connecting portion between the heat receiving member and the pulse tube refrigerator is satisfactorily cooled or the temperature is raised.
From the above, the object of the present invention is achieved.

【0008】本発明の請求項2に係るパルス管冷凍機
は、請求項1に記載のパルス管冷凍機であって、冷凍機
本体と、この冷凍機本体の前記両端を貫通するリード部
材とを含んで構成され、このリード部材の前記一端側か
ら突出した部分に前記被冷却部材が接続されていること
を特徴とする。このようなパルス管冷凍機においては、
リード部材を導電性に優れた材料で形成することによ
り、冷凍機本体側を導電性よりもむしろ、冷凍機として
の耐久性などを優先させた材料で形成可能であり、パル
ス管冷凍機全体としては、良好な通電性能を確保しつ
つ、冷凍機としての信頼性も確実に得られる。
A pulse tube refrigerator according to a second aspect of the present invention is the pulse tube refrigerator according to the first aspect, which comprises a refrigerator body and lead members penetrating both ends of the refrigerator body. The member to be cooled is connected to a portion of the lead member protruding from the one end side. In such a pulse tube refrigerator,
By forming the lead member with a material with excellent conductivity, it is possible to form the refrigerator body side with a material that prioritizes durability as a refrigerator rather than conductivity, and as a whole pulse tube refrigerator Can reliably obtain the reliability as a refrigerator while ensuring good energizing performance.

【0009】本発明の請求項3に係る通電システムは、
請求項1または請求項2に記載のパルス管冷凍機を備え
ていることを特徴とする。このような通電システムで
は、前述した請求項1のパルス管冷凍機を備えているこ
とにより、本発明の目的を達成できる。また、請求項2
のパルス管冷凍機を備えていることで、前記目的を達成
できるのに加え、請求項2で説明した作用効果を同様に
得ることができる。
The power supply system according to claim 3 of the present invention is
The pulse tube refrigerator according to claim 1 or 2 is provided. Such an energization system can achieve the object of the present invention by including the pulse tube refrigerator of the first aspect described above. In addition, claim 2
By including the pulse tube refrigerator, the above-described object can be achieved, and in addition, the function and effect described in claim 2 can be obtained.

【0010】本発明の請求項4に係る通電システムは、
請求項3に記載の通電システムにおいて、前記受熱部材
は、少なくとも一対のパルス管冷凍機間に接続され、一
方のパルス管冷凍機から前記受熱部材を通して他方のパ
ルス管冷凍機にかけて通電可能に設けられていることを
特徴とする。このような通電システムによれば、受熱部
材は、例えばその両側のパルス管冷凍機から受熱するた
め、冷却効率または昇温効率がより向上する。
The power supply system according to claim 4 of the present invention is
4. The energization system according to claim 3, wherein the heat receiving member is connected between at least a pair of pulse tube refrigerators, and is provided so as to be able to conduct electricity from one pulse tube refrigerator to the other pulse tube refrigerator through the heat receiving member. It is characterized by According to such an energization system, the heat receiving member receives heat from, for example, the pulse tube refrigerators on both sides thereof, so that the cooling efficiency or the temperature raising efficiency is further improved.

【0011】本発明の請求項5に係る通電システムは、
請求項3または請求項4のいずれかに記載の通電システ
ムにおいて、前記受熱部材が電気エネルギ蓄積体とされ
た電力貯蔵設備であることを特徴とする。このような通
電システムによれば、電力貯蔵設備の小型化が図れる。
また、電気エネルギ蓄積体への熱伝達が効率よく行える
から、例えば超電導からなる電気エネルギ蓄積体が良好
に冷却され、蓄積効率が格段に向上する。
The power supply system according to claim 5 of the present invention is
The power supply system according to claim 3 or 4, wherein the heat receiving member is an electric power storage facility serving as an electric energy storage body. According to such an energization system, the power storage facility can be downsized.
Further, since heat can be efficiently transferred to the electric energy storage body, the electric energy storage body made of, for example, superconductivity is cooled well, and the storage efficiency is remarkably improved.

【0012】本発明の請求項6に係るパルス管冷凍機の
使用方法は、パルス管冷凍機自身を通電可能な電流リー
ドとして用いることを特徴とする。このような使用方法
では、パルス管冷凍機に受熱部材を直接的に接続するこ
とで、本発明の目的が達成される。
The method of using the pulse tube refrigerator according to claim 6 of the present invention is characterized in that the pulse tube refrigerator itself is used as a current lead capable of conducting electricity. In such a usage method, the object of the present invention is achieved by directly connecting the heat receiving member to the pulse tube refrigerator.

【0013】[0013]

【発明の実施の形態】以下、本発明の一実施形態を図面
に基づいて説明する。図1は、本実施形態に係る電力貯
蔵設備(通電システム)1を示す全体図である。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is an overall view showing a power storage facility (energization system) 1 according to this embodiment.

