JP2003336900A - Hot water storage type water heater - Google Patents

Hot water storage type water heater

Info

Publication number
JP2003336900A
JP2003336900A JP2002144771A JP2002144771A JP2003336900A JP 2003336900 A JP2003336900 A JP 2003336900A JP 2002144771 A JP2002144771 A JP 2002144771A JP 2002144771 A JP2002144771 A JP 2002144771A JP 2003336900 A JP2003336900 A JP 2003336900A
Authority
JP
Japan
Prior art keywords
hot water
water storage
storage tank
water supply
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002144771A
Other languages
Japanese (ja)
Inventor
Yoshinori Morimoto
義則 森本
Yuji Sawada
雄治 澤田
Yoshihiko Koyama
義彦 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2002144771A priority Critical patent/JP2003336900A/en
Publication of JP2003336900A publication Critical patent/JP2003336900A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hot water storage type water heater effectively using hot water stored in a hot water tank by suppressing the lowering of takeout temperature of the hot water from the hot storage tank even if a large amount of hot water is supplied to a hot water supply destination all at once. <P>SOLUTION: This hot water storage type water heater is provided with a hermetically closed type hot water storage tank 1 and a heating means H for heating the hot water in the hot water storage tank 1 so as to be stored in a state forming a temperature stratification. This hot water storage type water heater is so constituted that the plurality of hot water storage tanks 1 whose upper parts in the upstream side and lower parts in the downstream side adjoining in the flowing direction are communicated and connected in series to each other, a water supply passage 3 is connected to the lower part of the one in the uppermost stream side, and a hot water supply passage 5 is connected to the upper part of the other in the lowermost stream, so that the water is supplied to the uppermost stream hot water storage tank 1 by the water supply passage 3 and the hot water in the hot water storage tank 1 in the lowermost stream side is supplied in a form of takeout by the hot water supply passage 5. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、密閉型の貯湯槽
と、その貯湯槽内の湯水を温度成層を形成する状態で貯
湯されるように加熱する加熱手段とが設けられた貯湯式
給湯装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hot water storage type hot water supply apparatus provided with a closed hot water storage tank and a heating means for heating hot water in the hot water storage tank so as to be stored in a state of forming a temperature stratification. Regarding

【0002】[0002]

【従来の技術】かかる貯湯式給湯装置は、例えば、一般
家庭において、浴槽、台所及び洗面所等の各種給湯先へ
の給湯用として用いられるものであり、例えば、一日の
所定の時間帯において加熱手段を加熱作動させて、一日
の使用量に略相当する量の湯を貯湯槽に温度成層を形成
する状態で貯湯するようになっている。そして、かかる
貯湯式給湯装置は、例えば、コージェネレーションシス
テムにおける貯湯式給湯装置として用い、そのような場
合、加熱手段は、熱源として発電装置の排熱を用いるよ
うに構成することとなり、近年では、発電装置を燃料電
池にて構成して、その燃料電池の排熱を加熱手段の熱源
として用いるように構成する場合がある。
2. Description of the Related Art Such a hot water storage type hot water supply device is used for hot water supply to various hot water supply destinations such as bathtubs, kitchens and washrooms in a general household, for example, in a predetermined time zone of a day. The heating means is operated to store the hot water in an amount substantially equivalent to the daily usage amount in the hot water storage tank in a state of forming temperature stratification. The hot water storage type hot water supply apparatus is used as, for example, a hot water storage type hot water supply apparatus in a cogeneration system, and in such a case, the heating means is configured to use the exhaust heat of the power generation apparatus as a heat source. There is a case where the power generation device is configured by a fuel cell and the exhaust heat of the fuel cell is used as a heat source of the heating means.

【0003】かかる貯湯式給湯装置において、従来は、
貯湯槽として、1基の貯湯槽を、その下部に給水路を接
続し且つ上部に給湯路を接続する状態で設けていた。そ
して、1基の貯湯槽に温度成層を形成する状態で貯湯し
て、給湯先への給湯のために、給湯路を通じて貯湯槽の
上部から湯を取り出すと共に、その湯が取り出されるの
と同じ貯湯槽に、取り出される量と同量の水を給水路を
通じて貯湯槽の下部に給水するように構成していた。
In such a hot water supply type hot water supply apparatus, conventionally,
As a hot water storage tank, one hot water storage tank was provided with the water supply passage connected to the lower portion and the hot water supply passage connected to the upper portion. Then, the hot water is stored in one hot water storage tank in a state of forming a temperature stratification, and the hot water is taken out from the upper part of the hot water storage tank through the hot water supply path for hot water supply to the hot water supply destination, and the same hot water is taken out. The same amount of water as was taken out was supplied to the lower part of the hot water tank through the water supply channel.

【0004】[0004]

【発明が解決しようとする課題】ところで、かかる貯湯
式給湯装置を用いて給湯先に給湯する場合、給湯先の種
類によっては、単位時間当たりの給湯量が多い状態で、
比較的長い時間にわたって連続して給湯する、つまり、
一挙に多量の湯を給湯する場合がある。例えば、浴槽に
給湯する場合、60°Cの湯を給湯するときは、20分
程度で150リットル程度を給湯することとなり、一挙
に多量の湯を給湯することとなる。
When hot water is supplied to a hot water supply destination using such a hot water storage type hot water supply apparatus, depending on the type of hot water supply destination, the amount of hot water supply per unit time is large,
To supply hot water continuously for a relatively long time, that is,
A large amount of hot water may be supplied all at once. For example, in the case of supplying hot water to a bathtub, when supplying hot water of 60 ° C., about 150 liters will be supplied in about 20 minutes, and a large amount of hot water will be supplied all at once.

【0005】そして、一挙に多量の湯を給湯先に給湯す
る場合は、多量の湯が一挙に給湯路を通じて1基の貯湯
槽から取り出されると共に、その湯が取り出されるのと
同じ貯湯槽に、取り出される湯と同量の多量の水が一挙
に給水路を通じて供給されることになるので、貯湯槽の
上側層の湯との温度差の大きい水が、一挙に多量に供給
されることから、上側層の湯と供給された水とが混合さ
れて、貯湯槽内の温度成層が乱れてしまうという問題が
生じる。要するに、一挙に多量の湯を給湯先に給湯する
場合は、貯湯槽の上側層の湯と供給される水とが混合さ
れて温度が低下した湯が給湯路を通じて貯湯槽から取り
出されるので、貯湯槽からの湯の取り出し温度が低下し
て、貯湯槽に貯湯している湯を有効に使用し難いという
問題があった。ちなみに、かかる貯湯式給湯装置では、
給湯先への給湯温度が低くなって、適切な給湯が行えな
くなるのを防止するために、給湯路にて給湯先に供給さ
れる湯水を追焚する追焚用加熱器を設けて、その追焚用
加熱器にて湯水を目標温度になるように追焚する場合が
ある。そのような場合には、貯湯槽からの湯の取り出し
温度が低下すると、追焚用加熱器による追焚量が増加す
ることとなり、ランニングコストが高くなるという問題
が生じる。
When a large amount of hot water is supplied to the hot water supply destination at once, a large amount of hot water is taken out from one hot water storage tank at once through the hot water supply passage, and to the same hot water storage tank from which the hot water is taken out. Since the same amount of water as the hot water to be taken out will be supplied all at once through the water supply channel, a large amount of water with a large temperature difference from the hot water in the upper layer of the hot water storage tank will be supplied all at once. There is a problem in that the hot water in the upper layer and the supplied water are mixed and the temperature stratification in the hot water storage tank is disturbed. In short, when a large amount of hot water is to be supplied to the hot water supply destination at once, the hot water in the upper layer of the hot water storage tank is mixed with the supplied water, and the hot water whose temperature has dropped is taken out from the hot water storage tank through the hot water supply passage. There is a problem in that the temperature at which hot water is taken out from the bath decreases, making it difficult to effectively use the hot water stored in the hot water storage bath. By the way, in such hot water storage type water heater,
In order to prevent the hot water supply temperature to the hot water supply destination from becoming too low to prevent proper hot water supply, a heating heater for heating the hot water supplied to the hot water supply destination is provided in the hot water supply passage. There is a case where hot water is heated by a heating heater so as to reach a target temperature. In such a case, if the temperature at which hot water is taken out from the hot water storage tank decreases, the amount of additional heating by the additional heating heater increases, which causes a problem of increased running cost.

【0006】本発明は、かかる実情に鑑みてなされたも
のであり、その目的は、一挙に多量の湯を給湯先に給湯
する場合でも、貯湯槽からの湯の取り出し温度の低下を
抑制して貯湯槽に貯湯している湯を有効に使用し得る貯
湯式給湯装置を提供することにある。
The present invention has been made in view of the above circumstances, and an object thereof is to suppress a decrease in hot water removal temperature from a hot water storage tank even when a large amount of hot water is supplied to a hot water supply destination all at once. An object of the present invention is to provide a hot water storage type hot water supply device that can effectively use hot water stored in a hot water storage tank.

【0007】[0007]

