JP2003336885A - Heat storage air conditioning equipment - Google Patents

Heat storage air conditioning equipment

Info

Publication number
JP2003336885A
JP2003336885A JP2002144785A JP2002144785A JP2003336885A JP 2003336885 A JP2003336885 A JP 2003336885A JP 2002144785 A JP2002144785 A JP 2002144785A JP 2002144785 A JP2002144785 A JP 2002144785A JP 2003336885 A JP2003336885 A JP 2003336885A
Authority
JP
Japan
Prior art keywords
air
heat storage
storage tank
heat
conditioning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002144785A
Other languages
Japanese (ja)
Other versions
JP3969479B2 (en
Inventor
Naotatsu Yano
直達 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2002144785A priority Critical patent/JP3969479B2/en
Publication of JP2003336885A publication Critical patent/JP2003336885A/en
Application granted granted Critical
Publication of JP3969479B2 publication Critical patent/JP3969479B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide rational heat storage air conditioning equipment performing a heat storage mode, a heat radiation mode, and an air conditioning mode even with a simple structure and control and improving the efficiency of a heat storage tank. <P>SOLUTION: This heat storage air conditioning equipment is provided with an opening/closing damper 13 selecting one out of the air conditioning mode of connecting a heat storage tank 1 to an air conditioner 2 in parallel to a room R and conditioning air by the air conditioner 2, the heat storage mode of feeding a conditioned air to the heat storage tank 1 alone by the air conditioner 2, and the heat radiation mode conditioning the air by the heat storage of the heat storage tank 1. This equipment is provided with a control device 41 stopping the air conditioner 2 when a second temperature sensor S2 disposed in the side end of a second feed/exhaust port 1b of the heat storage tank 1 detects a second prescribed temperature in the heat storage mode, and interlocks the air conditioner 2 with the opening/closing damper 13 so as to change to the air conditioning mode when a first temperature sensor S1 disposed in the side end of a first heat/exhaust port 1a of the heat storage tank detects a first prescribed temperature in the heat radiation mode. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、流体との接触によ
る熱交換によって蓄熱及び放熱が自在な蓄熱体及び一対
の送風給排口を有した蓄熱槽と、空調装置とを備えた蓄
熱空調設備に関するものである。 【0002】 【従来の技術】空調装置と蓄熱槽とを備えた蓄熱空調設
備としては、従来では、特開2001−193971号
公報に示されたものが知られている。これは、空調装置
で空調対象である室内を空調(暖房又は冷房)する空調
モードと、空調装置で蓄熱槽に蓄熱させる蓄熱モード
と、蓄熱槽に貯えられた熱によって空調対象を空調する
放熱モードとが切換えられるように構成してあるととも
に、それら各モードを時間帯によって使い分ける制御手
段を設けていた。なお、以下に示すカッコ付きの符号
は、前述の公報のものを示す。 【0003】すなわち、給排ダクト(11A,11B)
を介して蓄熱槽(2)と空調装置(10)と室内(3)
とを直列に接続するとともに、蓄熱槽と空調装置との間
の経路と戻りダクトとを接続するバイパス路(6)、及
び、空調装置の送風出口と蓄熱槽の送風入口とを接続す
る蓄熱用循環路(14)、並びに流路切換弁(7)、第
1切換弁(12)、第2切換弁(15)を設けて蓄熱空
調設備を構成してある。 【0004】空調モードは、バイパス路(6)が開かれ
る位置に流路切換弁(7)を切換え、第1切換弁(1
2)を開き、かつ、第2切換弁(15)を閉じ操作した
状態で空調装置を空調作動することで得られる。蓄熱モ
ードは、バイパス路(6)が閉じられる位置に流路切換
弁(7)を切換え、第1切換弁(12)を閉じ、かつ、
第2切換弁(15)を開弁状態で空調装置を空調作動す
ることで得られる。そして、放熱モードは、バイパス路
(6)が閉じられる位置に流路切換弁(7)を切換え、
第1切換弁(12)を開き、かつ、第2切換弁(15)
を閉じ操作するとともに、空調装置を単なる送風機とし
て運転(ファン10のみ回転させる)することで得られ
る。 【0005】例えば、冷房の場合について説明すると、
比較的電力消費の少ない午前中は空調装置を冷房作動さ
せて室内を直接冷房する空調モードで運転し、電力需要
の大となる午後は蓄熱槽に貯えられている冷熱で冷房す
る放熱モードで運転し、電力料金の安い夜間には空調装
置で蓄熱槽を冷房する蓄熱モードで運転する、という具
合に時間帯によって運転モードを切換えるように設定さ
れていた。これにより、電力料金の安い深夜に蓄熱させ
ることで空調コストの低減を図るとともに、その深夜蓄
熱によって電力需要が夏場の午後に集中するのを避ける
こと、所謂ピークカットが行えるので、発電設備を徒に
大型化しなくても済むことに寄与できる利点がある。 【0006】しかしながら、空調対象に関して空調装置
と蓄熱槽とを直列に接続する直列型蓄熱空調設備では、
前述のように、基本の経路(11)の他にバイパス路
(6)と蓄熱用循環路(14)が必要であり、しかも、
それら各経路を流れる風を切換えるために3組の切換弁
(7,12,15)が必要となるものであり、構造が複
雑化するとともにそれらの制御作動も複雑化する点では
不利なものであった。そこで、構造や制御装置をシンプ
ル化しながら、蓄熱モード、放熱モード、蓄熱モードの
各運転が円滑に行えるよう、空調対象に対して、空調装
置と蓄熱槽とを並列に接続する並列型蓄熱空調設備が提
案された。 【0007】 【発明が解決しようとする課題】並列型蓄熱空調設備の
原理は、図20に示すようなものである。すなわち、蓄
熱槽1と空調装置2とを第1経路W1と第2経路W2と
を用いて並列接続し、空調装置2の出力側である第1経
路W1と空調対象Rとを第3経路W3を介して接続する
とともに、空調装置2の戻り側である第2経路W2と空
調対象Rとを第4経路W4を介して接続する。そして、
第2経路W2における第3経路W3との分岐箇所に経路
切換機構15を設ける。 【0008】空調モードは、経路切換機構15を操作し
て、第1経路W1における空調装置2側の空調側部分3
6と第3経路W3とのみを開通させた状態(蓄熱側部分
37は閉じられている)で、空調装置2を空調作動させ
ることで得られる。空調装置2から出た空調風は、空調
側部分36、第3経路W3、空調対象R、第4経路W4
を通って空調装置2に戻る循環経路が形成される。 【0009】蓄熱モードは、経路切換機構15を操作し
て、第1経路W1における蓄熱槽1側の蓄熱側部分37
と空調側部分36とのみを開通させた状態(第3経路W
3は閉じられている)で、空調装置2を空調作動させる
ことで得られる。空調装置2から出た空調風は、第1経
路W1、蓄熱槽1、第2経路W2を通って空調装置2に
戻る循環経路が形成される。 【0010】放熱モードは、経路切換機構15を操作し
て、第1経路W1における蓄熱槽1側の蓄熱側部分37
と第3経路W3とのみを開通させた状態(空調側部分3
6は閉じられている)で、第3経路W3に設けた送風フ
ァン24を作動させることで得られる。送風ファン24
の作動によって、第3経路W3、空調対象R、第4経路
W4、第2経路W2、蓄熱槽1、経路切換機構15を風
が流れるので、蓄熱槽1の蓄熱によって空調対象Rを空
調する循環経路が形成される。 【0011】ところが、この並列型蓄熱空調設備におい
ては、新たな問題の生じることが分かってきた。すなわ
ち、図20において、蓄熱モードでは蓄熱槽1に矢印a
の方向で風が流れるのに対して、放熱モードでは矢印b
の方向に風が流れるといった具合に、運転モードによっ
て蓄熱槽1を流れる風の向きが反対になってしまうので
ある。従って、前述の公報に示されたように、蓄熱槽に
単一の温度センサを設ける構成では、次のような不都合
が生じる。 【0012】蓄熱モードでは、空調風が蓄熱槽1に、そ
の一端1a(第1経路W1側)から供給されるので、他
端1b側ほど遅れて空調風が到達するように時間差が付
くようになる。故に、蓄熱槽全体が所望の蓄熱状態にな
ったか否かを検知するための温度センサを1個のみ設け
る場合では、送風出口側となる他端1b付近に配置する
のが望ましい。一方、放熱モードでは、風の入口となる
前記他端1b側から放熱されてゆき、風の出口となる前
記一端1a側ほど遅れて放熱されるように時間差が付く
から、蓄熱槽全体が所望の放熱状態になったか否かを検
知するための温度センサを1個のみ設ける場合では、送
風出口側となる前記一端1a付近に配置するのが望まし
い。 【0013】従って、温度センサを蓄熱モードに適した
位置に設けると、放熱モード時には正確な検出作動が期
待できないとともに、放熱モードに適した位置に設ける
と、蓄熱モード時には正確な検出作動が期待できないと
いう、不都合が生じるものであり、更なる改善の余地が
あるように思える。 【0014】本発明の目的は、前述のような新たな問題
が無いようにしながら、構造及び制御のシンプル化が図
れる並列型蓄熱空調設備を実現させる点にある。 【0015】 【課題を解決するための手段】〔構成〕請求項1の構成
は、蓄熱空調設備において、空調装置と、流体との接触
によ屡熱交換によって蓄熱及び放熱が自在な蓄熱体及び
一対の送風給排口とを有した蓄熱槽と、空調装置の送風
出口と蓄熱槽における一方の送風給排口とを連通接続す
る第1流路と、空調装置の送風入口と蓄熱槽の他方の送
風給排口とを連通接続する第2流路と、第1流路と空調
対象とを連通接続する第3流路と、第2流路と空調対象
とを連通接続する第4流路とを設け、第3流路において
は第1流路から空調対象に向かう方向の送風を生じさせ
る送風手段を、第3流路又は第4流路に設けるととも
に、蓄熱槽における一対の送風給排口の夫々に温度検出
手段を設け、空調装置で空調対象にのみ空調風を供給す
る空調モードと、空調装置から出た空調風を第1流路を
介して蓄熱槽に供給し、かつ、蓄熱槽からの排風を第2
流路を介して空調装置に戻すことで蓄熱槽に蓄熱させる
蓄熱モードと、蓄熱槽に貯えられた熱を第1流路及び第
3流路を介して空調対象に供給し、かつ、空調対象から
の排風を第4流路及び第2流路を介して空調装置に戻す
ことで空調対象を空調する放熱モードと、を択一的に選
択するための経路切換機構を設け、蓄熱モードのとき
に、他方の送風給排口側端配備された第2温度検出手段
の検出値が第2所定温度に達すると空調装置を停止さ
せ、放熱モードのときに、一方の送風給排口側端に配備
された第1温度検出手段の検出値が第1所定温度に達す
ると空調モードに切換えるか又は送風手段を停止させる
ように、空調装置と経路切換機構と送風手段とを連係さ
せる空調制御手段を設けてあることを特徴とする。 【0016】〔作用〕請求項1の構成によれば、詳しく
は実施形態の項にて説明するが、次のような作用を得る
ことができる。すなわち、空調対象に関して空調装置と
蓄熱槽とは、第1〜第4流路を用いることで並列に連通
接続されているので、空調装置及び蓄熱槽のいずれもが
単独で空調対象と連通接続できうる状態になっている。
故に、第3流路においては第1流路から空調対象に向か
う方向の送風を生じさせる送風手段、すなわち、吹き出
し方向が一定で良い単純構造の送風手段と、蓄熱モード
と放熱モードと空調モードとを択一的に切換える経路切
換機構とを付加するだけで良く、従来の直列接続構造の
蓄熱空調設備に比べて、構造の単純化が可能になる。ま
た、操作すべき対象が経路切換機構と送風手段で済むの
で、3個のダンパを組み合わせて開閉する従来のものに
比べて、制御構造を単純化することも可能になる。 【0017】まず、蓄熱モードでは、蓄熱槽においては
一方の送風給排口から他方の送風給排口に風が流れる状
態になり、一方の送風給排口から蓄熱体に蓄熱されて行
き、他方の送風給排口側の蓄熱体が最後に蓄熱されるこ
とになるから、他方の送風給排口側端の蓄熱体(最後に
蓄熱される蓄熱体)が所定温度に蓄熱されておれば、蓄
熱槽全体が所定温度に蓄熱されたと見なして差し支えな
いことになる。 【0018】故に、蓄熱モードでは蓄熱槽における送風
下手側端に配置されて、最も遅れて知苦熱されることに
なる蓄熱体の温度を検出する第2温度検出手段の検出値
が第2所定温度に達すると空調装置を停止させるように
制御するので、蓄熱槽全体を少なくとも所定温度(第2
所定温度)には蓄熱させることができるようになる。例
えば、冷熱蓄熱させる場合の第2所定温度えお18℃と
すれば、第2温度検出手段が検出作動したときには、温
度分布としては最も高くなる他方の送風給排口側端の蓄
熱体温度が18℃であり、蓄熱体が、例えば顕熱蓄熱材
の場合は、そこから一方の送風給排口側に近づくに連れ
て蓄熱体の温度は下がって行く温度状態になる。 【0019】次に、放熱モードでは、蓄熱槽においては
他方の送風給排口から一方の送風給排口に風が流れる状
態になり、他方の送風給排口側から蓄熱体に蓄えられて
いる熱が取り出されて、すなわち放熱されてゆき、一方
の送風給排口側の蓄熱体が最後に放熱されることになる
から、一方の送風給排口側端の蓄熱体(最後に放熱され
る蓄熱体)が所定温度になれば、蓄熱槽全体が放熱され
て所定温度に達したと見なして差し支えないことにな
る。 【0020】故に、放熱モードでは、蓄熱槽における送
風下手側端に配置されて、最も遅れて放熱されることに
なる蓄熱体の温度を検出する第1温度検出手段の検出値
が第1所定温度に達すると、空調モードに切換えるか又
は送風手段を停止させるように制御するので、蓄熱槽全
体が少なくとも所定温度(第1所定温度)となるように
放熱させられるようになる。例えば、蓄えられている冷
熱を放熱させる場合の第1所定温度を23℃とすれば、
第1温度検出手段が検出作動したときには、蓄熱体が、
例えば顕熱蓄熱材の場合は、温度分布としては最も低く
なる一方の送風給排口側端の蓄熱体温度が23℃であ
り、そこから他方の送風給排口側に近づくに連れて蓄熱
体の温度は上がって行く温度状態になる。 【0021】尚、空調モードでは、風は蓄熱槽には流れ
ないので、2個の温度検出手段のうちのいずれを使うか
に関しては制御せずに済む。 【0022】〔効果〕その結果、請求項1に記載の蓄熱
空調設備では、空調装置と蓄熱槽とを空調対象に関して
並列に連通接続させる基本的な考えにより、設備構造や
制御をシンプル化しながら蓄熱モード、放熱モード、空
調モードの各運転モードが行えるとともに、蓄熱槽全体
を所望の温度状態に確実に設定できて、より効率的に用
いることができる合理的なものとして提供できるに至っ
た。 【0023】 【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。図1、図18に蓄熱空調設備の概
略図が示されている。図1と図18とは実質同じもので
あり、風の流れ構造を理解し易くするために、図1のも
のをブロック図化したものが図18である。 【0024】蓄熱空調設備Aは、空気(流体の一例)と
の接触による熱交換によって蓄熱及び放熱が自在な蓄熱
体Cを多数有し、かつ、一対の送風給排口1a,1bを
備えた蓄熱槽1と、送風出口2aと送風入口2bとを有
した空調装置(室内機)2とを有し、空調装置2の送風
出口2aと蓄熱槽1の第1給排口(一方の送風給排口の
一例)1aとを連通接続する第1流路W1と、空調装置
2の送風入口2bと蓄熱槽1の第2給排口(他方の送風
給排口の一例)1bとを連通接続する第2流路W2と、
第1流路W1と空調対象R,Ruとを連通接続する第3
流路W3と、第2流路W2と空調対象R,Ruとを連通
接続する第4流路W4とを設けて構成されている。 【0025】蓄熱槽2は、セメントや石等を主成分とす
る板材や、合成樹脂材から成る板材といった顕熱を用い
た蓄熱体Cを、箱体4内において前後左右並びに上下複
数段に積層することで多数装備した構造のものであり、
送風出口5側の空間部6、及び送風取込み口7側の空間
部8を有している。尚、蓄熱体Cとしては、潜熱を利用
した蓄熱材を内装した蓄熱カプセルであっても良い。次
に、蓄熱空調設備Aについて詳細に説明する。 【0026】図1〜図3及び図8に、蓄熱空調設備Aを
備えた2階建て住宅Hの上部を示してある。図1〜図5
に示すように、蓄熱空調設備Aは、蓄熱槽1、室内機
(空調装置の一例)2、及びこれら蓄熱槽1と空調装置
2とを覆って種々の運転モードの設定を可能とするため
の給排ダクト体12等から構成されている。この蓄熱空
調設備Aには、1階及び2階の各部屋r11〜r24に
連通接続される複数の個別ダクトDが接続されており、
各部屋r11〜r24毎に空調風が送られるように構成
されている。 【0027】2階の第1部屋r21には、住宅としての
最外壁側に奥行きが半畳分の一般的な押入れ4が形成さ
れており、その押入れ4内における壁に沿わせて縦長形
状の蓄熱槽1を配置してある。蓄熱槽1は、押入れ4の
奥行きの約半分の前後幅を有した槽カバー体5に内装さ
れており、槽カバー体5の下端部には複数の1階用個別
ダクト7(第3流路W3の一例)に対する1階用接続部
8が形成され、その上側にはエア吸込み用の戻り口9
(第4流路W4の一例)が形成されるとともに、その上
に蓄熱槽1が配置されている。 【0028】2階の天井裏空間Tに配置される槽カバー
体5の上端部と、室内機2を内装した空調カバー体11
とは、供給ダクト部12A(内部に第1流路W1が形
成)と戻りダクト部12B(内部に第2流路W2が形
成)とから成る長さの短い給排ダクト体12を介して接
続されており、戻りダクト部12Bには、これを開閉自
在な弁としての開閉ダンパ13(経路切換機構の一例)
が装備されている。又、空調カバー体11における給排
ダクト体12接続側と反対側の端部には、複数の2階用
個別ダクト14(第3流路W3の一例)に対する2階用
接続部15が形成されている。次に、各部の構造を詳細
説明する。 【0029】槽カバー体5内には、蓄熱槽1の一側に位
置した状態で下端が戻り口9に、かつ、上端が戻りダク
ト部12Bに夫々連通した上下向きの戻り路16と、蓄
熱槽1の他側に位置した状態で下端が1階用接続部8
に、かつ、上端が供給ダクト部12Aに夫々連通した上
下向きの供給路17が形成されている。戻り口9は、押
入れ4に隣合う廊下25等の共通空間に開口する空間部
であり、その開口部9aにはフィルター18が装備され
ている。又、図1、図5に示すように、戻り口9には蓄
熱槽1のドレンパイプ19が配策されている。 【0030】空調カバー体11は矩形箱状であり、その
内部における上部で、かつ、やや戻りダクト部12B側
に偏った位置に室内機2が据付けられている。室内機2
は、戻りダクト部12B側の底面に吸気口2aを、そし
て、供給ダクト部12A側の側面に吐出口2bを夫々備
えており、吐出口2bに面した送風吐出路stに続いて
おり、かつ、室内機2の給排ダクト体12と反対側に膨
出させた空間部が2階用接続部15として機能するよう
に構成されている。又、戻りダクト部12Bに続き、か
つ、吸気口2aに面した送風吸込み路ssと2階用接続
部15とは、遮断壁35によって区切られている。 【0031】開閉ダンパ13は、断面矩形形状の戻りダ
クト部12Bの内面にフィット可能な大きさを有した矩
形形状の弁体20と、これを横向きの支点軸21回りに
駆動回動させるべく給排ダクト体12の外側に設けられ
たモータ部22とから構成されている。平板状の弁体2
0を回動させて水平姿勢(図1参照)にすると、戻りダ
クト部12Bが全開となる開通状態が得られ、弁体20
を回動させて垂直姿勢(図11参照)にすると、戻りダ
クト部12Bが全閉となる遮断状態が得られる。 【0032】図2、図3、図6、図7に示すように、各
個別ダクト7,14の根元側端には、開閉弁23と電動
ファン24とから成る送風ユニット10(送風手段の一
例)が装備されている。即ち、送風ユニット10は、個
別ダクト7,14に接続される絞りダクト部26と、筒
フレーム27と、長さの短い筒ダクト28と、筒ダクト
28の開口を開閉するべく支点pで揺動自在な開閉扉2
9と、基板31に装備された開閉機構30とを設けて構
成されており、開閉弁23が1階用接続部8(又は2階
用接続部15)内に位置するよう、基板31を1階用接
続部8( 又は2階用接続部15)の内壁に宛がった状態
で固定してある。 【0033】蓄熱槽1は、上下長さが左右長さよりも明
確に長く、かつ、厚みの薄い蓄熱体Cを前後に多数枚並
べた蓄熱体列を左右に4列並べて成る蓄熱体群Gを、枠
体6に上下複数段(5段)積層して成るものであり、熱
交換用流体である空気(風)が図2において矢印イ方
向、即ち左右方向に通る状態に構成されている。 【0034】つまり、蓄熱槽1における第1及び第2給
排口1a,1bの夫々に温度センサ(温度検出手段の一