【0014】電力貯蔵設備1は、数kA〜十数kAの直
流電流を通電可能に設けられた一対のパルス管冷凍機1
0(10A,10B)と、これらのパルス管冷凍機10
の低温側(図中の下側であって、本発明に係る一端側)
間に接続された超電導からなる電気エネルギ蓄積体(受
熱部材)20と、パルス管冷凍機10の高温側(図中の
上側)を除く略全体および電気エネルギ蓄積体20を収
容するチャンバー30とを備えている。チャンバー30
内は真空とされているとともに、通常はコイル状とされ
た電気エネルギ蓄積体20とパルス管冷凍機10との接
続部28、ひいては電気エネルギ蓄積体20全体が当該
パルス管冷凍機10によって冷却されている。
The power storage facility 1 is a pair of pulse tube refrigerators 1 provided so that a direct current of several kA to several tens of kA can be passed.
0 (10A, 10B) and these pulse tube refrigerators 10
Low temperature side (lower side in the figure, one end side according to the present invention)
An electric energy accumulator (heat receiving member) 20 made of superconducting material connected between them, and a chamber 30 accommodating the electric energy accumulator 20 and the whole of the pulse tube refrigerator 10 except for the high temperature side (upper side in the figure) I have it. Chamber 30
The inside is evacuated, and the connection portion 28 between the electric energy storage body 20 and the pulse tube refrigerator 10 which are normally coiled, and thus the entire electric energy storage body 20, is cooled by the pulse tube refrigerator 10. ing.

【0015】このような電力貯蔵設備1のうち、最も構
成部品の多いパルス管冷凍機10について、以下に説明
する。それぞれのパルス管冷凍機10は、それ自身が電
流リードとして使用されるものであって、冷凍機本体1
1と、冷凍機本体11の高温側および低温側を貫通する
リード部材12とを含んで構成されている。
Among the electric power storage facilities 1 as described above, the pulse tube refrigerator 10 having the most components will be described below. Each pulse tube refrigerator 10 is used as a current lead by itself, and the refrigerator body 1
1 and a lead member 12 penetrating the high temperature side and the low temperature side of the refrigerator main body 11.

【0016】冷凍機本体11は、パルス管13の外側に
外管14を有した同軸二重管構造であり、各管13,1
4間の隙間を通してヘリウム等の作動ガスが出入りす
る。具体的には、外管14の上部には、作動ガスの流入
出口15Aを有したガス流入出フランジ15が設けら
れ、この流入出口15Aを通して、図2に示す圧力振動
発生手段40と各管13,14間の隙間との間で作動ガ
スが流入出を繰り返す。
The refrigerator main body 11 has a coaxial double-tube structure having an outer tube 14 outside the pulse tube 13, and each tube 13, 1
Working gas such as helium flows in and out through the gap between the four. Specifically, a gas inflow / outflow flange 15 having a working gas inflow / outflow port 15A is provided on the upper portion of the outer pipe 14, and the pressure vibration generating means 40 and each pipe 13 shown in FIG. The working gas repeatedly flows in and out of the gap between the two.

【0017】パルス管13と外管14との間の隙間に
は、上方から順に外上部フローストレーナ16、メッシ
ュカバーパイプ17、外下部フローストレーナ18が配
置され、隙間の下端側が下部フランジ19で塞がれ、下
部フランジ19でのリード部材12の貫通部分がシール
キャップ21で塞がれている。
An outer upper flow strainer 16, a mesh cover pipe 17, and an outer lower flow strainer 18 are arranged in this order from above in the gap between the pulse tube 13 and the outer tube 14, and the lower end side of the gap is closed by a lower flange 19. The lead cap 12 penetrates the lower flange 19 with a seal cap 21.

【0018】外下部フローストレーナ18の内側であっ
て、パルス管13の低温側である下端側には、蓄冷器と
して機能する熱交換器22が配置され、この上端側には
内下部フローストレーナ23が配置され、各管13,1
4間の作動ガスは、外下部フローストレーナ18から熱
交換器22および内下部フローストレーナ23を通して
パルス管13内との流入出を繰り返す。
Inside the outer lower flow strainer 18 and on the lower end side which is the low temperature side of the pulse tube 13, a heat exchanger 22 functioning as a regenerator is arranged, and on the upper end side thereof, an inner lower flow strainer 23. Are placed in each tube 13,1
The working gas between 4 repeatedly flows into and out of the pulse tube 13 from the outer lower flow strainer 18 through the heat exchanger 22 and the inner lower flow strainer 23.

