JP2003333899A - Method for controlling induction motor - Google Patents

Method for controlling induction motor

Info

Publication number
JP2003333899A
JP2003333899A JP2002140244A JP2002140244A JP2003333899A JP 2003333899 A JP2003333899 A JP 2003333899A JP 2002140244 A JP2002140244 A JP 2002140244A JP 2002140244 A JP2002140244 A JP 2002140244A JP 2003333899 A JP2003333899 A JP 2003333899A
Authority
JP
Japan
Prior art keywords
angular frequency
induction motor
value
command value
frequency command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002140244A
Other languages
Japanese (ja)
Inventor
Yoshikazu Ichinaka
良和 市中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2002140244A priority Critical patent/JP2003333899A/en
Publication of JP2003333899A publication Critical patent/JP2003333899A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To stabilize a variable speed control operation near the zero speed of an induction motor for vector-controlling by a speed sensor. <P>SOLUTION: A method for controlling the induction motor comprises steps of: inserting a lower limit setting means 31 to a path from a conventional primary angle frequency command arithmetic means 17 to an integrator 13 and a subtracter 20; and providing a lower limit value based on values of the rotation angle frequency command value ωR* and the slip-angle frequency ωS of the motor 2 to a primary angle frequency command value ω<SB>1</SB>* of the motor 2 by the means 31, and hence eliminating reverse drive near the zero of the primary angle frequency of the motor 2. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、PWMインバー
タにより駆動される誘導電動機を速度センサレスでベク
トル制御する誘導電動機の制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling an induction motor driven by a PWM inverter, which is vector-controlled without a speed sensor.

【0002】[0002]

【従来の技術】図2は、PWMインバータにより駆動さ
れる誘導電動機を速度センサレスでベクトル制御する誘
導電動機の制御方法の従来例を示すブロック構成図であ
る。
2. Description of the Related Art FIG. 2 is a block diagram showing a conventional example of a method for controlling an induction motor driven by a PWM inverter, which performs vector control without a speed sensor.

【0003】図2において、1は半導体電力変換回路か
らなり、後述の3相の出力電圧指令値vU *,vV *,vW *
それぞれをPWM演算した正弦波状の3相電圧を出力す
るPWMインバータ、2はPWMインバータ1により駆
動される誘導電動機、3はPWMインバータ1から流れ
る誘導電動機2の1次電流iU ,iV ,iW を検出する
電流検出器、4は誘導電動機2の1次電圧vU ,vV
W を検出する電圧検出器、10はPWMインバータ1
を介して誘導電動機2を図に示すように速度センサレス
でベクトル制御する制御装置である。
In FIG. 2, reference numeral 1 denotes a semiconductor power conversion circuit, and three-phase output voltage command values v U * , v V * , v W * which will be described later .
A PWM inverter that outputs a sinusoidal three-phase voltage obtained by performing a PWM operation on each of them, 2 is an induction motor driven by the PWM inverter 1, and 3 is a primary current i U , i V , i of the induction motor 2 that flows from the PWM inverter 1. A current detector for detecting W , 4 are primary voltages v U , v V of the induction motor 2,
A voltage detector for detecting v W , 10 is a PWM inverter 1
Is a control device for vector-controlling the induction motor 2 via a speed sensorless via the.

【0004】この制御装置10は3相2相変換手段1
1、座標変換手段12、積分器13、3相2相変換手段
14、座標変換手段15、誘起電圧演算手段16、1次
角周波数指令演算手段17、磁束推定手段18、すべり
角周波数演算器19、減算器20、速度調節器21、磁
束調節器22、電流調節器23、座標変換手段24、2
相3相変換手段25から構成されている。
This control device 10 has a three-phase / two-phase conversion means 1
1, coordinate conversion means 12, integrator 13, three-phase / two-phase conversion means 14, coordinate conversion means 15, induced voltage calculation means 16, primary angular frequency command calculation means 17, magnetic flux estimation means 18, slip angular frequency calculation means 19 , Subtractor 20, speed controller 21, magnetic flux controller 22, current controller 23, coordinate conversion means 24, 2.
The phase-to-phase conversion means 25 is included.

