JP2003336534A - Fuel injection control device for internal combustion engine - Google Patents
Fuel injection control device for internal combustion engineInfo
- Publication number
- JP2003336534A JP2003336534A JP2002143762A JP2002143762A JP2003336534A JP 2003336534 A JP2003336534 A JP 2003336534A JP 2002143762 A JP2002143762 A JP 2002143762A JP 2002143762 A JP2002143762 A JP 2002143762A JP 2003336534 A JP2003336534 A JP 2003336534A
- Authority
- JP
- Japan
- Prior art keywords
- fuel
- fuel injection
- pressure
- fuel pressure
- cycle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Fuel-Injection Apparatus (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、内燃機関(以下、
エンジンという)の燃料噴射制御装置に関するものであ
る。TECHNICAL FIELD The present invention relates to an internal combustion engine (hereinafter,
It is referred to as an engine) fuel injection control device.
【0002】[0002]
【関連する背景技術】例えば筒内噴射型ガソリンエンジ
ンでは、圧縮行程中の筒内に燃料を噴射するためにかな
り高い燃圧を必要とし、この燃圧を確保するためにプラ
ンジャ型等の高圧ポンプが採用されている。この種の高
圧ポンプは燃圧脈動を生じることから、燃料噴射量に制
御誤差が生じる要因となり、その対策として、燃圧に基
づいて燃料噴射期間を補正して、上記燃圧脈動の影響を
相殺する処理が実施されている。2. Related Background Art For example, in a cylinder injection type gasoline engine, a considerably high fuel pressure is required to inject fuel into the cylinder during the compression stroke, and a plunger type or other high pressure pump is used to secure this fuel pressure. Has been done. This type of high-pressure pump causes fuel pressure pulsation, which causes a control error in the fuel injection amount.As a countermeasure against this, there is a process of correcting the fuel injection period based on the fuel pressure to cancel the influence of the fuel pressure pulsation. It has been implemented.
【0003】上記燃料噴射期間の補正処理により燃料噴
射量の制御誤差を抑制するには種々の手法があり、例え
ば実開平6−58231号公報には、コモンレール式デ
ィーゼルエンジンのレール圧を目標値にフィードバック
制御する際に、レール圧の平均値を用いる技術が記載さ
れているが、この手法を補正処理に応用することができ
る。つまり、図5に示すように、各気筒の燃料噴射と同
期するSGT信号の立上り周期T毎に高圧ポンプの燃圧
Pを平均化し、矢印で示すように、燃料噴射の直前(1
噴射周期前)の平均値に基づいて燃料噴射期間を補正す
ることが考えられる。There are various methods for suppressing the control error of the fuel injection amount by the correction process of the fuel injection period. For example, Japanese Utility Model Laid-Open No. 6-58231 discloses a rail pressure of a common rail type diesel engine as a target value. Although the technique of using the average value of the rail pressure when performing the feedback control is described, this technique can be applied to the correction process. That is, as shown in FIG. 5, the fuel pressure P of the high-pressure pump is averaged every rising cycle T of the SGT signal synchronized with the fuel injection of each cylinder, and as shown by the arrow, immediately before the fuel injection (1
It is possible to correct the fuel injection period based on the average value of (before the injection cycle).
【0004】[0004]
【発明が解決しようとする課題】図5の補正処理は、1
噴射周期前と同様の燃圧脈動が今回の噴射周期で再現さ
れることが前提である。例えばカム山によりプランジャ
を作動させて燃料を加圧するプランジャ型ポンプの場合
は、カム山の数が気筒数と対応していれば、各気筒の燃
料噴射毎に同様の燃圧脈動が再現されることから、燃料
噴射期間の補正に関して大きな問題が生じることはな
い。しかしながら、高圧ポンプには、燃料スピルのため
の時間的な余裕を確保するために、カム山の数を気筒数
の半分に設定したものもあり、この種の高圧ポンプで
は、各燃料噴射で同様の燃圧脈動が再現されないことか
ら、以下に述べる問題が生じる。The correction process of FIG.
It is premised that the same fuel pressure pulsation as before the injection cycle is reproduced in this injection cycle. For example, in the case of a plunger type pump that pressurizes fuel by actuating a plunger by means of a cam lobe, if the number of cam lobes corresponds to the number of cylinders, a similar fuel pressure pulsation is reproduced for each fuel injection of each cylinder. Therefore, no significant problem occurs in correcting the fuel injection period. However, some high-pressure pumps have the number of cam lobes set to half the number of cylinders in order to secure a time margin for fuel spill. Since the fuel pressure pulsation of is not reproduced, the following problems occur.
【0005】図6は高圧ポンプのカム山の数が気筒数の
半分に設定された従来技術の燃料噴射期間の補正状況を
示すタイムチャートである。図に示すように、SGT信
号の立上り周期T毎に高圧ポンプの燃圧Pが平均化され
る一方、上記図5と同様に、1噴射周期前の平均値に基
づいて燃料噴射期間が補正されている。一方、SGT信
号の周期に対して高圧ポンプの燃圧Pは倍の周期で脈動
している。詳述すると、燃圧Pはカム山による加圧に伴
って上昇して燃料スピルに応じた最大値に到達し(図中
のポイントa−b)、初回の燃料噴射により急減し(図
中のポイントb−c)、その後に一定値を維持し(図中
のポイントc−d)、次回の燃料噴射により更に急減し
(図中のポイントd−e)、以上のサイクルを繰り返
す。FIG. 6 is a time chart showing the correction situation of the fuel injection period of the prior art in which the number of cam peaks of the high pressure pump is set to half the number of cylinders. As shown in the figure, while the fuel pressure P of the high-pressure pump is averaged at each rising cycle T of the SGT signal, the fuel injection period is corrected based on the average value one injection cycle before, as in the case of FIG. There is. On the other hand, the fuel pressure P of the high-pressure pump pulsates in a cycle twice the cycle of the SGT signal. More specifically, the fuel pressure P increases with the pressurization by the cam ridges, reaches the maximum value according to the fuel spill (point ab in the figure), and sharply decreases by the first fuel injection (point in the figure). b-c), after that, a constant value is maintained (points cd in the figure), the fuel is further rapidly reduced by the next fuel injection (points d-e in the figure), and the above cycle is repeated.