【0019】一方、パルス管13の高温側である上端側
には、内上部フローストレーナ24が配置され、また、
内上部フローストレーナ24を覆うように上部フランジ
25が設けられている。この上部フランジ25には連通
孔25Aが設けられており、パルス管13の高温側と外
部の図示しないバッファタンクとを内上部フローストレ
ーナ24を通して連通させている。
On the other hand, an inner upper flow strainer 24 is arranged on the upper end side which is the high temperature side of the pulse tube 13, and
An upper flange 25 is provided so as to cover the inner upper flow strainer 24. A communication hole 25A is provided in the upper flange 25 to connect the high temperature side of the pulse tube 13 and an external buffer tank (not shown) through the inner upper flow strainer 24.

【0020】なお、パルス管13の高温側とバッファタ
ンクと連通させるのではなく、それぞれのパルス管冷凍
機10の連通孔25A同士を管路等で連結し、各パルス
管13の高温側同士を連通させてもよい。
The high temperature side of the pulse tube 13 is not connected to the buffer tank, but the communication holes 25A of the pulse tube refrigerators 10 are connected to each other by a pipe line or the like, and the high temperature side of each pulse tube 13 is connected to each other. You may communicate.

【0021】また、上部フランジ25には放熱フィン2
6が取り付けられており、パルス管13の高温側をも貫
通するリード部材12の熱を内上部フローストレーナ2
4から上部フランジ25に伝達させ、放熱フィン26で
放熱している。従って、内上部フローストレーナ24
は、本来の整流機能の他、リード部材12から熱を奪う
熱交換器としても機能する。さらに、リード部材12の
高温側を貫通する部分も、シールキャップ27で塞がれ
ている。
Further, the upper flange 25 has a radiation fin 2
6 is attached, and heat of the lead member 12 penetrating the high temperature side of the pulse tube 13 is applied to the inner upper flow strainer 2
4 is transmitted to the upper flange 25 and radiated by the radiation fins 26. Therefore, the inner upper flow strainer 24
In addition to the original rectifying function, also functions as a heat exchanger that removes heat from the lead member 12. Further, the portion penetrating the high temperature side of the lead member 12 is also closed by the seal cap 27.

【0022】以上の冷凍機本体11を構成する各部材
は、上部フランジ25および放熱フィン26は真鍮製で
あるが、他の部材は耐食性等を考慮してステンレス製と
されている。
The upper flange 25 and the radiating fins 26 of each member constituting the refrigerator body 11 are made of brass, while the other members are made of stainless steel in consideration of corrosion resistance and the like.

【0023】これに対してリード部材12は、導電性を
考慮して銅製とされ、パルス管冷凍機10に通電された
電流は、その殆どが冷凍機本体11ではなく、リード部
材12を通して流れるようになっている。
On the other hand, the lead member 12 is made of copper in consideration of conductivity, and most of the current supplied to the pulse tube refrigerator 10 flows through the lead member 12, not the refrigerator body 11. It has become.

【0024】そして、リード部材12の図中の下端側
は、熱交換器22に接しながら貫通していることで、低
温に冷却され、冷凍機本体11から下方に突出した部
分、すなわち、電気エネルギ蓄積体20との接続部28
も直接的に冷却され、ひいては電気エネルギ蓄積体20
全体も冷却される。
The lower end side of the lead member 12 in the drawing penetrates the heat exchanger 22 while being in contact therewith, so that the lead member 12 is cooled to a low temperature and protrudes downward from the refrigerator main body 11, that is, electric energy. Connection part 28 with the accumulator 20
Is also directly cooled, and thus the electrical energy store 20
The whole is also cooled.

【0025】反対に、冷凍機本体11の高温側から突出
した部分には、ターミナル29(29A,29B)が取
り付けられ、一方のターミナル29Aに入力した電流
は、パルス管冷凍機10Aの高温側から低温側へ、そし
て、電気エネルギ蓄積体20を通ってパルス管冷凍機1
0Bの低温側から高温側へ流れ、他方のターミナル29
B側に通電される。
On the contrary, the terminal 29 (29A, 29B) is attached to the portion protruding from the high temperature side of the refrigerator main body 11, and the current input to one terminal 29A is from the high temperature side of the pulse tube refrigerator 10A. To the low temperature side and through the electric energy storage body 20, the pulse tube refrigerator 1
OB flows from the low temperature side to the high temperature side, and the other terminal 29
The B side is energized.

【0026】このようなパルス管冷凍機10は、外管1
4の外管フランジ14Aに挿通されるボルト31によ
り、ステンレス製のチャンバー30のチャンバーフラン
ジ32に固定される。この際、外管フランジ14Aとチ
ャンバーフランジ32との間には、フッ素樹脂等からな
る絶縁リング33が介装され、また、外管フランジ14
Aとボルト31との間には同様な絶縁ブッシュ34が介
装されている。これにより、大電流を通電させるパルス
管冷凍機10とチャンバー30とが電気的に絶縁されて
いる。
Such a pulse tube refrigerator 10 has an outer tube 1
It is fixed to the chamber flange 32 of the chamber 30 made of stainless steel by a bolt 31 which is inserted into the outer tube flange 14A of No. 4. At this time, an insulating ring 33 made of fluororesin or the like is interposed between the outer pipe flange 14A and the chamber flange 32.
A similar insulating bush 34 is interposed between A and the bolt 31. As a result, the pulse tube refrigerator 10 for supplying a large current and the chamber 30 are electrically insulated.

