JP2003335143A - Active four-wheel drive device - Google Patents

Active four-wheel drive device

Info

Publication number
JP2003335143A
JP2003335143A JP2002144320A JP2002144320A JP2003335143A JP 2003335143 A JP2003335143 A JP 2003335143A JP 2002144320 A JP2002144320 A JP 2002144320A JP 2002144320 A JP2002144320 A JP 2002144320A JP 2003335143 A JP2003335143 A JP 2003335143A
Authority
JP
Japan
Prior art keywords
gear
wheel side
differential
driven
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002144320A
Other languages
Japanese (ja)
Inventor
Toshibumi Sakai
俊文 酒井
Naoyuki Sakai
直行 酒井
Akihiro Ono
明浩 大野
Akio Matsumoto
明夫 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Koki KK
Original Assignee
Toyoda Koki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Koki KK filed Critical Toyoda Koki KK
Priority to JP2002144320A priority Critical patent/JP2003335143A/en
Publication of JP2003335143A publication Critical patent/JP2003335143A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Arrangement Of Transmissions (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a four-wheel drive device offering simple construction permitting highly precise and active control of the transmission distribution of driving force transmitted from an engine to a driving wheel side and a driven wheel side. <P>SOLUTION: The driving force of the engine is input to a driving gear and distributed to right and left wheels on the driving wheel side by a driving wheel side differential gear. A driving wheel side propeller shaft is rotated by engagement between the driving gear and a speed increasing gear and the rotation of the driving wheel side propeller shaft is transmitted to a driven wheel side propeller shaft by a differential mechanism. The rotation of the driven wheel side propeller shaft is input to a driven wheel side differential gear by engagement between a speed reducing gear and the driven gear and distributed to right and left wheels on the driven wheel side. A differential control element of the differential mechanism is rotation controlled by a motor to give relative differential rotation to the driving wheel side propeller shaft and the driven wheel side propeller shaft. Thus, the driving force of the engine is selectively distributed to the driving wheel side and the driven wheel side. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、主動輪側と従動輪
側への駆動力の伝達配分を制御する四輪駆動装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a four-wheel drive system for controlling distribution of driving force to a main driving wheel side and a driven wheel side.

【0002】[0002]

【従来の技術】プロペラシャフトの主動軸側と従動軸側
とに夫々連結され互いに歯数が僅かに異なる同軸線上の
2個の内歯歯車に同時に噛合う遊星歯車をキャリヤに支
承し、該キャリヤを電気モータにより回転制御して前記
前輪側及び後輪側出力軸の相対回転を制御し、前輪側と
後輪側への駆動力の伝達配分を制御する四輪駆動装置
が、特許第2643979号公報に記載されている。
2. Description of the Related Art A carrier is provided with a planetary gear which is connected to a main shaft side and a driven shaft side of a propeller shaft and simultaneously meshes with two internal gears on coaxial lines having slightly different numbers of teeth. Japanese Patent No. 2643979 discloses a four-wheel drive device that controls the relative rotation of the front and rear wheel side output shafts by controlling the rotation of an electric motor to control the transmission distribution of the driving force to the front wheel side and the rear wheel side. It is described in the official gazette.

【0003】[0003]

【発明が解決しようとする課題】上記従来の装置では、
複雑な差動機構が用いられているため、コスト、信頼性
で問題があった。
In the above-mentioned conventional device,
Since a complicated differential mechanism is used, there are problems in cost and reliability.

【0004】本発明は、係る従来の不具合を解消するた
めになされたもので、エンジンから主動輪側及び従動輪
側に伝達される駆動力の伝達配分を簡単な構成で且つ適
切なギヤ比設定により高精度にアクティブに制御可能な
四輪駆動装置を提供することである。
The present invention has been made in order to solve the above-mentioned conventional inconvenience, and the transmission distribution of the driving force transmitted from the engine to the main driving wheel side and the driven wheel side has a simple structure and an appropriate gear ratio setting. Is to provide a four-wheel drive device that can be actively controlled with high precision.

【0005】[0005]

【課題を解決するための手段】上記の課題を解決するた
め、請求項1に記載の発明の構成上の特徴は、エンジン
からの駆動力が駆動ギヤに入力されて主動輪側の左右輪
に分配する主動輪側デファレンシアルギヤと、前記駆動
ギヤと噛合する増速ギヤを有する主動輪側推進軸と、従
動ギヤに入力された動力を従動輪側の左右輪に分配する
従動輪側デファレンシアルギヤと、前記従動ギヤと噛合
する減速ギヤを有する従動輪側推進軸とを設け、差動機
構の第1、第2差動要素及び差動制御要素を前記主動輪
側推進軸、前記従動輪側推進軸、電動モータの出力軸に
夫々連結し、前記増速ギヤと駆動ギヤとの回転数比、前
記差動制御要素が静止時の前記第2差動要素と第1差動
要素との回転数比、及び従動ギヤと前記減速ギヤとの回
転数比を乗算した積がほぼ1となるようにしたことであ
る。
In order to solve the above-mentioned problems, the structural feature of the present invention as set forth in claim 1 is that the driving force from the engine is input to the drive gear to the left and right wheels on the main driving wheel side. Main-wheel-side differential gear to be distributed, main-wheel-side propulsion shaft having a speed increasing gear meshing with the drive gear, and driven-wheel-side differential to distribute the power input to the driven gear to the driven-wheel-side left and right wheels. A differential gear and a driven wheel side propulsion shaft having a reduction gear that meshes with the driven gear are provided, and first and second differential elements and a differential control element of a differential mechanism are provided on the main drive wheel side propulsion shaft, The driven wheel-side propulsion shaft and the output shaft of the electric motor are respectively connected to each other, the rotational speed ratio between the speed increasing gear and the drive gear, the second differential element and the first differential element when the differential control element is stationary. Multiplied by the rotation speed ratio between the driven gear and the reduction gear. Is that was set to be approximately 1.

【0006】請求項2に係る発明の構成上の特徴は、請
求項1に記載のアクティブ四輪駆動装置において、前記
差動機構がプラネタリギヤであり、該プラネタリギヤの
キャリヤを主動輪側推進軸に連結し、リングギヤを前記
従動輪側推進軸に連結し、サンギヤを前記電気モータに
連結したことである。
According to a second aspect of the present invention, in the active four-wheel drive system according to the first aspect, the differential mechanism is a planetary gear, and the carrier of the planetary gear is connected to the main drive wheel side propulsion shaft. The ring gear is connected to the driven wheel-side propulsion shaft, and the sun gear is connected to the electric motor.

【0007】請求項3に係る発明の構成上の特徴は、請
求項1又は2に記載のアクティブ四輪駆動装置におい
て、前記電気モータをモータとして回転駆動する駆動回
路とジェネレータとして作動させる回生制御回路と、前
記電気モータを駆動回路又は回生制御回路に接続する制
御手段を備えたことである。
According to a third aspect of the present invention, in the active four-wheel drive system according to the first or second aspect, a drive circuit for rotationally driving the electric motor as a motor and a regenerative control circuit for operating as a generator. And a control means for connecting the electric motor to a drive circuit or a regeneration control circuit.

【0008】請求項4に係る発明の構成上の特徴は、請
求項1乃至3のいずれかに記載のアクティブ四輪駆動装
置において、前記電気モータと前記差動機構の差動制御
要素との間に両者間の動力伝達を係脱するクラッチを介
在したことである。
According to a fourth aspect of the present invention, there is provided an active four-wheel drive device according to any one of the first to third aspects, wherein the electric motor and the differential control element of the differential mechanism are arranged between the electric motor and the differential control element. In addition, a clutch for engaging and disengaging the power transmission between the two is interposed.