【0005】以下に、図1に示した制御装置10を構成
する各ブロックの動作を説明する。
The operation of each block constituting the control device 10 shown in FIG. 1 will be described below.

【0006】電流検出器3で検出した誘導電動機2の1
次電流iU ,iV ,iW は3相2相変換手段11により
固定座標上の2相量iα,iβに変換され、さらに座標
変換手段12により後述の1次角周波数指令値ω1 *を積
分器13での時間積分により得られる誘導電動機2の位
相角指令値θ* に基づいた磁化軸を基準とする回転座標
上の2相量としてのiM (磁化軸成分電流)と、これに
直行するiT (トルク軸成分電流)に変換される。
1 of the induction motor 2 detected by the current detector 3
The secondary currents i U , i V , and i W are converted into two-phase quantities iα and iβ on the fixed coordinates by the three-phase / two-phase conversion means 11, and further, the coordinate conversion means 12 described below has a primary angular frequency command value ω 1 *. I M (magnetization axis component current) as a two-phase quantity on the rotation coordinate based on the magnetization axis based on the phase angle command value θ * of the induction motor 2 obtained by time integration in the integrator 13, and Is converted to i T (torque axis component current).

【0007】電圧検出器4で検出した誘導電動機2の1
次電圧vU ,vV ,vW は3相2相変換手段14により
固定座標上の2相量vα,vβに変換され、さらに座標
変換手段15により前記磁化軸を基準とする回転座標上
のvT (トルク軸成分電圧)に変換される。
1 of the induction motor 2 detected by the voltage detector 4
The next voltages v U , v V , v W are converted into two-phase quantities vα, vβ on the fixed coordinates by the three-phase / two-phase conversion means 14, and further, by the coordinate conversion means 15 on the rotation coordinates with the magnetization axis as a reference. v T (torque axis component voltage).

【0008】誘起電圧演算手段16では上述のiM ,i
T ,vT ,ω1 *を入力して、下記式(1)に示す誘起電
圧のトルク軸成分eT を導出している。
In the induced voltage calculation means 16, the above-mentioned i M , i
By inputting T , v T and ω 1 * , the torque axis component e T of the induced voltage shown in the following formula (1) is derived.

【0009】[0009]

【数1】 eT=vT−R1・iT−Lσ(di/dt)iT−jω1 *・Lσ・iM …(1) 但し、R1 は誘導電動機2の1次抵抗、Lσは誘導電動
機2の漏れインダクタンス、jは虚数単位である。
[Number 1] e T = v T -R 1 · i T -Lσ (di / dt) i T -jω 1 * · Lσ · i M ... (1) However, R 1 is the primary resistance of the induction motor 2, Lσ is the leakage inductance of the induction motor 2, and j is an imaginary unit.

【0010】1次角周波数指令演算手段17では、下記
式(2)に従って1次角周波数指令値ω1 *を演算してい
る。
The primary angular frequency command computing means 17 computes the primary angular frequency command value ω 1 * according to the following equation (2).

【0011】[0011]

【数2】ω1 *=eT/φ# …(2) 上記式(2)における誘導電動機2の磁束推定値φ
# は、磁束推定手段18により、下記式(3)に基づい
て導出している。
[Equation 2] ω 1 * = e T / φ # (2) Estimated magnetic flux value φ of the induction motor 2 in the above equation (2)
# Is derived by the magnetic flux estimating means 18 based on the following equation (3).

【0012】[0012]

【数3】φ#=eT/ω1 * …(3) すべり角周波数演算器19では上述のiT ,φ# を入力
して、下記式(4)に示す誘導電動機2のすべり周波数
ωS を導出している。
## EQU3 ## φ # = e T / ω 1 * (3) The slip angular frequency calculator 19 inputs the above-mentioned i T , φ #, and the slip frequency ω of the induction motor 2 shown in the following formula (4) S is derived.