【0027】図2に示す圧力振動発生手段40は、図中
上側が低圧側とされ、かつ下側が高圧側とされたコンプ
レッサ41と、このコンプレッサ41の高圧側と各パル
ス管冷凍機10A,10Bとの間に設けられた高圧バル
ブ42,44と、各パルス管冷凍機10A,10Bとコ
ンプレッサ41の低圧側との間に設けられた低圧バルブ
43,45とを備えている。そして、各バルブ42〜4
5を所定のタイミングで開閉させることにより、パルス
管冷凍機10A,10Bの各パルス管13内に交互に作
動ガスを流入出させて、各パルス管13内に各々180
度の位相差で圧力振動を生じさせ、熱交換器22に蓄冷
するようになっている。
The pressure vibration generating means 40 shown in FIG. 2 has a compressor 41 whose upper side is a low pressure side and whose lower side is a high pressure side in the figure, a high pressure side of this compressor 41 and each pulse tube refrigerator 10A, 10B. And high pressure valves 42 and 44 provided between the pulse tube refrigerators 10A and 10B and the low pressure side of the compressor 41. And each valve 42-4
By opening and closing 5 at a predetermined timing, the working gas is alternately flowed into and out of each pulse tube 13 of the pulse tube refrigerators 10A and 10B, and each of the pulse tubes 13 is supplied with 180 gas.
The pressure vibration is generated by the phase difference of the degree, and the heat is stored in the heat exchanger 22.

【0028】このような本実施形態によれば、以下のよ
うな効果がある。 (1) 電力貯蔵設備1では、各パルス管冷凍機10(1
0A,10B)自身に通電させ、この際の電気エネルギ
を電気エネルギ蓄積体20に蓄積する構成なので、パル
ス管冷凍機10そのものを電流リードとして機能させ
て、パルス管冷凍機10と電気エネルギ蓄積体20とを
直接接続できる。従って、これらパルス管冷凍機10と
電気エネルギ蓄積体20とを電気的に何ら絶縁する必要
がなく、パルス管冷凍機10とチャンバー30とを電気
絶縁するだけでよいから、絶縁構造を大幅に簡素化で
き、小型化を促進できる。
According to this embodiment, the following effects are obtained. (1) In the power storage facility 1, each pulse tube refrigerator 10 (1
0A, 10B) is energized and the electric energy at this time is stored in the electric energy storage body 20, so that the pulse tube refrigerator 10 itself is made to function as a current lead, and the pulse tube refrigerator 10 and the electric energy storage body are made to function. 20 can be directly connected. Therefore, it is not necessary to electrically insulate the pulse tube refrigerator 10 and the electric energy storage body 20 from each other, and it is only necessary to electrically insulate the pulse tube refrigerator 10 and the chamber 30, so that the insulating structure is greatly simplified. It is possible to reduce the size and promote miniaturization.

【0029】(2) リード部材12の上端側は、パルス
管13の高温側を貫通しているうえ、室内に突出してい
ることで、熱影響を受けやすい。しかも、リード部材1
2は下端側まで連続した一本ものであるから、上端側で
の熱が下端側の低温部分に影響する可能性がある。しか
し、本実施形態では、パルス管冷凍機10と電気エネル
ギ蓄積体20とが直に接続され、接続部28が直接的に
冷却されるから、接続部28での従来の絶縁部材を不要
にできて熱損失を殆ど生じなようにできる。このため、
その接続部28を、リード部材12の上端側から下端側
への熱影響に抗して良好に冷却でき、電気エネルギ蓄積
体20を確実に冷却して、エネルギの蓄積効率を格段に
向上させることができる。
(2) Since the upper end side of the lead member 12 penetrates the high temperature side of the pulse tube 13 and projects into the room, it is easily affected by heat. Moreover, the lead member 1
Since 2 is a single piece continuous to the lower end side, heat on the upper end side may affect the low temperature part on the lower end side. However, in the present embodiment, since the pulse tube refrigerator 10 and the electric energy storage body 20 are directly connected and the connection portion 28 is directly cooled, the conventional insulating member in the connection portion 28 can be eliminated. Heat loss can be almost eliminated. For this reason,
The connection part 28 can be satisfactorily cooled against the heat effect from the upper end side to the lower end side of the lead member 12, the electric energy storage body 20 can be surely cooled, and the energy storage efficiency can be significantly improved. You can

【0030】(3) 加えて、パルス管13の高温側の内
上部フローストレーナ24は、熱交換器としても機能す
るので、リード部材12の上端側の熱を確実に除去して
下端側への熱影響をより一層抑制でき、下端側での冷却
効率を良好に維持できる。
(3) In addition, since the inner-upper flow strainer 24 on the high temperature side of the pulse tube 13 also functions as a heat exchanger, the heat on the upper end side of the lead member 12 is surely removed and the upper end flow strainer 24 moves to the lower end side. The heat effect can be further suppressed, and the cooling efficiency on the lower end side can be favorably maintained.