【0009】請求項5に係る発明の構成上の特徴は、請
求項1乃至4のいずれかに記載のアクティブ四輪駆動装
置において、操舵角及び車速から目標ヨーレートを求め
る目標ヨーレート設定手段と、実際のヨーレートを実測
もしくは測定するヨーレート測定手段と、前記目標ヨー
レートと実測もしくは測定ヨーレートとの差に応じて前
記電気モータを正逆転駆動することである。
According to a fifth aspect of the present invention, there is provided a characteristic yaw rate setting means for obtaining a target yaw rate from a steering angle and a vehicle speed in the active four-wheel drive system according to any one of the first to fourth aspects. And a yaw rate measuring means for actually measuring or measuring the yaw rate, and for driving the electric motor in the normal and reverse directions according to the difference between the target yaw rate and the actually measured or measured yaw rate.

【0010】[0010]

【発明の作用・効果】上記のように構成した請求項1に
係る発明においては、エンジンからの駆動力が駆動ギヤ
に入力されて主動輪側デファレンシアルギヤにより主動
輪側の左右輪に分配され、駆動ギヤと増速ギヤとの噛合
により主動輪側推進軸が回転され、主動輪側推進軸の回
転が差動機構により従動輪側推進軸に伝達され、従動輪
側推進軸の回転が減速ギヤと従動ギヤとの噛合により従
動輪側デファレンシアルギヤに入力されて従動輪側の左
右輪に分配される。差動機構の差動制御要素が電気モー
タにより回転制御されることにより、第1差動要素に連
結された主動輪側推進軸と第2差動要素に連結された従
動輪側推進軸とが相対的に差動回転される。これにより
エンジンの駆動力を主動輪側と従動輪側とに任意に配分
することができる。また、増速ギヤと駆動ギヤとの回転
数比、差動制御要素が静止時の第2差動要素と第1差動
要素との回転数比、及び従動ギヤと減速ギヤとの回転数
比を乗算した積がほぼ1となるギヤ比にしてあるので、
主動輪側と従動輪側とを同回転数で回転駆動するときは
差動機構の差動制御要素延いては電気モータは静止状態
に維持される。
In the invention according to claim 1 configured as described above, the driving force from the engine is input to the drive gear and distributed to the left and right wheels on the main driving wheel side by the main driving wheel side differential gear. The main drive wheel side propulsion shaft is rotated by the engagement of the drive gear and the speed increasing gear, the rotation of the main drive wheel side propulsion shaft is transmitted to the driven wheel side propulsion shaft by the differential mechanism, and the rotation of the driven wheel side propulsion shaft is It is input to the driven wheel side differential gear by meshing of the reduction gear and the driven gear and distributed to the left and right wheels on the driven wheel side. The differential control element of the differential mechanism is rotationally controlled by the electric motor, so that the main driving wheel-side propulsion shaft connected to the first differential element and the driven wheel-side propulsion shaft connected to the second differential element are separated from each other. It is differentially rotated relatively. As a result, the driving force of the engine can be arbitrarily distributed to the main driving wheel side and the driven wheel side. Further, the rotational speed ratio between the speed increasing gear and the drive gear, the rotational speed ratio between the second differential element and the first differential element when the differential control element is stationary, and the rotational speed ratio between the driven gear and the reduction gear. Since the gear ratio is such that the product obtained by multiplying by is approximately 1,
When the main driving wheel side and the driven wheel side are rotationally driven at the same rotational speed, the differential control element of the differential mechanism and thus the electric motor are maintained in a stationary state.

【0011】上記のように構成した請求項2に係る発明
においては、プラネタリギヤのキャリヤとリングギヤを
第1、第2差動要素として主動輪側推進軸及び従動輪側
推進軸に連結し、サンギヤを差動制御要素として電気モ
ータに連結したので、駆動力の主動輪側と従動輪側への
伝達配分を簡単な構成で高精度に制御することができ
る。
In the invention according to claim 2 configured as described above, the carrier and the ring gear of the planetary gear are connected to the main driving wheel side driving shaft and the driven wheel side driving shaft as the first and second differential elements, and the sun gear is connected. Since the differential control element is connected to the electric motor, the transmission distribution of the driving force to the driving wheel side and the driven wheel side can be controlled with high precision with a simple configuration.

【0012】上記のように構成した請求項3に係る発明
においては、電気モータは回生制御回路に接続されるこ
とによりジェネレータとして機能し、第1、第2差動要
素間の回転数の差に応じた回転数で回転してトルクを発
生する。これにより主動輪側と従動輪側との回転数の差
に応じた駆動力を従動輪側に伝達することができる。こ
のとき、ジェネレータのエネルギ回収率を制御すること
により、モータの回転数に対する発生トルクの特性を変
えて、従動輪側への駆動力の伝達を多面的に高次元に制
御することができる。また、ジェネレータとして機能す
る電気モータで発電された電気エネルギによってバッテ
リを充電することも可能である。
In the invention according to claim 3 configured as described above, the electric motor functions as a generator by being connected to the regenerative control circuit, and the difference in rotation speed between the first and second differential elements is A torque is generated by rotating at a corresponding rotation speed. As a result, it is possible to transmit the driving force corresponding to the difference in rotation speed between the main driving wheel side and the driven wheel side to the driven wheel side. At this time, by controlling the energy recovery rate of the generator, it is possible to change the characteristics of the generated torque with respect to the rotation speed of the motor and control the transmission of the driving force to the driven wheel side in a multidimensional manner. It is also possible to charge the battery with electric energy generated by an electric motor that functions as a generator.

【0013】上記のように構成した請求項4に係る発明
においては、故障時に主動輪側もしくは従動輪のいずれ
か一方の左右輪を持ち上げて牽引するとき、電気モータ
と差動機構の差動制御要素との間の動力伝達をクラッチ
を切って遮断できるので、電気モータが高速回転するこ
とを防止できる。
In the invention according to claim 4 configured as described above, when the left and right wheels, which are either the main driving wheel side or the driven wheel, are lifted and pulled when a failure occurs, differential control of the electric motor and the differential mechanism is performed. Power transmission to and from the elements can be disengaged by disengaging the clutch, thus preventing the electric motor from rotating at high speed.

【0014】上記のように構成した請求項5に係る発明
においては、目標ヨーレートと実際のヨーレートとの差
が負値でアンダーステアリングの場合は、後輪側への駆
動力の配分を多くし、差が正値でオーバーステアリング
の場合は、前輪側への駆動力の配分を多くすることによ
り、操舵角と車速に対応して実際の車両の偏向割合を適
切に制御することができる。
In the invention according to claim 5 configured as described above, when the difference between the target yaw rate and the actual yaw rate is a negative value and understeering is performed, the distribution of the driving force to the rear wheels is increased, When the difference is a positive value and over-steering, the distribution of the driving force to the front wheels is increased, so that the actual deflection ratio of the vehicle can be appropriately controlled according to the steering angle and the vehicle speed.

【0015】[0015]