【0006】よって、脈動周期前半では比較的高い平均
値が算出されるものの、この平均値は、その後の比較的
低い燃圧Pで実施される燃料噴射の補正に適用され、脈
動周期後半では比較的低い平均値が算出されるものの、
この平均値は、その後の比較的高い燃圧Pで実施される
燃料噴射の補正に適用されることになる。結果として何
れの場合も不適切な燃圧Pに基づいて燃料噴射期間が補
正されてしまい、燃料噴射量が適正量とならず、排ガス
特性、燃費、ドライバビリティ等を悪化させる要因とな
る問題があった。Therefore, although a relatively high average value is calculated in the first half of the pulsation cycle, this average value is applied to the fuel injection correction performed at a relatively low fuel pressure P thereafter, and relatively in the latter half of the pulsation cycle. Although a low average value is calculated,
This average value will be applied to the subsequent correction of the fuel injection performed at the relatively high fuel pressure P. As a result, in any case, the fuel injection period is corrected based on the inappropriate fuel pressure P, the fuel injection amount is not an appropriate amount, and there is a problem that exhaust gas characteristics, fuel efficiency, drivability, etc. are deteriorated. It was
【0007】本発明の目的は、高圧ポンプの燃圧脈動に
関係なく、常に適切な燃圧に基づく燃料噴射期間の補正
を実現し、もって、不適切な燃料噴射制御による不具合
の発生を未然に防止することができる内燃機関の燃料噴
射制御装置を提供することにある。An object of the present invention is to always realize correction of a fuel injection period based on an appropriate fuel pressure regardless of fuel pressure pulsation of a high-pressure pump, and thus prevent occurrence of a problem due to inappropriate fuel injection control. An object of the present invention is to provide a fuel injection control device for an internal combustion engine that can perform the operation.
【0008】[0008]
【課題を解決するための手段】上記目的を達成するた
め、請求項1の発明は、内燃機関の回転に同期して高圧
ポンプにより燃料を加圧して各気筒の燃料噴射弁に供給
し、制御手段により各燃料噴射弁を開閉駆動して対応す
る気筒の筒内に燃料を噴射すると共に、燃料噴射弁の燃
料噴射期間を高圧ポンプの燃圧に基づいて補正手段によ
り補正する内燃機関の燃料噴射制御装置において、高圧
ポンプは、各気筒の燃料噴射弁の噴射周期に対して倍の
周期で燃料を加圧するものであり、補正手段は、燃料噴
射弁の噴射周期毎に加圧燃料の燃圧の平均値を算出する
と共に、2噴射周期前に算出した燃圧の平均値に基づい
て燃料噴射期間を補正するものである。In order to achieve the above object, the invention of claim 1 pressurizes fuel by a high-pressure pump in synchronization with the rotation of an internal combustion engine and supplies the fuel to a fuel injection valve of each cylinder for control. Fuel injection control of an internal combustion engine, in which each fuel injection valve is opened and closed by means to inject fuel into the cylinder of the corresponding cylinder, and the fuel injection period of the fuel injection valve is corrected by the correction means based on the fuel pressure of the high-pressure pump. In the apparatus, the high-pressure pump pressurizes the fuel at a cycle that is twice as long as the injection cycle of the fuel injection valve of each cylinder, and the correction means averages the fuel pressure of the pressurized fuel for each injection cycle of the fuel injection valve. The value is calculated, and the fuel injection period is corrected based on the average value of the fuel pressure calculated two injection cycles before.
【0009】例えば、内燃機関の回転に同期してカムに
よりプランジャを作動させて燃料を加圧するプランジャ
式高圧ポンプにおいて、カム山の数が気筒数の半分に設
定されている場合等には、燃料噴射周期の倍の周期で燃
料が加圧され、それに同期した燃圧脈動が発生する。こ
のため、脈動周期前半の燃圧脈動は、2噴射周期後の同
じく脈動周期前半で再現され、脈動周期後半の燃圧脈動
は、2噴射周期後の同じく脈動周期後半で再現されるこ
とになる。For example, in a plunger type high pressure pump in which a plunger is actuated by a cam to pressurize fuel in synchronism with the rotation of an internal combustion engine, if the number of cam lobes is set to half the number of cylinders, The fuel is pressurized in a cycle that is twice the injection cycle, and fuel pressure pulsation that is in synchronization with it is generated. Therefore, the fuel pressure pulsation in the first half of the pulsation cycle is reproduced in the same first half of the pulsation cycle after two injection cycles, and the fuel pressure pulsation in the second half of the pulsation cycle is reproduced in the same second half of the pulsation cycle after two injection cycles.
【0010】よって、2噴射周期前に算出した燃圧の平
均値に基づいて補正手段により燃料噴射期間が補正され
ると、脈動周期前半の燃料噴射期間の補正に対しては、
同じく2噴射周期前の脈動周期前半の燃圧の平均値が適
用され、脈動周期後半の燃料噴射期間の補正に対して
は、同じく2噴射周期前の脈動周期後半の燃圧の平均値
が適用され、結果として高圧ポンプの燃圧脈動に関係な
く、常に適切な燃圧の平均値により燃料噴射期間が補正
されて、燃料噴射量を適正量とすることができる。Therefore, when the fuel injection period is corrected by the correction means based on the average value of the fuel pressure calculated two injection cycles before, the correction of the fuel injection period in the first half of the pulsation cycle is as follows.
Similarly, the average value of the fuel pressure in the first half of the pulsation cycle, which is two injection cycles before, is applied, and the average value of the fuel pressure in the second half of the pulsation cycle, which is also two injection cycles before, is applied to the correction of the fuel injection period in the second half of the pulsation cycle. As a result, regardless of the fuel pressure pulsation of the high-pressure pump, the fuel injection period is always corrected by the appropriate average value of the fuel pressure, and the fuel injection amount can be made an appropriate amount.
【0011】請求項1の発明は好適には、上記高圧ポン
プが、内燃機関の吸気側又は排気側のカムシャフトと共
に回転駆動されるものであり、該カムシャフトのクラン
クシャフトに対する位相がバルブタイミング可変機構に
より変更可能な内燃機関に適用することが望ましい。こ
のように構成された内燃機関では、バルブタイミング可
変機構によりクランクシャフトに対するカムシャフトの
位相を調整して、吸気側又は排気側のバルブタイミング
を制御しているが、このとき、カムシャフトと共に高圧
ポンプの位相も変更されるため、燃料噴射に対する燃圧
脈動の位置関係がずれることになる。つまり、バルブタ
イミングの制御状況に応じて燃圧の平均値が変化するた
め、適切な燃圧に基づく燃料噴射期間の補正が一層困難
になるが、このような場合でも、脈動周期が2噴射周期
後に再現されることに変わりないため、2噴射周期前の
燃圧の平均値に基づいて適切な燃料噴射期間の補正が可
能となり、燃料噴射量を適正量とすることができる。According to a first aspect of the present invention, preferably, the high-pressure pump is rotationally driven together with a camshaft on an intake side or an exhaust side of an internal combustion engine, and a phase of the camshaft with respect to a crankshaft is variable in valve timing. It is desirable to apply to an internal combustion engine that can be changed by a mechanism. In the internal combustion engine configured in this manner, the valve timing variable mechanism adjusts the phase of the camshaft with respect to the crankshaft to control the valve timing on the intake side or the exhaust side. Since the phase of is also changed, the positional relationship of fuel pressure pulsation with respect to fuel injection is deviated. In other words, the average value of the fuel pressure changes according to the control status of the valve timing, so it becomes more difficult to correct the fuel injection period based on the appropriate fuel pressure, but even in such a case, the pulsation cycle is reproduced after two injection cycles. Since it is not changed, it becomes possible to appropriately correct the fuel injection period based on the average value of the fuel pressure two injection cycles before, and the fuel injection amount can be made an appropriate amount.