【0031】(4) パルス管冷凍機10においては、リ
ード部材12が冷凍機本体11を貫通し、銅製とされた
このリード部材12を通して電流が流れるため、冷凍機
本体11側の導電性を殆ど気にする必要がなく、冷凍機
本体11を形成する部材も、冷凍機としての耐久性など
を優先させたステンレス製にでき、パルス管冷凍機全体
としては、良好な通電性能を確保しつつ、冷凍機として
の信頼性も確実に得ることができる。
(4) In the pulse tube refrigerator 10, since the lead member 12 penetrates the refrigerator body 11 and a current flows through the lead member 12 made of copper, the conductivity of the refrigerator body 11 side is almost eliminated. There is no need to worry, the members forming the refrigerator main body 11 can also be made of stainless steel giving priority to the durability as a refrigerator, and as a whole the pulse tube refrigerator, while ensuring good energization performance, The reliability as a refrigerator can be surely obtained.

【0032】(5) 従来のGMサイクル冷凍機やスター
リングサイクル冷凍機を用いた場合では、熱交換器22
に相当する部分がまさしく熱交換機能を果たしていた
が、本実施形態での熱交換器22は専ら、蓄冷器として
機能するので、熱交換器22内では温度差に基づく熱損
失を大きく低減でき、この点でも熱損失を抑えて冷却効
率を向上させることができる。
(5) When a conventional GM cycle refrigerator or Stirling cycle refrigerator is used, the heat exchanger 22
Although the portion corresponding to the above has exactly performed the heat exchange function, since the heat exchanger 22 in the present embodiment exclusively functions as a regenerator, the heat loss based on the temperature difference in the heat exchanger 22 can be greatly reduced, Also in this respect, it is possible to suppress heat loss and improve cooling efficiency.

【0033】(6) 電気エネルギ蓄積体20は、その両
端から個別のパルス管冷凍機10A,10Bで冷却され
ているため、電流の入力側および出力側の両方の接続部
28を有効に冷却でき、また、電気エネルギ蓄積体20
全体の冷却効率もさらに向上させることができる。
(6) Since the electric energy storage body 20 is cooled by the individual pulse tube refrigerators 10A and 10B from both ends thereof, it is possible to effectively cool the connection portion 28 on both the current input side and the output side. , The electric energy storage body 20
The overall cooling efficiency can be further improved.

【0034】なお、本発明は、前記実施形態に限定され
るものではなく、本発明の目的を達成できる他の構成等
を含み、以下に示すような変形等も本発明に含まれる。
例えば、前記実施形態では、リード部材12が冷凍機本
体11の低温側と高温側とを貫通する一本構造であった
が、低温側と高温側とに分割した構造、すなわち電気エ
ネルギ蓄積体20との接続部28有する低温側の部材
と、ターミナル29が取り付けられる高温側の部材とで
構成し、パルス管13内にリード部材が存在しない構造
であってもよい。このような構造では、リード部材とし
て低温側と高温側とで熱的に断熱されるため、リード部
材を通しての高温側から低温側への熱影響をさほど考慮
する必要がない。従って、内上部フローストレーナ24
などは専ら整流機能だけを果たせばよく、熱交換器とし
ての機能を兼用させる必要がないので、その構造を簡素
化できる。ただし、リード部材を分割させた構造では、
電流が冷凍機本体11を通電するようになるため、冷凍
機本体11の構成部材を導電性に優れた材料で製造する
必要がある。
The present invention is not limited to the above-described embodiment, but includes other configurations and the like that can achieve the object of the present invention, and the following modifications and the like are also included in the present invention.
For example, in the above-described embodiment, the lead member 12 has a single structure that penetrates the low temperature side and the high temperature side of the refrigerator main body 11, but the structure in which the lead member 12 is divided into the low temperature side and the high temperature side, that is, the electric energy storage body 20. The structure may be such that the low temperature side member having the connection portion 28 with and the high temperature side member to which the terminal 29 is attached are formed, and the lead member does not exist in the pulse tube 13. In such a structure, since the low temperature side and the high temperature side of the lead member are thermally insulated, it is not necessary to consider heat influence from the high temperature side to the low temperature side through the lead member. Therefore, the inner upper flow strainer 24
Since it is only necessary to perform the rectifying function, it is not necessary to combine the functions as a heat exchanger, so that the structure can be simplified. However, in the structure where the lead member is divided,
Since a current flows through the refrigerator main body 11, it is necessary to manufacture the constituent members of the refrigerator main body 11 with a material having excellent conductivity.