【実施の形態】以下本発明の第1の実施形態に係るアク
ティブ四輪駆動装置をFF車に適用した場合について説明
する。図1において、エンジン10の駆動力は変速機1
1を介して主動輪側デファレンシアルギヤ12のリング
ギヤである駆動ギヤ13に回転伝達される。主動輪側デ
ファレンシアルギヤ12は、FF車では主動輪側である左
右前輪Tfr,Tflに駆動力を分配する。駆動ギヤ13は主
動輪側推進軸15の先端に固定された増速ギヤ14と噛
合してトランスファ増速機構を構成し、主動輪側推進軸
15の後端は差動機構16の第1差動要素17に連結さ
れている。差動機構16の第2差動要素18は従動輪側
推進軸19に連結され、第1及び第2差動要素17,1
8の差動を制御する差動制御要素20は電気モータ21
により正逆回転されるようになっている。即ち、差動機
構であるプラネタリギヤ16の遊星歯車22を支承する
キャリヤ17が第1差動要素として主動輪側推進軸15
の後端に連結され、遊星歯車22と噛合するリングギヤ
18が第2差動要素として従動輪側推進軸19に連結さ
れ、遊星歯車22と噛合するサンギヤ20が差動制御要
素として電気モータ21の出力軸に歯車23,24で回
転連結されている。電気モータ21のトルクをさらに増
幅するために、歯車23,24の間に必要に応じて減速
歯車を追加してもよい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A case where the active four-wheel drive system according to the first embodiment of the present invention is applied to an FF vehicle will be described below. In FIG. 1, the driving force of the engine 10 is the transmission 1
The rotation is transmitted to the drive gear 13, which is a ring gear of the main drive wheel side differential gear 12, via 1. The main driving wheel side differential gear 12 distributes the driving force to the left and right front wheels Tfr, Tfl, which are the main driving wheels in an FF vehicle. The drive gear 13 meshes with the speed increasing gear 14 fixed to the tip of the main driving wheel side propulsion shaft 15 to form a transfer speed increasing mechanism, and the rear end of the main driving wheel side propulsion shaft 15 has a first difference of the differential mechanism 16. It is connected to the moving element 17. The second differential element 18 of the differential mechanism 16 is connected to the driven wheel-side propulsion shaft 19, and the first and second differential elements 17, 1 are connected.
The differential control element 20 for controlling the differential of 8 is an electric motor 21
It is designed to rotate forward and backward. That is, the carrier 17 supporting the planetary gear 22 of the planetary gear 16 which is a differential mechanism serves as the first differential element and serves as the main drive wheel side propulsion shaft 15
A ring gear 18 connected to the rear end of the electric gear 21 and a ring gear 18 meshing with the planetary gear 22 are connected to the driven wheel side propulsion shaft 19 as a second differential element, and a sun gear 20 meshing with the planetary gear 22 of the electric motor 21 as a differential control element. Gears 23 and 24 are rotatably connected to the output shaft. To further amplify the torque of the electric motor 21, a reduction gear may be added between the gears 23 and 24 as needed.

【0016】従動輪側推進軸19の後端に固定された減
速ギヤ25は、従動輪側デファレンシアルギヤ26のリ
ングギヤである従動ギヤ27に噛合されてリヤデフ減速
機構を構成している。従動輪側デファレンシアルギヤ2
6は従動輪側である左右後輪Trr,Trlに駆動力を分配す
る。増速ギヤ14と駆動ギヤ13との回転数比をr1、サ
ンギヤ20が静止時のリングギヤ18とキャリヤ17と
の回転数比をr2、従動ギヤ27と減速ギヤ25との回転
数比をr3とすると、r1とr2とr3を乗じた積が略1となる
ように各ギヤ比が設定されており、車両の直進走行時に
は、モータ21を駆動しない限りサンギヤ20は殆ど回
転しないようになっている。プラネタリギヤ16におい
て、リングギヤ18及びサンギヤ20の歯数をZr,Zsと
すると、サンギヤ20が静止しているときのリングギヤ
18とキャリヤ17との回転数比r2は、(1+Zs/Zr)
となる。リングギヤ18とキャリヤ17との回転数比を
1.4以下と比較的1に近くすることができるので、従
来のトランスファ増速機構、リヤデフ減速機構をそのま
ま使用することができる。また、減速ギヤ25の回転数
は増速されるため減速ギヤ25にかかるトルクは減じら
れ強度的に有利になる。
The reduction gear 25 fixed to the rear end of the driven wheel-side propulsion shaft 19 meshes with the driven gear 27 which is a ring gear of the driven wheel-side differential gear 26 to form a rear differential reduction mechanism. Driven wheel side differential gear 2
6 distributes the driving force to the left and right rear wheels Trr and Trl which are the driven wheels. The rotational speed ratio between the speed increasing gear 14 and the drive gear 13 is r1, the rotational speed ratio between the ring gear 18 and the carrier 17 when the sun gear 20 is stationary is r2, and the rotational speed ratio between the driven gear 27 and the reduction gear 25 is r3. Then, the gear ratios are set so that the product of r1, r2, and r3 becomes approximately 1, and the sun gear 20 hardly rotates unless the motor 21 is driven when the vehicle travels straight. . In the planetary gear 16, if the numbers of teeth of the ring gear 18 and the sun gear 20 are Zr and Zs, the rotation speed ratio r2 between the ring gear 18 and the carrier 17 when the sun gear 20 is stationary is (1 + Zs / Zr).
Becomes Since the rotational speed ratio between the ring gear 18 and the carrier 17 can be made relatively close to 1 at 1.4 or less, the conventional transfer speed increasing mechanism and the rear differential speed reducing mechanism can be used as they are. Further, since the rotation speed of the reduction gear 25 is increased, the torque applied to the reduction gear 25 is reduced, which is advantageous in terms of strength.

【0017】次に、上記第1の実施形態の作動について
説明する。エンジン10からの回転は変速機11を介し
て駆動ギヤ13を回転駆動し、主動輪側デファレンシア
ルギヤ12により左右に分配されて主動輪である左右の
前輪Tfr,Tflを回転駆動する。駆動ギヤ13と増速ギヤ
14との噛合により主動輪側推進軸15が回転され、プ
ラネタリギヤ16のキャリヤ17が回転駆動される。リ
ングギヤ18は、リングギヤ18とキャリヤ17との回
転数比だけ増速されて回転駆動される。リングギヤ18
の回転により従動輪側推進軸19が回転され、減速ギヤ
25と噛合する従動輪側デファレンシアルギヤ26の従
動ギヤ27が回転駆動され、従動輪である左右の後輪Tr
r,Trlが回転駆動される。
Next, the operation of the first embodiment will be described. The rotation from the engine 10 rotationally drives the drive gear 13 via the transmission 11, and is distributed to the left and right by the main driving wheel side differential gear 12 to rotationally drive the left and right front wheels Tfr, Tfl which are the main driving wheels. The main drive wheel side propulsion shaft 15 is rotated by the engagement of the drive gear 13 and the speed increasing gear 14, and the carrier 17 of the planetary gear 16 is rotationally driven. The ring gear 18 is rotationally driven with its speed increased by the rotational speed ratio between the ring gear 18 and the carrier 17. Ring gear 18
The driven wheel side propulsion shaft 19 is rotated by the rotation of the driven wheel 27, the driven gear 27 of the driven wheel side differential gear 26 that meshes with the reduction gear 25 is rotationally driven, and the left and right rear wheels Tr that are the driven wheels are driven.
The r and Trl are driven to rotate.

【0018】以下、説明を簡単にするために、車両は直
進走行し、前輪側及び後輪側にかかる荷重等の条件が同
一と仮定する。電気モータ21が回転を規制されてサン
ギヤ20が静止されている場合、増速ギヤ14と駆動ギ
ヤ13との回転数比r1、リングギヤ18とキャリヤ17
との回転数比 (1+Zs/Zr)及び従動ギヤ27と減速ギ
ヤ25との回転数比r3を乗じた積は略1であるjので、
前輪Tfr,Tflと後輪Trr,Trlが同じ回転数で回転駆動さ
れ、エンジン10からの駆動力が主動輪側と従動輪側に
均等に配分される。モータ21の出力軸は、サンギヤ2
0に歯車23,24により大きく減速されて連結されて
いるので、モータ21の出力軸の静止トルクによってサ
ンギヤ20に作用する反力を受け止めることができる。
For the sake of simplicity, it is assumed that the vehicle runs straight and the conditions such as the load applied to the front wheel side and the rear wheel side are the same. When the rotation of the electric motor 21 is restricted and the sun gear 20 is stationary, the rotation speed ratio r1 between the speed increasing gear 14 and the drive gear 13, the ring gear 18 and the carrier 17
The product of the rotational speed ratio (1 + Zs / Zr) and the rotational speed ratio r3 of the driven gear 27 and the reduction gear 25 is approximately 1.
The front wheels Tfr, Tfl and the rear wheels Trr, Trl are rotationally driven at the same rotation speed, and the driving force from the engine 10 is evenly distributed to the main driving wheel side and the driven wheel side. The output shaft of the motor 21 is the sun gear 2
Since it is connected to 0 by gears 23 and 24 after being greatly decelerated, it is possible to receive the reaction force acting on the sun gear 20 by the static torque of the output shaft of the motor 21.