【課題を解決するための手段】〔請求項1記載の発明〕
請求項1に記載の特徴構成は、前記貯湯槽として、複数
の貯湯槽が、通流方向に隣合う上流側のものの上部と下
流側のものの下部とが連通接続される直列接続状態で、
且つ、最上流のものの下部に給水路が接続され、最下流
のものの上部に給湯路が接続される状態で設けられて、
前記給水路により前記最上流の貯湯槽に給水し、且つ、
前記給湯路にて前記最下流の貯湯槽内の湯水を取り出す
形態で給湯されるように構成されていることにある。即
ち、貯湯槽として複数の貯湯槽が設けられて、加熱手段
により、複数の貯湯槽内に温度成層を形成する状態で貯
湯するように、複数の貯湯槽内の湯水が加熱される。そ
して、給湯先への給湯のために最下流の貯湯槽から給湯
路を通じて湯が取り出されるに伴って、それと同量の水
が給水路を通じて最上流の貯湯槽の下部に供給されると
共に、その水の供給により、各貯湯槽の上部から湯水が
各貯湯槽の直ぐ下流側の貯湯槽の下部に供給されること
になる。つまり、給湯先への給湯のために最下流の貯湯
槽から給湯路を通じて湯が取り出されるに伴って、各貯
湯槽の下部には、各貯湯槽の直ぐ上流側の貯湯槽の上部
から湯水が供給されることとなり、そのように各貯湯槽
の直ぐ上流側の貯湯槽の上部から各貯湯槽の下部に供給
される湯水は、加熱手段により加熱されたものであっ
て、そのように各貯湯槽の下部に供給される湯水の温度
は、給水路からの水の温度よりも高い。従って、各貯湯
槽内の上側層に貯留されている湯と各貯湯槽の下部に供
給される湯水との温度差を小さくすることが可能とな
り、一挙に多量の湯を給湯先に給湯する場合でも、給湯
路を通じて最下流の貯湯槽から取り出される湯の温度の
低下を抑制することが可能となる。説明を加えると、複
数の貯湯槽を設けるに当たっては、各貯湯槽の容量を合
わせた合計容量は、従来のように貯湯槽を1基設ける場
合の1基の貯湯槽の容量と同等にし、加熱手段により、
複数の貯湯槽内に温度成層を形成する状態で貯湯するよ
うに、複数の貯湯槽内の湯水を加熱する。例えば、複数
の貯湯槽として2基の貯湯槽を設ける場合は、加熱手段
の加熱により、例えば、2基の貯湯槽の両方が、略全域
にわたって湯が貯留されて沸き上がっている状態となっ
ている場合、2基の貯湯槽のうちの下流側の貯湯槽が沸
き上がり、上流側の貯湯槽には温度成層を形成する状態
で貯湯されている状態となっている場合、2基の貯湯槽
の両方に温度成層を形成する状態で貯湯されている状態
となっている場合等がある。そして、それらのいずれの
場合でも、給湯先への給湯のために下流側の貯湯槽の上
部から給湯路を通じて湯が取り出されるに伴って、下流
側の貯湯槽の下部には、上流側の貯湯槽の上部から湯水
が供給されることとなり、下流側の貯湯槽においては、
貯留されている湯と下部に供給される湯水との温度差を
無くすあるいは小さくすることが可能となる。つまり、
給湯のし始めは、下流側の貯湯槽の下部には、その下流
側の貯湯槽に貯湯されている湯と略同温度の湯が上流側
の貯湯槽の上部から供給されることとなるので、下流側
の貯湯槽の温度成層の乱れを抑制することができて、下
流側の貯湯槽からの湯の取り出し温度の低下を抑制する
ことができる。又、下流側の貯湯槽からの取り出し量が
多くなって、上流側の貯湯槽に多量の水が供給されて上
流側の貯湯槽の温度成層が乱れても、下流側の貯湯槽の
下部には、上流側の貯湯槽の上部から、給水路にて供給
される水よりも温度が高い湯水が供給されることとな
り、下流側の貯湯槽において、上側層に貯留されている
湯と下部に供給される湯水との温度差を小さくすること
が可能となるので、上側層に貯留されている湯と下部に
供給される湯水とが混合されて温度成層が乱れたとして
も、下流側の貯湯槽からの湯の取り出し温度の低下を抑
制することができる。従って、一挙に多量の湯を給湯先
に給湯するときに、最下流の貯湯槽から一挙に多量の湯
が取り出されたとしても、その最下流の貯湯槽の下部に
は、取り出された量と同量で多量ではあるものの、最下
流の貯湯槽の上側層に貯留されている湯とは温度差が無
い又は小さい湯水が供給されるので、最下流の貯湯槽か
らの湯の取り出し温度の低下を抑制することができるの
である。要するに、一挙に多量の湯を給湯先に給湯する
場合でも、貯湯槽からの湯の取り出し温度の低下を抑制
して貯湯槽に貯湯している湯を有効に使用し得る貯湯式
給湯装置を提供することができるようになった。
Means for Solving the Problems [Invention of Claim 1]
The characteristic configuration according to claim 1 is that, as the hot water storage tank, a plurality of hot water storage tanks are connected in series such that an upper part of an upstream side and a lower part of a downstream side which are adjacent to each other in a flow direction are connected in communication.
Moreover, the water supply path is connected to the lower part of the most upstream one, and the hot water supply path is connected to the upper part of the most downstream one.
Water is supplied to the hottest hot water storage tank by the water supply passage, and
The hot water supply passage is configured to be supplied with hot water in the most downstream hot water storage tank. That is, a plurality of hot water storage tanks are provided as hot water storage tanks, and the heating means heats the hot and cold water in the plurality of hot water storage tanks so as to store hot stratified water in the plurality of hot water storage tanks. Then, as hot water is taken out from the most downstream hot water storage tank through the hot water supply path to supply hot water to the hot water supply destination, the same amount of water is supplied to the lower part of the uppermost hot water storage tank through the water supply path, and By supplying water, hot water is supplied from the upper part of each hot water storage tank to the lower part of the hot water storage tank immediately downstream of each hot water storage tank. In other words, as hot water is taken out from the most downstream hot water storage tank through the hot water supply path to supply hot water to the hot water supply destination, hot water from the upper part of the hot water storage tank immediately upstream of each hot water storage tank is located below each hot water storage tank. The hot water supplied from the upper part of the hot water storage tank immediately upstream of each hot water storage tank to the lower part of each hot water storage tank is heated by the heating means, and each hot water storage The temperature of the hot water supplied to the lower part of the tank is higher than the temperature of the water from the water supply channel. Therefore, it is possible to reduce the temperature difference between the hot water stored in the upper layer of each hot water storage tank and the hot water supplied to the lower part of each hot water storage tank, and when supplying a large amount of hot water to the hot water destination at once. However, it is possible to suppress a decrease in the temperature of the hot water taken out from the most downstream hot water storage tank through the hot water supply passage. In addition, when providing a plurality of hot water storage tanks, the total volume of the hot water storage tanks combined is equal to the capacity of one hot water storage tank when one hot water storage tank is provided as in the conventional case, and heating is performed. By means
The hot and cold water in the plurality of hot water storage tanks is heated so that the hot water is stored in the plurality of hot water storage tanks while forming the temperature stratification. For example, when two hot water storage tanks are provided as a plurality of hot water storage tanks, for example, both of the two hot water storage tanks are in a state where the hot water is stored and boiled over substantially the entire area by the heating of the heating means. In the case of the two hot water storage tanks, the downstream hot water storage tank is boiled and the upstream hot water storage tank is in a state of forming temperature stratification. There is a case where hot water is stored in a state where temperature stratification is formed on both. In any of these cases, as hot water is taken out from the upper part of the downstream hot water storage tank through the hot water supply passage to supply hot water to the hot water supply destination, the upstream hot water storage tank Hot water will be supplied from the upper part of the tank, and in the hot water storage tank on the downstream side,
It is possible to eliminate or reduce the temperature difference between the stored hot water and the hot water supplied to the lower portion. That is,
At the beginning of hot water supply, the lower part of the hot water storage tank on the downstream side is supplied with the hot water having the same temperature as the hot water stored in the hot water storage tank on the downstream side from the upper part of the hot water storage tank on the upstream side. The disturbance of the temperature stratification of the hot water storage tank on the downstream side can be suppressed, and the decrease in the temperature of hot water taken out from the hot water storage tank on the downstream side can be suppressed. In addition, even if the amount of water taken out from the downstream hot water storage tank increases and a large amount of water is supplied to the upstream hot water storage tank and the temperature stratification of the upstream hot water storage tank is disturbed, Means that hot water having a higher temperature than the water supplied through the water supply channel is supplied from the upper part of the hot water storage tank on the upstream side, and the hot water stored in the upper layer and the lower part of the hot water storage tank on the downstream side are supplied. Since it is possible to reduce the temperature difference from the hot water supplied, even if the hot water stored in the upper layer and the hot water supplied to the lower layer are mixed and the temperature stratification is disturbed, It is possible to suppress a decrease in the hot water removal temperature from the bath. Therefore, when a large amount of hot water is supplied to the hot water supply destination all at once, even if a large amount of hot water is taken out from the most downstream hot water storage tank Although the amount is the same and a large amount, the temperature of the hot water stored in the uppermost layer of the most downstream hot water storage tank is the same as or smaller than that of the hot water stored in the upper layer. Can be suppressed. In short, even when a large amount of hot water is supplied to the hot water supply destination all at once, it is possible to provide a hot water storage type hot water supply device that suppresses the temperature drop of hot water taken from the hot water storage tank and can effectively use the hot water stored in the hot water storage tank. I was able to do it.

【0008】〔請求項2記載の発明〕請求項2に記載の
特徴構成は、前記貯湯槽として、複数の貯湯槽が、夫々
の下部に各別に給水路が接続され且つ夫々の上部に給湯
路が並列に接続される状態で設けられて、前記給水路に
より前記複数の貯湯槽に給水し、且つ、前記給湯路にて
前記複数の貯湯槽内の湯水を並行して取り出す形態で給
湯されるように構成されていることにある。即ち、貯湯
槽として複数の貯湯槽が設けられて、加熱手段により、
複数の貯湯槽内に温度成層を形成する状態で貯湯するよ
うに、複数の貯湯槽内の湯水が加熱される。そして、給
湯先への給湯のために、給湯路にて複数の貯湯槽から並
行して湯が取り出され、各貯湯槽の下部には、各貯湯槽
から取り出された量と同量の水が給水路を通じて供給さ
れる。つまり、複数の貯湯槽を設けるに当たっては、各
貯湯槽の容量を合わせた合計容量は、従来のように貯湯
槽を1基設ける場合の1基の貯湯槽の容量と同等にし、
加熱手段により、複数の貯湯槽内に温度成層を形成する
状態で貯湯するように、複数の貯湯槽内の湯水を加熱す
る。そして、給湯先へ給湯するときは、給湯路にて複数
の貯湯槽から並行して湯が取り出されることから、一挙
に多量の湯を給湯先に給湯するときでも、各貯湯槽から
の湯の取り出し量を少なくすることが可能となって、各
貯湯槽に供給される水の量も少なくすることが可能とな
るので、各貯湯槽において、上側層の湯と供給される水
との混合を抑制して温度成層の乱れを抑制することが可
能となり、貯湯槽からの湯の取り出し温度の低下を抑制
することが可能となる。要するに、一挙に多量の湯を給
湯先に給湯する場合でも、貯湯槽からの湯の取り出し温
度の低下を抑制して貯湯槽に貯湯している湯を有効に使
用し得る貯湯式給湯装置を提供することができるように
なった。
[Invention of Claim 2] The characteristic configuration according to Claim 2 is that, as the hot water storage tank, a plurality of hot water storage tanks are respectively connected to their respective lower portions with water supply passages and at the upper portions thereof. Are provided in a state of being connected in parallel, water is supplied to the plurality of hot water storage tanks by the water supply passage, and hot water in the plurality of hot water storage tanks is taken out in parallel by the hot water supply passage. It is configured as follows. That is, a plurality of hot water storage tanks are provided as hot water storage tanks, and by the heating means,
The hot and cold water in the plurality of hot water storage tanks is heated so that the hot water is stored in the plurality of hot water storage tanks while forming the temperature stratification. Then, in order to supply hot water to the hot water supply destination, hot water is taken out in parallel from a plurality of hot water storage tanks in the hot water supply passage, and at the bottom of each hot water storage tank, the same amount of water as that taken out from each hot water storage tank is stored. It is supplied through the water supply channel. That is, when providing a plurality of hot water storage tanks, the total volume of the hot water storage tanks combined is equal to the capacity of one hot water storage tank when one hot water storage tank is provided as in the conventional case.
The heating means heats the hot and cold water in the plurality of hot water storage tanks so that the hot water is stored in the plurality of hot water storage tanks while forming the temperature stratification. When the hot water is supplied to the hot water supply destinations, the hot water is taken out from the multiple hot water storage tanks in parallel in the hot water supply passage. Therefore, even when a large amount of hot water is supplied to the hot water supply destinations at once, Since it is possible to reduce the amount of water taken out and the amount of water supplied to each hot water storage tank, it is possible to mix the hot water of the upper layer with the supplied water in each hot water storage tank. It is possible to suppress the disturbance of the temperature stratification, and it is possible to suppress the decrease of the hot water removal temperature from the hot water storage tank. In short, even when a large amount of hot water is supplied to the hot water supply destination all at once, it is possible to provide a hot water storage type hot water supply device that suppresses the temperature drop of hot water from the hot water storage tank and enables effective use of the hot water stored in the hot water storage tank. I was able to do it.