例)を設け、空調装置2で各部屋r11〜r24にのみ
空調風を供給する空調モードと、空調装置2から出た空
調風を供給ダクト部12Aを介して蓄熱槽1に供給し、
かつ、蓄熱槽1からの排風を戻りダクト部12Bを介し
て空調装置2に戻すことで蓄熱槽1に蓄熱させる蓄熱モ
ードと、蓄熱槽1に貯えられた熱を供給ダクト部12A
及び1階用個別ダクト7や2階用個別ダクト14を介し
て各部屋r11〜r24に供給し、かつ、各部屋r11
〜r24からの排風を第4流路W4及び戻りダクト部1
2Bを介して空調装置2に戻すことで各部屋r11〜r
24を空調する放熱モードと、を択一的に選択するため
の経路切換機構13を設けてある。 【0035】これにより、蓄熱モードのときに、第2給
排口1b側端に配備された第2温度センサS2の検出値
が第2所定温度に達すると空調装置2を停止させ、放熱
モードのときに、第1給排口1a側端に配備された第1
温度センサS1の検出値が第1所定温度に達すると空調
モードに切換えるか又は送風ユニット10を停止させる
ように、空調装置2と開閉ダンパ13の駆動機構42と
各送風ユニット10とを連係させる制御装置41(空調
制御手段の一例)を設けてある。 【0036】図2に示すように、空気戻し部9には、空
調装置に戻って行く空気中の雑菌を除去する除菌手段3
2が装備されている。除菌手段32は、吸込み口9Aに
向かって倒れ傾斜する斜交い状に配置された多孔状(又
は網状)で、かつ、TiO2等の光触媒が装備された板
状体33と、この板状体33に対する紫外線ランプ34
とで構成されている。つまり、吸込み口9Aから吸込ま
れた空気は必ず板状体33を通過して行くことになり、
その際に紫外線ランプ34と光触媒との協働による除菌
作用を受けるのである。 【0037】図8に、住宅Hの2階平面図が模式的に示
されている。蓄熱空調設備Aは、第1部屋r21におけ
る廊下25側の押入れ4の内奥で廊下25側に寄せて配
置されており、空気戻し部9における吸込み口9A、即
ちフィルター18は、廊下25に開口する状態に配置構
成してある。つまり、吸込み口9Aは、各階の廊下、階
段、吹き抜け部分、玄関、納戸、踊り場、屋根裏収納部
等の居住空間(普段に居住する居室や頻繁に出入りする
場所の総称であり、便所、風呂場、洗面所等を含む)
R,Ru以外の部分に設けるのである。 【0038】これにより、各部屋r21〜r24からの
空調排風は必ず2階廊下25に面したフィルター18に
集合することになり、ごみやほこりの掃除やフィルター
交換等のメンテナンスは、住宅における共通空間である
廊下25から各部屋を気にすること無く行うことができ
る。次に、蓄熱空調設備Aによって実現できる各種運転
モードについて説明する。 【0039】 蓄熱モード:図9に示すように、開閉
ダンパ13を開き、かつ、いずれの送風ユニット10も
停止(開閉弁23が閉じ、電動ファン24が停止)して
いる状態(全ての個別ダクト7,14への流路が断絶さ
れている状態)において、室内機2を冷房作動(又は暖
房作動)させると、室内機2からの吐出風は、供給路1
7を通って蓄熱槽1を通り、戻り路16を通って室内機
2に戻る循環作動状態が得られる。これにより、値段の
安い深夜料金となる夜間に、蓄熱槽1に冷熱(又は温
熱)を蓄熱させることができる。 【0040】 空調モード:図10に示すように、開
閉ダンパ13を開き、かつ、いずれかの送風ユニット1
0が駆動(開閉弁23が開き、電動ファン24が駆動)
されている状態で、室内機2を冷房作動(又は暖房作
動)させると、室内機2からの吐出風が、2階用接続部
15から2階の個別ダクト14、又は供給ダクト部12
A及び供給路17から1階用接続部8通って1階用の個
別ダクト7に供給されて行く。このモードは、各部屋の
単位時間当たりの総要求風量と、室内機2の単位時間当
たりの吐出風量とが一致している条件のときに生じるも
の(蓄熱槽1には送風されないようになるから)であ
り、室内機2へは、戻し口9から吸込まれた空気が、戻
り路16及び戻りダクト部12Bを通って供給される。 【0041】 放熱モード:図11に示すように、開
閉ダンパ13を閉じ、かつ、室内機2を停止させた状態
で、いずれかの送風ユニット10が駆動されるモードで
あり、戻し口9から吸込まれた空気が蓄熱槽1を通って
冷され(又は暖められ)てから供給路17を通り、1階
用接続部8から1階用の個別ダクト7へ送風されるか、
又は供給ダクト部12Aと2階用接続部15を通って2
階の個別ダクト14へ送風されて行くかする。この場合
には、蓄熱空調設備Aとしての駆動源は、送風ユニット
10によって賄われる状態となる。 【0042】 蓄熱空調モード:図12に示すよう
に、これは前記空調モードにおいて、個別ダクト7,
14による単位時間当たりの要求送風量の総計よりも、
室内機2の単位時間当たりの吐出風量が大であるときに
生じるモードであり、室内機2の吐出風がいずれかの個
別ダクト7,14に供給されるとともに、その分が差し
引かれた余剰風が蓄熱槽1を通過し、戻り路16等を通
って吸気口2aに戻ると言う具合に、一部が循環作動状
態になる。このとき、個別ダクト7,14に向かう分の
空気は戻し口9から吸込まれる。 【0043】 放熱空調モード:図13に示すよう
に、これは前記空調モードにおいて、個別ダクト7,
14による単位時間当たりの要求送風量の総計が、室内
機2の単位時間当たりの吐出風量を上回るときに生じる
モードであり、室内機2の吐出風の全てが個別ダクト
7,14に供給されるとともに、足りない分は戻し口9
から吸込まれて戻り路16を介して蓄熱槽1を通り、冷
房(又は暖房)されてから個別ダクト7,14に供給さ
れるようになる。 【0044】この放熱空調モードにおいては、室内機2
と1階用接続部8との間に蓄熱槽1が存在する構造上、
各階の要求送風量と室内機2の吐出風量との関係によ
り、種々の送風状態が現れる。即ち、1階の要求風量を
f1、2階の要求風量をf2、室内機2の吐出風量を
F、蓄熱槽1から供給される放熱風量をf3とすると、
風量に関する前提条件は f1+f2=F+f3……(イ) f1+f2<2F……(ロ) f3>0(f1+f2>F)……(ハ) であるとする。 【0045】i. F>f1,F>f2であるときに
は、室内機2の吐出風は各接続部8,15に流れるとと
もに、蓄熱槽1からの供給風量f3は全て1階用接続部
8に流れる(図13に示す状態)。この場合、室内機2
から1階用接続部8に流れる風があるので、吸引風とな
る蓄熱槽1から2階用接続部15に風が流れることはな
い。従って、2階用接続部15には室内機2による空調
風のみが供給される。 【0046】ii. F≦f1,F>f2であるときに
は、前記iの場合と同様であり、室内機2から2階用接
続部15に吐出風量f2が供給され、残りの吐出風量F
−f2と、蓄熱槽1の放熱風量f3とが1階用接続部8
に流れる(図14参照)。 【0047】iii. F>f1,F=f2であるとき
には、室内機2の吐出風量Fが全て2階用接続部15に
流れ、1階用接続部8には放熱風量f3のみが供給され
る(図15参照)。 【0048】iv. F>f1,F<f2であるときに
は、室内機2の吐出風量Fの全てと、蓄熱槽1からf2
−F相当分の放熱風量が2階用接続部15に供給され、
1階用接続部8には蓄熱槽1からの送風のみが供給され
る(図16参照)。 【0049】このように、1階と2階との双方を空調す
る場合では、2階には必ず室内機2の吐出風が供給さ
れ、それでは風量が足りないときにのみ蓄熱槽1の放熱
風が供給されるのに対して、1階には、2階への供給風
が除かれた室内機2の余剰吐出風と、蓄熱槽1の放熱風
との双方、又は蓄熱槽1の放熱風のみが供給されるよう
になる。つまり、この蓄熱空調設備Aは、室内機2によ
る空調風が1階よりも2階に優先して供給されるように
なっている。 【0050】例えば、夏に放熱空調モードで冷房し、か
つ、1階と2階夫々の要求風量が同じである場合、夜間
の蓄熱モード運転によって蓄熱槽1が十分に冷熱が蓄熱
されているとき(午前中等)は、1階と2階とに冷房の
差は殆ど生じないが、午後や夕方等の、蓄熱槽1の冷熱
が足りなくなって十分な放熱作用が機能できなくなって
くると、1階には室内機2による冷風と蓄熱槽1の放熱
風との双方が供給されるに対して、2階には室内機2の
冷風のみが供給されることによって十分な冷房が維持で
きるのであり、この点で2階の冷房が優先されているの
である。 【0051】図18、図19、図20に示すように、本
蓄熱空調設備Aでは、蓄熱槽1に装備された一対の温度
センサS1,S2の検出情報に基づいて室内機2の作動
状態を変更設定する温度制御回路Fを備えている。即
ち、前述の第1及び第2温度センサS1,S2、インバ
ーター型に構成された室内機2、及びタイマー40を、
制御装置41に接続して温度制御回路Fを構成してあ
る。蓄熱槽1は、十分に蓄熱されているときには、両セ
ンサS1,S2は互いに同じ温度(例えば18℃)にな
っている。この温度制御回路Fでは、タイマー40によ
って、昼間時に行われる昼間制御状態と夜間時に行われ
る夜間制御状態とに分けて制御作動するように設定され
ている。 【0052】昼間制御状態では、第1温度センサS1の
みが使用されるものであり、第1温度センサS1の検出
温度が所定温度(18℃)以下であるときには室内機2
は停止状態が維持されている。そして、放熱によって蓄
熱槽1の冷熱が奪われていって、第1所定温度(18
℃)を越えると、室内機2が冷房作動し始め、第1所定
温度と検出温度との差が大きくなるに従って室内機2の
出力が大になるように制御装置41が機能するのであ
る。 【0053】つまり、夏の酷暑日等において、蓄熱槽1
が放冷して出口側の蓄熱カプセルCが潜熱温度を越える
迄になると、室内機2が微出力で冷房作動され始め、不
足分を補うようになる。そして、蓄熱槽1の不足分が次
第に大きくなると、即ち第1温度センサS1の検出温度
が次第に高くなると、室内機2の冷房出力が大きくなっ
て行き、全体として要求冷房能力を満たせるように制御
装置41によって制御されるのである。 【0054】そして、夜間になるとタイマー40によっ
て使用する温度センサが第1温度センサS1から第2温
度センサS2に切換わるとともに室内機2が作動して、
前述の蓄熱モードによって運転され、安い深夜電力料金
によって蓄熱槽1に冷熱を蓄熱するように制御される。
この場合には、最も遅く冷されることになる第2温度セ
ンサS2が第2所定温度(18℃)になるまで室内機2
が駆動され、第2所定温度に達したら、蓄熱槽1が限度
まで冷熱が蓄熱されたことであるから、室内機2が停止
されるように制御装置41が機能するのである。 【0055】〔別実施形態〕 《1》 前述の実施形態では、第1所定温度と第2所定
温度とは同じ温度(18℃)であったが、18℃と20
℃といった具合に互いに異なる温度に設定しても良い。 【0056】《2》 前述の実施形態では、蓄熱モード
であるか放熱モードであるかの判断手段として、タイマ
ー40を用いることで時間によって使い分ける間接的手
段としたが、各流路W1〜W4での風向を検出する手段
を設けて、実際の風の流れ方向を検出して蓄熱モードか
放熱モードかを判断する、という手段を採ることも可能
である。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention
Heat storage and heat storage
Heat storage tank with air supply and exhaust ports
It relates to thermal air conditioning equipment. [0002] A thermal storage air-conditioning system having an air-conditioning apparatus and a thermal storage tank
Conventionally, Japanese Patent Application Laid-Open No. 2001-199771
What is shown in the gazette is known. This is an air conditioner
Air conditioning (heating or cooling) of the room to be air-conditioned
Mode and heat storage mode for storing heat in the heat storage tank with the air conditioner
And the heat stored in the heat storage tank to air-condition the air-conditioning target
It is configured to be able to switch between the heat dissipation mode
In addition, a control method that uses these modes depending on the time zone
There were steps. The parenthesized code shown below
Indicates that of the aforementioned publication. That is, the supply / discharge duct (11A, 11B)
Via heat storage tank (2), air conditioner (10) and room (3)
Are connected in series, and between the heat storage tank and the air conditioner.
Bypass path (6) connecting the return duct with the path of
And connect the air outlet of the air conditioner to the air inlet of the heat storage tank.
Heat storage circulation path (14), and flow path switching valve (7),
1st switching valve (12) and 2nd switching valve (15)
Control equipment. In the air conditioning mode, the bypass passage (6) is opened.
Switch the flow path switching valve (7) to the first switching valve (1).
2) was opened and the second switching valve (15) was closed.
The air conditioner is obtained by operating the air conditioner in the state. Heat storage module
The flow path is switched to a position where the bypass path (6) is closed.
Switching the valve (7), closing the first switching valve (12), and
The air conditioner is operated for air conditioning with the second switching valve (15) opened.
It is obtained by doing. And the heat dissipation mode is bypass path
Switching the flow path switching valve (7) to a position where (6) is closed,
Opening the first switching valve (12) and the second switching valve (15)
The air conditioner as a mere blower.
Operation (only the fan 10 is rotated)
You. For example, the case of cooling will be described.
In the morning, when power consumption is relatively low, the air conditioner is
Operating in air-conditioning mode to cool the room directly
In the afternoon when it is big, cool with the cold stored in the thermal storage tank
It operates in a heat dissipation mode, and air-conditioning
A device that operates in a heat storage mode in which the heat storage tank is cooled
Set to switch the operation mode depending on the time zone.
Had been. This allows heat to be stored at midnight when electricity rates are low.
Air-conditioning costs by reducing
Avoid heat that causes power demand to concentrate in the summer afternoon
That is, peak cut can be performed, so power generation facilities
There is an advantage that it is possible to contribute to not having to increase the size. [0006] However, regarding the air conditioning object,
And a heat storage tank connected in series,
As described above, in addition to the basic route (11), the bypass route
(6) and a heat storage circuit (14) are required, and
Three sets of switching valves to switch the wind flowing through each of these paths
(7, 12, 15) is required, and
In terms of complexity and complicating their control operations
It was disadvantageous. Therefore, the structure and control devices were simplified.
Heat storage mode, heat dissipation mode, and heat storage mode
Air conditioning equipment must be installed on the air conditioning target so that each operation can be performed smoothly.
A parallel-type thermal storage air-conditioning system that connects the storage
Was devised. [0007] The parallel type thermal storage air conditioning equipment
The principle is as shown in FIG. That is,
The heat tank 1 and the air conditioner 2 are connected to the first path W1 and the second path W2.
Are connected in parallel with each other, and the first
The road W1 and the air conditioning target R are connected via the third route W3.
At the same time, the second path W2 on the return side of
The tuning target R is connected via the fourth route W4. And
A route at a branch point of the second route W2 from the third route W3
A switching mechanism 15 is provided. In the air conditioning mode, the path switching mechanism 15 is operated.
Thus, the air-conditioning side portion 3 of the air conditioner 2 side in the first route W1
6 and only the third path W3 is opened (the heat storage side portion).
37 is closed), and the air conditioner 2 is air-conditioned.
It is obtained by doing. The conditioned air coming out of the air conditioner 2 is
Side portion 36, third route W3, air conditioning target R, fourth route W4
A circulation path that returns to the air conditioner 2 through the air conditioner is formed. In the heat storage mode, the path switching mechanism 15 is operated.
Thus, the heat storage side portion 37 on the side of the heat storage tank 1 in the first path W1
And only the air conditioning side portion 36 is opened (third route W
3 is closed), and the air conditioner 2 is air-conditioned.
Obtained by: The conditioned air that has flowed out of the air conditioner 2
To the air conditioner 2 through the path W1, the heat storage tank 1, and the second path W2.