【0035】前記実施形態では、冷凍機本体11が同軸
二重管構造であったが、パルス管13と外管14とを構
造的に直列に連結した冷凍機本体を用いてもよい。
Although the refrigerator main body 11 has the coaxial double tube structure in the above-mentioned embodiment, a refrigerator main body in which the pulse tube 13 and the outer tube 14 are structurally connected in series may be used.

【0036】前記実施形態では、パルス管冷凍機10の
上下間、すなわちパルス管冷凍機10の長手方向の全体
を通して通電させていたが、例えば、長手方向の途中か
ら上方側(高温側)を下方側(低温側)に対して電気的
に絶縁し、下方側のみを用いて通電させてもよく、パル
ス管冷凍機の全体を使用して通電させるか、一部を使用
して通電させるかは、その実施にあたって任意に決めら
れてよい。
In the above embodiment, the pulse tube refrigerator 10 is energized between the upper and lower sides of the pulse tube refrigerator 10, that is, the entire length of the pulse tube refrigerator 10 in the longitudinal direction. Side (low temperature side) may be electrically insulated and only the lower side may be energized. Whether the entire pulse tube refrigerator is energized or a part is energized However, the implementation may be arbitrarily determined.

【0037】前記実施形態では、電気エネルギ蓄積体2
0の両端にパルス管冷凍機10が接続されていたが、一
端のみにパルス管冷凍機10を接続した場合でも、パル
ス管冷凍機10の性能によっては、前記目的を十分に達
成でき、本発明に含まれる。
In the above embodiment, the electric energy storage 2
Although the pulse tube refrigerator 10 is connected to both ends of 0, even when the pulse tube refrigerator 10 is connected to only one end, the above object can be sufficiently achieved depending on the performance of the pulse tube refrigerator 10. include.

【0038】また、電気エネルギ蓄積体20の一端側に
複数のパルス管冷凍機10を接続して、複数のターミナ
ル29Aから電流を入力させたり、あるいは複数のター
ミナル29Bから出力させてもよい。
Further, a plurality of pulse tube refrigerators 10 may be connected to one end side of the electric energy storage body 20, and current may be input from a plurality of terminals 29A or output from a plurality of terminals 29B.

【0039】さらに、電気エネルギ蓄積体20として
は、その端部がパルス管冷凍機10に接続されている必
要はなく、電気エネルギ蓄積体20の長手方向の途中に
パルス管冷凍機10を接続してもよい。例えば、このよ
うな構成では、電気エネルギ蓄積体20の両端側および
中央側の3箇所にパルス管冷凍機10を接続し、その3
箇所から冷却することも可能であり、物理的な長さの長
い電気エネルギ蓄積体20を用いた場合でも、その全体
をむらなく効率的に冷却できる。
Further, the electric energy storage body 20 does not need to have its end connected to the pulse tube refrigerator 10, but the pulse tube refrigerator 10 may be connected in the middle of the electric energy storage body 20 in the longitudinal direction. May be. For example, in such a configuration, the pulse tube refrigerator 10 is connected to three positions on both ends and the center of the electrical energy storage body 20, and
It is also possible to cool from a location, and even if the electric energy storage body 20 having a long physical length is used, the entire body can be efficiently cooled without unevenness.

【0040】前記実施形態では、本発明に係る受熱部材
が電気エネルギ蓄積体20とされていたが、受熱部材と
してはこれに限定されない。例えば、パス管冷凍機は、
圧力振動の位相を調整することで熱交換器に高熱を蓄熱
し、受熱部材を昇温させることも可能であるため、本発
明に係る受熱部材としては、通電と昇温との両方が要求
される部材であってもよい。
In the above embodiment, the heat receiving member according to the present invention is the electric energy storage body 20, but the heat receiving member is not limited to this. For example, the pass tube refrigerator
It is also possible to store high heat in the heat exchanger and raise the temperature of the heat receiving member by adjusting the phase of the pressure oscillation, and therefore, as the heat receiving member according to the present invention, both energization and temperature increase are required. It may be a member.

【0041】このことから、本発明の通電システムとし
ては、前記実施形態のような電力貯蔵設備1に限定され
ず、通電と昇温とを伴う受熱部材を備えた任意の通電シ
ステムであってよい。勿論、通電と冷却とを伴う受熱部
材を備えた場合でも、その受熱部材としては電気エネル
ギ蓄積体20である必要はなく、また、通電システムと
しても電力貯蔵設備1以外であってもよい。
From this, the energization system of the present invention is not limited to the electric power storage facility 1 as in the above embodiment, and may be any energization system provided with a heat receiving member that energizes and heats up. . Of course, even when the heat receiving member that energizes and cools is provided, the heat receiving member does not have to be the electrical energy storage body 20, and the energization system may be other than the power storage facility 1.