【0009】〔請求項3記載の発明〕請求項3に記載の
特徴構成は、前記加熱手段が、前記貯湯槽外に設けられ
て、通流する湯水を加熱する加熱作用部と、前記複数の
貯湯槽内の湯水を前記加熱作用部に循環させる湯水循環
部とを備えて構成されていることにある。即ち、湯水循
環部により、複数の貯湯槽内の湯水が貯湯槽外の加熱作
用部に循環されることにより、貯湯槽内から取り出され
た湯水が加熱作用部にて加熱された後、貯湯槽内に戻さ
れる形態で、複数の貯湯槽内の湯水が加熱される。つま
り、貯湯槽内から取り出された湯水が加熱作用部にて加
熱された後、貯湯槽内に戻される形態で、複数の貯湯槽
内の湯水を加熱するようにすることにより、各貯湯槽に
おいて、上側の高温層と下側の低温層との温度差を大き
くし易くなると共に、上側の高温層と下側の低温層との
層化を明瞭にし易くなる。そして、かかる貯湯式給湯装
置では、投入したエネルギーは給湯先に供給する湯水に
て回収するものであり、貯湯槽における上側の高温層と
下側の低温層との層化を明瞭化することができることに
より、エネルギー回収率の向上が可能となり、延いては
エネルギー効率の向上が可能となる。しかも、加熱作用
部として、1台だけを貯湯槽の外部に設けるようにする
ことが可能となるので、構成の簡略化により、低廉化を
図ることが可能となる。ちなみに、加熱手段として、加
熱作用部を各貯湯槽内の底部に設けて、その加熱作用部
にて各貯湯槽内の湯水を直接加熱するように構成するこ
とが考えられるが、この場合は、貯湯槽内の湯水を対流
させて温度成層を形成することになって、上側の高温層
と下側の低温層との湯水の温度差を大きくし難くて、上
側の高温層と下側の低温層との層化を明瞭にし難いの
で、エネルギー回収率の向上を行い難く、延いてはエネ
ルギー効率の向上を行い難い。しかも、加熱作用部を複
数の貯湯槽の夫々に設ける必要があるので、構成が複雑
化して、低廉化を図り難い。従って、請求項3に記載の
特徴構成によれば、低廉化及びエネルギー効率の向上を
図ることができるようになった。
[Invention of Claim 3] In the characterizing configuration of Claim 3, the heating means is provided outside the hot water storage tank, and a heating action portion for heating hot water flowing therethrough, and the plurality of heating units. And a hot water circulating unit for circulating hot water in the hot water storage tank to the heating action unit. That is, the hot water circulation unit circulates the hot water in the plurality of hot water storage tanks to the heating action section outside the hot water storage tank, so that the hot water taken out from the hot water storage tank is heated by the heating action section, and then the hot water storage tank The hot and cold water in the plurality of hot water storage tanks is heated so as to be returned to the inside. That is, the hot and cold water taken out of the hot water storage tanks is heated in the heating action section and then returned to the hot water storage tanks so that the hot and cold water in the hot water storage tanks is heated. The temperature difference between the high temperature layer on the upper side and the low temperature layer on the lower side is easily increased, and the stratification of the high temperature layer on the upper side and the low temperature layer on the lower side is facilitated. In such a hot water storage type hot water supply device, the energy input is recovered by hot water supplied to the hot water supply destination, and stratification of the upper high temperature layer and the lower low temperature layer in the hot water storage tank can be clarified. As a result, the energy recovery rate can be improved, which in turn can improve energy efficiency. Moreover, since only one heating action unit can be provided outside the hot water storage tank, the configuration can be simplified and the cost can be reduced. By the way, as a heating means, it is conceivable that a heating action part is provided at the bottom of each hot water storage tank, and the heating action part directly heats the hot water in each hot water storage tank, but in this case, By convection the hot and cold water in the hot water storage tank to form a temperature stratification, it is difficult to increase the temperature difference between the hot and cold layers at the upper and lower temperatures. Since it is difficult to clarify the stratification with the layers, it is difficult to improve the energy recovery rate, and thus it is difficult to improve the energy efficiency. Moreover, since it is necessary to provide the heating action section in each of the plurality of hot water storage tanks, the structure becomes complicated and it is difficult to reduce the cost. Therefore, according to the characterizing structure of claim 3, it is possible to reduce the cost and improve the energy efficiency.

【0010】〔請求項4記載の発明〕請求項4に記載の
特徴構成は、前記湯水循環部が、前記貯湯槽の下部から
湯水を取り出して前記加熱作用部に通流させたのち前記
貯湯槽の上部に戻す状態で、前記複数の貯湯槽内の湯水
を各別に前記加熱作用部に循環させるように湯水循環状
態を切り換える切換手段を備えて構成されていることに
ある。即ち、切換手段の切換により、複数の貯湯槽につ
いて各別に、貯湯槽の下部から湯水を取り出して加熱作
用部に通流させたのち貯湯槽の上部に戻す状態で、貯湯
槽内の湯水を加熱作用部に循環させることにより、複数
の貯湯槽について各別に、貯湯槽内の湯水が温度成層を
形成する状態で貯湯されるように加熱される。つまり、
複数の貯湯槽のうちの一つの下部から湯水を取り出して
加熱作用部に通流させたのち、湯水を取り出したのと同
じ貯湯槽の上部に戻す形態で、貯湯槽内の湯水を加熱す
ることから、より低温の湯水を加熱作用部に通流させる
ことができるので加熱作用部での熱回収率が上昇し、貯
湯槽に所定の設定温度の湯を速く貯湯することが可能と
なる。ところで、かかる貯湯式給湯装置は、加熱手段を
一日中、加熱作動させて貯湯槽の湯水を加熱するのでは
なく、一日の所定の時間帯で加熱作動させて貯湯槽の湯
水を加熱するように運転する場合がある。そのような場
合に、給湯先に途絶えること無く給湯できるようにする
にために、所定の必要量以上の湯を速く貯湯できるよう
にすることが望まれる。そこで、本請求項4に記載の特
徴構成を、請求項1の発明において最下流の貯湯槽から
上流側の貯湯槽に向けて順に各貯湯槽毎に湯水を加熱作
用部に循環させるようにして、実施するようにすると、
給湯先に供給するための必要量以上の湯を速く貯湯する
ことが可能となる。要するに、本請求項4に記載の特徴
構成によれば、複数の貯湯槽のうちの一部の貯湯槽に対
して所定の温度の湯を速く貯湯するようにすることが可
能となり、特に、請求項1の発明において、本請求項4
に記載の特徴構成を採用して実施すると、より速く適切
な給湯が行えるものとなり好ましい。
[Invention of Claim 4] In the characterizing structure of Claim 4, the hot water circulation section takes out hot water from the lower portion of the hot water storage tank and causes it to flow to the heating action section, and then the hot water storage tank. In the state in which the hot water in the plurality of hot water storage tanks is returned to the upper part of the hot water storage tank, the hot water and hot water circulating state is switched to the heating action section separately. That is, the hot water in the hot water storage tank is heated in such a state that hot water is taken out from the lower part of the hot water storage tank by the switching of the switching means and is made to flow to the heating action part and then returned to the upper part of the hot water storage tank. By circulating the hot water in the action part, the hot water in the hot water storage tank is heated so as to be stored in a state of forming temperature stratification. That is,
Heating hot water in a hot water storage tank by taking hot water from the lower part of one of the hot water storage tanks, flowing it through the heating action part, and then returning it to the upper part of the same hot water storage tank from which it was taken out. Therefore, since hotter water having a lower temperature can be passed through the heating action portion, the heat recovery rate in the heating action portion is increased, and hot water having a predetermined set temperature can be quickly stored in the hot water storage tank. By the way, such a hot water storage type hot water supply device does not heat the hot water of the hot water storage tank by heating the heating means all day, but heats the hot water of the hot water storage tank by heating it at a predetermined time period of the day. May drive. In such a case, in order to supply hot water to the hot water supply destination without interruption, it is desirable to be able to quickly store hot water of a predetermined amount or more. In view of the above, the characteristic configuration according to claim 4 is such that hot water is circulated to the heating action portion in each hot water storage tank in order from the most downstream hot water storage tank to the upstream hot water storage tank in the invention of claim 1. If you do,
It is possible to quickly store hot water in excess of the amount required to supply the hot water to the hot water supply destination. In short, according to the characterizing feature of the present invention, it becomes possible to quickly store hot water of a predetermined temperature in some of the plurality of hot water storage tanks. In the invention of claim 1, the invention of claim 4
It is preferable to employ the characteristic configuration described in (1), because hot water can be supplied more appropriately and quickly.

【0011】〔請求項5記載の発明〕請求項5に記載の
特徴構成は、前記湯水循環部が、前記複数の貯湯槽の下
部から並行して湯水を取り出して前記加熱作用部に通流
させたのち並行して前記複数の貯湯槽の上部に戻すよう
に、前記複数の貯湯槽の湯水を並行して前記加熱作用部
に循環させるように構成されていることにある。即ち、
湯水循環部により、複数の貯湯槽の下部から並行して湯
水が取り出されて加熱作用部に通流されたのち並行して
複数の貯湯槽の上部に戻されるように、複数の貯湯槽の
湯水が並行して加熱作用部に循環されて、複数の貯湯槽
に並行して湯水が温度成層を形成する状態で貯湯され
る。そこで、請求項2の発明において、本請求項5に記
載の特徴構成を実施すると、運転開始後の早い時期か
ら、複数の貯湯槽の全てから加熱作用部にて加熱されて
貯湯槽の上側の層に貯湯されている湯を給湯先に供給す
ることができるものとなり、適切に給湯することができ
る。要するに、本請求項5に記載の特徴構成によれば、
複数の貯湯槽に並行して湯水が温度成層を形成する状態
で貯湯されるようにすることが可能となり、特に、請求
項2の発明において、本請求項5に記載の特徴構成を採
用して実施すると、より早く適切な給湯が行えるものと
なるので好ましい。
[Invention of Claim 5] In the characterizing configuration of Claim 5, the hot water circulating unit takes out hot water from the lower portions of the plurality of hot water storage tanks in parallel and causes the hot water to flow to the heating action unit. After that, the hot and cold water of the plurality of hot water storage tanks is circulated in parallel to the heating action section so as to be returned to the upper portions of the plurality of hot water storage tanks in parallel. That is,
The hot water circulation unit draws hot water from the lower portions of the hot water storage tanks in parallel, passes through the heating unit, and then returns to the upper portions of the hot water storage tanks in parallel. Are circulated in parallel to the heating action section, and hot water is stored in a plurality of hot water storage tanks in a state of forming temperature stratification in parallel. Therefore, in the invention of claim 2, if the characteristic configuration of claim 5 is implemented, all of the plurality of hot water storage tanks are heated by the heating action portion from an early stage after the start of operation and the upper part of the hot water storage tank is heated. The hot water stored in the layer can be supplied to the hot water supply destination, and the hot water can be supplied appropriately. In short, according to the characteristic configuration of claim 5,
It is possible to store hot water in a state of forming a temperature stratification in parallel with a plurality of hot water storage tanks. Particularly, in the invention of claim 2, the characteristic configuration of claim 5 is adopted. It is preferable to carry it out, because hot water can be supplied more quickly and appropriately.

【0012】[0012]

【発明の実施の形態】〔第1実施形態〕以下、図面に基
づいて、本発明を、固体高分子型の燃料電池発電装置を
備えたコージェネレーションシステムに適用した場合の
実施の形態を説明する。図1に示すように、コージェネ
レーションシステムは、水素と酸素の電気化学反応によ
り発電して、発電した電力を電力消費機器に供給する燃
料電池発電装置EGと、その燃料電池発電装置EGの排
熱を回収して湯を生成して、生成した湯を浴槽や台所等
の給湯先に供給する貯湯式給湯装置WHとを備えて構成
してある。
BEST MODE FOR CARRYING OUT THE INVENTION [First Embodiment] An embodiment in which the present invention is applied to a cogeneration system equipped with a solid polymer fuel cell power generator will be described below with reference to the drawings. . As shown in FIG. 1, the cogeneration system generates fuel by an electrochemical reaction of hydrogen and oxygen and supplies the generated power to a power consumption device, a fuel cell power generator EG, and exhaust heat of the fuel cell power generator EG. And a hot water storage type hot water supply device WH that collects hot water to generate hot water and supplies the hot water to hot water supply destinations such as a bathtub and a kitchen.

【0013】燃料電池発電装置EGは、炭化水素系の原
燃料を用いて燃料ガスとしての水素含有ガスを生成する
燃料ガス生成部R、酸素含有ガスとしての空気を供給す
る送風機31、燃料ガス生成部Rから供給される燃料ガ
ス中の水素と送風機31から供給される空気中の酸素と
の電気化学反応により直流電力を発電する燃料電池発電
部32、及び、その燃料電池発電部32から出力される
直流電力を交流電力に変換して電力消費機器に供給する
インバータ33等を備えて構成してある。
The fuel cell power generator EG includes a fuel gas generator R for generating a hydrogen-containing gas as a fuel gas by using a hydrocarbon-based raw fuel, a blower 31 for supplying air as an oxygen-containing gas, and a fuel gas generator. A fuel cell power generation unit 32 that generates direct current power by an electrochemical reaction between hydrogen in the fuel gas supplied from the section R and oxygen in the air supplied from the blower 31, and is output from the fuel cell power generation unit 32. It is configured by including an inverter 33 or the like that converts direct-current power to be converted into alternating-current power and supplies it to power consuming equipment.