A return circulation path is formed. In the heat radiation mode, the path switching mechanism 15 is operated.
Thus, the heat storage side portion 37 on the side of the heat storage tank 1 in the first path W1
And only the third route W3 is opened (the air-conditioning side portion 3
6 is closed), and the ventilation fan provided in the third path W3
It is obtained by operating the fan 24. Blower fan 24
, The third route W3, the air conditioning target R, the fourth route
W4, the second path W2, the heat storage tank 1, and the path switching mechanism 15
Flows, the air-conditioning target R is emptied by the heat storage in the heat storage tank 1.
A regulated circulation path is formed. However, in this parallel type thermal storage air conditioning system,
It has been found that new problems arise. Sand
In FIG. 20, in the heat storage mode, the arrow a
In the heat dissipation mode, the arrow b
Depending on the operation mode, such as wind flowing in the direction of
Because the direction of the wind flowing through the heat storage tank 1 will be opposite
is there. Therefore, as shown in the aforementioned publication,
The configuration with a single temperature sensor has the following disadvantages.
Occurs. In the heat storage mode, the conditioned air is stored in the heat storage tank 1.
Is supplied from one end 1a (the first path W1 side) of the
There is a time difference so that the conditioned air arrives with a delay toward end 1b.
It becomes cold. Therefore, the entire heat storage tank is brought into a desired heat storage state.
Only one temperature sensor to detect
In this case, it is arranged near the other end 1b on the side of the air outlet.
It is desirable. On the other hand, in the heat dissipation mode, it becomes the wind entrance
The heat is radiated from the other end 1b side and before the wind exits.
Note that there is a time lag so that the heat is delayed with the end 1a
To determine whether the entire heat storage tank has reached the desired heat release state.
If only one temperature sensor is provided,
It is desirable to arrange it near the one end 1a on the air outlet side.
No. Accordingly, the temperature sensor is suitable for the heat storage mode.
Position, accurate detection operation is expected in the heat dissipation mode.
Can't wait and set at a position suitable for heat dissipation mode
That accurate detection cannot be expected in the heat storage mode.
Inconvenience, and there is room for further improvement.
It seems like there is. An object of the present invention is to solve the above-mentioned new problems.
The structure and control are simplified while eliminating
This is to realize a parallel type thermal storage air conditioning system. Means for Solving the Problems [Structure] The structure of claim 1
Indicates the contact between the air conditioner and the fluid in the thermal storage air conditioner.
A heat storage body that can freely store and release heat by heat exchange;
A heat storage tank having a pair of air supply and exhaust ports,
Connect the outlet to one of the air supply and discharge ports in the heat storage tank.
The first flow path, the air inlet of the air conditioner, and the other side of the heat storage tank
A second flow path communicating and connecting the air supply and exhaust ports, and a first flow path and air conditioning
A third flow path that connects and connects the object and the second flow path and the air-conditioning object
And a fourth flow path for communicating and connecting with the third flow path.
Generates air in the direction from the first flow path to the air-conditioning object.
Air supply means provided in the third flow path or the fourth flow path.
Temperature is detected at each of a pair of air supply and exhaust ports in the heat storage tank.
Means to supply air-conditioned air only
Air-conditioning mode, and air-conditioning
To the heat storage tank via
Heat is stored in the heat storage tank by returning to the air conditioner via the flow path
In the heat storage mode, the heat stored in the heat storage tank is transferred to the first flow path and the
Supply to the air-conditioning target through three flow paths and from the air-conditioning target
Exhaust air is returned to the air conditioner via the fourth flow path and the second flow path
And the heat dissipation mode that air-conditions the air conditioning target.
When a heat storage mode is provided with a path switching mechanism for selecting
A second temperature detecting means provided at the other side of the air supply / discharge port.
When the detected value of the air conditioner reaches the second predetermined temperature, the air conditioner is stopped.
At the end of one air supply / exhaust port side in the heat dissipation mode
The detected value of the first temperature detecting means reaches the first predetermined temperature.
Switch to air-conditioning mode or stop the blower
As described above, the air conditioner, the path switching mechanism, and the blowing means are linked.
Air-conditioning control means is provided. [Operation] According to the configuration of the first aspect, in detail
Will be described in the embodiment section, but the following effects are obtained.
be able to. In other words, the air conditioner
Communicates in parallel with the heat storage tank by using the first to fourth flow paths
Because it is connected, both the air conditioner and the heat storage tank
It is in a state where it can be connected to the air conditioner by itself.
Therefore, in the third flow path, the air flow is directed from the first flow path to the air-conditioning target.
Blowing means for generating air blowing in
Air blowing means with a simple structure and a uniform storage direction, and heat storage mode
Path disconnection for selectively switching between air conditioning and heat dissipation mode and air conditioning mode
It is only necessary to add a switching mechanism and the conventional series connection structure
The structure can be simplified as compared with the heat storage air conditioning equipment. Ma
In addition, the operation target only needs to be the path switching mechanism and the blowing means.
In the conventional one that opens and closes by combining three dampers
In comparison, the control structure can be simplified. First, in the heat storage mode, in the heat storage tank,
A state in which wind flows from one air supply / discharge port to the other air supply / discharge port
State, and heat is stored in the heat storage
When the heat storage body on the other side
Therefore, the heat storage body at the end of the other side
If the heat storage body (heat storage body) is stored at a predetermined temperature,
It is safe to assume that the entire heat tank has been stored at the specified temperature.
Will be. Therefore, in the heat storage mode, air blowing in the heat storage tank is performed.
It is located at the lower end, so that you will be slowed down
Value of the second temperature detecting means for detecting the temperature of the heat storage element
To stop the air conditioner when it reaches the second predetermined temperature
Therefore, at least a predetermined temperature (second
(Predetermined temperature). An example
For example, a second predetermined temperature of 18 ° C.
Then, when the second temperature detecting means detects and operates, the temperature is
Of the other side, which is the highest in the air distribution,
The heat body temperature is 18 ° C., and the heat storage body is, for example, a sensible heat storage material.
In this case, as you approach one of the air supply / exhaust ports from there,
As a result, the temperature of the heat storage body is reduced to a temperature state. Next, in the heat radiation mode, in the heat storage tank,
A state in which wind flows from the other air supply / discharge port to one air supply / discharge port
Is stored in the heat storage unit from the other side
Heat is extracted, that is, dissipated,
The heat storage body on the air supply / exhaust side of the air will be radiated last
From the heat storage body at one end of the air supply / discharge port
When the temperature of the heat storage body reaches a predetermined temperature, the entire heat storage tank dissipates heat.
Can be considered as having reached the predetermined temperature.
You. Therefore, in the heat dissipation mode, the heat transfer in the heat storage tank is performed.
It is located at the leeward end to dissipate heat the latest
Value of the first temperature detecting means for detecting the temperature of the heat storage element
When the temperature reaches the first predetermined temperature, the mode is switched to the air conditioning mode or
Is controlled so as to stop the air blowing means.
So that the body is at least at a predetermined temperature (first predetermined temperature)
The heat can be dissipated. For example, stored cold
If the first predetermined temperature for dissipating heat is 23 ° C.,
When the first temperature detecting means performs the detecting operation, the heat storage body
For example, in the case of sensible heat storage material, the temperature distribution is the lowest.
The temperature of the heat storage body at one end of the air supply / discharge port is 23 ° C.
And heat storage as it approaches the other air supply / exhaust port side from there.
The temperature of the body becomes a rising temperature state. In the air conditioning mode, wind flows to the heat storage tank.
Which one of the two temperature detection means to use
Does not need to be controlled. [Effect] As a result, the heat storage according to claim 1
In air conditioning equipment, the air conditioner and the heat storage tank
Based on the basic idea of connecting and connecting in parallel,
Heat storage mode, heat dissipation mode, empty while simplifying control
Each operation mode can be adjusted, and the entire heat storage tank can be operated.
Temperature can be set to the desired temperature state,
Can be provided as reasonable
Was. Embodiments of the present invention will be described below with reference to the drawings.
It will be described based on. 1 and 18 show the outline of the thermal storage air conditioning equipment.
A schematic is shown. 1 and 18 are substantially the same.