【0013】[0013]

【数4】ωS=R2・iT/φ# …(4) 但し、R2 は誘導電動機2の2次抵抗である。Ω S = R 2 · i T / φ # (4) where R 2 is the secondary resistance of the induction motor 2.

【0014】誘導電動機2の回転角周波数推定値ω
R #は、減算器20において1次角周波数指令値ω1 *から
すべり角周波数ωS の値を減算することにより導出して
いる。
Rotational angular frequency estimated value ω of induction motor 2
R # is derived by subtracting the value of the slip angular frequency ω S from the primary angular frequency command value ω 1 * in the subtractor 20.

【0015】速度調節器21では指令される誘導電動機
2の回転角周波数指令値ωR *と前記回転角周波数推定値
ωR #との偏差を零にする調節演算を行い、この演算結果
をトルク軸成分電流指令値iT *として出力している。
The speed adjuster 21 performs an adjustment operation to make the deviation between the commanded rotational angular frequency command value ω R * of the induction motor 2 and the rotational angular frequency estimated value ω R # zero, and the calculated result is the torque. It is output as the axial component current command value i T * .

【0016】磁束調節器22では指令される誘導電動機
2の磁束指令値φ*と前記磁束推定値φ#との偏差を零に
する調節演算を行い、この演算結果を磁化軸成分電流指
令値iM *として出力している。
The magnetic flux controller 22 performs an adjustment calculation to make the deviation between the commanded magnetic flux command value φ * of the induction motor 2 and the estimated magnetic flux value φ # zero, and the calculation result is used as the magnetization axis component current command value i. It is output as M * .

【0017】電流調節器23においては前記磁化軸成分
電流指令値iM *と磁化軸成分電流i M の値との偏差を零
にする調節演算を行い、この演算結果を磁化軸電圧指令
値v M *として出力すると共に、前記トルク軸成分電流指
令値iT *とトルク軸成分電流iT の値との偏差を零にす
る調節演算を行い、この演算結果をトルク軸電圧指令値
T *として出力している。
In the current controller 23, the magnetization axis component is
Current command value iM *And magnetization axis component current i MDeviation from the value of
Adjustment calculation, and the calculation result is the magnetization axis voltage command.
Value v M *As the torque axis component current finger
I iT *And torque axis component current iTThe deviation from the value of
Adjustment calculation, and the calculated result is the torque axis voltage command value.
vT *Is output as.

【0018】前記磁化軸を基準とする回転座標上の磁化
軸電圧指令値vM *およびトルク軸電圧指令値vT *を、座
標変換手段24により固定座標上の2相の電圧指令値v
αおよびvβに変換し、さらにこれらは2相3相変換手
段25を介することによりPWMインバータ1への3相
の出力電圧指令値vU *,vV *,vW *それぞれに変換して
いる。
The magnetizing axis voltage command value v M * and the torque axis voltage command value v T * on the rotating coordinates with the magnetization axis as a reference are converted by the coordinate converting means 24 into two-phase voltage command values v on the fixed coordinates.
was converted to α and v?, further it was transformed by passing through the two-to-three phase conversion unit 25 outputs the voltage command values of three phases to the PWM inverter 1 v U *, v V * , v W * , respectively .

【0019】[0019]