【0014】燃料電池発電部32は、公知であるので詳
細な説明及び図示は省略するが、高分子電解質層の一方
の面に酸素極を備え、他方の面に燃料極を備えたセルの
複数を積層状態に並置すると共に、冷却水の通流により
燃料電池発電部32を冷却する冷却水通流部34を設
け、その冷却水通流部34には、冷却水循環ポンプ35
によって冷却水循環路36を通じて冷却水が循環供給さ
れるように構成し、冷却水循環路36には、その冷却水
循環路36を通流する冷却水と排熱回収用の流体とを熱
交換させて、冷却水から排熱を回収する排熱回収熱交換
器37を設けてある。
Although the fuel cell power generation section 32 is well known, detailed description and illustration thereof will be omitted. However, a plurality of cells having an oxygen electrode on one surface of the polymer electrolyte layer and a fuel electrode on the other surface thereof are omitted. Are arranged side by side in a stacked state, and a cooling water flow section 34 that cools the fuel cell power generation section 32 by flowing cooling water is provided. The cooling water flow section 34 has a cooling water circulation pump 35.
The cooling water circulation passage 36 is configured to be circulated and supplied by the cooling water circulation passage 36, and the cooling water circulation passage 36 causes heat exchange between the cooling water flowing through the cooling water circulation passage 36 and the fluid for exhaust heat recovery, An exhaust heat recovery heat exchanger 37 that recovers exhaust heat from the cooling water is provided.

【0015】燃料ガス生成部Rは、供給される水を加熱
して水蒸気を生成する水蒸気生成部38と、都市ガス
(メタンが主成分)等の炭化水素系の原燃料ガスと水蒸
気生成部38にて生成された水蒸気とが混合されて供給
されて、原燃料ガスと水蒸気とを改質反応させて水素ガ
ス及び一酸化炭素ガスを含有するガスに改質処理する改
質部39と、その改質部39から送られてくるガス中の
一酸化炭素ガスと水蒸気とを変成反応させて、水素ガス
及び二酸化炭素ガスを含有するガスに変成処理する変成
部40と、その変成部40から送られてくるガス中の一
酸化炭素ガスを選択酸化して除去するCO除去部41と
を備えて構成してあり、CO除去部41から排出される
低一酸化炭素濃度の水素含有ガスが燃料ガスとして、燃
料電池発電部32に供給される。
The fuel gas generating section R is a steam generating section 38 that heats the supplied water to generate steam, and a hydrocarbon-based raw fuel gas such as city gas (mainly composed of methane) and a steam generating section 38. A reforming section 39, which is mixed and supplied with the steam generated in (1) to reform the raw fuel gas and steam to perform a reforming process into a gas containing hydrogen gas and carbon monoxide gas, and A conversion section 40 for converting the carbon monoxide gas in the gas sent from the reforming section 39 and steam into a gas containing hydrogen gas and carbon dioxide gas, and the conversion section 40. And a CO removing unit 41 that selectively oxidizes and removes carbon monoxide gas in the incoming gas. The hydrogen-containing gas having a low carbon monoxide concentration discharged from the CO removing unit 41 is a fuel gas. As the fuel cell power generation unit 32 It is fed.

【0016】改質部39における改質反応は吸熱反応で
あることから、排燃料ガス路42を通じて燃料電池発電
部32から排出された燃料ガスと燃焼用空気路43を通
じて送風機31から供給される空気とを燃焼させて、そ
の燃焼熱により改質部39を加熱する燃焼反応部44を
設けてあり、その燃焼反応部44から排出される燃焼排
ガスが、水蒸気生成部38における水蒸気生成のための
熱源として使用された後、排出される。
Since the reforming reaction in the reforming section 39 is an endothermic reaction, the fuel gas discharged from the fuel cell power generation section 32 through the exhaust fuel gas path 42 and the air supplied from the blower 31 through the combustion air path 43. And a combustion reaction part 44 for heating the reforming part 39 by the combustion heat thereof. The combustion exhaust gas discharged from the combustion reaction part 44 is a heat source for generating steam in the steam generation part 38. After being used as, it is discharged.

【0017】貯湯式給湯装置WHについて説明を加え
る。貯湯式給湯装置WHは、密閉型の貯湯槽1と、その
貯湯槽1内の湯水を温度成層を形成する状態で貯湯され
るように加熱する加熱手段Hと、貯湯式給湯装置WHの
各種制御を司る制御部2等を備えて構成してある。
The hot water storage type hot water supply device WH will be further described. The hot water storage type hot water supply device WH includes a closed hot water storage tank 1, heating means H for heating hot water in the hot water storage tank 1 so as to be stored in a state of forming a temperature stratification, and various controls of the hot water storage hot water supply device WH. It is configured by including a control unit 2 that controls

【0018】そして、第1実施形態においては、貯湯槽
1として、複数の貯湯槽1を、通流方向に隣合う上流側
のものの上部と下流側のものの下部とを槽間連通路4に
て連通接続する直列接続状態で、且つ、最上流のものの
下部に給水路3を接続し、最下流のものの上部に給湯路
5を接続する状態で設けて、給水路3により最上流の貯
湯槽1に給水し、且つ、給湯路5にて最下流の貯湯槽1
内の湯水を取り出す形態で給湯するように構成してあ
る。ちなみに、第1実施形態においては、複数の貯湯槽
1として、2基の貯湯槽1を設けてあり、以下の説明で
は、上流側の貯湯槽1、下流側の貯湯槽1と記載して、
2基の貯湯槽1を区別して説明する場合がある。ちなみ
に、1基の貯湯槽1の容量は、例えば150リットルで
あり、その場合は、2基で300リットルの容量とな
る。
In the first embodiment, as the hot water storage tank 1, a plurality of hot water storage tanks 1 are provided in the inter-tank communication path 4 between the upper side of the upstream side and the lower side of the downstream side which are adjacent to each other in the flow direction. The water supply passage 3 is connected in series and connected to the lowermost one of the most upstream ones and the hot water supply passage 5 is connected to the uppermost one of the most downstream ones. Water in the hot water supply channel 5, and the hot water supply path 5 is the most downstream hot water storage tank 1
It is configured to supply hot water in such a manner that hot water in the inside can be taken out. Incidentally, in the first embodiment, two hot water storage tanks 1 are provided as the plurality of hot water storage tanks 1, and in the following description, the hot water storage tank 1 on the upstream side and the hot water storage tank 1 on the downstream side are described.
The two hot water storage tanks 1 may be described separately. By the way, the capacity of one hot water storage tank 1 is, for example, 150 liters, and in this case, the capacity of the two hot water storage tanks is 300 liters.

【0019】給水路3には、減圧弁25を設けて、その
減圧弁25にて水道圧を減圧して、水道水を貯湯槽1に
供給するように構成してある。給湯路5には、ミキシン
グ弁26を設け、給水路3における減圧弁25よりも上
流側の箇所から分岐させたミキシング路27を、ミキシ
ング弁26を介して給湯路5に接続してある。そして、
ミキシング弁26にて混合比を調節する状態で、貯湯槽
1から取り出される湯水に、ミキシング路27を通じて
水道水を混合して、給湯路5を通じて給湯するように構
成してある。
A pressure reducing valve 25 is provided in the water supply passage 3, and the water pressure is reduced by the pressure reducing valve 25 so that tap water is supplied to the hot water storage tank 1. The hot water supply passage 5 is provided with a mixing valve 26, and a mixing passage 27 branched from a portion of the water supply passage 3 upstream of the pressure reducing valve 25 is connected to the hot water supply passage 5 via the mixing valve 26. And
In a state where the mixing ratio is adjusted by the mixing valve 26, tap water taken from the hot water storage tank 1 is mixed with tap water through the mixing passage 27, and hot water is supplied through the hot water supply passage 5.

【0020】2基の貯湯槽1には、給水路3による給水
圧により、常に満杯状態で湯水が貯留されており、給湯
先の給湯動作(例えば、給湯栓の開栓)により、給湯路
5を通じて下流側の貯湯槽1内の上部から湯水が送出さ
れると、それに伴って、給水路3にて上流側の貯湯槽1
の下部に給水圧により水道水が供給されると共に、その
上流側の貯湯槽1内の上部の湯水が槽間連通路4を通じ
て、下流側の貯湯槽1の下部に流入して、2基の貯湯槽
1は満杯状態が維持されるようになっている。
Hot water is always stored in the two hot water storage tanks 1 in a full state by the water supply pressure from the water supply passage 3, and the hot water supply passage 5 is opened by the hot water supply operation at the hot water supply destination (for example, opening of the hot water supply tap). When hot water is discharged from the upper part in the hot water storage tank 1 on the downstream side, the hot water storage tank 1 on the upstream side in the water supply passage 3 is accompanied with it.
The tap water is supplied to the lower part of the hot water by the water supply pressure, and the hot water of the upper part in the upstream hot water storage tank 1 flows into the lower part of the downstream hot water storage tank 1 through the inter-tank communication passage 4, The hot water storage tank 1 is kept full.

【0021】加熱手段Hについて説明を加えると、加熱
手段Hは、貯湯槽1外に設けられて、通流する湯水(排
熱回収用の流体に相当する)を加熱する加熱作用部とし
ての上記の排熱回収熱交換器37と、2基の貯湯槽1内
の湯水を排熱回収熱交換器37に循環させる湯水循環部
Cとを備えて構成してある。つまり、排熱回収熱交換器
37にて、冷却水循環路36を通流する燃料電池発電部
32の冷却水と、湯水循環部Cにて循環される湯水とを
熱交換させて、燃料電池発電部32の冷却水の排熱を回
収して、湯水循環部Cにて循環される湯水を加熱するよ
うに構成してある。ちなみに、排熱回収熱交換器37で
は、1回の通流で湯水を例えば60°C程度に加熱する
ことが可能であり、貯湯槽1には、60°C程度の湯を
貯湯することが可能である。
The heating means H will be described. The heating means H is provided outside the hot water storage tank 1 and serves as a heating section for heating hot water flowing therethrough (corresponding to a fluid for recovering exhaust heat). The exhaust heat recovery heat exchanger 37 and the hot water circulation unit C for circulating the hot water in the two hot water storage tanks 1 to the exhaust heat recovery heat exchanger 37. That is, in the exhaust heat recovery heat exchanger 37, the cooling water of the fuel cell power generation section 32 flowing through the cooling water circulation path 36 and the hot and cold water circulated in the hot water circulation section C are heat-exchanged, and the fuel cell power generation is performed. The exhaust heat of the cooling water of the portion 32 is recovered and the hot water circulating in the hot water circulating portion C is heated. By the way, in the exhaust heat recovery heat exchanger 37, hot water can be heated to, for example, about 60 ° C. in one flow, and the hot water storage tank 1 can store hot water of about 60 ° C. It is possible.