Yes, to make it easier to understand the wind flow structure,
18 is a block diagram of FIG. The heat storage air conditioner A is provided with air (an example of a fluid).
Heat storage that can freely store and release heat by heat exchange by contact
A large number of bodies C, and a pair of air supply / discharge ports 1a, 1b
Equipped with a heat storage tank 1, an air outlet 2a and an air inlet 2b.
Air conditioner (indoor unit) 2 and
The outlet 2a and the first air supply / discharge port of the heat storage tank 1 (one air supply / discharge port
One example) a first flow path W1 communicating with and connecting to 1a, and an air conditioner
2 and the second air supply / discharge port of the heat storage tank 1 (the other
An example of a supply / discharge port) a second flow path W2 communicating with and connecting to 1b;
A third connecting the first flow path W1 to the air-conditioning objects R and Ru.
The flow path W3 communicates with the second flow path W2 and the air-conditioning targets R and Ru.
A fourth flow path W4 to be connected is provided. The heat storage tank 2 is mainly made of cement, stone or the like.
Using sensible heat such as a plate material made of synthetic resin material
The heat storage element C is placed in the box 4 in front, rear, left, right and up and down.
It is a structure equipped with many by stacking several layers,
The space 6 on the side of the air outlet 5 and the space on the side of the air intake 7
It has a part 8. In addition, latent heat is used as the heat storage material C.
It may be a heat storage capsule in which a heat storage material is provided. Next
Next, the heat storage air conditioner A will be described in detail. FIGS. 1 to 3 and FIG. 8 show the heat storage air conditioning equipment A.
The upper part of the provided two-story house H is shown. 1 to 5
As shown in the figure, the heat storage air conditioning equipment A includes a heat storage tank 1 and an indoor unit.
(Example of air conditioner) 2, and these heat storage tank 1 and air conditioner
2 to enable setting of various operation modes
And a supply / discharge duct body 12 and the like. This heat storage sky
The control facility A has rooms r11 to r24 on the first and second floors.
A plurality of individual ducts D connected to each other are connected,
It is configured so that the conditioned air is sent to each room r11 to r24.
Have been. In the first room r21 on the second floor,
A general closet 4 with a depth of half a mat is formed on the outermost wall side.
Vertical along the wall in the closet 4
A heat storage tank 1 in a shape of is provided. The heat storage tank 1 has a closet 4
The tank cover 5 has a width of about half the depth.
At the lower end of the tank cover body 5, there are a plurality of individual floor
First floor connection to duct 7 (an example of third flow path W3)
A return port 9 for suctioning air is formed on the upper side.
(An example of the fourth flow path W4) is formed, and
The heat storage tank 1 is arranged. A tank cover placed in the space T above the ceiling on the second floor
The upper end of the body 5 and the air-conditioning cover body 11 containing the indoor unit 2
Means that the supply duct portion 12A (the first passage W1 is formed inside
) And the return duct portion 12B (the second flow path W2 is formed inside).
Through a short length supply / discharge duct body 12
The return duct 12B is opened and closed automatically.
Opening / closing damper 13 as an existing valve (an example of a path switching mechanism)
Is equipped. In addition, supply and discharge of the air conditioning cover 11
At the end opposite to the side where the duct body 12 is connected, there are multiple
For the second floor for the individual duct 14 (an example of the third flow path W3)
The connection part 15 is formed. Next, details of the structure of each part
explain. Inside the tank cover 5, one side of the heat storage tank 1 is located.
The lower end returns to the return port 9 and the upper end returns
A return path 16 that is vertically connected to the
The lower end is located on the other side of the heat tank 1 and the lower end thereof is the first-floor connection portion 8.
And the upper end thereof communicates with the supply duct portion 12A.
A downward supply path 17 is formed. Return port 9 is pushed
Open space in common space such as corridor 25 adjacent to box 4
A filter 18 is provided in the opening 9a.
ing. In addition, as shown in FIGS.
A drain pipe 19 of the heat tank 1 is provided. The air-conditioning cover 11 has a rectangular box shape.
The upper part of the inside and slightly on the side of the return duct portion 12B
The indoor unit 2 is installed at a position deviated to. Indoor unit 2
Is provided with an air inlet 2a on the bottom surface on the side of the return duct 12B.
And a discharge port 2b is provided on the side surface on the side of the supply duct portion 12A.
Following the blow discharge path st facing the discharge port 2b
And expands to the opposite side of the supply / discharge duct body 12 of the indoor unit 2.
The space that was made to function as the second-floor connection part 15
Is configured. Also, following the return duct 12B,
, The air intake path ss facing the air inlet 2a and the connection for the second floor
The part 15 is separated by a blocking wall 35. The opening / closing damper 13 is a return damper having a rectangular cross section.
Rectangle having a size that can fit on the inner surface of the
Around the fulcrum shaft 21 and the fulcrum shaft 21
It is provided outside the supply / discharge duct body 12 for driving rotation.
And a motor section 22. Flat valve body 2
0 is turned to the horizontal position (see FIG. 1),
The opening state in which the contact portion 12B is fully opened is obtained.
Is turned to the vertical position (see FIG. 11),
Thus, a shut-off state in which the connector 12B is fully closed is obtained. As shown in FIG. 2, FIG. 3, FIG. 6, and FIG.
At the base end of the individual ducts 7 and 14, an on-off valve 23 and an electric
The air blowing unit 10 including the fan 24 (one of the air blowing means)
Example) is equipped. That is, the blower unit 10 is
A throttle duct 26 connected to another duct 7, 14;
Frame 27, short length duct 28, and duct
Opening / closing door 2 swingable at fulcrum p to open / close 28 opening
9 and an opening / closing mechanism 30 provided on the substrate 31.
The on-off valve 23 is connected to the first floor connecting portion 8 (or the second floor).
Board 31 so that it is located within the first floor connection section 15).
State where it is addressed to the inner wall of the connecting part 8 (or the connecting part 15 for the second floor)
It is fixed with. The vertical length of the heat storage tank 1 is clearer than the horizontal length.
Definitely long and thin heat storage units C
A heat storage element group G composed of four rows of solid heat storage elements arranged on the left and right
It is formed by laminating a plurality of stages (five stages) on the body 6 and
The air (wind), which is the replacement fluid, is
Direction, that is, in a state of passing in the left-right direction. That is, the first and second supply in the heat storage tank 1
A temperature sensor (one of the temperature detecting means)
Example) is provided, and only the rooms r11 to r24 are provided by the air conditioner 2.
The air-conditioning mode for supplying air-conditioning air and the air
The conditioned air is supplied to the heat storage tank 1 via the supply duct portion 12A,
In addition, the exhaust air from the heat storage tank 1 is returned through the duct 12B.
Heat storage module that stores heat in the heat storage tank 1 by returning to the air conditioner 2
And the heat stored in the heat storage tank 1 by the supply duct 12A.
And the individual duct 7 for the first floor and the individual duct 14 for the second floor
Supply to each room r11 to r24, and each room r11
To r24 through the fourth flow path W4 and the return duct 1
Each room r11-r is returned to the air conditioner 2 via 2B.
To choose between heat dissipation mode and air conditioning for 24
Path switching mechanism 13 is provided. Thus, in the heat storage mode, the second supply
Detection value of the second temperature sensor S2 provided at the end of the outlet 1b
When the temperature reaches the second predetermined temperature, the air conditioner 2 is stopped,
In the mode, the first supply / drain port 1a side end
When the detection value of the temperature sensor S1 reaches a first predetermined temperature, air conditioning is performed.
Switch to mode or stop blower unit 10
As described above, the air conditioner 2 and the drive mechanism 42 of the opening / closing damper 13
The control device 41 (air conditioning) for linking with each blowing unit 10
Control means). As shown in FIG. 2, the air return section 9 has an empty space.
Disinfection means 3 for removing various bacteria in the air returning to the preparation device
Two are equipped. The disinfecting means 32 is provided at the suction port 9A.
Porous (alternatively, obliquely arranged,
Is a mesh) and a plate equipped with a photocatalyst such as TiO2
And a UV lamp 34 for the plate 33
It is composed of In other words, suction from the suction port 9A
The air that has escaped will always pass through the plate 33,
At that time, sterilization by the cooperation of the ultraviolet lamp 34 and the photocatalyst
It is affected. FIG. 8 is a schematic plan view of the second floor of the house H.
Have been. The thermal storage air conditioner A is located in the first room r21.
Inside the closet 4 on the corridor 25 side
The suction port 9A in the air return section 9 is
The filter 18 is arranged so as to open to the corridor 25.
It has been done. In other words, the inlet 9A is located on the corridor, floor,
Steps, stairwells, entrances, storage rooms, landings, attic storage
Living space (such as a room where you usually live,
A generic name for places, including toilets, bathrooms, washrooms, etc.)
It is provided in a portion other than R and Ru. As a result, each of the rooms r21 to r24
Air-conditioning exhaust air must be supplied to the filter 18 facing the corridor 25 on the second floor
Will collect, clean and filter dirt and dust
Maintenance such as replacement is a common space in houses