【発明が解決しようとする課題】図2に示した速度セン
サレスのベクトル制御に基づく従来の制御方法では、P
WMインバータ1から出力する電圧、すなわち誘導電動
機2の1次電圧をフィードバックして誘導電動機2の1
次角周波数指令値ω1 *および回転角周波数推定値ωR #
導出し、これらを用いて誘導電動機2を可変速制御して
いるが、このとき、前記1次電圧を検出する電圧検出器
4はそのオフセットやノイズの影響により、特に微小1
次電圧領域での検出値には誤差が多く含まれており、こ
の誤差に起因して誘導電動機2の回転角周波数が零近辺
の低速領域での導出された前記1次角周波数指令値ω1 *
および回転角周波数推定値ωR #の誤差も大きくなり、そ
の結果、前記低速領域での誘導電動機2の可変速制御動
作が不安定になり、特に誘導電動機2の起動時におい
て、導出された前記1次角周波数指令値ω1 *が誘導電動
機2の回転角周波数指令値ωR *に基づく回転方向とは逆
方向の値となることがあり、この値により誘導電動機2
を一旦前記逆方向に駆動させてしまう恐れがあった。
In the conventional control method based on the speed sensorless vector control shown in FIG.
The voltage output from the WM inverter 1, that is, the primary voltage of the induction motor 2 is fed back to set the induction motor 2 to 1
A secondary angular frequency command value ω 1 * and a rotational angular frequency estimated value ω R # are derived, and the induction motor 2 is controlled at a variable speed by using these, and at this time, a voltage detector that detects the primary voltage is used. 4 is very small due to the offset and noise.
A large amount of error is included in the detected value in the secondary voltage region, and due to this error, the derived primary angular frequency command value ω 1 in the low speed region where the rotational angular frequency of the induction motor 2 is near zero. *
Also, the error of the rotational angular frequency estimated value ω R # becomes large, and as a result, the variable speed control operation of the induction motor 2 in the low speed region becomes unstable, and especially when the induction motor 2 is started, The primary angular frequency command value ω 1 * may be a value in the direction opposite to the rotation direction based on the rotational angular frequency command value ω R * of the induction motor 2, and this value causes the induction motor 2 to rotate.
There is a risk that the motor may be once driven in the opposite direction.

【0020】この発明の目的は、PWMインバータによ
り駆動される誘導電動機の起動時の上記問題点を解消す
る誘導電動機の制御方法を提供することにある。
An object of the present invention is to provide a method of controlling an induction motor which solves the above problems when starting an induction motor driven by a PWM inverter.

【0021】[0021]

【課題を解決するための手段】この第1の発明は、PW
Mインバータにより駆動される誘導電動機の1次電流を
座標変換してなる該電動機の磁界に平行な座標軸(M
軸)成分電流と、このM軸に直交する座標軸(T軸)成
分電流とに基づくベクトル制御によって該電動機を可変
速制御する誘導電動機の制御方法において、前記T軸成
分電流の値がその指令値に一致するように前記誘導電動
機に与える1次角周波数指令値を制御する際に、この1
次角周波数指令値に該電動機の回転角周波数指令値とす
べり角周波数の値とに基づく下限値を設けたことを特徴
とする。
The first invention is a PW.
A coordinate axis parallel to the magnetic field of the electric motor (M
Axis) component current and a vector control based on a coordinate axis (T axis) component current orthogonal to the M axis, the method of controlling an induction motor for variable speed control of the electric motor, wherein the value of the T axis component current is the command value. When the primary angular frequency command value given to the induction motor is controlled so that
The next angular frequency command value is provided with a lower limit value based on the rotational angular frequency command value of the electric motor and the value of the slip angular frequency.

【0022】また第2の発明は前記第1の発明の誘導電
動機の制御方法において、前記誘導電動機の回転角周波
数指令値が正極性で、且つ該電動機の1次角周波数指令
値が該電動機のすべり角周波数の値より小さいときに
は、このすべり角周波数の値を新たな1次角周波数指令
値とし、前記誘導電動機の回転角周波数指令値が負極性
で、且つ該電動機の1次角周波数指令値が該電動機のす
べり角周波数の値より大きいときには、このすべり角周
波数の値を新たな1次角周波数指令値としたことを特徴
とする。
A second aspect of the present invention is the induction motor control method according to the first aspect, wherein the rotational angular frequency command value of the induction motor is positive and the primary angular frequency command value of the electric motor is the same as that of the electric motor. When it is smaller than the value of the slip angular frequency, the value of the slip angular frequency is set as a new primary angular frequency command value, the rotational angular frequency command value of the induction motor has a negative polarity, and the primary angular frequency command value of the electric motor. Is larger than the value of the slip angular frequency of the electric motor, the value of the slip angular frequency is set as a new primary angular frequency command value.