【0022】そして、第1実施形態においては、湯水循
環部Cを、貯湯槽1の下部から湯水を取り出して排熱回
収熱交換器37に通流させたのち貯湯槽1の上部に戻す
状態で、2基の貯湯槽1内の湯水を各別に排熱回収熱交
換器37に循環させるように湯水循環状態を切り換える
切換手段としての2個の電磁操作式の三方弁6を備えて
構成してある。湯水循環部Cについて説明を加えると、
湯水循環部Cは、各貯湯槽1の下部にそれぞれ接続した
2本の湯水各別取り出し路7を三方弁6を介して湯水取
り出し路8の基端に接続し、その湯水取り出し路8の先
端を排熱回収熱交換器37の入口に接続し、湯水取り出
し路8には湯水循環用ポンプ9を設け、基端を排熱回収
熱交換器37の出口に接続した湯水戻し路10の先端
に、それぞれ各貯湯槽1の上部に接続した2本の湯水各
別戻し路11を三方弁6を介して接続して構成してあ
る。そして、2個の三方弁6の作動を制御することによ
り、下流側の貯湯槽1の下部から湯水を取り出して排熱
回収熱交換器37に通流させたのち下流側の貯湯槽1の
上部に戻す状態と、上流側の貯湯槽1の下部から湯水を
取り出して排熱回収熱交換器37に通流させたのち上流
側の貯湯槽1の上部に戻す状態とに切り換え自在なよう
に構成してある。
In the first embodiment, the hot water circulation section C is returned to the upper part of the hot water storage tank 1 after the hot water is taken out from the lower part of the hot water storage tank 1 and passed through the exhaust heat recovery heat exchanger 37. Two electromagnetically operated three-way valves 6 are provided as switching means for switching the hot and cold water circulation states so that the hot and cold water in the two hot water storage tanks 1 are separately circulated to the exhaust heat recovery heat exchanger 37. is there. When the hot water circulation unit C is added,
The hot and cold water circulation unit C connects two hot and cold water separate take-out passages 7 respectively connected to the lower part of each hot water storage tank 1 to the base end of the hot and cold water take-out passage 8 via a three-way valve 6, and the tip of the hot and cold water take-out passage 8 is connected. Is connected to the inlet of the exhaust heat recovery heat exchanger 37, the hot and cold water discharge passage 8 is provided with a hot and cold water circulation pump 9, and the base end is connected to the outlet of the exhaust heat recovery heat exchanger 37 at the tip of the hot and cold water return passage 10. Two return paths 11 for each of hot and cold water connected to the upper part of each hot water storage tank 1 are connected via a three-way valve 6. Then, by controlling the operation of the two three-way valves 6, hot water is taken out from the lower part of the hot water storage tank 1 on the downstream side and passed through the exhaust heat recovery heat exchanger 37, and then the upper part of the hot water storage tank 1 on the downstream side. It is configured to be switchable between a state in which the hot water is returned to the upper side of the hot water storage tank 1 after the hot water is taken out from the lower portion of the hot water storage tank 1 on the upstream side and passed through the exhaust heat recovery heat exchanger 37. I am doing it.

【0023】給湯路5におけるミキシング弁26の設置
箇所よりも下流側の箇所には、その給湯路5を通流する
湯水を加熱する追焚用加熱器12を設けてある。追焚用
加熱器12は公知のガス燃焼式の給湯装置であるので詳
細な説明は省略して、簡単に説明すると、給湯路5に介
装した水加熱用熱交換器12aと、その水加熱用熱交換
器12aを加熱するガスバーナ12bと、ガスバーナ1
2bの燃焼用空気を通風する送風機12cと、ガスバー
ナ12bを点火するための点火プラグ12dと、ガスバ
ーナ12bが燃焼しているか否かを検出するフレームロ
ッド12eとを備え、更に、ガスバーナ12bに都市ガ
ス等のガス燃料を供給する燃料供給路13には、ガス供
給を断続する電磁操作式の燃料用開閉弁14、ガス燃料
の供給量を調節する電磁操作式の燃料調節弁15とを設
けて構成してある。
A heating heater 12 for heating the hot water flowing through the hot water supply passage 5 is provided at a position downstream of the installation location of the mixing valve 26 in the hot water supply passage 5. Since the heating heater 12 for heating is a known gas combustion type hot water supply device, detailed description thereof will be omitted. Briefly described, a heat exchanger 12a for water heating interposed in the hot water supply passage 5 and the water heating device Burner 12b for heating heat exchanger 12a for gas, and gas burner 1
A blower 12c for ventilating the combustion air of 2b, a spark plug 12d for igniting the gas burner 12b, and a frame rod 12e for detecting whether or not the gas burner 12b is burning are further provided, and the gas burner 12b further includes a city gas. A fuel supply path 13 for supplying a gas fuel such as the above is provided with an electromagnetically operated fuel on-off valve 14 for intermittently supplying and disconnecting the gas supply, and an electromagnetically operated fuel control valve 15 for adjusting the supply amount of the gas fuel. I am doing it.

【0024】湯水戻し路10には、通流する湯水の温度
を検出する貯湯温度センサ16を設け、下流側の貯湯槽
1には、槽内底部の湯水の温度を検出するように沸き上
げ検出用温度センサ17を設け、給湯路5には、前記ミ
キシング弁26よりも上流側に位置させて、給湯流量セ
ンサ19を、前記ミキシング弁26と前記追焚用加熱器
12との間に位置させて、通流する湯水の温度を検出す
る給湯温度センサ18を、前記追焚用加熱器12よりも
下流側に位置させて、追焚用加熱器12から送出される
湯水の温度を検出する追焚加熱用温度センサ20をそれ
ぞれ設けてある。
A hot water storage temperature sensor 16 for detecting the temperature of hot water flowing therethrough is provided in the hot water return passage 10, and boiling water is detected in the hot water storage tank 1 on the downstream side so as to detect the temperature of hot water at the bottom of the tank. A temperature sensor 17 for heating is provided, and the hot water supply path 5 is positioned upstream of the mixing valve 26, and the hot water supply flow rate sensor 19 is positioned between the mixing valve 26 and the heating heater 12 for heating. Then, the hot water supply temperature sensor 18 for detecting the temperature of the hot water flowing therethrough is located on the downstream side of the heating heater 12 for additional heating to detect the temperature of the hot water supplied from the heating heater 12 for additional heating. Each of the heating sensors 20 for heating the fire is provided.

【0025】以下、制御部2の制御動作について説明す
る。制御部2は、マイクロコンピュータを備えて構成し
てあり、リモコン操作部21から貯湯式給湯装置WHの
運転のオンオフが指令されるようなっていて、オン状態
となっている状態で、各種制御の実行が可能となってい
る。そして、制御部2は、燃料電池発電装置EGの運転
中は、湯水循環用ポンプ9を作動させて、燃料電池発電
装置EGの排熱を回収して、2基の貯湯槽1に貯湯する
ように構成してある。ちなみに、本実施形態では、燃料
電池発電装置EGは一日中連続して運転するように構成
してある。
The control operation of the controller 2 will be described below. The control unit 2 is configured to include a microcomputer, and the remote control operation unit 21 issues an instruction to turn on / off the operation of the hot water storage water heater WH. Execution is possible. While the fuel cell power generator EG is in operation, the control unit 2 operates the hot water circulation pump 9 to recover the exhaust heat of the fuel cell power generator EG and store the hot water in the two hot water storage tanks 1. Is configured. By the way, in this embodiment, the fuel cell power generator EG is configured to continuously operate all day.

【0026】制御部2の制御動作について詳細に説明す
る。制御部2は、貯湯温度センサ16の検出温度が、所
定の設定温度(例えば60°C)になるように、湯水循
環用ポンプ9の回転速度を調節して、排熱回収熱交換器
37に通流させる湯水の流量を調節する。又、制御部2
は、リモコン操作部21にて設定される給湯目標温度に
応じて、その給湯目標温度よりも設定降温値(例えば、
2、3°C)低い温度に、沸き上げ検出用温度を設定す
る。そして、沸き上げ検出用温度センサ17の検出温度
が沸き上げ検出用温度よりも低い間は、2個の三方弁6
を、下流側の貯湯槽1の湯水を排熱回収熱交換器37に
循環させる状態に作動させ、沸き上げ検出用温度センサ
17の検出温度が沸き上げ検出用温度以上になると、2
個の三方弁6を、上流側の貯湯槽1の湯水を排熱回収熱
交換器37に循環させる状態に作動させるように構成し
てある。つまり、下流側の貯湯槽1の湯水を排熱回収熱
交換器37に循環させる状態では、下流側の貯湯槽1内
の湯水が温度成層を形成する状態で貯湯されるように加
熱され、そして、沸き上げ検出用温度センサ17の検出
温度が沸き上げ検出用温度以上になると、下流側の貯湯
槽1内の略全域に、沸き上げ検出用温度以上の湯が貯湯
される状態となって、下流側の貯湯槽1が沸き上げられ
た状態となるので、次に、上流側の貯湯槽1内の湯水が
温度成層を形成する状態で貯湯されるように加熱される
のである。そして、通常、給湯需要の多い時間帯までに
は、下流側の貯湯槽1は、沸き上がった状態であり、上
流側の貯湯槽1にも温度成層を形成する状態で湯水が貯
留されている状態となっている。
The control operation of the controller 2 will be described in detail. The control unit 2 adjusts the rotation speed of the hot and cold water circulation pump 9 so that the temperature detected by the hot water storage temperature sensor 16 becomes a predetermined set temperature (for example, 60 ° C.), and the exhaust heat recovery heat exchanger 37 is controlled. Adjust the flow rate of hot and cold water. Also, the control unit 2
Corresponds to the hot water supply target temperature set by the remote control operation unit 21 and is set lower than the hot water supply target temperature (for example,
Set the boiling detection temperature to a low temperature (2, 3 ° C). While the temperature detected by the boiling detection temperature sensor 17 is lower than the boiling detection temperature, the two three-way valves 6
Is operated to circulate the hot and cold water of the downstream hot water storage tank 1 to the exhaust heat recovery heat exchanger 37, and when the temperature detected by the boiling detection temperature sensor 17 becomes equal to or higher than the boiling detection temperature, 2
The three-way valve 6 is configured to operate so that the hot and cold water of the upstream hot water storage tank 1 is circulated to the exhaust heat recovery heat exchanger 37. That is, in the state where the hot and cold water in the downstream hot water storage tank 1 is circulated to the exhaust heat recovery heat exchanger 37, the hot and cold water in the downstream hot water storage tank 1 is heated so as to be stored in a state of forming a temperature stratification, and When the temperature detected by the boiling detection temperature sensor 17 becomes equal to or higher than the boiling detection temperature, hot water having a temperature higher than the boiling detection temperature is stored in substantially the entire hot water storage tank 1 on the downstream side, Since the downstream hot water storage tank 1 is brought to a boiled state, next, the hot and cold water in the upstream hot water storage tank 1 is heated so as to be stored in a state of forming a temperature stratification. Then, normally, by the time when the demand for hot water supply is high, the hot water storage tank 1 on the downstream side is in a boiling state, and hot water is stored in the hot water storage tank 1 on the upstream side in a state of forming temperature stratification. Has become.

【0027】そして、給湯先の給湯動作により、給湯路
5を通じて下流側の貯湯槽1内の上部から湯が送出され
ると、それに伴って、給水路3にて上流側の貯湯槽1の
下部に水道水が供給されると共に、その上流側の貯湯槽
1内の上側層の湯が槽間連通路4を通じて、下流側の貯
湯槽1の下部に流入することとなる。その際、下流側の
貯湯槽1の下部には、上流側の貯湯槽1内の上側層の湯
が供給されるので、下流側の貯湯槽1内に貯留されてい
る湯と下流側の貯湯槽1の下部に供給される湯水の温度
差をほとんど無くす又は小さくすることが可能となり、
一挙に多量の湯を給湯先に給湯する場合でも、貯湯槽1
からの湯の取り出し温度の低下を抑制することができる
のである。
When hot water is supplied from the upper part in the hot water storage tank 1 on the downstream side through the hot water supply passage 5 by the hot water supply operation of the hot water supply destination, the lower part of the hot water storage tank 1 on the upstream side in the water supply passage 3 is accompanied with it. While the tap water is supplied to the hot water, the upper layer hot water in the hot water storage tank 1 on the upstream side flows into the lower part of the hot water storage tank 1 on the downstream side through the inter-tank communication path 4. At this time, since the upper layer hot water in the upstream hot water storage tank 1 is supplied to the lower portion of the downstream hot water storage tank 1, the hot water stored in the downstream hot water storage tank 1 and the hot water in the downstream hot water storage tank 1 It is possible to almost eliminate or reduce the temperature difference of the hot water supplied to the lower part of the tank 1,
Even when a large amount of hot water is supplied to the hot water supply destination at once, the hot water storage tank 1
It is possible to suppress the decrease in the temperature of taking out hot water from the.