It can be done without worrying about each room from corridor 25
You. Next, various operations that can be realized by the thermal storage air conditioning equipment A
The mode will be described. Thermal storage mode: open and close as shown in FIG.
Open the damper 13 and, at the same time,
Stop (the on-off valve 23 closes and the electric fan 24 stops)
State (the flow paths to all individual ducts 7 and 14 are cut off)
In this state, the indoor unit 2 is cooled (or warmed).
(Chamber operation), the discharge air from the indoor unit 2 is supplied to the supply path 1
7, through the heat storage tank 1, and through the return path 16 to the indoor unit.
A circulating operating state returning to 2 is obtained. This makes the price
During the night when a cheap late-night charge occurs, the heat storage tank 1 is cooled (or heated).
Heat) can be stored. Air-conditioning mode: As shown in FIG.
Open the closed damper 13 and open any of the blower units 1
0 drives (open / close valve 23 opens, electric fan 24 drives)
The indoor unit 2 is operated for cooling (or for heating)
Moving), the discharge air from the indoor unit 2 is
Individual duct 14 on the 15th to second floor, or supply duct section 12
A and the first floor connecting part 8 from the supply path 17 and the first floor connecting part 8
It is supplied to another duct 7. This mode is for each room
The total required air volume per unit time and the unit time
Also occurs when the discharge air volume matches
(Because it will not be blown to the heat storage tank 1)
The air sucked from the return port 9 returns to the indoor unit 2.
The air is supplied through the return passage 16 and the return duct portion 12B. Heat dissipation mode: As shown in FIG.
Closed damper 13 closed and indoor unit 2 stopped
In a mode in which one of the blower units 10 is driven
Yes, air sucked from the return port 9 passes through the heat storage tank 1
After being cooled (or warmed), it passes through the supply path 17 and is on the first floor
Is blown from the connecting section 8 to the individual duct 7 for the first floor,
Or through the supply duct portion 12A and the second-floor connection portion 15,
It is sent to the individual duct 14 on the floor. in this case
, The driving source as the thermal storage air conditioning equipment A is a blower unit
10 will be covered. Thermal storage air conditioning mode: As shown in FIG.
In addition, in the air-conditioning mode, the individual ducts 7,
Than the sum of the required air volume per unit time by 14
When the discharge air volume per unit time of the indoor unit 2 is large
This is a mode in which the air discharged from the indoor unit 2
It is supplied to separate ducts 7 and 14 and
The surplus wind drawn passes through the heat storage tank 1 and passes through the return path 16 and the like.
And return to the intake port 2a.
Be in a state. At this time, the amount going to the individual ducts 7 and 14
Air is sucked through the return port 9. Heat radiation air conditioning mode: As shown in FIG.
In addition, in the air-conditioning mode, the individual ducts 7,
The total required air volume per unit time by
Occurs when the discharge air volume per unit time of the machine 2 is exceeded
In this mode, all of the air discharged from the indoor unit 2 is in individual ducts.
7 and 14, and the shortage is returned to 9
From the heat storage tank 1 through the return path 16
After being bunched (or heated), it is supplied to the individual ducts 7,14.
Will be able to In this heat radiation air conditioning mode, the indoor unit 2
In the structure where the heat storage tank 1 exists between the first floor connecting portion 8 and
According to the relationship between the required air volume of each floor and the air volume of the indoor unit 2
Therefore, various air blowing states appear. That is, the required air volume on the first floor
f1, the required airflow of the second floor is f2, and the discharge airflow of the indoor unit 2 is
F, when the amount of radiated air supplied from the heat storage tank 1 is f3,
It is assumed that the precondition regarding the air volume is f1 + f2 = F + f3 (b) f1 + f2 <2F (b) f3> 0 (f1 + f2> F) (c). I. When F> f1 and F> f2
Is that the air discharged from the indoor unit 2 flows to the connection portions 8 and 15
In addition, the supply air volume f3 from the heat storage tank 1 is all the connection parts for the first floor.
8 (the state shown in FIG. 13). In this case, indoor unit 2
There is wind flowing from the first floor to the first floor connection part 8, so
The wind does not flow from the heat storage tank 1 to the connection unit 15 for the second floor.
No. Therefore, the air-conditioning by the indoor unit 2 is provided at the second-floor connection portion 15.
Only wind is supplied. Ii. When F ≦ f1, F> f2
Is the same as in the case of i, except that the indoor unit 2
The discharge air volume f2 is supplied to the connection portion 15, and the remaining discharge air volume F
-F2 and the amount of heat radiation f3 of the heat storage tank 1
(See FIG. 14). Iii. When F> f1 and F = f2
, The discharge air volume F of the indoor unit 2 is all
Flow, only the radiated air volume f3 is supplied to the first-floor connection section 8.
(See FIG. 15). Iv. When F> f1 and F <f2
Are all of the discharge air volume F of the indoor unit 2 and the heat storage tank 1 to f2
The amount of radiated air corresponding to −F is supplied to the second-floor connection portion 15,
Only the air from the heat storage tank 1 is supplied to the first-floor connection section 8.
(See FIG. 16). As described above, both the first floor and the second floor are air-conditioned.
In this case, the discharge air from indoor unit 2 is always supplied to the second floor.
Then, only when the air volume is insufficient,
While the wind is supplied, the first floor supplies wind to the second floor
Exhaust air from the indoor unit 2 from which heat is removed and heat radiation from the heat storage tank 1
So that only the radiated air from the heat storage tank 1 is supplied.
become. That is, the heat storage air conditioning equipment A is
Air is supplied preferentially to the second floor over the first floor
Has become. For example, in summer, cooling is performed in the air-conditioning mode.
If the required airflow on the first and second floors is the same,
Heat storage mode operation of the heat storage tank 1 allows sufficient heat storage
When it is done (morning etc.), the first floor and the second floor
There is almost no difference, but the heat of the heat storage tank 1 in the afternoon or evening
Is not enough to provide sufficient heat dissipation
When it comes, on the first floor, cool air by indoor unit 2 and heat radiation of heat storage tank 1
While both wind and wind are supplied, the indoor unit 2
Sufficient cooling can be maintained by supplying only cool air.
The second floor cooling is given priority in this regard
It is. As shown in FIGS. 18, 19 and 20, the book
In the thermal storage air-conditioning facility A, a pair of temperatures stored in the thermal storage tank 1
Operation of the indoor unit 2 based on the detection information of the sensors S1 and S2
A temperature control circuit F for changing and setting the state is provided. Immediately
The first and second temperature sensors S1, S2,
The indoor unit 2 and the timer 40 configured in a
A temperature control circuit F is configured by connecting to the control device 41.
You. When the heat storage tank 1 is sufficiently stored,
The sensors S1 and S2 are at the same temperature (for example, 18 ° C.).
ing. In this temperature control circuit F, the timer 40
The daytime control state during the daytime and the nighttime control state during the night.
Is set to operate separately from the night control state.
ing. In the daytime control state, the first temperature sensor S1
Only the first temperature sensor S1 is used.
When the temperature is equal to or lower than the predetermined temperature (18 ° C.), the indoor unit 2
Is stopped. And, by heat dissipation
The heat of the heat tank 1 is deprived and the first predetermined temperature (18
° C), the indoor unit 2 starts cooling operation, and the first predetermined
As the difference between the temperature and the detected temperature increases, the indoor unit 2
The control device 41 functions so that the output becomes large.
You. In other words, on a very hot summer day or the like, the heat storage tank 1
Is allowed to cool and the heat storage capsule C on the outlet side exceeds the latent heat temperature
By this time, the indoor unit 2 starts cooling operation with slight output,
I will compensate for my feet. And the shortage of heat storage tank 1 is next
Secondly, that is, the detected temperature of the first temperature sensor S1
Gradually increases, the cooling output of the indoor unit 2 increases.
Control to meet the required cooling capacity as a whole
It is controlled by the device 41. Then, at night, the timer 40
The temperature sensor to be used is the second temperature from the first temperature sensor S1.
Is switched to the degree sensor S2 and the indoor unit 2 is activated.
Operated by the above-mentioned thermal storage mode, and cheap midnight electricity rates
Is controlled to store cold heat in the heat storage tank 1.
In this case, the second temperature cell that will be cooled most slowly
Until the temperature of the sensor S2 reaches the second predetermined temperature (18 ° C.).
Is driven and when the second predetermined temperature is reached, the heat storage tank 1
The indoor unit 2 is stopped because the cold heat has been stored until
The control device 41 functions in such a manner as to be performed. [Another Embodiment] << 1 >> In the above embodiment, the first predetermined temperature and the second predetermined temperature
The temperature was the same (18 ° C), but 18 ° C and 20 ° C.
Temperatures different from each other may be set, such as ° C. << 2 >> In the above embodiment, the heat storage mode
Timer or as a means of determining whether
Indirect hand to use depending on time by using -40
Means for detecting wind direction in each flow path W1 to W4
To detect the actual flow direction of the wind
It is also possible to take measures to determine whether it is in the heat dissipation mode
It is.