【0012】請求項2の発明は、請求項1において、高
圧ポンプが、内燃機関の運転状態から設定された目標燃
圧に基づいて燃圧を制御され、補正手段が、高圧ポンプ
の燃圧と目標燃圧との差が所定値以上のときに、1噴射
周期前に算出した燃圧の平均値に基づいて燃料噴射期間
を補正するものである。高圧ポンプの燃圧と目標燃圧と
の差が所定値以上のときには、目標燃圧に対して燃圧が
追従途中の過渡状態と見なせる。このときの燃圧は脈動
周期の間に大きく変化し、その変化量は、脈動周期前半
と脈動周期後半との燃圧の平均値の格差を越える。よっ
て、この場合は寧ろ直前の1噴射周期前に算出した燃圧
の平均値の方が現在の燃圧に則していることになり、1
噴射周期前の燃圧の平均値を燃料噴射期間の補正に適用
することで、過渡状態での燃料噴射量の制御誤差が未然
に防止される。According to a second aspect of the present invention, in the first aspect, the high pressure pump controls the fuel pressure based on the target fuel pressure set from the operating state of the internal combustion engine, and the correction means sets the fuel pressure of the high pressure pump and the target fuel pressure. When the difference is greater than or equal to a predetermined value, the fuel injection period is corrected based on the average value of the fuel pressure calculated one injection cycle before. When the difference between the fuel pressure of the high pressure pump and the target fuel pressure is greater than or equal to a predetermined value, it can be considered that the fuel pressure is in a transitional state in which the fuel pressure is following the target fuel pressure. The fuel pressure at this time largely changes during the pulsation cycle, and the amount of change exceeds the difference in the average value of the fuel pressure between the first half of the pulsation cycle and the second half of the pulsation cycle. Therefore, in this case, the average value of the fuel pressures calculated immediately before the immediately preceding injection cycle is based on the current fuel pressure.
By applying the average value of the fuel pressure before the injection cycle to the correction of the fuel injection period, the control error of the fuel injection amount in the transient state can be prevented.
【0013】[0013]
【発明の実施の形態】以下、本発明を筒内噴射型エンジ
ンの燃料噴射制御装置に具体化した一実施形態を説明す
る。図1は本実施形態のエンジンの燃料噴射制御装置を
示す全体構成図であり、本実施形態のエンジン1は直列
4気筒の筒内噴射型ガソリンエンジンとして構成されて
いる。エンジン1のシリンダヘッドには各気筒毎に筒内
に臨むように電磁式の燃料噴射弁2が設けられ、各燃料
噴射弁2は共通のデリバリパイプ3を介して高圧ポンプ
4と接続されている。高圧ポンプ4は吸気カムシャフト
5の後端に連結されて、吸気カムシャフト5と共に回転
駆動され、デリバリパイプ3を経て任意の燃圧で加圧燃
料を各燃料噴射弁2に供給する。BEST MODE FOR CARRYING OUT THE INVENTION An embodiment in which the present invention is embodied in a fuel injection control device for a direct injection engine will be described below. FIG. 1 is an overall configuration diagram showing a fuel injection control device for an engine of the present embodiment, and an engine 1 of the present embodiment is configured as an in-line 4-cylinder direct injection gasoline engine. The cylinder head of the engine 1 is provided with an electromagnetic fuel injection valve 2 for each cylinder so as to face the inside of the cylinder, and each fuel injection valve 2 is connected to a high-pressure pump 4 via a common delivery pipe 3. . The high-pressure pump 4 is connected to the rear end of the intake camshaft 5, is driven to rotate together with the intake camshaft 5, and supplies pressurized fuel to each fuel injection valve 2 at an arbitrary fuel pressure via the delivery pipe 3.
【0014】吸気カムシャフト5の前端にはタイミング
プーリ6が設けられ、このタイミングプーリ6は、図示
しない排気カムシャフトのタイミングプーリと共にタイ
ミングベルトを介してクランクシャフト7により回転駆
動され、それぞれのカムシャフト5により吸排気弁が所
定のタイミングで開閉駆動される。その結果、吸気弁の
開弁に伴って図示しない吸気通路を経て筒内に吸入空気
が導入され、燃料噴射弁2から噴射された燃料が点火プ
ラグにより点火されて燃焼し、燃焼後の排ガスは排気弁
の開弁に伴って図示しない排気通路を経て排出され、以
上のサイクルが所定の点火順序に従って繰り返される。A timing pulley 6 is provided at the front end of the intake camshaft 5, and the timing pulley 6 is rotationally driven by a crankshaft 7 via a timing belt together with a timing pulley of an exhaust camshaft (not shown), and each of the camshafts is driven. The intake / exhaust valve is opened / closed by 5 at a predetermined timing. As a result, intake air is introduced into the cylinder through an intake passage (not shown) with the opening of the intake valve, the fuel injected from the fuel injection valve 2 is ignited by the ignition plug and burned, and the exhaust gas after combustion is When the exhaust valve is opened, it is discharged through an exhaust passage (not shown), and the above cycle is repeated according to a predetermined ignition order.
【0015】上記吸気カムシャフト5のタイミングプー
リ6にはバルブタイミング可変機構8が内装され、当該
可変機構8によりタイミングプーリ6に対する吸気カム
シャフト5の位相が任意に変更され、それに応じて吸気
弁の開閉タイミングが調整される。バルブタイミング可
変機構8の構成としては種々のものが提案されているた
め、詳細は説明しないが、例えば特開平9−60508
号公報に記載のように、タイミングプーリ6に形成した
油圧室内にベーンロータを相対回動可能に配設し、その
ベーンロータに吸気カムシャフトを連結し、ベーンロー
タに油圧を作用させて任意の方向に回動させることで、
タイミングプーリ6に対する吸気カムシャフト5の位相
を変更するように構成される。尚、排気カムシャフトに
は、このようなバルブタイミング可変機構8は備えられ
ず、排気弁は常に所定のタイミングで開閉駆動される。A valve timing variable mechanism 8 is incorporated in the timing pulley 6 of the intake camshaft 5, and the phase of the intake camshaft 5 with respect to the timing pulley 6 is arbitrarily changed by the variable mechanism 8 and the intake valve of the intake valve is correspondingly changed. The opening and closing timing is adjusted. Various configurations have been proposed for the variable valve timing mechanism 8, so a detailed description thereof will be omitted. For example, Japanese Patent Laid-Open No. 9-60508.