【0042】また、パルス管冷凍機と受熱部材とを熱伝
達可能に接続するが、電気的には互いに絶縁し、よって
パルス管冷凍機のみに電流を通電させた場合でも、パル
ス管冷凍機自身を電流リードとして使用することになる
ので、本発明の請求項6に含まれる。
Further, although the pulse tube refrigerator and the heat receiving member are connected so as to be capable of heat transfer, they are electrically insulated from each other, so that even when a current is passed through only the pulse tube refrigerator, the pulse tube refrigerator itself Is used as a current lead, and is included in claim 6 of the present invention.

【0043】さらに、入力(印加)する電流としては、
直流電流、および交流電流(含む二相、三相)のいずれ
でもよく、いずれを通電させるかは、通電システムの機
能等を勘案して適宜に決められてよい。
Further, as the current to be input (applied),
Either a direct current or an alternating current (including two-phase and three-phase) may be used, and which one is to be energized may be appropriately determined in consideration of the function of the energization system and the like.

【0044】[0044]

【発明の効果】以上に述べたように、本発明によれば、
設備の小型化を促進でき、かつパルス管冷凍機と受熱部
材との接続部分に良好に伝熱できるという効果がある。
As described above, according to the present invention,
This has the effects of facilitating downsizing of the equipment and good heat transfer to the connecting portion between the pulse tube refrigerator and the heat receiving member.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態に係るパルス管冷凍機を備
えた通電システムを示す全体図である。
FIG. 1 is an overall view showing an energization system including a pulse tube refrigerator according to an embodiment of the present invention.

【図2】前記通電システムに用いられる圧力振動発生手
段を示す模式図である。
FIG. 2 is a schematic diagram showing a pressure vibration generating means used in the energization system.

【符号の説明】[Explanation of symbols]

1…通電システムである電力貯蔵設備、10,10A,
10B…パルス管冷凍機、11…冷凍機本体、12…リ
ード部材、20…受熱部材である電気エネルギ蓄積体、
30…チャンバー。
1 ... Electric power storage system that is an energization system, 10, 10A,
10B ... Pulse tube refrigerator, 11 ... Refrigerator main body, 12 ... Lead member, 20 ... Electric energy accumulator which is a heat receiving member,
30 ... Chamber.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 秋田 調 東京都狛江市戸北2−11−1 財団法人電 力中央研究所 狛江研究所内 (72)発明者 笠原 奉文 東京都狛江市戸北2−11−1 財団法人電 力中央研究所 狛江研究所内 (72)発明者 鳥居 慎治 東京都狛江市戸北2−11−1 財団法人電 力中央研究所 狛江研究所内 Fターム(参考) 5H655 BB01 CC22 DD03 DD12    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Akita             2-11-1, Tohoku, Komae-shi, Tokyo Denden Foundation             Riki Chuo Research Center Komae Research Center (72) Inventor Fumifumi Kasahara             2-11-1, Tohoku, Komae-shi, Tokyo Denden Foundation             Riki Chuo Research Center Komae Research Center (72) Inventor Shinji Torii             2-11-1, Tohoku, Komae-shi, Tokyo Denden Foundation             Riki Chuo Research Center Komae Research Center F-term (reference) 5H655 BB01 CC22 DD03 DD12

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 両端で温度差のある一端側に受熱部材が
接続されるパルス管冷凍機であって、前記受熱部材との
間で通電可能に設けられていることを特徴とするパルス
管冷凍機。
1. A pulse tube refrigerator in which a heat receiving member is connected to one end side where there is a temperature difference at both ends, the pulse tube refrigerating device being provided so as to be able to conduct electricity with the heat receiving member. Machine.
【請求項2】 請求項1に記載のパルス管冷凍機であっ
て、冷凍機本体と、この冷凍機本体の前記両端を貫通す
るリード部材とを含んで構成され、このリード部材の前
記一端側から突出した部分に前記被冷却部材が接続され
ていることを特徴とするパルス管冷凍機。
2. The pulse tube refrigerator according to claim 1, wherein the pulse tube refrigerator includes a refrigerator main body and lead members penetrating both ends of the refrigerator main body, and the one end side of the lead member. A pulse tube refrigerator in which the member to be cooled is connected to a portion protruding from the pulse tube refrigerator.
【請求項3】 請求項1または請求項2に記載のパルス
管冷凍機を備えていることを特徴とするパルス管冷凍機
を用いた通電システム。
3. A power supply system using a pulse tube refrigerator, comprising the pulse tube refrigerator according to claim 1. Description:
【請求項4】 請求項3に記載のパルス管冷凍機を用い
た通電システムにおいて、前記受熱部材は、少なくとも
一対のパルス管冷凍機間に接続され、一方のパルス管冷
凍機から前記受熱部材を通して他方のパルス管冷凍機に
かけて通電可能に設けられていることを特徴とするパル
ス管冷凍機を用いた通電システム。
4. The energization system using the pulse tube refrigerator according to claim 3, wherein the heat receiving member is connected between at least a pair of pulse tube refrigerators, and one of the pulse tube refrigerators passes through the heat receiving member. An energization system using a pulse tube refrigerator, which is provided so as to be energized to the other pulse tube refrigerator.
【請求項5】 請求項3または請求項4のいずれかに記
載のパルス管冷凍機を用いた通電システムにおいて、前
記受熱部材が電気エネルギ蓄積体とされた電力貯蔵設備
であることを特徴とするパルス管冷凍機を用いた通電シ
ステム。
5. The energization system using the pulse tube refrigerator according to claim 3 or 4, wherein the heat receiving member is an electric power storage facility that is an electric energy storage body. An energization system using a pulse tube refrigerator.
【請求項6】 パルス管冷凍機自身を通電可能な電流リ
ードとして用いることを特徴とするパルス管冷凍機の使
用方法。
6. A method of using a pulse tube refrigerator, wherein the pulse tube refrigerator itself is used as a current lead that can be energized.
JP2002143303A 2002-05-17 2002-05-17 Energization system using pulse tube refrigerator Expired - Fee Related JP4000364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002143303A JP4000364B2 (en) 2002-05-17 2002-05-17 Energization system using pulse tube refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002143303A JP4000364B2 (en) 2002-05-17 2002-05-17 Energization system using pulse tube refrigerator