【0028】ちなみに、貯湯槽1に60°C程度の湯を
貯湯する場合においては、上流側の貯湯槽1の下部に一
挙に多量の水道水が供給されて、上流側の貯湯槽1内の
温度成層が乱れるようになっても、下流側の貯湯槽1の
下部には、例えば20°C程度の水道水よりも高温(例
えば、35°C以上)の湯水が供給されるので、下流側
の貯湯槽1の上側層の湯と下流側の貯湯槽1の下部に供
給される湯水の温度差を小さくすることが可能となり、
一挙に多量の湯を給湯先に給湯する場合でも、貯湯槽1
からの湯の取り出し温度の低下を抑制することができ
る。
By the way, when hot water of about 60 ° C. is stored in the hot water storage tank 1, a large amount of tap water is supplied all at once to the lower part of the hot water storage tank 1 on the upstream side, and Even if the temperature stratification becomes disturbed, hot water having a temperature (for example, 35 ° C. or higher) higher than tap water of, for example, about 20 ° C. is supplied to the lower portion of the hot water storage tank 1 on the downstream side. It is possible to reduce the temperature difference between the hot water in the upper layer of the hot water storage tank 1 and the hot water supplied to the lower portion of the hot water storage tank 1 on the downstream side,
Even when a large amount of hot water is supplied to the hot water supply destination at once, the hot water storage tank 1
It is possible to suppress a decrease in the temperature at which hot water is taken out.

【0029】制御部2には、ミキシング停止検出用設定
時間を記憶させてある。そのミキシング停止検出用設定
時間は、ミキシング弁26をミキシング路27側の開度
が小さくなるように作動させるときに、その開度が全閉
になるのに要する時間よりも多少長い時間に設定してあ
る。そして、給湯先での給湯動作に伴い、給湯流量セン
サ19の検出流量が設定下限流量以上になると、制御部
2は、下記のように給湯制御を実行し、給湯流量センサ
19の検出流量が設定下限流量よりも少なくなると、給
湯制御を終了する。即ち、給湯温度センサ18の検出温
度を読み込み、追焚用加熱器12を消火状態に維持した
状態で、給湯温度センサ18の検出温度がリモコン操作
部21にて設定された給湯目標温度になるようにミキシ
ング弁26を調節し、連続してミキシング路27側の開
度が小さくなるようにミキシング弁26を調節する状態
がミキシング停止検出用設定時間に達しても、給湯温度
センサ18の検出温度が給湯目標温度よりも低いとき
は、追焚用加熱器12を燃焼させると共に、追焚加熱用
温度センサ20の検出温度が給湯目標温度になるように
追焚用加熱器12の燃焼量を調節し、追焚用加熱器12
を燃焼させている状態で、給湯温度センサ18の検出温
度が給湯目標温度以上になると、追焚用加熱器12を消
火させる。尚、追焚用加熱器12を燃焼させている状態
で、給湯流量センサ19の検出流量が設定下限流量より
も少なくなると、給湯制御を終了するのに合わせて、追
焚用加熱器12を消火させる。
The control unit 2 stores a set time for detecting mixing stop. The set time for detection of mixing stop is set to a time slightly longer than the time required for the opening of the mixing valve 26 to be fully closed when the mixing valve 26 is operated so that the opening on the side of the mixing passage 27 becomes smaller. There is. When the detected flow rate of the hot water supply flow rate sensor 19 becomes equal to or higher than the set lower limit flow rate due to the hot water supply operation at the hot water supply destination, the control unit 2 executes the hot water supply control as described below, and the detected flow rate of the hot water supply flow rate sensor 19 is set. When it becomes less than the lower limit flow rate, the hot water supply control is ended. That is, the temperature detected by the hot water supply temperature sensor 18 is read and the detected temperature of the hot water supply temperature sensor 18 becomes the hot water supply target temperature set by the remote controller operation unit 21 while the heating heater 12 is kept in a fire extinguishing state. Even if the state of adjusting the mixing valve 26 so that the opening on the side of the mixing path 27 becomes smaller continuously reaches the mixing stop detection set time, the temperature detected by the hot water temperature sensor 18 remains When the temperature is lower than the hot water supply target temperature, the heating heater 12 for combustion is burned, and the combustion amount of the heating heater 12 for heating is adjusted so that the temperature detected by the temperature sensor 20 for heating the heating for heating is the target temperature for hot water supply. , Heating heater 12
When the temperature detected by the hot water supply temperature sensor 18 becomes equal to or higher than the hot water supply target temperature in the state of burning, the heating heater 12 for extinction is extinguished. If the hot water supply flow rate sensor 19 detects a flow rate lower than the set lower limit flow rate while the hot water heating heater 12 is burning, the hot water supply heater 12 is extinguished at the same time the hot water supply control is terminated. Let

【0030】制御部2が実行する追焚用加熱器12の燃
焼開始制御、燃焼量調節制御及び消火制御は、公知であ
るので詳細な説明は省略して、以下、簡単に説明する。
燃焼開始制御としては、送風機12cを作動させると共
に燃料用開閉弁14を開弁して、点火プラグ12dを作
動させ、フレームロッド12eにて、ガスバーナ12b
の燃焼が検出されると、点火プラグ12dの作動を停止
させることにより実行する。燃焼量調節制御としては、
燃料調節弁15の開度を調節することにより実行し、消
火制御としては、燃料用開閉弁14を閉弁すると共に、
送風機12cを停止させることにより実行する。
The combustion start control, the combustion amount adjustment control, and the fire extinguishing control of the additional heating heater 12 executed by the control unit 2 are publicly known, and a detailed description thereof will be omitted.
As the combustion start control, the blower 12c is operated, the fuel on-off valve 14 is opened, the ignition plug 12d is operated, and the flame burner 12b is operated by the frame rod 12e.
When the combustion is detected, the operation is executed by stopping the operation of the spark plug 12d. As the combustion amount adjustment control,
This is executed by adjusting the opening degree of the fuel control valve 15, and as the fire extinguishing control, the fuel on-off valve 14 is closed and
This is performed by stopping the blower 12c.

【0031】以下、本発明の第2及び第3の各実施形態
を説明するが、各実施形態においては第1実施形態と同
じ構成要素や同じ作用を有する構成要素については、重
複説明を避けるために、同じ符号を付すことにより説明
を省略し、主として、第1実施形態と異なる構成を説明
する。
Hereinafter, the second and third embodiments of the present invention will be described. In each embodiment, the same components as those of the first embodiment or components having the same action will be described in order to avoid redundant description. The same reference numerals are used to omit the description, and the configuration different from that of the first embodiment will be mainly described.

【0032】〔第2実施形態〕第2実施形態において
は、第1実施形態と同様に、加熱手段Hは、貯湯槽1外
に設けられて、通流する湯水を加熱する排熱回収熱交換
器37と、2基の貯湯槽1内の湯水を排熱回収熱交換器
37に循環させる湯水循環部Cとを備えて構成してある
が、湯水循環部Cの構成が第1実施形態と異なる。即
ち、図2に示すように、湯水循環部Cは、上流側の貯湯
槽1の下部を湯水取り出し路8にて排熱回収熱交換器3
7の入口に接続し、下流側の貯湯槽1の上部を湯水戻し
路10にて排熱回収熱交換器37の出口に接続して、直
列接続された2基の貯湯槽1のうちの上流側のものの下
部から湯水を取り出して、下流側のものの上部に戻す状
態で、2基の貯湯槽1を経由させて湯水を循環させるよ
うに構成してある。
[Second Embodiment] In the second embodiment, as in the first embodiment, the heating means H is provided outside the hot water storage tank 1 to exhaust heat recovery heat exchange for heating the hot water flowing therethrough. The water heater 37 and the hot water circulating unit C for circulating the hot water in the two hot water storage tanks 1 to the exhaust heat recovery heat exchanger 37 are configured. The hot water circulating unit C has the same configuration as that of the first embodiment. different. That is, as shown in FIG. 2, the hot and cold water circulation unit C uses the hot and cold water take-out passage 8 at the lower part of the hot water storage tank 1 on the upstream side to recover the exhaust heat recovery heat exchanger 3.
7 of the two hot water storage tanks 1 connected in series by connecting the upper part of the hot water storage tank 1 on the downstream side to the outlet of the exhaust heat recovery heat exchanger 37 through the hot water return path 10. The hot and cold water is taken out from the lower part of the one on the side and returned to the upper part of the one on the downstream side so that the hot and cold water is circulated through the two hot water storage tanks 1.

【0033】つまり、湯水が、上流側の貯湯槽1、湯水
取り出し路8、排熱回収熱交換器37、湯水戻し路1
0、下流側の貯湯槽1、槽間連通路4を順次経由して流
れる循環経路にて通流するので、上流側の貯湯槽1の下
部から取り出されて排熱回収熱交換器37にて加熱され
た湯が、下流側の貯湯槽1の上部に戻されて、下流側の
貯湯槽1から順に、湯水が温度成層を形成する状態で貯
湯されるように加熱されることとなる。第2実施形態に
おいては、第1実施形態のように加熱対象の貯湯槽1を
切り換える必要が無いので、第1実施形態において設け
た沸き上げ検出用温度センサ17は省略してある。
That is, the hot water is stored in the hot water storage tank 1 on the upstream side, the hot water discharge passage 8, the exhaust heat recovery heat exchanger 37, the hot water return passage 1
0, the hot water storage tank 1 on the downstream side, and the inter-tank communication passage 4 flow through the circulation path in sequence, so that the waste heat recovery heat exchanger 37 is taken out from the lower part of the hot water storage tank 1 on the upstream side. The heated hot water is returned to the upper part of the hot water storage tank 1 on the downstream side, and the hot water is heated in order from the hot water storage tank 1 on the downstream side so as to form hot stratified water. In the second embodiment, it is not necessary to switch the hot water storage tank 1 to be heated as in the first embodiment, so the boiling detection temperature sensor 17 provided in the first embodiment is omitted.

【0034】制御手段2の制御動作は、沸き上げ検出用
温度センサ17の検出温度に基づく2個の三方弁6の制
御を省略した以外は、第1実施形態と同様であるので、
説明を省略する。
The control operation of the control means 2 is the same as that of the first embodiment except that the control of the two three-way valves 6 based on the temperature detected by the boiling detection temperature sensor 17 is omitted.
The description is omitted.

【0035】従って、第2実施形態の貯湯式給湯装置で
は、第1実施形態において設けた2個の三方弁6、湯水
各別取り出し路7、湯水各別戻し路11及び沸き上げ検
出用温度センサ17を省略することが可能であるので、
第1実施形態に比べて、構成を簡略化して低廉化を図る
ことが可能となる。
Therefore, in the hot water storage type hot water supply apparatus according to the second embodiment, the two three-way valves 6 provided in the first embodiment, the hot water / water takeout paths 7, the hot water / water return paths 11 and the boiling temperature sensor are provided. Since 17 can be omitted,
Compared with the first embodiment, the configuration can be simplified and the cost can be reduced.

【0036】〔第3実施形態〕第3実施形態において
は、第1実施形態と同様に、貯湯槽1として、2基の貯
湯槽1を設けてあるが、給水路3による給水の形態、及
び、給湯路5による湯水取り出し形態が、第1実施形態
と異なり、又、第1実施形態と同様に、加熱手段Hは、
貯湯槽1外に設けられて、通流する湯水を加熱する排熱
回収熱交換器37と、2基の貯湯槽1内の湯水を排熱回
収熱交換器37に循環させる湯水循環部Cとを備えて構
成してあるが、湯水循環部Cの構成が第1実施形態と異
なる。
[Third Embodiment] In the third embodiment, as in the first embodiment, two hot water storage tanks 1 are provided as the hot water storage tank 1, but the form of water supply by the water supply passage 3 and The hot water supply mode by the hot water supply passage 5 is different from that of the first embodiment, and like the first embodiment, the heating means H is
An exhaust heat recovery heat exchanger 37 that is provided outside the hot water storage tank 1 to heat the hot water flowing therethrough, and a hot and cold water circulation unit C that circulates the hot water in the two hot water storage tanks 1 to the exhaust heat recovery heat exchanger 37. However, the configuration of the hot water circulation unit C is different from that of the first embodiment.