【0019】主動輪側である前輪Tfr,Tflが変速機11
によりNfrpmで回転駆動されているときに、前輪Tfr,Tf
lに後輪Trr,Trlより駆動力を多く分配する場合、モー
タ21を適宜低速回転数Arpmで正転する。このサンギヤ
20の正回転により、リングギヤ18延いては従動輪側
推進軸19の回転数が、{Nf×r1×(1+Zs/Zr)−A
×Zs/Zr}rpmとなり、従動輪側である後輪Trr,Trlの
回転数が、Nf−A×r3×Zs/Zrrpmとなって、前輪Tfr,T
flよりA×r3×Zs/Zrrpmだけ少なくなる。これにより、
後輪Trr,Trlの路面に対するスリップ率が前輪Tfr,Tfl
より少なくなり、エンジンからの駆動力が前輪Tfr,Tfl
に後輪Trr,Trlより所望割合だけ多く分配される。
The front wheels Tfr and Tfl on the main driving wheel side are the transmission 11
The front wheels Tfr, Tf are rotated by Nf rpm by
When the driving force is distributed more to the rear wheels Trr and Trl than the rear wheels, the motor 21 is properly rotated in the normal direction at a low speed Arpm. Due to the normal rotation of the sun gear 20, the rotation speed of the ring gear 18, that is, the driven wheel-side propulsion shaft 19 is {Nf × r1 × (1 + Zs / Zr) −A.
× Zs / Zr} rpm, and the rotation speed of the rear wheels Trr, Trl on the driven wheel side becomes Nf-A × r3 × Zs / Zrrpm, and the front wheels Tfr, T
Axr3xZs / Zrrpm less than fl. This allows
The slip ratios of the rear wheels Trr and Trl with respect to the road surface are the front wheels Tfr and Tfl.
Less, driving power from the engine is less than front wheels Tfr, Tfl
Is distributed more than the rear wheels Trr and Trl by a desired ratio.

【0020】逆に、後輪Trr,Trlに前輪Tfr,Tflより駆
動力を多く分配する場合、モータ21を適宜低速回転数
Arpmで逆転すると、従動輪側推進軸19の回転数が、
{Nf×r1×(1+Zs/Zr)+A×Zs/Zr}rpmとなり、後
輪Trr,Trlの回転数が、Nf+A×r3×Zs/Zrrpmとなっ
て、前輪Tfr,TflよりA×r3×Zs/Zrrpmだけ多くなる。
これにより、後輪Trr,Trlの路面に対するスリップ率が
前輪Tfr,Tflより多くなり、エンジンからの駆動力が後
輪Trr,Trlに前輪Tfr,Tflより所望割合だけ多く分配さ
れる。
On the contrary, when the driving force is distributed to the rear wheels Trr, Trl more than the front wheels Tfr, Tfl, the motor 21 is appropriately rotated at a low speed.
When reversing at Arpm, the rotation speed of the driven wheel side propulsion shaft 19 becomes
{Nf × r1 × (1 + Zs / Zr) + A × Zs / Zr} rpm, the rear wheel Trr and Trl rotation speed becomes Nf + A × r3 × Zs / Zrrpm, and Axr3 × Zs from the front wheel Tfr and Tfl / Zrrpm increases.
As a result, the slip ratio of the rear wheels Trr, Trl with respect to the road surface becomes larger than that of the front wheels Tfr, Tfl, and the driving force from the engine is distributed to the rear wheels Trr, Trl more than the front wheels Tfr, Tfl by a desired ratio.

【0021】モータ21が自由回転可能にされた場合、
サンギヤ20が反力を受けなくなるので、主動輪側推進
軸15から従動輪側推進軸19への動力伝達経路が遮断
され、後輪Trr,Trlは路面上を転動し、駆動力は全て前
輪Tfr,Tflに分配される。しかし、この場合も後輪Tr
r,Trlと前輪Tfr,Tflとの回転数は略等しいので、モー
タ21は殆ど回転しない。
When the motor 21 is allowed to rotate freely,
Since the sun gear 20 does not receive the reaction force, the power transmission path from the main driving wheel side propulsion shaft 15 to the driven wheel side propulsion shaft 19 is cut off, the rear wheels Trr and Trl roll on the road surface, and all the driving force is applied to the front wheels. It is distributed to Tfr and Tfl. However, in this case as well, the rear wheel Tr
Since the rotational speeds of r, Trl and the front wheels Tfr, Tfl are substantially equal, the motor 21 hardly rotates.

【0022】第2の実施形態では、図2に示すように、
デファレンシアルギヤ30が差動機構として使用されて
いる。即ち、デファレンシアルギヤ30のサイドギヤ3
1,32が主動輪側及び従動輪側推進軸15,19に連
結され、リングギヤ33にモータ21の出力軸が歯車で
回転連結されている。この場合、従動輪側推進軸19は
主動輪側推進軸15の回転方向に対して逆回転するの
で、減速ギヤ25と従動ギヤ27とを第1の実施形態の
場合と左右逆に配置し、後輪が前進方向に回転駆動され
るようにしている。また、主動輪側及び従動輪側推進軸
15,19の回転数は同じになるので、増速ギヤ14と
駆動ギヤ13との回転数比r1、及び従動ギヤ27と減速
ギヤ25との回転数比r3を乗じた積が略1となってい
る。
In the second embodiment, as shown in FIG.
The differential gear 30 is used as a differential mechanism. That is, the side gear 3 of the differential gear 30
1, 32 are connected to the driving wheel side and driven wheel side propulsion shafts 15 and 19, and the output shaft of the motor 21 is rotationally connected to the ring gear 33 by gears. In this case, since the driven wheel-side propulsion shaft 19 rotates in the reverse direction with respect to the rotation direction of the main driving-wheel-side propulsion shaft 15, the reduction gear 25 and the driven gear 27 are arranged left and right as in the case of the first embodiment. The rear wheels are rotationally driven in the forward direction. Further, since the main wheels and the driven wheels 15 and 19 have the same rotation speed, the rotation speed ratio r1 between the speed increasing gear 14 and the drive gear 13 and the rotation speed between the driven gear 27 and the reduction gear 25 are increased. The product of the ratio r3 is approximately 1.

【0023】第3の実施形態では、図3に示すように、
差動機構としてのプラネタリギヤ16のサンギヤ20に
主動輪側推進軸15が接続され、キャリヤ17に従動輪
側推進軸19が接続され、リングギヤ18にモータ21
の出力軸が歯車で回転連結されている。図4に示すよう
に、モータ21にはバッテリ34に接続された駆動・回
生制御システム35が接続され、この駆動・回生制御シ
ステム35は、電気モータ21をモータとして回転駆動
する駆動回路36とジェネレータとして作動させる回生
制御回路37と、モータ21を駆動回路36又は回生制
御回路37に接続する制御手段38を備えている。図5
に示すインバータ39は、バッテリ34と電気モータ2
1に接続され、制御手段38により駆動側に制御される
と駆動回路36として機能し、制動側に制御されると回
生制御回路37として機能する。
In the third embodiment, as shown in FIG.
The main driving wheel side propulsion shaft 15 is connected to the sun gear 20 of the planetary gear 16 as a differential mechanism, the driven wheel side propulsion shaft 19 is connected to the carrier 17, and the motor 21 is connected to the ring gear 18.
The output shaft of is rotatably connected by a gear. As shown in FIG. 4, a drive / regeneration control system 35 connected to a battery 34 is connected to the motor 21, and the drive / regeneration control system 35 includes a drive circuit 36 for rotationally driving the electric motor 21 as a motor and a generator. A regenerative control circuit 37 that operates as described above and a control unit 38 that connects the motor 21 to the drive circuit 36 or the regenerative control circuit 37 are provided. Figure 5
The inverter 39 shown in FIG.
When it is connected to No. 1 and is controlled to the driving side by the control means 38, it functions as the driving circuit 36, and when controlled to the braking side, it functions as the regenerative control circuit 37.

【0024】第3の実施形態の場合、モータ21が回転
を規制されてリングギヤ18が静止されている場合、増
速ギヤ14と駆動ギヤ13との回転数比r1、リングギヤ
18が静止時のキャリヤ17とサンギヤ20との回転数
比 Zs/(Zs+Zr)、及び従動ギヤ27と減速ギヤ25と
の回転数比r3を乗じた積は略1であるので、前輪Tfr,T
flと後輪Trr,Trlが同じ回転数で回転駆動され、エンジ
ン10からの駆動力が主動輪側と従動輪側に均等に分配
される。モータ21の出力軸は、リングギヤ18に歯車
23,24により大きく減速されて連結されているの
で、リングギヤ18が受ける反力に抗する静止トルクを
発生することができる。
In the case of the third embodiment, when the rotation of the motor 21 is restricted and the ring gear 18 is stationary, the rotation speed ratio r1 between the speed increasing gear 14 and the driving gear 13 is the carrier when the ring gear 18 is stationary. The product obtained by multiplying the rotational speed ratio Zs / (Zs + Zr) of 17 and the sun gear 20 and the rotational speed ratio r3 of the driven gear 27 and the reduction gear 25 is approximately 1, so that the front wheels Tfr, T
The fl and the rear wheels Trr, Trl are rotationally driven at the same rotation speed, and the driving force from the engine 10 is evenly distributed to the main driving wheel side and the driven wheel side. Since the output shaft of the motor 21 is connected to the ring gear 18 by being greatly decelerated by the gears 23 and 24, it is possible to generate a static torque that resists the reaction force received by the ring gear 18.

【0025】電子制御装置(ECU)により図6に示すモ
ータ制御プログラムが制御手段38として所定時間毎に
実行され、前輪Tfr,Tflと後輪Trr,Trlとに伝達される
駆動力の分配割合をアクティブに制御するモードか否か
判定され(ステップ41,42)、アクティブに制御す
る場合、インバータ39が駆動側に制御され駆動回路3
6として機能し(ステップ43)、電子制御装置(EC
U)からの指令に基づいて前輪側に多く分配するときは
電気モータ21が逆転され、後輪側に多く分配するとき
は正転される。
The motor control program shown in FIG. 6 is executed by the electronic control unit (ECU) as the control means 38 at predetermined time intervals, and the distribution ratio of the driving force transmitted to the front wheels Tfr, Tfl and the rear wheels Trr, Trl is calculated. It is determined whether or not the mode is the active control mode (steps 41 and 42), and when the active control is performed, the inverter 39 is controlled to the drive side and the drive circuit 3 is controlled.
6 (step 43), the electronic control unit (EC
When a large amount is distributed to the front wheels based on the command from U), the electric motor 21 is reversely rotated, and when a large amount is distributed to the rear wheels, the electric motor 21 is normally rotated.

【0026】主動輪側と従動輪側との差動状況に応じて
従動輪側に伝達される駆動力を制御する差動制限モード
の場合、インバータ39が制動側に制御され回生制御回
路37として機能し(ステップ44)、前輪Tfr,Tflと
後輪Trr,Trlとの回転差に基づいてモータ21が回転さ
れると、モータ21はジェネレータとして作動し、回転
数に比例して発電してトルクを発生するので、前後輪の
回転差に応じて後輪Trr,Trlに駆動力を伝達する四輪駆
動装置として作動する。このとき、電子制御装置(EC
U)でインバータ39を制御してジェネレータのエネル
ギ回収率をコントロールすることにより、図7に示すよ
うに、モータ21の回転数の増加に対する発生トルクの
増加割合を変えて、後輪Trr,Trlへの駆動力の伝達を多
面的に高次元に制御することができる。なお、モータ2
1の回転数の増加に対する発生トルクの増加割合を大き
くする方が、前後輪の回転数差に対して後輪に分配され
る駆動力の割合が増大する。また、発生トルクをゼロに
すると後輪Trr,Trlへの駆動力の伝達は無くなる。
In the differential limiting mode in which the driving force transmitted to the driven wheels is controlled according to the differential state between the main driving wheel side and the driven wheel side, the inverter 39 is controlled to the braking side and the regenerative control circuit 37 is provided. When the motor 21 is rotated based on the rotation difference between the front wheels Tfr, Tfl and the rear wheels Trr, Trl, the motor 21 operates as a generator to generate power and generate torque in proportion to the rotation speed. Therefore, it operates as a four-wheel drive device that transmits the driving force to the rear wheels Trr and Trl according to the rotation difference between the front and rear wheels. At this time, the electronic control unit (EC
By controlling the inverter 39 with U) to control the energy recovery rate of the generator, as shown in FIG. 7, the increasing rate of the generated torque with respect to the increasing number of rotations of the motor 21 is changed to the rear wheels Trr, Trl. It is possible to control the transmission of the driving force in a multidimensional manner in a high dimension. The motor 2
When the increasing rate of the generated torque with respect to the increase of the rotational speed of 1 is increased, the ratio of the driving force distributed to the rear wheels with respect to the rotational speed difference between the front and rear wheels is increased. When the generated torque is set to zero, the driving force is not transmitted to the rear wheels Trr and Trl.

【0027】主動輪側と従動輪側との差動状況に応じて
従動輪側に伝達される駆動力を制御する差動制限モード
の場合、インバータ39を制動側に制御して回生制御回
路37として機能させる代わりに、コンバータを回生制
御回路37としてモータ21に接続してもよい。これに
より、差動制限モードの場合、モータ21をコンバータ
に接続し、前輪Tfr,Tflと後輪Trr,Trlとの回転差に基
づいてモータ21が回転されたとき、ジェネレータとし
て発電した電気エネルギをバッテリ34に充電する。こ
の場合も、電子制御装置(ECU)でコンバータを制御し
てジェネレータのエネルギ回収率をコントロールするこ
とにより、モータ21の回転数に対する発生トルクの特
性を変えて、後輪Trr,Trlへの駆動力の伝達を制御する
ことができる。図7に示すように、モータ21の回転数
の増加に対する発生トルクの増加割合を大きくする方が
バッテリ34へのエネルギの回収率は増大するととも
に、前後輪の回転数差に対して後輪に分配される駆動力
の割合が増大する。
In the differential limiting mode in which the driving force transmitted to the driven wheels is controlled in accordance with the differential state between the main driving wheel side and the driven wheel side, the regenerative control circuit 37 controls the inverter 39 to the braking side. Instead of functioning as, the converter may be connected to the motor 21 as the regeneration control circuit 37. As a result, in the limited differential mode, the motor 21 is connected to the converter, and when the motor 21 is rotated based on the rotation difference between the front wheels Tfr, Tfl and the rear wheels Trr, Trl, the electric energy generated by the generator is generated. The battery 34 is charged. In this case as well, by controlling the converter with the electronic control unit (ECU) to control the energy recovery rate of the generator, the characteristics of the generated torque with respect to the rotational speed of the motor 21 are changed to drive the rear wheels Trr, Trl. The transmission of can be controlled. As shown in FIG. 7, when the increase rate of the generated torque with respect to the increase of the rotation speed of the motor 21 is increased, the energy recovery rate to the battery 34 is increased, and the rear wheels are subjected to the difference in the rotation speed of the front and rear wheels. The proportion of the driving force distributed is increased.

【0028】第4の実施形態では、図8に示すように、
キャリヤ51に互いに噛合する一対のピニオン52,5
3を回転可能に支承し、一方のピニオン52をサンギヤ
54に噛合し、他方のピニオン53をリングギヤ55に
噛合したダブルプラネタリギヤ50を差動機構とし、キ
ャリヤ51に主動輪側推進軸15を接続し、サンギヤ5
4に従動輪側推進軸19を接続し、リングギヤ55にク
ラッチ56を介して係脱可能に連結されるべベルギヤ5
7にモータ21の出力軸に固定されたべベルギヤ58を
噛合している。モータ21が回転を規制されてリングギ
ヤ55が静止されている場合、増速ギヤ14と駆動ギヤ
13との回転数比r1、サンギヤ52とキャリヤ51との
回転数比(1−Zr/Zs)、及び従動ギヤ27と減速ギヤ
25との回転数比r3を乗じた積は略1であるので、左右
前輪Tfr,Tflと左右後輪Trr,Trlが同じ回転数で回転駆
動され、エンジン10からの駆動力が主動輪側と従動輪
側に均等に分配される。この場合、従動輪側推進軸19
は主動輪側推進軸15の回転方向に対して逆回転するの
で、減速ギヤ25と従動ギヤ27とを第1の実施形態の
場合と左右逆に配置し、後輪が前進方向に回転駆動され
るようになっている。なお、Zs/Zrを1/2にすると、
サンギヤ52とキャリヤ51との回転数比は−1とな
る。モータ21の出力軸は、リングギヤ53にベベルギ
ヤ57,58により大きく減速されて連結されているの
で、リングギヤ53が受ける反力に抗する静止トルクを
発生することができる。
In the fourth embodiment, as shown in FIG.
A pair of pinions 52, 5 meshing with each other on the carrier 51
3 is rotatably supported, one pinion 52 is meshed with a sun gear 54, the other pinion 53 is meshed with a ring gear 55, and a double planetary gear 50 is used as a differential mechanism, and a main drive wheel side propulsion shaft 15 is connected to a carrier 51. , Sun Gear 5
4 the bevel gear 5 connected to the driven wheel side propulsion shaft 19 and detachably connected to the ring gear 55 via the clutch 56.
7, a bevel gear 58 fixed to the output shaft of the motor 21 is meshed. When the rotation of the motor 21 is restricted and the ring gear 55 is stationary, the rotation speed ratio r1 between the speed increasing gear 14 and the drive gear 13, the rotation speed ratio between the sun gear 52 and the carrier 51 (1-Zr / Zs), Since the product obtained by multiplying the rotational speed ratio r3 between the driven gear 27 and the reduction gear 25 is about 1, the left and right front wheels Tfr, Tfl and the left and right rear wheels Trr, Trl are rotationally driven at the same rotational speed, and the engine 10 The driving force is evenly distributed to the main driving wheel side and the driven wheel side. In this case, the driven wheel-side propulsion shaft 19
Is reversely rotated with respect to the rotation direction of the main driving wheel side propulsion shaft 15, the reduction gear 25 and the driven gear 27 are arranged left and right as in the case of the first embodiment, and the rear wheels are rotationally driven in the forward direction. It has become so. If Zs / Zr is halved,
The rotation speed ratio between the sun gear 52 and the carrier 51 is -1. Since the output shaft of the motor 21 is connected to the ring gear 53 by being greatly decelerated by the bevel gears 57 and 58, it is possible to generate a stationary torque that resists the reaction force received by the ring gear 53.

【0029】このように構成されているので、故障時に
主動輪側である左右前輪Tfr,Tflを持ち上げて牽引する
とき、クラッチ56を切ってモータ21とリングギヤ5
5との間の動力伝達を遮断できるので、牽引時にモータ
21が高速回転することがない。なお、クラッチ56は
モータ21の出力軸とベベルギヤ58との間に介在させ
てもよい。
With this configuration, when the left and right front wheels Tfr, Tfl on the main driving wheel side are lifted and towed at the time of failure, the clutch 56 is disengaged and the motor 21 and the ring gear 5 are pulled.
Since the power transmission to and from the motor 5 can be cut off, the motor 21 does not rotate at high speed during towing. The clutch 56 may be interposed between the output shaft of the motor 21 and the bevel gear 58.

【0030】第5の実施形態では、図9に示すように、
第1の実施形態に、操舵角及び車速から目標ヨーレート
Ytを求める目標ヨーレート設定手段60と、実際のヨー
レートYrを実測するヨーレートセンサ61とを設け、目
標ヨーレートYtと実測ヨーレートYrとの差(Yr−Yt)に
応じてモータ21を正転又は逆転駆動する分配制御手段
62を備えている。即ち、図10に示すように、電子制
御装置(ECU)の中央処理装置CPU65には、車速センサ
66、操舵角センサ67、ヨーレートセンサ61、横加
速度センサ68などが接続され、車速、操舵角、ヨーレ
ートなどの実測値が入力される。CPU65には、インバ
ータ39が接続され、電気モータ21の回転方向、速度
の指令値が出力される。なお、ヨーレートの代用として
横加速度を使用してもよい。
In the fifth embodiment, as shown in FIG.
In the first embodiment, the target yaw rate is calculated from the steering angle and the vehicle speed.
A target yaw rate setting means 60 for obtaining Yt and a yaw rate sensor 61 for actually measuring the actual yaw rate Yr are provided, and the motor 21 is driven in the forward or reverse direction according to the difference (Yr-Yt) between the target yaw rate Yt and the actually measured yaw rate Yr. The distribution control means 62 is provided. That is, as shown in FIG. 10, a vehicle speed sensor 66, a steering angle sensor 67, a yaw rate sensor 61, a lateral acceleration sensor 68, etc. are connected to a central processing unit CPU 65 of an electronic control unit (ECU), and the vehicle speed, the steering angle, The measured value such as the yaw rate is input. An inverter 39 is connected to the CPU 65, and command values for the rotation direction and speed of the electric motor 21 are output. Note that lateral acceleration may be used as a substitute for the yaw rate.

【0031】図11のヨーレート制御プログラムが所定
時間毎に実行され、車速センサ66、操舵角センサ67
から車速、操舵角が入力され(ステップ71)、これら
入力値に基づいて図12に示すマップから目標ヨーレー
トYtが設定される(ステップ72)。目標ヨーレートYt
は、式Yt=定数K×車速×操舵角 から算出してもよ
い。目標ヨーレートYtを設定するステップ72によりヨ
ーレート設定手段61が構成されている。ヨーレートセ
ンサ61から実際のヨーレートYrが入力され(ステップ
73)、ヨーレートYrが目標ヨーレートYtに設定値αを
加算した値より大きいか否か判定される(ステップ7
4)。大きくてオーバーステアリング傾向にあるとき
は、前輪側に多く配分するように電気モータ21の回転
方向、速度の指令値が設定され(ステップ75)、イン
バータ39に出力され(ステップ76)、電気モータ2
1が駆動される。この配分制御は、実際のヨーレートYr
から目標ヨーレートを減算した値(Yr−Yt)がゼロにな
るように、周知のPiD制御などで行う。ヨーレートYrが
目標ヨーレートYtに設定値αを加算した値以下の場合、
ヨーレートYrが目標ヨーレートYtから設定値αを減算し
た値より小さいか否か判定される(ステップ77)。小
さくてアンダーステアリング傾向にあるときは、後輪側
に多く配分するように電気モータ21の回転方向、速度
の指令値が設定され(ステップ78)、インバータ39
に出力され(ステップ76)、電気モータ21が駆動さ
れる。ヨーレートYrが目標ヨーレートYtから設定値αを
減算した値より大きく、かつ設定値αを加算した値より
小さい場合、現在の電気モータ21の回転方向、速度の
指令値が維持され(ステップ79)インバータ39に出
力される。
The yaw rate control program shown in FIG. 11 is executed every predetermined time, and the vehicle speed sensor 66 and the steering angle sensor 67 are executed.
The vehicle speed and the steering angle are input from (step 71), and the target yaw rate Yt is set from the map shown in FIG. 12 based on these input values (step 72). Target yaw rate Yt
May be calculated from the formula Yt = constant K × vehicle speed × steering angle. Step 72 for setting the target yaw rate Yt constitutes the yaw rate setting means 61. The actual yaw rate Yr is input from the yaw rate sensor 61 (step 73), and it is determined whether or not the yaw rate Yr is larger than the value obtained by adding the set value α to the target yaw rate Yt (step 7).
4). When it is large and tends to oversteer, the rotation direction and speed command values of the electric motor 21 are set so as to be distributed more to the front wheels (step 75) and output to the inverter 39 (step 76), and the electric motor 2
1 is driven. This distribution control is based on the actual yaw rate Yr.
The known PiD control or the like is performed so that the value (Yr−Yt) obtained by subtracting the target yaw rate from is zero. If the yaw rate Yr is less than or equal to the target yaw rate Yt plus the set value α,
It is determined whether the yaw rate Yr is smaller than the target yaw rate Yt minus the set value α (step 77). If the steering angle is small and there is an understeering tendency, the command values of the rotation direction and speed of the electric motor 21 are set so as to distribute more to the rear wheels (step 78), and the inverter 39
(Step 76), the electric motor 21 is driven. If the yaw rate Yr is larger than the value obtained by subtracting the set value α from the target yaw rate Yt and smaller than the value obtained by adding the set value α, the current rotation direction and speed command values of the electric motor 21 are maintained (step 79). It is output to 39.

【図面の簡単な説明】[Brief description of drawings]

【図1】 第1の実施形態に係るアクティブ四輪駆動装
置を示す図。
FIG. 1 is a diagram showing an active four-wheel drive system according to a first embodiment.

【図2】 第2の実施形態に係るアクティブ四輪駆動装
置を示す図。
FIG. 2 is a diagram showing an active four-wheel drive system according to a second embodiment.

【図3】 第3の実施形態に係るアクティブ四輪駆動装
置を示す図。
FIG. 3 is a diagram showing an active four-wheel drive system according to a third embodiment.

【図4】 モータ21接続された駆動・回生制御システ
ムを示すブロック図。
FIG. 4 is a block diagram showing a drive / regeneration control system connected to a motor 21.

【図5】 インバーを示す図。FIG. 5 is a diagram showing an invar.

【図6】 モータ制御プログラムを示す図。FIG. 6 is a diagram showing a motor control program.

【図7】 モータの回転数の増加に対する発生トルクの
増加割合を示すグラフ。
FIG. 7 is a graph showing an increase rate of generated torque with respect to an increase in motor rotation speed.

【図8】 第4の実施形態に係るアクティブ四輪駆動装
置を示す図。
FIG. 8 is a diagram showing an active four-wheel drive system according to a fourth embodiment.

【図9】 第5の実施形態に係るアクティブ四輪駆動装
置を示す図。
FIG. 9 is a diagram showing an active four-wheel drive system according to a fifth embodiment.

【図10】ヨーレートの制御システムを示すブロック
図。
FIG. 10 is a block diagram showing a yaw rate control system.

【図11】ヨーレート制御プログラムを示す図。FIG. 11 is a diagram showing a yaw rate control program.

【図12】車速、操舵角から目標ヨーレートを求めるマ
ップ
FIG. 12 is a map for obtaining a target yaw rate from vehicle speed and steering angle.

【符号の説明】[Explanation of symbols]

10…エンジン、11…変速機、12…主動輪側デファ
レンシアルギヤ、13…主動ギヤ、14…増速ギヤ、1
5…主動輪側推進軸、16…プラネタリギヤ(差動機
構)、17,51…キャリヤ、18,55…リングギ
ヤ、19…従動輪側推進軸、20,54…サンギヤ、2
1…電気モータ、23,24…歯車、25…減速ギヤ、
26…従動デファレンシアルギヤ、27…従動ギヤ、3
0…デファレンシアルギヤ(差動機構)、31,32…
サイドギヤ、33…リングギヤ、34…バッテリ、35
…駆動・回生制御システム、36…駆動回路、37…回
生制御回路、38…制御手段、39…インバータ、50
…ダブルプラネタリギヤ、52,53…ピニオン、56
…クラッチ、57,58…ベベルギヤ、60…目標ヨー
レート設定手段、61…ヨーレートセンサ、62…分配
制御手段。
10 ... Engine, 11 ... Transmission, 12 ... Main driving wheel side differential gear, 13 ... Main driving gear, 14 ... Speed increasing gear, 1
5 ... Main drive wheel side propulsion shaft, 16 ... Planetary gear (differential mechanism), 17, 51 ... Carrier, 18, 55 ... Ring gear, 19 ... Driven wheel side propulsion shaft, 20, 54 ... Sun gear, 2
1 ... Electric motor, 23, 24 ... Gear, 25 ... Reduction gear,
26 ... driven differential gear, 27 ... driven gear, 3
0 ... Differential gear (differential mechanism), 31, 32 ...
Side gear, 33 ... Ring gear, 34 ... Battery, 35
... Drive / regeneration control system, 36 ... Drive circuit, 37 ... Regeneration control circuit, 38 ... Control means, 39 ... Inverter, 50
… Double planetary gears, 52, 53… Pinion, 56
... clutch, 57, 58 ... bevel gear, 60 ... target yaw rate setting means, 61 ... yaw rate sensor, 62 ... distribution control means.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B60K 17/356 ZYW B60K 17/356 ZYWB 25/00 25/00 C B60L 11/14 B60L 11/14 (72)発明者 大野 明浩 愛知県刈谷市朝日町1丁目1番地 豊田工 機株式会社内 (72)発明者 松本 明夫 愛知県刈谷市朝日町1丁目1番地 豊田工 機株式会社内 Fターム(参考) 3D039 AA04 AB02 AB27 AC39 3D043 AA01 AA06 AB01 AB17 EA02 EA05 EA23 EA39 EA42 EE06 EE08 EE12 EF18 5H115 PA01 PC06 PG04 PI21 PI29 PO17 PU08 PU28 PV09 QN03 SE04 TE02 TE05 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) B60K 17/356 ZYW B60K 17/356 ZYWB 25/00 25/00 C B60L 11/14 B60L 11/14 (72 ) Inventor Akihiro 1-1, Asahi-cho, Kariya city, Aichi Toyota Koki Co., Ltd. (72) Inventor Akio Matsumoto 1-1, Asahi-cho, Kariya city Aichi F-term (reference) 3D039 AA04 AB02 AB27 AC39 3D043 AA01 AA06 AB01 AB17 EA02 EA05 EA23 EA39 EA42 EE06 EE08 EE12 EF18 5H115 PA01 PC06 PG04 PI21 PI29 PO17 PU08 PU28 PV09 QN03 SE04 TE02 TE05

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 エンジンからの駆動力が駆動ギヤに入力
されて主動輪側の左右輪に分配する主動輪側デファレン
シアルギヤと、前記駆動ギヤと噛合する増速ギヤを有す
る主動輪側推進軸と、従動ギヤに入力された動力を従動
輪側の左右輪に分配する従動輪側デファレンシアルギヤ
と、前記従動ギヤと噛合する減速ギヤを有する従動輪側
推進軸とを設け、差動機構の第1、第2差動要素及び差
動制御要素を前記主動輪側推進軸、前記従動輪側推進
軸、電動モータの出力軸に夫々連結し、前記増速ギヤと
駆動ギヤとの回転数比、前記差動制御要素が静止時の前
記第2差動要素と第1差動要素との回転数比、及び従動
ギヤと前記減速ギヤとの回転数比を乗算した積がほぼ1
となるようにしたことを特徴とするアクティブ四輪駆動
装置。
1. A main drive wheel-side propulsion system having a main drive wheel-side differential gear, into which a drive force from an engine is input to a drive gear and distributed to right and left wheels on the main drive wheel side, and a speed-increasing gear meshing with the drive gear. The shaft, a driven wheel side differential gear that distributes the power input to the driven gear to the driven wheel side left and right wheels, and a driven wheel side propulsion shaft that has a reduction gear that meshes with the driven gear are provided, and a differential The first and second differential elements and the differential control element of the mechanism are connected to the main driving wheel side propulsion shaft, the driven wheel side propulsion shaft, and the output shaft of the electric motor, respectively, to rotate the speed increasing gear and the drive gear. The product obtained by multiplying the rotational speed ratio between the second differential element and the first differential element when the differential control element is stationary and the rotational speed ratio between the driven gear and the reduction gear is approximately 1
An active four-wheel drive device characterized by the following.
【請求項2】 前記差動機構がプラネタリギヤであり、
該プラネタリギヤのキャリヤを主動輪側推進軸に連結
し、リングギヤを前記従動輪側推進軸に連結し、サンギ
ヤを前記電気モータに連結したことを特徴とする請求項
1に記載のアクティブ四輪駆動装置。
2. The differential mechanism is a planetary gear,
2. The active four-wheel drive system according to claim 1, wherein a carrier of the planetary gear is connected to a main driving wheel side propulsion shaft, a ring gear is connected to the driven wheel side propulsion shaft, and a sun gear is connected to the electric motor. .
【請求項3】 前記電気モータをモータとして回転駆動
する駆動回路とジェネレータとして作動させる回生制御
回路と、前記電気モータを駆動回路又は回生制御回路に
接続する制御手段を備えたことを特徴とする請求項1又
は2に記載のアクティブ四輪駆動装置。
3. A drive circuit for rotationally driving the electric motor as a motor, a regeneration control circuit for operating the generator as a generator, and control means for connecting the electric motor to the drive circuit or the regeneration control circuit. Item 4. The active four-wheel drive system according to Item 1 or 2.
【請求項4】 前記電気モータと前記差動機構の差動制
御要素との間に両者間の動力伝達を係脱するクラッチを
介在したことを特徴とする請求項1乃至3のいずれかに
記載のアクティブ四輪駆動装置。
4. A clutch for engaging and disengaging power transmission between the electric motor and the differential control element of the differential mechanism is interposed between the electric motor and the differential control element. Active four-wheel drive.
【請求項5】 請求項1乃至4のいずれかに記載のアク
ティブ四輪駆動装置において、操舵角及び車速から目標
ヨーレートを求める目標ヨーレート設定手段と、実際の
ヨーレートを実測もしくは測定するヨーレート測定手段
と、前記目標ヨーレートと実測もしくは測定ヨーレート
との差に応じて前記電気モータを正逆転駆動することを
特徴とするアクティブ四輪駆動装置。
5. The active four-wheel drive system according to claim 1, further comprising a target yaw rate setting means for obtaining a target yaw rate from a steering angle and a vehicle speed, and a yaw rate measuring means for actually measuring or measuring an actual yaw rate. An active four-wheel drive device characterized in that the electric motor is driven in forward and reverse directions according to a difference between the target yaw rate and an actually measured or measured yaw rate.
JP2002144320A 2002-05-20 2002-05-20 Active four-wheel drive device Pending JP2003335143A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002144320A JP2003335143A (en) 2002-05-20 2002-05-20 Active four-wheel drive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002144320A JP2003335143A (en) 2002-05-20 2002-05-20 Active four-wheel drive device

Publications (1)

Publication Number Publication Date
JP2003335143A true JP2003335143A (en) 2003-11-25

Family

ID=29704023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002144320A Pending JP2003335143A (en) 2002-05-20 2002-05-20 Active four-wheel drive device

Country Status (1)

Country Link
JP (1) JP2003335143A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7467678B2 (en) 2004-11-08 2008-12-23 Nissan Motor Co., Ltd. Hybrid four-wheel-drive
JP2009173272A (en) * 2008-01-21 2009-08-06 Ford Global Technologies Llc Powertrain system for hybrid electric vehicle
WO2010070725A1 (en) * 2008-12-15 2010-06-24 トヨタ自動車株式会社 Power transmission device for vehicle
DE102010055222A1 (en) 2009-12-21 2011-07-14 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Regulating device for a left / right driving force adjusting device of a vehicle
JP4929396B2 (en) * 2007-07-06 2012-05-09 ドクター エンジニール ハー ツェー エフ ポルシェ アクチエンゲゼルシャフト Hybrid car
WO2013172258A1 (en) * 2012-05-15 2013-11-21 Gkn ドライブライン ジャパン株式会社 Automobile powertrain
CN109264362A (en) * 2018-09-08 2019-01-25 芜湖全程智能科技有限公司 A kind of charging equipment for cylindrical parts feeding
JPWO2020031313A1 (en) * 2018-08-09 2021-08-19 株式会社ユニバンス Power transmission device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7467678B2 (en) 2004-11-08 2008-12-23 Nissan Motor Co., Ltd. Hybrid four-wheel-drive
JP4929396B2 (en) * 2007-07-06 2012-05-09 ドクター エンジニール ハー ツェー エフ ポルシェ アクチエンゲゼルシャフト Hybrid car
JP2009173272A (en) * 2008-01-21 2009-08-06 Ford Global Technologies Llc Powertrain system for hybrid electric vehicle
US8535189B2 (en) 2008-12-15 2013-09-17 Toyota Jidosha Kabushiki Kaisha Vehicle power transmission device
WO2010070725A1 (en) * 2008-12-15 2010-06-24 トヨタ自動車株式会社 Power transmission device for vehicle
CN102245419A (en) * 2008-12-15 2011-11-16 丰田自动车株式会社 Power transmission device for vehicle
DE102010055222A1 (en) 2009-12-21 2011-07-14 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Regulating device for a left / right driving force adjusting device of a vehicle
WO2013172258A1 (en) * 2012-05-15 2013-11-21 Gkn ドライブライン ジャパン株式会社 Automobile powertrain
JP2013237338A (en) * 2012-05-15 2013-11-28 Gkn Driveline Japan Ltd Driving system device for automobile
US9352647B2 (en) 2012-05-15 2016-05-31 GKN Driveline Japan Ltd. Drivetrain for a vehicle
CN104284795B (en) * 2012-05-15 2018-04-27 吉凯恩传动系统日本株式会社 Automobile driving system
US10052949B2 (en) 2012-05-15 2018-08-21 GKN Driveline Japan Ltd. Drivetrain control method and system
JPWO2020031313A1 (en) * 2018-08-09 2021-08-19 株式会社ユニバンス Power transmission device
JP7190492B2 (en) 2018-08-09 2022-12-15 株式会社ユニバンス power transmission device
CN109264362A (en) * 2018-09-08 2019-01-25 芜湖全程智能科技有限公司 A kind of charging equipment for cylindrical parts feeding

Similar Documents

Publication Publication Date Title
US7651426B2 (en) Differential torque generator
US6945347B2 (en) Drive power controller for hybrid vehicle
JP3138799B2 (en) Connection device between left and right wheels of vehicle
JP3261673B2 (en) Vehicle start assist device
JP4460145B2 (en) Control device for in-wheel transmission in electric vehicle
US7957870B2 (en) Torque distribution system for a vehicle
US10801598B2 (en) Hybrid axle drive with torque vectoring
JPH01269745A (en) Power transmission
JPH0616061A (en) Four wheel drive control device
JP2011133110A (en) Right and left wheel drive gear, front and rear wheel drive gear, and method for controlling the same
JP3340038B2 (en) Left and right wheel driving force distribution device
JP2003335143A (en) Active four-wheel drive device
JP2007154966A (en) Vehicular driving force distribution device
WO2003066363A1 (en) Vihicle transmission system
JP2009286159A (en) Vehicle control device
JP2008089075A (en) Driving force distributing device for vehicle
US7357747B2 (en) Apparatus for differential power distribution
JP2007232198A (en) Driving force distributing device
JP2005351471A (en) Differential gear, front and rear wheel drive device using the differential gear, and control method for the front and rear wheel drive device
JP3978569B2 (en) Driving force distribution device for vehicle
WO2008146137A1 (en) Torque transfer device and system
JP2007232197A (en) Driving force distributing device
JP2008162493A (en) Drive unit
JP3683404B2 (en) Electric drive device for vehicle
JPH1191383A (en) Turn assisting device for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040804

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071030