Publications (2)

Publication Number Publication Date
JP2003336920A true JP2003336920A (en) 2003-11-28
JP4000364B2 JP4000364B2 (en) 2007-10-31

Family

ID=29703365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002143303A Expired - Fee Related JP4000364B2 (en) 2002-05-17 2002-05-17 Energization system using pulse tube refrigerator

Country Status (1)

Country Link
JP (1) JP4000364B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007093120A (en) * 2005-09-29 2007-04-12 Toshiba Corp Pulse tube refrigerating machine
JP2015031424A (en) * 2013-08-01 2015-02-16 住友重機械工業株式会社 Refrigerating machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5243154B2 (en) * 2008-09-05 2013-07-24 九州電力株式会社 Current leads for superconducting equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007093120A (en) * 2005-09-29 2007-04-12 Toshiba Corp Pulse tube refrigerating machine
JP4718957B2 (en) * 2005-09-29 2011-07-06 株式会社東芝 Pulse tube refrigerator
JP2015031424A (en) * 2013-08-01 2015-02-16 住友重機械工業株式会社 Refrigerating machine

Also Published As

Publication number Publication date
JP4000364B2 (en) 2007-10-31

Similar Documents

Publication Publication Date Title
US6327862B1 (en) Stirling cycle cryocooler with optimized cold end design
US20080148754A1 (en) Cryogenic cooling system with energy regeneration
WO1997007368A1 (en) Refrigerator with interior mounted heat pump
JP3950087B2 (en) A superconducting rotor with a built-in cooling system, a superconducting generator having a superconducting rotor with a built-in cooling system, and a superconducting motive having a superconducting rotor with a built-in cooling system.
JP3898231B2 (en) Current supply for cooling electrical equipment
KR100999687B1 (en) Superconduction Rotating Apparatus having Rotator mounted Cooling Part
KR100310631B1 (en) Superconducting Rotor for Generator and Motor
JP5243154B2 (en) Current leads for superconducting equipment
JPH05219765A (en) Thermo electric generator
JP2003336920A (en) Pulse tube refrigerator, energizing system using the pulse tube refrigerator, and method of using the pulse tube refrigerator
CN108181004B (en) Infrared thermal imager
JP3107228B2 (en) Superconducting magnet system
JPH0821679A (en) Electronic refrigeration type drinking water cooler
JP2009052879A (en) Electric power storage system
US6286318B1 (en) Pulse tube refrigerator and current lead
JP2005201604A (en) Low temperature cooling system, and heat storage device
CN219301044U (en) Miniature refrigerating device
CN110778471B (en) Thermo-acoustic driven power generation system and method based on pyroelectric effect
JP2004020135A (en) Regenerator
JP2000274966A (en) Heat exchange unit
JPS6161715B2 (en)
JP2004333054A (en) Pulse pipe refrigerator
JPS63243691A (en) Heat accumulating type heat exchanger
JP2001144338A (en) Current lead
JP2000081263A (en) Electric refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050509

A131 Notification of reasons for refusal

Effective date: 20060704

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060831

A131 Notification of reasons for refusal

Effective date: 20061114

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070115

A02 Decision of refusal

Effective date: 20070313

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070426

A521 Written amendment

Effective date: 20070514

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070426

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070619

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070720

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20100824

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20110824

LAPS Cancellation because of no payment of annual fees