【0037】即ち、図3に示すように、2基の貯湯槽1
は、夫々の下部に各別に給水路3を接続し且つ夫々の上
部に給湯路5を並列に接続する状態で設けて、給水路3
により2基の貯湯槽1に並行して給水し、且つ、給湯路
5にて2基の貯湯槽1内の湯水を並行して取り出す形態
で給湯するように構成してある。
That is, as shown in FIG. 3, two hot water storage tanks 1
Are provided in a state where the water supply passages 3 are separately connected to the respective lower portions and the hot water supply passages 5 are connected in parallel to the respective upper portions.
Thus, the hot water is supplied in parallel to the two hot water storage tanks 1 and the hot water in the hot water supply paths 5 is taken out in parallel.

【0038】尚、給水路3における減圧弁25の設置箇
所よりも下流側を、2基の貯湯槽1夫々の下部に各別に
接続して、減圧弁25にて水道圧を減圧して、水道水を
2基の貯湯槽1に並行して供給するようにしてある。
又、追焚用加熱器12、ミキシング弁26、給湯温度セ
ンサ18、給湯流量センサ19及び追焚加熱用温度セン
サ20は、給湯路5において、2基の貯湯槽1から取り
出された湯水が合流して流れる部分に設けてある。第3
実施形態においては、第1実施形態のように加熱対象の
貯湯槽1を切り換える必要が無いので、第1実施形態に
おいて設けた沸き上げ検出用温度センサ17は省略して
ある。
The downstream side of the installation location of the pressure reducing valve 25 in the water supply passage 3 is separately connected to the lower portion of each of the two hot water storage tanks 1, and the water pressure is reduced by the pressure reducing valve 25. Water is supplied to the two hot water storage tanks 1 in parallel.
The heating heater 12, the mixing valve 26, the hot water supply temperature sensor 18, the hot water supply flow rate sensor 19 and the additional heating temperature sensor 20 combine the hot and cold water extracted from the two hot water storage tanks 1 in the hot water supply passage 5. It is provided in the flowing part. Third
In the embodiment, it is not necessary to switch the hot water storage tank 1 to be heated as in the first embodiment, so the boiling detection temperature sensor 17 provided in the first embodiment is omitted.

【0039】又、湯水循環部Cは、2基の貯湯槽1の下
部から並行して湯水を取り出して排熱回収熱交換器37
に通流させたのち並行して2基の貯湯槽1の上部に戻す
ように、2基の貯湯槽1の湯水を並行して排熱回収熱交
換器37に循環させるように構成してある。湯水循環部
Cについて説明を加えると、湯水循環部Cは、各貯湯槽
1の下部にそれぞれ接続した2本の湯水並行取り出し路
22を湯水取り出し路8の基端に接続し、その湯水取り
出し路8の先端を排熱回収熱交換器37の入口に接続
し、湯水取り出し路8には湯水循環用ポンプ9を設け、
基端を排熱回収熱交換器37の出口に接続した湯水戻し
路10の先端に、それぞれ各貯湯槽1の上部に接続した
2本の湯水並行戻し路23を接続し、2基の貯湯槽1の
うちの一方に接続した湯水並行取り出し路22及び湯水
並行戻し路23に手動操作式の流量調整弁24を設けて
構成してある。そして、予め、2個の流量調整弁24を
調節して、湯水循環用ポンプ9の湯水流動作用により、
2基の貯湯槽1の下部から略同量の湯水が取り出される
と共に、2基の貯湯槽1の上部に略同量の湯水が戻され
るようにしてある。
The hot and cold water circulation section C takes out hot and cold water from the lower portions of the two hot water storage tanks 1 in parallel and exhaust heat recovery heat exchanger 37.
It is configured such that the hot and cold water of the two hot water storage tanks 1 is circulated in parallel to the exhaust heat recovery heat exchanger 37 so that the hot water and the hot water of the two hot water storage tanks 1 are returned to the upper portions of the two hot water storage tanks 1 in parallel. . The hot water circulation unit C will be described. In the hot water circulation unit C, the two hot water / water parallel take-out paths 22 respectively connected to the lower portions of the hot water storage tanks 1 are connected to the base ends of the hot water / water take-out paths 8. The tip of 8 is connected to the inlet of the exhaust heat recovery heat exchanger 37, and the hot and cold water discharge passage 8 is provided with a hot and cold water circulation pump 9.
Two hot and cold water parallel return paths 23 connected to the upper part of each hot water storage tank 1 are respectively connected to the tips of the hot and cold water return paths 10 whose base ends are connected to the outlets of the exhaust heat recovery heat exchangers 37. The hot water / water parallel take-out path 22 and the hot water / water parallel return path 23, which are connected to one of the two, are provided with a manually operated flow rate adjusting valve 24. Then, by adjusting the two flow rate adjusting valves 24 in advance, by the hot water flow action of the hot water circulating pump 9,
About the same amount of hot and cold water is taken out from the lower portions of the two hot water storage tanks 1, and about the same amount of hot and cold water is returned to the upper portions of the two hot water storage tanks 1.

【0040】そして、湯水循環用ポンプ9を作動させる
と、2基の貯湯槽1の下部から並行して略同量の湯水が
取り出されて排熱回収熱交換器37に通流されたのち並
行して2基の貯湯槽1の上部に戻されるように、2基の
貯湯槽1の湯水が並行して排熱回収熱交換器37に循環
されて、2基の貯湯槽1に並行して湯水が温度成層を形
成する状態で貯湯されることになる。
When the hot water circulation pump 9 is operated, approximately the same amount of hot water is taken out in parallel from the lower parts of the two hot water storage tanks 1 and is passed to the exhaust heat recovery heat exchanger 37, and then in parallel. Then, the hot and cold water of the two hot water storage tanks 1 is circulated in parallel to the exhaust heat recovery heat exchanger 37 so that the hot water of the two hot water storage tanks 1 is returned to the upper part of the two hot water storage tanks 1 in parallel. Hot water is stored in a state of forming a temperature stratification.

【0041】制御手段2の制御動作は、沸き上げ検出用
温度センサ17の検出温度に基づく2個の三方弁6の制
御を省略した以外は、第1実施形態と同様であるので、
説明を省略する。
The control operation of the control means 2 is the same as that of the first embodiment except that the control of the two three-way valves 6 based on the temperature detected by the boiling temperature sensor 17 is omitted.
The description is omitted.

【0042】給湯先の給湯動作により、給湯路5を通じ
て2基の貯湯槽1の上部から並行して湯が取り出される
と、それに伴って、給水路3にて2基の貯湯槽1の下部
に並行して水道水が供給されることとなる。そして、給
湯路5にて2基の貯湯槽1から湯が並行して取り出され
ることから、一挙に多量の湯を給湯先に給湯するときで
も、各貯湯槽1からの湯の取り出し量を少なくすること
が可能となって、各貯湯槽1に供給される水道水の量も
少なくすることが可能となるので、各貯湯槽1内の温度
成層の乱れを抑制することが可能となり、貯湯槽1から
の湯の取り出し温度の低下を抑制することができる。
When hot water is taken in parallel from the upper part of the two hot water storage tanks 1 through the hot water supply path 5 by the hot water supply operation of the hot water supply destination, the water is supplied to the lower parts of the two hot water storage tanks 1 in the water supply path 3 accordingly. In parallel, tap water will be supplied. Since the hot water is taken out in parallel from the two hot water storage tanks 1 in the hot water supply path 5, the amount of hot water taken out from each hot water storage tank 1 can be reduced even when a large amount of hot water is supplied to the hot water destination at once. Since it becomes possible to reduce the amount of tap water supplied to each hot water storage tank 1, it becomes possible to suppress the disturbance of the temperature stratification in each hot water storage tank 1 and It is possible to suppress a decrease in the hot water removal temperature from No. 1.

【0043】〔別実施形態〕次に別実施形態を説明す
る。 (イ) 上記の各実施形態においては、2基の貯湯槽1
を設ける場合について例示したが、貯湯槽1の設置台数
は3基以上でも良い。
Another Embodiment Next, another embodiment will be described. (A) In each of the above embodiments, two hot water storage tanks 1
Although the case where the hot water storage tank 1 is provided is illustrated, the number of the hot water storage tanks 1 may be three or more.

【0044】(ロ) 上記の第1及び第3の各実施形態
において説明した2基の貯湯槽1に対して構成する給水
及び給湯形態において、湯水循環部Cの具体構成は変更
可能である。例えば、第1実施形態における給水及び給
湯形態において、第3実施形態において説明した湯水循
環部Cを採用しても良いし、第3実施形態における給水
及び給湯形態において、第1実施形態において説明した
湯水循環部C又は第2実施形態において説明した湯水循
環部Cを採用しても良い。
(B) In the hot water supply and hot water supply forms configured for the two hot water storage tanks 1 described in the first and third embodiments, the specific configuration of the hot water circulation unit C can be changed. For example, in the water supply and hot water supply mode in the first embodiment, the hot water circulation unit C described in the third embodiment may be adopted, and in the water supply and hot water supply mode in the third embodiment, the water supply and hot water supply mode described in the first embodiment is described. The hot water circulation unit C or the hot water circulation unit C described in the second embodiment may be adopted.

【0045】(ハ) 上記の実施形態においては、燃料
電池発電装置EGを一日中連続して運転する場合につい
て例示したが、燃料電池発電装置EGの運転形態は、例
えば、一日のうちの予め定められた時間帯(例えば、電
力需要の多い時間帯)は運転し他の時間帯は停止させる
運転形態等、種々の運転形態を採用することができる。
(C) In the above embodiment, the fuel cell power generator EG is continuously operated all day, but the operation mode of the fuel cell power generator EG is, for example, predetermined in one day. It is possible to employ various operation modes such as an operation mode in which the vehicle is operated during a given time period (for example, a time period during which a large amount of electric power is demanded) and stopped during other time periods.

【0046】(ニ) 本発明は、上記の実施形態におい
て例示した如き、固体高分子型の燃料電池発電装置を備
えたコージェネレーションシステムにおける貯湯式給湯
装置以外に、種々の貯湯式給湯装置に適用可能である。
例えば、ガスエンジンやガスタービン等の燃焼式原動機
にて駆動される発電機を備えたコージェネレーションシ
ステムにおける貯湯式給湯装置にも適用することができ
る。この場合は、加熱手段Hは、上記の実施形態と同様
に、貯湯槽1外に設けられて、通流する湯水を加熱する
加熱作用部と、複数の貯湯槽1内の湯水を加熱作用部に
循環させる湯水循環部Cとを備えて構成し、加熱作用部
として、燃焼式原動機の排熱を回収するように構成した
熱交換器にて構成する。あるいは、エンジンヒートポン
プ式冷暖房給湯装置における貯湯式給湯装置にも適用す
ることができる。この場合は、加熱手段Hは、上記の実
施形態と同様に、貯湯槽1外に設けられて、通流する湯
水を加熱する加熱作用部と、複数の貯湯槽1内の湯水を
加熱作用部に循環させる湯水循環部Cとを備えて構成
し、加熱作用部として、エンジンの排熱を回収するよう
に構成した熱交換器や、ヒートポンプにて発生させる熱
を熱源とする熱交換器にて構成する。あるいは、貯湯式
給湯装置を単独で備えたものにも適用することができ
る。この場合も、加熱手段Hは、上記の実施形態と同様
に、貯湯槽1外に設けられて、通流する湯水を加熱する
加熱作用部と、複数の貯湯槽1内の湯水を加熱作用部に
循環させる湯水循環部Cとを備えて構成し、加熱作用部
としては、ガス燃焼式の給湯装置や、電気ヒータ等にて
構成する。ちなみに、加熱作用部を電気ヒータにて構成
する場合は、深夜電力を用いるように構成するのが好ま
しい。
(D) The present invention is applied to various hot water storage type hot water supply devices other than the hot water storage type hot water supply device in the cogeneration system including the solid polymer fuel cell power generation device as exemplified in the above embodiment. It is possible.
For example, the present invention can be applied to a hot water storage type hot water supply device in a cogeneration system including a generator driven by a combustion type prime mover such as a gas engine or a gas turbine. In this case, the heating means H is provided outside the hot water storage tank 1 and heats the hot water flowing therethrough, and the hot water heating means in the hot water storage tanks 1 as in the above embodiment. And a hot and cold water circulating section C for circulating the same, and as a heating action section, a heat exchanger configured to recover the exhaust heat of the combustion type prime mover. Alternatively, it can also be applied to a hot water storage type hot water supply device in an engine heat pump type cooling and heating hot water supply device. In this case, the heating means H is provided outside the hot water storage tank 1 and heats the hot water flowing therethrough, and the hot water heating means in the hot water storage tanks 1 as in the above embodiment. And a heat exchanger configured to recover the exhaust heat of the engine as a heating action unit, or a heat exchanger using the heat generated by the heat pump as a heat source. Constitute. Alternatively, the present invention can be applied to a single hot water storage type hot water supply device. Also in this case, the heating means H is provided outside the hot water storage tank 1 and heats the hot water flowing therethrough, and the hot water heating means in the hot water storage tanks 1 as in the above embodiment. And a hot water circulating unit C for circulating the hot water, and the heating action unit includes a gas combustion type hot water supply device, an electric heater, and the like. By the way, when the heating unit is composed of an electric heater, it is preferable to use late-night power.