【図面の簡単な説明】 【図1】蓄熱空調設備を示す住宅の一部切欠き側面図 【図2】図1に示す蓄熱空調設備の一部切欠き正面図 【図3】図1に示す蓄熱空調設備の一部切欠き平面図 【図4】蓄熱槽部分の横断面図 【図5】戻し口部分の横断面図 【図6】1階用接続部を示す横断面図 【図7】送風ユニットの構造を示す側面図 【図8】2階の間取りを示す平面図 【図9】蓄熱モードを示す蓄熱空調設備の模式図 【図10】空調モードを示す蓄熱空調設備の模式図 【図11】放熱モードを示す蓄熱空調設備の模式図 【図12】蓄熱空調モードを示す蓄熱空調設備の模式図 【図13】放熱空調モードを示す蓄熱空調設備の模式図 【図14】放熱空調モードにおける第1風量関係状態を
示す模式図 【図15】放熱空調モードにおける第2風量関係状態を
示す模式図 【図16】放熱空調モードにおける第3風量関係状態を
示す模式図 【図17】空調装置の吐出路に可変分配弁を設けた蓄熱
空調設備の模式図 【図18】蓄熱空調設備の構造を示す系統図 【図19】図18に示す蓄熱空調設備の制御ブロック図 【図20】蓄熱空調設備の基本概念を示す系統図 【符号の説明】 1 蓄熱槽 1a 一方の送風給排口 1b 他方の送風給排口 2 空調装置 2a 送風出口 2b 送風入口 10 送風手段 13 経路切換機構 R 空調対象 S1 第1温度検出手段 S2 第2温度検出手段 W1〜W4 第1〜第4流路
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a partially cutaway side view of a house showing a thermal storage air conditioner. FIG. 2 is a partially cutaway front view of a thermal storage air conditioner shown in FIG. 1. FIG. FIG. 4 is a cross-sectional view of a heat storage tank part. FIG. 5 is a cross-sectional view of a return port part. FIG. 6 is a cross-sectional view showing a first-floor connection part. FIG. 8 is a plan view showing the floor plan of the second floor. FIG. 9 is a schematic diagram of a heat storage air conditioner showing a heat storage mode. FIG. 10 is a schematic diagram of a heat storage air conditioner showing a heat storage mode. 11 is a schematic diagram of a heat storage air conditioner showing a heat release mode. FIG. 12 is a schematic diagram of a heat storage air conditioner showing a heat storage air conditioning mode. FIG. 13 is a schematic diagram of a heat storage air conditioner showing a heat release air conditioning mode. FIG. 15 is a schematic diagram showing a first air flow relation state. FIG. 15 is a second air flow relation state in a heat radiation air conditioning mode. FIG. 16 is a schematic diagram showing a third air flow relation state in a heat radiation air conditioning mode. FIG. 17 is a schematic diagram of a thermal storage air conditioner provided with a variable distribution valve in a discharge path of an air conditioner. FIG. 19 is a control block diagram of the heat storage air-conditioning equipment shown in FIG. 18. FIG. 20 is a system diagram showing the basic concept of the heat storage air-conditioning equipment. Port 1b Air supply / discharge port 2 on the other side Air conditioner 2a Air outlet 2b Air inlet 10 Air blowing means 13 Path switching mechanism R Air-conditioning target S1 First temperature detecting means S2 Second temperature detecting means W1 to W4 First to fourth flow paths