As described in the publication, a vane rotor is rotatably arranged in a hydraulic chamber formed in a timing pulley 6, an intake camshaft is connected to the vane rotor, and hydraulic pressure is applied to the vane rotor to rotate the vane rotor in an arbitrary direction. By moving
It is configured to change the phase of the intake camshaft 5 with respect to the timing pulley 6. The exhaust camshaft is not provided with such a variable valve timing mechanism 8 and the exhaust valve is always opened and closed at a predetermined timing.
【0016】一方、車室内には、図示しない入出力装
置、制御プログラムや制御マップ等の記憶に供される記
憶装置(ROM,RAM等)、中央処理装置(CP
U)、タイマカウンタ等を備えたECU(電子制御ユニ
ット)11が設置されている。ECU11の入力側に
は、エンジン1のスロットル開度θTHを検出するスロッ
トルセンサ12、各気筒の燃料噴射と同一周期の180
°CA毎のSGT信号を出力するクランク角センサ1
3、上記デリバリパイプ3内の燃圧Pを検出する燃圧セ
ンサ14等の各種センサ類が接続されている。又、出力
側には、上記燃料噴射弁2、高圧ポンプ4、バルブタイ
ミング可変機構8、点火プラグ等の各種デバイス類が接
続されている。On the other hand, in the passenger compartment, an input / output device (not shown), a storage device (ROM, RAM, etc.) for storing control programs and control maps, and a central processing unit (CP) are provided.
U), an ECU (electronic control unit) 11 including a timer counter and the like is installed. On the input side of the ECU 11, a throttle sensor 12 for detecting the throttle opening θTH of the engine 1 and 180 of the same cycle as the fuel injection of each cylinder.
Crank angle sensor 1 that outputs an SGT signal for each CA
3. Various sensors such as a fuel pressure sensor 14 for detecting the fuel pressure P in the delivery pipe 3 are connected. Further, various devices such as the fuel injection valve 2, the high pressure pump 4, the variable valve timing mechanism 8 and the spark plug are connected to the output side.
【0017】そして、ECU11は、各センサからの検
出情報に基づいて、点火時期、燃料噴射モード、燃料噴
射期間等を決定し、点火プラグや燃料噴射弁2を駆動制
御する。燃料噴射モードは、吸気行程以外にも燃料噴射
可能な筒内噴射型エンジン特有の制御モードであり、例
えばECU11は、エンジン負荷を表す目標平均有効圧
Pe、及びクランク角センサ13の出力から求めたエン
ジン回転速度Neに基づいて、予め設定されたマップか
ら運転領域に応じた燃料噴射モードを設定する。詳細は
説明しないが、目標平均有効圧Pe及びエンジン回転速
度Neが高い領域では、吸気行程で燃料噴射を行う吸気
行程噴射モードを設定して、均一燃焼によりエンジン出
力を確保する一方、目標平均有効圧Pe及びエンジン回
転速度Neが低い領域では、圧縮行程で燃料噴射を行う
圧縮行程噴射モードを設定して、層状燃焼によるリーン
空燃比を実現し、ポンピングロスの低減等により燃費向
上を図る。Then, the ECU 11 determines the ignition timing, the fuel injection mode, the fuel injection period, etc. based on the detection information from each sensor, and drives and controls the ignition plug and the fuel injection valve 2. The fuel injection mode is a control mode peculiar to the cylinder injection type engine capable of injecting fuel in addition to the intake stroke. For example, the ECU 11 obtains the target average effective pressure Pe representing the engine load and the output of the crank angle sensor 13. Based on the engine speed Ne, the fuel injection mode is set according to the operating region from a preset map. Although not described in detail, in a region where the target average effective pressure Pe and the engine rotation speed Ne are high, an intake stroke injection mode in which fuel is injected in the intake stroke is set to secure engine output by uniform combustion, while the target average effective In a region where the pressure Pe and the engine rotation speed Ne are low, a compression stroke injection mode in which fuel is injected in a compression stroke is set, a lean air-fuel ratio is realized by stratified combustion, and pumping loss is reduced to improve fuel efficiency.
【0018】又、ECU11は、燃料噴射モードの切換
に応じて目標燃圧Ptgtを設定し、実際の燃圧Pが目標
燃圧Ptgtとなるように高圧ポンプ4の燃料スピルを制
御する。この処理は、燃料噴射モードの切換に関わらず
常に適切なパルス幅の領域で燃料噴射弁2を駆動するこ
とを目的としたものであり、これにより過小なパルス幅
に起因する噴射誤差の発生を防止している。Further, the ECU 11 sets the target fuel pressure Ptgt according to the switching of the fuel injection mode, and controls the fuel spill of the high pressure pump 4 so that the actual fuel pressure P becomes the target fuel pressure Ptgt. This processing is intended to always drive the fuel injection valve 2 in an area of an appropriate pulse width regardless of the switching of the fuel injection mode, and thereby the injection error caused by the excessively small pulse width is generated. To prevent.
【0019】更に、ECU11は、目標平均有効圧Pe
及びエンジン回転速度Neに基づいて、予め設定された
マップから運転領域に応じた吸気カムシャフト5の進角
量を設定し、設定した進角量に基づいてバルブタイミン
グ可変機構8を駆動制御する。一方、上記高圧ポンプ4
は、吸気カムシャフト5の後端に連結されたカム山によ
りプランジャを作動させて燃料を加圧するプランジャ型
ポンプとして構成されており、本実施形態では、気筒数
の半分である一対のカム山が180°対向位置に設けら
れている。よって、高圧ポンプ4のプランジャは360
°CA周期、つまり、各気筒の燃料噴射やSGT信号の
周期である180°CAの倍の周期で燃料を加圧し、こ
れによる燃圧脈動も360°CA周期で発生する。Further, the ECU 11 controls the target average effective pressure Pe.
Based on the engine rotation speed Ne, the advance amount of the intake camshaft 5 is set according to the operating region from a preset map, and the variable valve timing mechanism 8 is drive-controlled based on the set advance amount. On the other hand, the high pressure pump 4
Is configured as a plunger type pump that pressurizes fuel by operating a plunger by a cam crest connected to the rear end of the intake camshaft 5. In the present embodiment, a pair of cam crests that is half the number of cylinders They are provided at 180 ° opposite positions. Therefore, the plunger of high-pressure pump 4 is 360
The fuel is pressurized in a cycle of CA, that is, a cycle of 180 degrees CA which is the cycle of fuel injection or SGT signal of each cylinder, and fuel pressure pulsation due to this is also generated in a cycle of 360 CA.