【0047】(ホ) 加熱手段Hの具体構成としては、
上記の実施形態において例示した構成、即ち、貯湯槽1
外に設けられて、通流する湯水を加熱する加熱作用部
と、複数の貯湯槽1内の湯水を加熱作用部に循環させる
湯水循環部Cとを備えた構成以外に種々の構成を採用す
ることが可能である。例えば、加熱作用部を貯湯槽1内
の湯水に対して直接加熱作用するように、各貯湯槽1内
の底部に設けて、湯水循環部Cを省略しても良い。
(E) As a concrete constitution of the heating means H,
The configuration illustrated in the above embodiment, that is, the hot water storage tank 1
Various configurations are adopted in addition to the configuration provided outside with a heating action part for heating the hot water flowing therethrough and a hot water circulation part C for circulating the hot water in the plurality of hot water storage tanks 1 to the heating action part. It is possible. For example, the hot water circulating unit C may be omitted by providing the heating action unit at the bottom of each hot water storage tank 1 so that the hot water in the hot water storage tank 1 is directly heated.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施形態にかかる貯湯式給湯装置を備えた
コージェネレーションシステムの全体構成を示すブロッ
ク図
FIG. 1 is a block diagram showing an overall configuration of a cogeneration system including a hot water storage type hot water supply device according to a first embodiment.

【図2】第2実施形態にかかる貯湯式給湯装置を備えた
コージェネレーションシステムの全体構成を示すブロッ
ク図
FIG. 2 is a block diagram showing an overall configuration of a cogeneration system including a hot water storage type hot water supply device according to a second embodiment.

【図3】第3実施形態にかかる貯湯式給湯装置を備えた
コージェネレーションシステムの全体構成を示すブロッ
ク図
FIG. 3 is a block diagram showing an overall configuration of a cogeneration system including a hot water storage type hot water supply device according to a third embodiment.

【符号の説明】[Explanation of symbols]

1 貯湯槽 3 給水路 5 給湯路 6 切換手段 37 加熱作用部 C 湯水循環部 H 加熱手段 1 hot water storage tank 3 water supply channels 5 hot water supply passage 6 Switching means 37 Heating part C hot water circulation section H heating means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小山 義彦 大阪府大阪市中央区平野町四丁目1番2号 大阪瓦斯株式会社内 Fターム(参考) 3L025 AA08 AC01 AD09    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yoshihiko Koyama             4-1-2 Hirano-cho, Chuo-ku, Osaka-shi, Osaka Prefecture               Within Osaka Gas Co., Ltd. F term (reference) 3L025 AA08 AC01 AD09

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 密閉型の貯湯槽と、その貯湯槽内の湯水
を温度成層を形成する状態で貯湯されるように加熱する
加熱手段とが設けられた貯湯式給湯装置であって、 前記貯湯槽として、複数の貯湯槽が、通流方向に隣合う
上流側のものの上部と下流側のものの下部とが連通接続
される直列接続状態で、且つ、最上流のものの下部に給
水路が接続され、最下流のものの上部に給湯路が接続さ
れる状態で設けられて、 前記給水路により前記最上流の貯湯槽に給水し、且つ、
前記給湯路にて前記最下流の貯湯槽内の湯水を取り出す
形態で給湯されるように構成されている貯湯式給湯装
置。
1. A hot water storage type hot water supply apparatus comprising: a closed hot water storage tank; and heating means for heating hot water in the hot water storage tank so that the hot water is stored in a state of forming a temperature stratification. As the tanks, a plurality of hot water storage tanks are connected in series such that the upper part of the upstream side and the lower part of the downstream side which are adjacent to each other in the flow direction are connected in series, and the water supply channel is connected to the lower part of the uppermost one. Provided in a state where a hot water supply path is connected to an upper part of the most downstream one, and supplies water to the hottest hot water storage tank by the water supply path, and
A hot water storage type hot water supply device configured so that hot water is taken out from the hot water storage tank at the most downstream side in the hot water supply passage.
【請求項2】 密閉型の貯湯槽と、その貯湯槽内の湯水
を温度成層を形成する状態で貯湯されるように加熱する
加熱手段とが設けられた貯湯式給湯装置であって、 前記貯湯槽として、複数の貯湯槽が、夫々の下部に各別
に給水路が接続され且つ夫々の上部に給湯路が並列に接
続される状態で設けられて、 前記給水路により前記複数の貯湯槽に給水し、且つ、前
記給湯路にて前記複数の貯湯槽内の湯水を並行して取り
出す形態で給湯されるように構成されている貯湯式給湯
装置。
2. A hot water storage type hot water supply apparatus comprising: a closed hot water storage tank; and heating means for heating hot water in the hot water storage tank so that the hot water is stored in a state of forming a temperature stratification. As a tank, a plurality of hot water storage tanks are provided in a state where water supply channels are separately connected to respective lower portions and hot water supply channels are connected in parallel to respective upper portions, and water is supplied to the plurality of hot water storage tanks by the water supply channels. In addition, the hot water storage type hot water supply device is configured so that hot water in the hot water storage tanks is taken out in parallel in the hot water supply passage.
【請求項3】 前記加熱手段が、前記貯湯槽外に設けら
れて、通流する湯水を加熱する加熱作用部と、前記複数
の貯湯槽内の湯水を前記加熱作用部に循環させる湯水循
環部とを備えて構成されている請求項1又は2記載の貯
湯式給湯装置。
3. The heating means is provided outside the hot water storage tank to heat the hot water flowing therethrough, and a hot water circulation section for circulating the hot water in the plurality of hot water storage tanks to the heating action portion. The hot water storage type hot water supply device according to claim 1 or 2, wherein the hot water storage type hot water supply device is provided.
【請求項4】 前記湯水循環部が、前記貯湯槽の下部か
ら湯水を取り出して前記加熱作用部に通流させたのち前
記貯湯槽の上部に戻す状態で、前記複数の貯湯槽内の湯
水を各別に前記加熱作用部に循環させるように湯水循環
状態を切り換える切換手段を備えて構成されている請求
項3記載の貯湯式給湯装置。
4. The hot and cold water in the plurality of hot water storage tanks is brought into a state in which the hot and cold water circulation portion takes hot water from the lower portion of the hot water storage tank and causes the hot water to flow to the heating action portion and then returns to the upper portion of the hot water storage tank. 4. The hot water storage type hot water supply apparatus according to claim 3, further comprising switching means for switching the hot and cold water circulation state so as to circulate the hot water to the heating action section separately.
【請求項5】 前記湯水循環部が、前記複数の貯湯槽の
下部から並行して湯水を取り出して前記加熱作用部に通
流させたのち並行して前記複数の貯湯槽の上部に戻すよ
うに、前記複数の貯湯槽の湯水を並行して前記加熱作用
部に循環させるように構成されている請求項3記載の貯
湯式給湯装置。
5. The hot water circulation unit draws hot water from the lower portions of the plurality of hot water storage tanks in parallel, allows the hot water to flow to the heating action portion, and then returns the hot water to the upper portions of the plurality of hot water storage tanks in parallel. The hot water storage type hot water supply apparatus according to claim 3, wherein the hot water of the plurality of hot water storage tanks is circulated in parallel to the heating action section.
JP2002144771A 2002-05-20 2002-05-20 Hot water storage type water heater Pending JP2003336900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002144771A JP2003336900A (en) 2002-05-20 2002-05-20 Hot water storage type water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002144771A JP2003336900A (en) 2002-05-20 2002-05-20 Hot water storage type water heater

Publications (1)

Publication Number Publication Date
JP2003336900A true JP2003336900A (en) 2003-11-28

Family

ID=29704351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002144771A Pending JP2003336900A (en) 2002-05-20 2002-05-20 Hot water storage type water heater

Country Status (1)

Country Link
JP (1) JP2003336900A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275476A (en) * 2005-03-30 2006-10-12 Sekisui House Ltd Hot water storage system
WO2008053819A1 (en) * 2006-10-31 2008-05-08 Daikin Industries, Ltd. Hot-water storage-type hot-water supply device
JP2015194330A (en) * 2014-03-25 2015-11-05 株式会社ノーリツ heat distribution unit for heating circulation circuit
WO2018087888A1 (en) * 2016-11-11 2018-05-17 三菱電機株式会社 Hot water system, temperature separation device, and tank
JP7466242B2 (en) 2019-04-15 2024-04-12 パーパス株式会社 Hot water supply method, system and program

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275476A (en) * 2005-03-30 2006-10-12 Sekisui House Ltd Hot water storage system
JP4555135B2 (en) * 2005-03-30 2010-09-29 積水ハウス株式会社 Hot water storage system
WO2008053819A1 (en) * 2006-10-31 2008-05-08 Daikin Industries, Ltd. Hot-water storage-type hot-water supply device
JP2015194330A (en) * 2014-03-25 2015-11-05 株式会社ノーリツ heat distribution unit for heating circulation circuit
WO2018087888A1 (en) * 2016-11-11 2018-05-17 三菱電機株式会社 Hot water system, temperature separation device, and tank
JP7466242B2 (en) 2019-04-15 2024-04-12 パーパス株式会社 Hot water supply method, system and program

Similar Documents

Publication Publication Date Title
JP5300717B2 (en) Cogeneration system
JP2008185248A (en) Hot water supply system
JP4399553B2 (en) Fuel cell system
JP4213636B2 (en) Hot water storage hot water source
JP2009243852A (en) Cogeneration system
JP2889807B2 (en) Fuel cell system
JP2013527555A (en) How to operate a cogeneration facility
JP4716352B2 (en) Hot water storage hot water source
JP4195974B2 (en) Fuel cell cogeneration system
JP2003336900A (en) Hot water storage type water heater
JP3966839B2 (en) Waste heat utilization heat source device
JP2020153613A (en) Energy supply system
JP2012021751A (en) Exhaust heat recovery device
JP2004039430A (en) Fuel cell generator and its operation method
JP2008177052A (en) Domestic fuel cell system, and exhaust heat distribution unit used for it
JP5796227B2 (en) Fuel cell power generation system and method for stopping operation of fuel cell power generation system
JP6640002B2 (en) Combined heat and power system
JP6501577B2 (en) Fuel cell system
JP2001291525A (en) Starting method of solid polymer-type fuel cell and its device
JP5509671B2 (en) Fuel cell cogeneration system
JP2003217603A (en) Fuel cell cogeneration system
JP2020107558A (en) Power generation system
JP2004340483A (en) Heat medium circulation type heating device
JP6643939B2 (en) Combined heat and power system
JP5501750B2 (en) Fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070705

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071115