Claims (1)

【特許請求の範囲】 【請求項1】 流体との接触による熱交換によって蓄熱
及び放熱が自在な蓄熱体及び一対の送風給排口を有した
蓄熱槽と、空調装置と、前記空調装置の送風出口と前記
蓄熱槽における一方の送風給排口とを連通接続する第1
流路と、前記空調装置の送風入口と前記蓄熱槽の他方の
送風給排口とを連通接続する第2流路と、前記第1流路
と空調対象とを連通接続する第3流路と、前記第2流路
と前記空調対象とを連通接続する第4流路とを設け、 前記第3流路においては前記第1流路から前記空調対象
に向かう方向の送風を生じさせる送風手段を、前記第3
流路又は前記第4流路に設けるとともに、前記蓄熱槽に
おける前記一対の送風給排口の夫々に温度検出手段を設
け、 前記空調装置で前記空調対象にのみ空調風を供給する空
調モードと、前記空調装置から出た空調風を前記第1流
路を介して前記蓄熱槽に供給し、かつ、前記蓄熱槽から
の排風を前記第2流路を介して前記空調装置に戻すこと
で前記蓄熱槽に蓄熱させる蓄熱モードと、前記蓄熱槽に
貯えられた熱を前記第1流路及び前記第3流路を介して
前記空調対象に供給し、かつ、前記空調対象からの排風
を前記第4流路及び前記第2流路を介して前記空調装置
に戻すことで前記空調対象を空調する放熱モードと、を
択一的に選択するための経路切換機構を設け、 前記蓄熱モードのときに、前記他方の送風給排口側端配
備された第2温度検出手段の検出値が第2所定温度に達
すると前記空調装置を停止させ、前記放熱モードのとき
に、前記一方の送風給排口側端に配備された第1温度検
出手段の検出値が第1所定温度に達すると前記空調モー
ドに切換えるか又は前記送風手段を停止させるように、
前記空調装置と前記経路切換機構と前記送風手段とを連
係させる空調制御手段を設けてある蓄熱空調設備。
Claims: 1. A heat storage tank having a heat storage body capable of storing and releasing heat by heat exchange by contact with a fluid, a heat storage tank having a pair of air supply / discharge ports, an air conditioner, and air blowing of the air conditioner. A first connecting the outlet to one of the air supply / discharge ports in the heat storage tank;
A flow path, a second flow path that connects the air inlet of the air conditioner and the other air supply / discharge port of the heat storage tank, and a third flow path that connects the first flow path and the object to be air-conditioned. A fourth flow path that connects and connects the second flow path and the air-conditioning target; and a blower that generates air in a direction from the first flow path toward the air-conditioning target in the third flow path. , The third
An air-conditioning mode in which a temperature detecting unit is provided in each of the pair of air supply / exhaust ports in the heat storage tank, and air-conditioning air is supplied only to the air-conditioning target by the air-conditioning device; By supplying the conditioned air from the air conditioner to the heat storage tank through the first flow path, and returning the exhaust air from the heat storage tank to the air conditioner through the second flow path, A heat storage mode in which heat is stored in a heat storage tank, and heat stored in the heat storage tank is supplied to the object to be air-conditioned through the first flow path and the third flow path, and exhaust air from the air-conditioning object is discharged. A path switching mechanism for selectively selecting a heat release mode for air-conditioning the air-conditioning object by returning to the air conditioner through the fourth flow path and the second flow path; A second temperature sensor provided at the other side of the air supply / discharge port. When the detection value of the means reaches a second predetermined temperature, the air conditioner is stopped, and in the heat release mode, the detection value of the first temperature detection means provided at the one end of the one air supply / discharge port is equal to the first value. To switch to the air-conditioning mode when the predetermined temperature is reached or to stop the blowing means,
A heat storage air conditioner provided with air conditioning control means for linking the air conditioner, the path switching mechanism, and the blowing means.
JP2002144785A 2002-05-20 2002-05-20 Thermal storage air conditioning equipment Expired - Fee Related JP3969479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002144785A JP3969479B2 (en) 2002-05-20 2002-05-20 Thermal storage air conditioning equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002144785A JP3969479B2 (en) 2002-05-20 2002-05-20 Thermal storage air conditioning equipment