【0020】又、ECU11は燃料噴射量を制御すべ
く、各種センサからの検出情報に基づき検出される運転
状況に応じて燃料噴射期間を決定する燃料噴射パルス
幅、即ち燃料噴射弁2の開弁期間を求めて、燃料噴射弁
2を駆動制御する。そして、同じ燃料噴射パルス幅でも
高圧ポンプ4の脈動等により燃圧が変動すれば燃料噴射
量も変動するため、ECU11は、高圧ポンプ4の燃圧
脈動等による燃料噴射量への影響を相殺すべく、実燃圧
P(より具体的には、その平均燃圧P1ave,P2ave)に
基づいて燃料噴射パルス幅を補正しており、以下、この
燃料噴射パルス幅の補正処理を詳述する。Further, the ECU 11 controls the fuel injection amount by determining the fuel injection pulse width for determining the fuel injection period according to the operating condition detected based on the detection information from various sensors, that is, the opening of the fuel injection valve 2. The fuel injection valve 2 is drive-controlled for the period. Then, even if the fuel injection pulse width is the same, if the fuel pressure fluctuates due to pulsation of the high-pressure pump 4 or the like, the fuel injection amount also fluctuates. Therefore, the ECU 11 cancels the influence of the fuel pressure pulsation or the like of the high-pressure pump 4 on the fuel injection amount. The fuel injection pulse width is corrected based on the actual fuel pressure P (more specifically, the average fuel pressures P1ave, P2ave). The fuel injection pulse width correction processing will be described in detail below.
【0021】図2は高圧ポンプ4のカム山の数が気筒数
の半分に設定された本実施形態の燃料噴射期間(パルス
幅)の補正状況を示すタイムチャートであり、この図に
示すように、SGT信号は180°CA周期で出力さ
れ、このSGT信号に基づいて同一周期の所定タイミン
グで各気筒の燃料噴射が行われている。尚、同図は、燃
料噴射モードの切換が行われずに、吸気行程或いは圧縮
行程の何れかの燃料噴射モードが継続されている状態を
表している。FIG. 2 is a time chart showing the correction situation of the fuel injection period (pulse width) of this embodiment in which the number of cam peaks of the high-pressure pump 4 is set to half the number of cylinders, and as shown in this figure. , SGT signal is output at a cycle of 180 ° CA, and fuel injection into each cylinder is performed at a predetermined timing of the same cycle based on the SGT signal. The figure shows a state in which the fuel injection mode is not switched and the fuel injection mode in either the intake stroke or the compression stroke is continued.
【0022】一方、上記のように高圧ポンプ4の燃圧P
の脈動は360°CA周期で発生している。詳述する
と、燃圧Pはカム山による加圧に伴って上昇して燃料ス
ピルに応じた最大値に到達し(図中のポイントa−
b)、初回の燃料噴射により急減し(図中のポイントb
−c)、その後に一定値を維持し(図中のポイントc−
d)、次回の燃料噴射により更に急減し(図中のポイン
トd−e)、以上のサイクルを繰り返す。On the other hand, as described above, the fuel pressure P of the high pressure pump 4 is
Pulsation occurs in a 360 ° CA cycle. More specifically, the fuel pressure P increases with the pressurization by the cam ridges and reaches the maximum value according to the fuel spill (point a- in the figure).
b), the fuel consumption drops sharply at the first fuel injection (point b in the figure)
-C), and then maintain a constant value (point c- in the figure
d), the fuel consumption is reduced sharply by the next fuel injection (point de in the figure), and the above cycle is repeated.
【0023】一方、ECU11は図3に示す平均燃圧算
出ルーチンを所定の制御インターバルで実行する。ま
ず、ステップS2で燃圧センサ14により検出された燃
圧Pを総燃圧ΣPに加算し、続くステップS4でSGT
信号の立上りタイミング(立下り周期の場合には立下り
タイミング)か否かを判定する。判定がNO(否定)の
ときには、ステップS2に戻って燃圧Pの加算処理を繰
り返し、判定がYESになるとステップS6に移行す
る。その結果、SGT信号の立上り又は立下り周期(以
下、SGT周期Tという)間の燃圧Pの総和として総燃
圧ΣPが算出される。On the other hand, the ECU 11 executes the average fuel pressure calculation routine shown in FIG. 3 at a predetermined control interval. First, in step S2, the fuel pressure P detected by the fuel pressure sensor 14 is added to the total fuel pressure ΣP, and in the subsequent step S4, SGT is performed.
It is determined whether or not it is a signal rising timing (falling timing in the case of a falling cycle). When the determination is NO (negative), the process returns to step S2 to repeat the process of adding the fuel pressure P, and when the determination is YES, the process proceeds to step S6. As a result, the total fuel pressure ΣP is calculated as the sum of the fuel pressures P during the rising or falling cycle of the SGT signal (hereinafter referred to as the SGT cycle T).
【0024】その後、ステップS6で前回算出した1噴
射周期前の平均燃圧P1aveを2噴射周期前の平均燃圧P
2aveに更新し、続くステップS8で、上記総燃圧ΣPを
燃圧Pの加算回数nで除して今回の1噴射周期前の平均
燃圧P1aveを算出する。更にステップS10で総燃圧Σ
Pをリセットした後、ルーチンを終了する。よって、当
該ルーチンの繰返しにより、SGT周期T毎に燃圧Pの
平均値が算出され、その最新値が1噴射周期前の平均燃
圧P1aveとして設定されると共に、直前の値が2噴射周
期前の平均燃圧P2aveとして設定される。Thereafter, the average fuel pressure P1ave one injection cycle before calculated in step S6 is replaced by the average fuel pressure P2 two injection cycles before.
The value is updated to 2ave, and in the subsequent step S8, the total fuel pressure ΣP is divided by the number of additions n of the fuel pressure P to calculate the average fuel pressure P1ave one cycle before this time. Further, in step S10, the total fuel pressure Σ
After resetting P, the routine ends. Therefore, by repeating the routine, the average value of the fuel pressure P is calculated every SGT cycle T, the latest value is set as the average fuel pressure P1ave one injection cycle before, and the immediately preceding value is the average two injection cycles before. It is set as the fuel pressure P2ave.
【0025】又、ECU11は図4に示す燃料噴射期間
補正ルーチンをSGT信号に同期した燃料噴射直前の所
定タイミングで実行し、まず、ステップS12で燃圧偏
差ΔPを算出する。この燃圧偏差ΔPは、上記のように
燃料噴射モードに応じて設定される目標燃圧Ptgtに対
して実際の燃圧Pが追従して制御されているか否かの指
標として用いられ、例えば目標燃圧Ptgtと上記1噴射
周期前の平均燃圧P1aveとの差として算出される。Further, the ECU 11 executes the fuel injection period correction routine shown in FIG. 4 at a predetermined timing immediately before the fuel injection synchronized with the SGT signal, and first calculates the fuel pressure deviation ΔP in step S12. This fuel pressure deviation ΔP is used as an index as to whether or not the actual fuel pressure P is controlled following the target fuel pressure Ptgt set according to the fuel injection mode as described above. It is calculated as a difference from the average fuel pressure P1ave one injection cycle before.
【0026】続くステップS14では、燃圧偏差ΔPが
予め設定された所定値ΔP0未満であるか否かを判定す
る。判定がYESのときには、ステップS16で上記2
噴射周期前の平均燃圧P2aveに基づいて所定のマップか
ら補正係数kを求め(補正手段)、一方、判定がNOの
ときには、ステップS18で上記1噴射周期前の平均燃
圧P1aveに基づいて所定のマップから補正係数kを求め
る(補正手段)。更にステップS20で、求めた補正係
数kにより次回の燃料噴射パルス幅を補正した後、ルー
チンを終了する。図示しない燃料噴射制御ルーチンで
は、補正後の燃料噴射パルス幅に基づいて次回の燃料噴
射が実施される(制御手段)。In a succeeding step S14, it is determined whether or not the fuel pressure deviation ΔP is less than a preset predetermined value ΔP0. When the determination is YES, the above-mentioned 2 is performed in step S16.
A correction coefficient k is obtained from a predetermined map based on the average fuel pressure P2ave before the injection cycle (correction means). On the other hand, when the determination is NO, a predetermined map is obtained based on the average fuel pressure P1ave before the one injection cycle in step S18. The correction coefficient k is obtained from the correction coefficient k. Further, in step S20, the next fuel injection pulse width is corrected by the calculated correction coefficient k, and then the routine ends. In a fuel injection control routine (not shown), the next fuel injection is performed based on the corrected fuel injection pulse width (control means).
【0027】以上のECU11の処理による燃料噴射パ
ルス幅の補正状況を説明する。まず、上記のように高圧
ポンプ4の燃圧Pは360°CA周期で脈動しており、
図2に示すように、この脈動周期をSGT周期Tで18
0°CA毎に区分すると、比較的燃圧が高い脈動周期前
半と比較的燃圧が低い脈動周期後半とに分けられる。そ
して、脈動周期前半の燃圧脈動は、360°CA後の同
じく脈動周期前半で再現され、脈動周期後半の燃圧脈動
は、360°CA後の同じく脈動周期後半で再現され
る。The correction situation of the fuel injection pulse width by the above processing of the ECU 11 will be described. First, as described above, the fuel pressure P of the high-pressure pump 4 pulsates in a 360 ° CA cycle,
As shown in FIG. 2, this pulsation cycle is 18 in the SGT cycle T.
When it is divided into 0 ° CAs, it is divided into a pulsation cycle first half where the fuel pressure is relatively high and a pulsation cycle second half where the fuel pressure is relatively low. Then, the fuel pressure pulsation in the first half of the pulsation cycle is reproduced in the same first half of the pulsation cycle after 360 ° CA, and the fuel pressure pulsation in the second half of the pulsation cycle is reproduced in the same second half of the pulsation cycle after 360 ° CA.
【0028】上記ステップS14の判定がYESのとき
(ΔP<ΔP0)には、例えば図2のように特定の燃料
噴射モードが継続されて、所定の目標燃圧Ptgtに対し
て燃圧Pが十分に追従して制御される定常状態と見なさ
れ、このときの燃料噴射パルス幅は、図2に実線の矢印
で示すように、2噴射周期前の平均燃圧P2aveに基づい
て補正される。よって、脈動周期前半の燃料噴射パルス
幅の補正に対しては、同じく360°CA前の脈動周期
前半の燃圧脈動より算出された平均燃圧P2aveが適用さ
れ、脈動周期後半の燃料噴射パルス幅の補正に対して
は、同じく360°CA前の脈動周期後半の燃圧脈動よ
り算出された平均燃圧P2aveが適用される。When the determination in step S14 is YES (ΔP <ΔP0), for example, the specific fuel injection mode is continued as shown in FIG. 2, and the fuel pressure P sufficiently follows the predetermined target fuel pressure Ptgt. The fuel injection pulse width at this time is corrected based on the average fuel pressure P2ave two injection cycles before, as indicated by the solid arrow in FIG. Therefore, to the correction of the fuel injection pulse width in the first half of the pulsation cycle, the average fuel pressure P2ave calculated from the fuel pressure pulsation in the first half of the pulsation cycle before 360 ° CA is applied, and the correction of the fuel injection pulse width in the second half of the pulsation cycle is applied. Similarly, the average fuel pressure P2ave calculated from the fuel pressure pulsation in the latter half of the pulsation cycle before 360 ° CA is applied to.
【0029】ここで、2噴射周期前の平均燃圧P2aveの
算出時と燃料噴射パルス幅の補正時との間には360°
CA相当の時間的な隔たりがあるが、この定常状態にお
いては燃圧Pの増減が比較的小さいため、補正誤差の要
因となる虞はほとんどない。その結果、高圧ポンプ4の
燃圧脈動に関係なく、常に適切な平均燃圧P2aveにより
燃料噴射パルス幅を補正して燃料噴射量を適正に制御で
き、もって、燃料噴射量の制御誤差による不具合、例え
ば排ガス特性、燃費、ドライバビリティ等の悪化を未然
に防止することができる。Here, 360 ° is set between the calculation of the average fuel pressure P2ave two injection cycles before and the correction of the fuel injection pulse width.
Although there is a time difference corresponding to CA, in this steady state, the increase / decrease in the fuel pressure P is relatively small, so there is almost no risk of causing a correction error. As a result, regardless of the fuel pressure pulsation of the high-pressure pump 4, the fuel injection pulse width can always be corrected by the appropriate average fuel pressure P2ave to properly control the fuel injection amount, and therefore, a problem due to a control error of the fuel injection amount, for example, exhaust gas. It is possible to prevent deterioration of characteristics, fuel consumption, drivability, and the like.
【0030】加えて、本実施形態のエンジン1では、バ
ルブタイミング可変機構8により吸気カムシャフト5の
進角量が制御されると、それに応じてクランクシャフト
7に対する高圧ポンプ4のカム山の位相、即ち、図2中
の燃料噴射に対する燃圧脈動の位置関係がずれることに
なる。つまり、バルブタイミングの制御状況に応じて平
均燃圧が変化するため、適切な燃圧に基づく燃料噴射パ
ルス幅の補正が一層困難になるが、このような場合で
も、脈動周期が360°CA後に再現されることに変わ
りないため、2噴射周期前の平均燃圧P2aveに基づいて
適切な燃料噴射パルス幅の補正が可能となる。In addition, in the engine 1 of this embodiment, when the advance amount of the intake camshaft 5 is controlled by the variable valve timing mechanism 8, the phase of the cam crest of the high-pressure pump 4 with respect to the crankshaft 7 is accordingly changed, That is, the positional relationship of the fuel pressure pulsation with respect to the fuel injection in FIG. 2 shifts. That is, since the average fuel pressure changes according to the control status of the valve timing, it becomes more difficult to correct the fuel injection pulse width based on an appropriate fuel pressure, but even in such a case, the pulsation cycle is reproduced after 360 ° CA. Since this is the same, it is possible to appropriately correct the fuel injection pulse width based on the average fuel pressure P2ave two injection cycles before.
【0031】一方、上記ステップS14の判定がNOの
とき(ΔP≧ΔP0)には、例えば燃料噴射モードの切
換が行われて、新たに設定された目標燃圧Ptgtに対し
て燃圧Pが追従途中である過渡状態と見なされ、このと
きの燃料噴射パルス幅は、図2に破線の矢印で示すよう
に、1噴射周期前の平均燃圧P1aveに基づいて補正され
る。On the other hand, when the determination in step S14 is NO (ΔP ≧ ΔP0), for example, the fuel injection mode is switched, and the fuel pressure P follows the newly set target fuel pressure Ptgt. It is regarded as a certain transient state, and the fuel injection pulse width at this time is corrected based on the average fuel pressure P1ave one injection cycle before, as indicated by the broken line arrow in FIG.
【0032】即ち、過渡状態の燃圧Pは脈動周期の36
0°CA間に大きく変化し、その変化量は脈動周期前半
と脈動周期後半との平均燃圧の格差(P1ave−P2ave)
を越えるものとなる。よって、この場合は寧ろ直前の平
均燃圧P1aveの方が現在の燃圧Pに則していることか
ら、1噴射周期前の平均燃圧P1aveを燃料噴射パルス幅
の補正に適用しているのであり、この処理を実施するこ
とで、過渡状態での燃料噴射量の不適正を未然に防止で
きるという別の利点が得られる。That is, the fuel pressure P in the transient state is 36 in the pulsation cycle.
There is a large change between 0 ° CA, and the amount of change is the difference in the average fuel pressure between the first half of the pulsation cycle and the second half of the pulsation cycle (P1ave-P2ave).
Will be exceeded. Therefore, in this case, the average fuel pressure P1ave immediately before is based on the current fuel pressure P, so that the average fuel pressure P1ave one injection cycle before is applied to the correction of the fuel injection pulse width. By carrying out the processing, another advantage is obtained in that the inadequacy of the fuel injection amount in the transient state can be prevented in advance.
【0033】以上で実施形態の説明を終えるが、本発明
の態様はこの実施形態に限定されるものではない。例え
ば、上記実施形態では、直列4気筒の筒内噴射型ガソリ
ンエンジン1用の燃料噴射制御装置に具体化したが、エ
ンジンの気筒数や形式等はこれに限ることはなく、例え
ば直列6気筒のガソリンエンジンに適用して、高圧ポン
プ4のカム山の数を3つに設定してもよい。或いは、コ
モンレール式ディーゼルエンジン用の燃料噴射制御装置
として具体化してもよく、この場合でも、筒内噴射に要
する高燃圧を確保するためにプランジャ型等の高圧ポン
プを用いて必然的に燃圧脈動が生じるため、上記実施形
態と同様の補正処理により、全く同じ作用効果を得るこ
とができる。Although the embodiment has been described above, the aspect of the present invention is not limited to this embodiment. For example, in the above-described embodiment, the fuel injection control device for the in-line 4-cylinder in-cylinder injection type gasoline engine 1 is embodied. However, the number of cylinders and the type of the engine are not limited to this. The number of cam peaks of the high-pressure pump 4 may be set to three as applied to a gasoline engine. Alternatively, it may be embodied as a fuel injection control device for a common rail type diesel engine, and even in this case, a fuel pressure pulsation is inevitably used by using a high pressure pump such as a plunger type in order to secure a high fuel pressure required for in-cylinder injection. Since this occurs, it is possible to obtain exactly the same operation and effect by the correction processing similar to that of the above embodiment.
【0034】又、上記実施形態では、吸気カムシャフト
5の進角量を制御するバルブタイミング可変機構8を備
えたエンジン1に適用したが、当該可変機構8は必ずし
も必要でなく、この機能を備えない一般的なエンジンに
適用してもよい。In the above embodiment, the engine 1 is provided with the valve timing variable mechanism 8 for controlling the advance amount of the intake camshaft 5, but the variable mechanism 8 is not always necessary and has this function. Not applicable to general engines.
【0035】[0035]
【発明の効果】以上説明したように請求項1の発明の内
燃機関の燃料噴射制御装置によれば、高圧ポンプの燃圧
脈動に関係なく、常に適切な燃圧に基づく燃料噴射期間
の補正を実現して燃料噴射量を適正に制御でき、もっ
て、燃料噴射量の制御誤差による不具合の発生を未然に
防止することができる。As described above, according to the fuel injection control device for the internal combustion engine of the invention of claim 1, the fuel injection period is always corrected based on the appropriate fuel pressure regardless of the fuel pressure pulsation of the high-pressure pump. As a result, the fuel injection amount can be controlled appropriately, and thus the occurrence of a defect due to a control error of the fuel injection amount can be prevented.
【0036】請求項2の発明の内燃機関の燃料噴射制御
装置によれば、請求項1に加えて、過渡状態での燃料噴
射量の制御誤差を未然に防止することができる。According to the fuel injection control device for the internal combustion engine of the second aspect of the present invention, in addition to the first aspect, it is possible to prevent the control error of the fuel injection amount in the transient state.
【図1】実施形態のエンジンの燃料噴射制御装置を示す
全体構成図である。FIG. 1 is an overall configuration diagram showing a fuel injection control device for an engine according to an embodiment.
【図2】高圧ポンプのカム山の数が気筒数の半分に設定
された実施形態の燃料噴射期間の補正状況を示すタイム
チャートである。FIG. 2 is a time chart showing a correction situation of a fuel injection period in the embodiment in which the number of cam peaks of the high-pressure pump is set to half the number of cylinders.
【図3】ECUが実行する平均燃圧算出ルーチンを示す
フローチャートである。FIG. 3 is a flowchart showing an average fuel pressure calculation routine executed by an ECU.
【図4】ECUが実行する燃料噴射期間補正ルーチンを
示すフローチャートである。FIG. 4 is a flowchart showing a fuel injection period correction routine executed by the ECU.
【図5】高圧ポンプのカム山の数が気筒数に対応して設
定された従来技術の燃料噴射期間の補正状況を示すタイ
ムチャートである。FIG. 5 is a time chart showing a correction situation of a fuel injection period of the related art in which the number of cam peaks of the high-pressure pump is set corresponding to the number of cylinders.
【図6】高圧ポンプのカム山の数が気筒数の半分に設定
された従来技術の燃料噴射期間の補正状況を示すタイム
チャートである。FIG. 6 is a time chart showing a correction situation of a fuel injection period of the related art in which the number of cam peaks of the high-pressure pump is set to half the number of cylinders.
1 エンジン(内燃機関) 2 燃料噴射弁 4 高圧ポンプ 11 ECU(制御手段、補正手段) 1 engine (internal combustion engine) 2 fuel injection valve 4 high pressure pump 11 ECU (control means, correction means)
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3G066 AA02 AB02 AD12 BA17 BA51 CA01S CA09 CE03 DA01 DC04 DC05 DC18 3G084 BA13 DA02 DA10 DA11 EA11 EB08 EB11 EB24 EB25 FA00 FA10 FA20 FA21 FA38 3G301 HA01 HA04 JA02 JA04 JA21 LB04 MA11 NA01 NC01 NC02 NC08 PA11Z PB08A PB08Z PC02Z PE03Z ─────────────────────────────────────────────────── ─── Continued front page F-term (reference) 3G066 AA02 AB02 AD12 BA17 BA51 CA01S CA09 CE03 DA01 DC04 DC05 DC18 3G084 BA13 DA02 DA10 DA11 EA11 EB08 EB11 EB24 EB25 FA00 FA10 FA20 FA21 FA38 3G301 HA01 HA04 JA02 JA04 JA21 LB04 MA11 NA01 NC01 NC02 NC08 PA11Z PB08A PB08Z PC02Z PE03Z
Claims (2)
より燃料を加圧して各気筒の燃料噴射弁に供給し、制御
手段により各燃料噴射弁を開閉駆動して対応する気筒の
筒内に燃料を噴射すると共に、該燃料噴射弁の燃料噴射
期間を上記高圧ポンプの燃圧に基づいて補正手段により
補正する内燃機関の燃料噴射制御装置において、 上記高圧ポンプは、上記各気筒の燃料噴射弁の噴射周期
に対して倍の周期で燃料を加圧するものであり、 上記補正手段は、上記燃料噴射弁の噴射周期毎に上記加
圧燃料の燃圧の平均値を算出すると共に、2噴射周期前
に算出した燃圧の平均値に基づいて上記燃料噴射期間を
補正することを特徴する内燃機関の燃料噴射制御装置。1. A fuel is pressurized by a high-pressure pump in synchronism with the rotation of an internal combustion engine and supplied to a fuel injection valve of each cylinder, and each fuel injection valve is opened / closed by a control means to be in the cylinder of the corresponding cylinder. In a fuel injection control device for an internal combustion engine, which injects fuel and corrects a fuel injection period of the fuel injection valve based on a fuel pressure of the high-pressure pump, the high-pressure pump includes: The fuel is pressurized at a cycle twice as long as the injection cycle, and the correction means calculates an average value of the fuel pressure of the pressurized fuel at each injection cycle of the fuel injection valve and at the same time two injection cycles before. A fuel injection control device for an internal combustion engine, wherein the fuel injection period is corrected based on the calculated average value of the fuel pressure.
状態から設定された目標燃圧に基づいて燃圧を制御さ
れ、 上記補正手段は、上記高圧ポンプの燃圧と上記目標燃圧
との差が所定値以上のときに、1噴射周期前に算出した
燃圧の平均値に基づいて上記燃料噴射期間を補正するこ
とを特徴とする請求項1に記載の内燃機関の燃料噴射制
御装置。2. The high-pressure pump is controlled in fuel pressure based on a target fuel pressure set from the operating state of the internal combustion engine, and the correction means is configured such that the difference between the fuel pressure of the high-pressure pump and the target fuel pressure is a predetermined value. The fuel injection control device for an internal combustion engine according to claim 1, wherein the fuel injection period is corrected based on the average value of the fuel pressure calculated one injection cycle before at the above time.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002143762A JP2003336534A (en) | 2002-05-17 | 2002-05-17 | Fuel injection control device for internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002143762A JP2003336534A (en) | 2002-05-17 | 2002-05-17 | Fuel injection control device for internal combustion engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003336534A true JP2003336534A (en) | 2003-11-28 |
Family
ID=29703671
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002143762A Pending JP2003336534A (en) | 2002-05-17 | 2002-05-17 | Fuel injection control device for internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003336534A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017002770A (en) * | 2015-06-08 | 2017-01-05 | 株式会社ミクニ | Control device and control method of fuel pump |
JP2019199826A (en) * | 2018-05-15 | 2019-11-21 | 株式会社Soken | Control device of fuel pump |
-
2002
- 2002-05-17 JP JP2002143762A patent/JP2003336534A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017002770A (en) * | 2015-06-08 | 2017-01-05 | 株式会社ミクニ | Control device and control method of fuel pump |
JP2019199826A (en) * | 2018-05-15 | 2019-11-21 | 株式会社Soken | Control device of fuel pump |
JP7054363B2 (en) | 2018-05-15 | 2022-04-13 | 株式会社Soken | Fuel pump controller |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1362174B1 (en) | Diesel engine control system and control method | |
US20170292462A1 (en) | Control system for internal combustion engine | |
US10024266B2 (en) | Direct injection engine controlling device | |
JP2001041088A (en) | Fuel pump control device | |
JP3400752B2 (en) | Control device for internal combustion engine | |
JP3681041B2 (en) | In-cylinder injection internal combustion engine control device | |
JP4040307B2 (en) | Engine gasoline alternative fuel injection control device | |
WO2015064075A1 (en) | Control device for internal combustion engine | |
JP2004150411A (en) | Gasoline alternate fuel injection control device of engine | |
JP2008121539A (en) | Internal combustion engine | |
US7447586B2 (en) | Valve characteristic control apparatus for internal combustion engine | |
US10655555B2 (en) | Engine system and method of controlling engine system | |
JPH11303669A (en) | Fuel injection control device for internal combustion engine | |
US6085729A (en) | Fuel injection control for engines responsive to fuel injection timing | |
JP6406398B2 (en) | In-cylinder injection engine control device | |
JP2003336534A (en) | Fuel injection control device for internal combustion engine | |
JP2004108160A (en) | Fuel injection device for internal combustion engine | |
US20160369729A1 (en) | Control apparatus and control method for internal combustion engine | |
US10344701B2 (en) | Engine system and control method for engine system | |
JP2001304012A (en) | Fuel injection quantity control device for internal combustion engine | |
US20070056537A1 (en) | Control apparatus for internal combustion engine | |
JP2000130234A (en) | Fuel injection control device for direct injection internal combustion engine | |
JP2007315309A (en) | Fuel injection control device for internal combustion engine | |
JP2004108204A (en) | Control device for internal combustion engine | |
JP2001304029A (en) | Fuel injection amount control device for engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040824 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070228 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070301 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070704 |