【0023】この発明によれば、PWMインバータによ
り駆動される誘導電動機の1次角周波数指令値に該電動
機の回転角周波数指令値とすべり角周波数の値とに基づ
く下限値を設けることにより、後述の如く、前記誘導電
動機の回転角周波数が零近辺の低速領域での不安定な可
変速制御動作を解消することができる。
According to the present invention, the lower limit value based on the rotation angular frequency command value of the induction motor and the slip angular frequency value is provided to the primary angular frequency command value of the induction motor driven by the PWM inverter, so that it will be described later. As described above, it is possible to eliminate the unstable variable speed control operation in the low speed region where the rotational angular frequency of the induction motor is near zero.

【0024】[0024]

【発明の実施の形態】図1は、この発明の誘導電動機の
制御方法の実施の形態を示すブロック構成図であり、図
2の従来例構成と同一機能を有するものには同一符号を
付して、ここではその説明を省略する。
FIG. 1 is a block diagram showing an embodiment of a method for controlling an induction motor according to the present invention. Components having the same functions as those of the conventional example configuration shown in FIG. Therefore, the description is omitted here.

【0025】すなわち図1に示したブロック構成はPW
Mインバータ1と誘導電動機2と電流検出器4と電圧検
出器5と制御装置30とからなり、この制御装置30に
は従来例構成と同機能の3相2相変換手段11、座標変
換手段12、積分器13、3相2相変換手段14、座標
変換手段15、誘起電圧演算手段16、1次角周波数指
令演算手段17、磁束推定手段18、すべり角周波数演
算器19、減算器20、速度調節器21、磁束調節器2
2、電流調節器23、座標変換手段24、2相3相変換
手段25の他に、図示の如く1次角周波数指令演算手段
17から積分器13および減算器20への経路に下限設
定手段31が挿設されている。
That is, the block configuration shown in FIG.
It is composed of an M inverter 1, an induction motor 2, a current detector 4, a voltage detector 5, and a control device 30. The control device 30 has a three-phase / two-phase conversion means 11 and a coordinate conversion means 12 having the same functions as those of the conventional configuration. , Integrator 13, three-phase / two-phase conversion unit 14, coordinate conversion unit 15, induced voltage calculation unit 16, primary angular frequency command calculation unit 17, magnetic flux estimation unit 18, slip angular frequency calculation unit 19, subtractor 20, speed Controller 21, magnetic flux controller 2
2, the current controller 23, the coordinate conversion means 24, the two-phase three-phase conversion means 25, the lower limit setting means 31 in the path from the primary angular frequency command calculation means 17 to the integrator 13 and the subtractor 20 as shown in the figure. Has been inserted.

【0026】以下、図1に示した制御装置30に基づく
この発明の誘導電動機の制御方法について、下限設定手
段31の動作を中心に説明する。
Hereinafter, the control method of the induction motor of the present invention based on the control device 30 shown in FIG. 1 will be described focusing on the operation of the lower limit setting means 31.

【0027】先ず、図1に示す制御装置30を介して指
令される誘導電動機2の回転角周波数指令値ωR *が正極
性(ωR *>0)で、且つ1次角指令値演算手段17によ
り導出された誘導電動機2の1次角周波数指令値ω1 *
すべり角周波数演算器19で導出された誘導電動機2の
すべり角周波数ωS の値より小さいとき(ω1 *<ωS
には、下限設定手段31は前記ωS の値を新たな1次角
周波数指令値として出力することにより、この新たな1
次角周波数指令値ω1 *は補償するすべり周波数ωS の値
より「+」方向(>ωS )になり、その結果特に誘導電
動機2の起動時において、先述の電圧検出器4での誤差
による影響を解消することとなり、従って、下限設定手
段31で導出された前記1次角周波数指令値ω1 *が誘導
電動機2の回転角周波数指令値ωR *に基づく回転方向と
は逆方向の値となることが防止できる。
First, the rotational angular frequency command value ω R * of the induction motor 2 instructed via the control device 30 shown in FIG. 1 has a positive polarity (ω R * > 0), and the primary angle command value computing means. When the primary angular frequency command value ω 1 * of the induction motor 2 derived by 17 is smaller than the value of the slip angular frequency ω S of the induction motor 2 derived by the slip angular frequency calculator 19, (ω 1 *S )
In this case, the lower limit setting means 31 outputs the value of ω S as a new primary angular frequency command value, so that the new 1
The next angular frequency command value ω 1 * is in the “+” direction (> ω S ) from the value of the slip frequency ω S to be compensated, and as a result, especially when the induction motor 2 is started, the error in the voltage detector 4 described above is generated. Therefore, the primary angular frequency command value ω 1 * derived by the lower limit setting means 31 is opposite to the rotation direction based on the rotational angular frequency command value ω R * of the induction motor 2. It can be prevented from becoming a value.

【0028】また、このときには減算器20の演算出力
である誘導電動機2の回転角周波数推定値ωR #も正極性
または零(ωR #≧0)となり、誤って回転方向の逆側
(−側)への推定演算動作を行うことが防止される。
At this time, the rotational angular frequency estimated value ω R # of the induction motor 2 which is the output of the subtracter 20 also becomes positive or zero (ω R # ≧ 0), and is erroneously on the opposite side (-). Side) is prevented from being performed.

【0029】次に、図1に示す制御装置30を介して指
令される誘導電動機2の回転角周波数指令値ωR *が負極
性(ωR *<0)で、且つ1次角指令値演算手段17によ
り導出された誘導電動機2の1次角周波数指令値ω1 *
すべり角周波数演算器19で導出された誘導電動機2の
すべり角周波数ωS の値より大きいとき(ω1 *>ωS
には、下限設定手段31は前記ωS の値を新たな1次角
周波数指令値として出力することにより、この新たな1
次角周波数指令値ω1 *は補償するすべり周波数ωS の値
より「−」方向(<ωS )になり、その結果特に誘導電
動機2の起動時において、先述の電圧検出器4での誤差
による影響を解消することとなり、従って、下限設定手
段31で導出された前記1次角周波数指令値ω1 *が誘導
電動機2の回転角周波数指令値ωR *に基づく回転方向と
は逆方向の値となることが防止できる。
Next, the rotational angular frequency command value ω R * of the induction motor 2 instructed via the control device 30 shown in FIG. 1 has a negative polarity (ω R * <0) and the primary angle command value calculation is performed. When the primary angular frequency command value ω 1 * of the induction motor 2 derived by the means 17 is larger than the slip angular frequency ω S of the induction motor 2 derived by the slip angular frequency calculator 19 (ω 1 * > ω S )
In this case, the lower limit setting means 31 outputs the value of ω S as a new primary angular frequency command value, so that the new 1
The next angular frequency command value ω 1 * is in the “−” direction (<ω S ) from the value of the slip frequency ω S to be compensated, and as a result, especially when the induction motor 2 is started, the error in the voltage detector 4 described above is generated. Therefore, the primary angular frequency command value ω 1 * derived by the lower limit setting means 31 is opposite to the rotation direction based on the rotational angular frequency command value ω R * of the induction motor 2. It can be prevented from becoming a value.

【0030】また、このときには減算器20の演算出力
である誘導電動機2の回転角周波数推定値ωR #も、負極
性または零(ωR #≦0)となり、誤って回転方向の逆側
(+側)への推定演算動作を行うことが防止される。
Further, at this time, the rotation angular frequency estimated value ω R # of the induction motor 2 which is the calculation output of the subtractor 20 also becomes negative or zero (ω R # ≤0), and is erroneously detected on the opposite side ( The estimation calculation operation to the (+ side) is prevented.

【0031】[0031]

【発明の効果】この発明によれば、誘導電動機の1次電
圧を用いた該電動機の速度センサレスでのベクトル制御
において、該電動機の1次角周波数指令値に下限リミッ
タを設けることにより、該電動機の1次電圧が小さく、
その検出誤差が問題となる低速領域での可変速制御動作
を安定に行わせることができる。
According to the present invention, in the vector control without using the speed sensor of the induction motor using the primary voltage of the induction motor, by providing a lower limit limiter to the primary angular frequency command value of the motor, the motor is controlled. Primary voltage is small,
It is possible to stably perform the variable speed control operation in the low speed region where the detection error becomes a problem.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施の形態を示すブロック構成図FIG. 1 is a block configuration diagram showing an embodiment of the present invention.

【図2】従来例を示すブロック構成図FIG. 2 is a block diagram showing a conventional example.

【符号の説明】[Explanation of symbols]

1…PWMインバータ、2…誘導電動機、3…電流検出
器、4…電圧検出器、10…制御装置、11…3相2相
変換手段、12…座標変換手段、13…積分器、14…
3相2相変換手段、15…座標変換手段、16…誘起電
圧演算手段、17…1次角周波数指令演算手段、18…
磁束推定手段、19…すべり角周波数演算器、20…減
算器、21…速度調節器、22…磁束調節器、23…電
流調節器、24…座標変換手段、25…2相3相変換手
段、30…制御装置、31…下限設定手段。
DESCRIPTION OF SYMBOLS 1 ... PWM inverter, 2 ... Induction motor, 3 ... Current detector, 4 ... Voltage detector, 10 ... Control device, 11 ... Three-phase / two-phase conversion means, 12 ... Coordinate conversion means, 13 ... Integrator, 14 ...
Three-phase / two-phase conversion means, 15 ... Coordinate conversion means, 16 ... Induced voltage calculation means, 17 ... Primary angular frequency command calculation means, 18 ...
Magnetic flux estimation means, 19 ... Slip angular frequency calculator, 20 ... Subtractor, 21 ... Velocity controller, 22 ... Flux controller, 23 ... Current controller, 24 ... Coordinate conversion means, 25 ... Two-phase / three-phase conversion means, 30 ... Control device, 31 ... Lower limit setting means.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 PWMインバータにより駆動される誘導
電動機の1次電流を座標変換してなる該電動機の磁界に
平行な座標軸(M軸)成分電流と、このM軸に直交する
座標軸(T軸)成分電流とに基づくベクトル制御によっ
て該電動機を可変速制御する誘導電動機の制御方法にお
いて、 前記T軸成分電流の値がその指令値に一致するように前
記誘導電動機に与える1次角周波数指令値を制御する際
に、この1次角周波数指令値に該電動機の回転角周波数
指令値とすべり角周波数の値とに基づく下限値を設けた
ことを特徴とする誘導電動機の制御方法。
1. A coordinate axis (M-axis) component current parallel to a magnetic field of the electric motor obtained by coordinate-converting a primary current of an induction motor driven by a PWM inverter, and a coordinate axis (T-axis) orthogonal to the M-axis. In a method for controlling an induction motor in which a variable speed control of the electric motor is performed by vector control based on a component current, a primary angular frequency command value to be given to the induction motor so that the value of the T-axis component current matches the command value. A control method for an induction motor, wherein a lower limit value based on a rotation angular frequency command value of the electric motor and a value of a slip angular frequency is provided to the primary angular frequency command value during control.
【請求項2】 請求項1に記載の誘導電動機の制御方法
において、 前記誘導電動機の回転角周波数指令値が正極性で、且つ
該電動機の1次角周波数指令値が該電動機のすべり角周
波数の値より小さいときには、このすべり角周波数の値
を新たな1次角周波数指令値とし、 前記誘導電動機の回転角周波数指令値が負極性で、且つ
該電動機の1次角周波数指令値が該電動機のすべり角周
波数の値より大きいときには、このすべり角周波数の値
を新たな1次角周波数指令値としたことを特徴とする誘
導電動機の制御方法。
2. The method for controlling an induction motor according to claim 1, wherein the rotational angular frequency command value of the induction motor is positive, and the primary angular frequency command value of the electric motor is a slip angular frequency of the electric motor. When the value is smaller than the value, the value of the slip angular frequency is set as a new primary angular frequency command value, the rotational angular frequency command value of the induction motor is negative, and the primary angular frequency command value of the motor is the negative primary angular frequency command value of the electric motor. A method for controlling an induction motor, wherein when the value of the slip angular frequency is larger than the value of the slip angular frequency, the value of the slip angular frequency is set as a new primary angular frequency command value.
JP2002140244A 2002-05-15 2002-05-15 Method for controlling induction motor Pending JP2003333899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002140244A JP2003333899A (en) 2002-05-15 2002-05-15 Method for controlling induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002140244A JP2003333899A (en) 2002-05-15 2002-05-15 Method for controlling induction motor

Publications (1)

Publication Number Publication Date
JP2003333899A true JP2003333899A (en) 2003-11-21

Family

ID=29701171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002140244A Pending JP2003333899A (en) 2002-05-15 2002-05-15 Method for controlling induction motor

Country Status (1)

Country Link
JP (1) JP2003333899A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006121768A (en) * 2004-10-19 2006-05-11 Fuji Electric Fa Components & Systems Co Ltd Variable speed controller of induction motor
JP2006197658A (en) * 2005-01-11 2006-07-27 Toshiba Corp Electric vehicle controller
JP2017038486A (en) * 2015-08-11 2017-02-16 東洋電機製造株式会社 Electric vehicle control device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006121768A (en) * 2004-10-19 2006-05-11 Fuji Electric Fa Components & Systems Co Ltd Variable speed controller of induction motor
JP4715158B2 (en) * 2004-10-19 2011-07-06 富士電機システムズ株式会社 Variable speed control device for induction motor
JP2006197658A (en) * 2005-01-11 2006-07-27 Toshiba Corp Electric vehicle controller
JP2017038486A (en) * 2015-08-11 2017-02-16 東洋電機製造株式会社 Electric vehicle control device

Similar Documents

Publication Publication Date Title
JP5130031B2 (en) Position sensorless control device for permanent magnet motor
TW465171B (en) Apparatus and method for controlling a synchronous motor
JP4067949B2 (en) Motor control device
JP4989075B2 (en) Electric motor drive control device and electric motor drive system
JP4928855B2 (en) Sensorless control device for synchronous machine
JP2007049843A (en) Vector control device for permanent-magnet synchronous motors
JP2003134898A (en) Sensorless controller and control method for synchronous generator
JP2009124811A (en) Control device of permanent magnet type synchronous motor
JP2008187797A (en) Controller for alternating-current rotary machines, and measuring method for electric constant of alternating-current rotary machine using this controller
JP3894286B2 (en) Control device for permanent magnet synchronous motor
CN110769981A (en) Electric tool
JP2006197712A (en) System and method for driving synchronous motor
JP2004032907A (en) Controller for permanent magnet type synchronous motor
JP2000156993A (en) Apparatus and method for control of permanent magnet synchronous machine
JP4590761B2 (en) Control device for permanent magnet type synchronous motor
JP3797508B2 (en) Sensorless speed control method of permanent magnet type synchronous motor and step-out detection method thereof
JP2005012856A (en) Speed sensorless vector controller of induction motor
JP3707659B2 (en) Constant identification method for synchronous motor
JP2009165281A (en) Speed-sensorless vector control device
JP2003333899A (en) Method for controlling induction motor
JP2006158046A (en) Sensorless control method and apparatus of ac electric motor
JP2007135281A (en) Speed sensorless vector control device of induction motor
JP5332305B2 (en) Control device for permanent magnet type synchronous motor
JP2003189673A (en) Motor controller
JP5228435B2 (en) Inverter control device and control method thereof