Publications (2)

Publication Number Publication Date
JP2003336885A true JP2003336885A (en) 2003-11-28
JP3969479B2 JP3969479B2 (en) 2007-09-05

Family

ID=29704362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002144785A Expired - Fee Related JP3969479B2 (en) 2002-05-20 2002-05-20 Thermal storage air conditioning equipment

Country Status (1)

Country Link
JP (1) JP3969479B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103292391A (en) * 2013-06-07 2013-09-11 昆山市远视商用空调工程有限公司 Air-conditioner energy storage device
CN108990391A (en) * 2018-09-05 2018-12-11 郑州云海信息技术有限公司 A kind of container data center modularization indirect evaporating-cooling system and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103134128B (en) * 2013-02-26 2015-05-20 秦卫民 Machine room equipment radiating device for directly radiating to outside of machine room

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103292391A (en) * 2013-06-07 2013-09-11 昆山市远视商用空调工程有限公司 Air-conditioner energy storage device
CN108990391A (en) * 2018-09-05 2018-12-11 郑州云海信息技术有限公司 A kind of container data center modularization indirect evaporating-cooling system and method
CN108990391B (en) * 2018-09-05 2023-08-18 郑州云海信息技术有限公司 Modularized indirect evaporative cooling system and method for container data center

Also Published As

Publication number Publication date
JP3969479B2 (en) 2007-09-05

Similar Documents

Publication Publication Date Title
KR20070054230A (en) Ventilator and building
WO2006035825A1 (en) Ventilator and building
CN104913413A (en) Integrated energy-saving building heating/cooling system by efficient air circulation technology
JP2007192505A (en) Air conditioning system
JP4524348B1 (en) Energy saving ventilation system
JP2003336885A (en) Heat storage air conditioning equipment
KR101162973B1 (en) ERV with Dehumidifier
JP4295541B2 (en) Ventilation system
JPH0579707A (en) Solar system house and handling box used for it
JP3959181B2 (en) Heat exchange ventilation system
KR20180107494A (en) Integrated generation Ventilation equipment
JP6412378B2 (en) Ventilation air conditioning system
JP2006220325A (en) Air conditioning structure of building
JP3959182B2 (en) Heat exchange ventilation system
JPH05340599A (en) Air conditioner for residence
JP6539062B2 (en) Chamber box
JP7385309B2 (en) air conditioning ventilation system
JP7206095B2 (en) Air conditioning maintenance structure and air conditioning system
JP2626933B2 (en) Solar system house handling box
JP2003214663A (en) Regenerative air-conditioning apparatus
JP7393884B2 (en) air conditioning system
JPH0658572A (en) Cooling, heating and ventilating system in housing
JP2005163369A (en) Ventilation device for dwelling house
JPH062883A (en) Duct for air conditioner for house
JP2003185185A (en) Heat storage type air conditioning apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070510

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070529

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

R255 Notification of exclusion from application

Free format text: JAPANESE INTERMEDIATE CODE: R2525

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees