JP2003331931A - Charged state detecting device for secondary cell - Google Patents

Charged state detecting device for secondary cell

Info

Publication number
JP2003331931A
JP2003331931A JP2002138785A JP2002138785A JP2003331931A JP 2003331931 A JP2003331931 A JP 2003331931A JP 2002138785 A JP2002138785 A JP 2002138785A JP 2002138785 A JP2002138785 A JP 2002138785A JP 2003331931 A JP2003331931 A JP 2003331931A
Authority
JP
Japan
Prior art keywords
secondary battery
state
charge
voltage
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002138785A
Other languages
Japanese (ja)
Other versions
JP4112895B2 (en
Inventor
Shoji Sakai
昭治 堺
Atsushi Hashikawa
淳 橋川
Naohiko Suzuki
尚彦 鈴木
Masayuki Morifuji
雅之 森藤
Hiroshi Nate
洋 名手
Takeshi Sada
岳士 佐田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc, Toyota Motor Corp filed Critical Denso Corp
Priority to JP2002138785A priority Critical patent/JP4112895B2/en
Publication of JP2003331931A publication Critical patent/JP2003331931A/en
Application granted granted Critical
Publication of JP4112895B2 publication Critical patent/JP4112895B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a charged state detecting device for a secondary cell capable of detecting charged state with high accuracy even in the polarized state for charging. <P>SOLUTION: The charged state detecting device for a secondary cell comprises a voltage detection means 50 detecting the voltage V of the secondary cell B charged and discharged under the regulation of a regulator 30 mounted to a vehicle, regulating an alternating current generator 10 and the output voltage of the same, a current detection means 40 detecting the current I of the secondary cell B, a temperature detection means 60 detecting the temperature T of the secondary cell B; and a charge polarization state detection means 70 detecting the degree of influence P on the current-voltage property of the secondary cell B, caused by the polarization of the secondary cell B. When the degree of influence P exceeds a prescribed value, the degree of influence P is compared with a threshold depending on the voltage V, the current I, and the temperature T of the secondary cell, and the charged state of the secondary cell is determined. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、充電中においても
二次電池の充電状態を精度よく検出できる二次電池の充
電状態検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary battery charge state detection device capable of accurately detecting the secondary battery charge state even during charging.

【0002】[0002]

【従来の技術】車両用電池の充電制御では、調整電圧は
電池の充電を効率的に実行させるために電池の定格電圧
12Vよりも高く13.5V〜14.5Vぐらいに設定
されている。この場合、常に電池は過充電気味となって
内燃機関の負担が増大され燃費を悪化させ、かつ電池の
液べりが助長される。そこで電池が出し入れする電流を
検出するために電流センサを追加し、過(満)充電状態
よりも少し下の充電状態で、検出した電流の充放電収支
がゼロとなるように制御するシステムが考案されてい
る。
2. Description of the Related Art In vehicle battery charging control, a regulated voltage is set to about 13.5V to 14.5V, which is higher than a battery rated voltage of 12V, in order to efficiently charge the battery. In this case, the battery is always overcharged, the load on the internal combustion engine is increased, the fuel efficiency is deteriorated, and the liquid leakage of the battery is promoted. Therefore, we devised a system that adds a current sensor to detect the current flowing in and out of the battery, and controls so that the charge / discharge balance of the detected current becomes zero in the charging state slightly below the over (full) charging state. Has been done.

【0003】これらシステムでは、一般に、電池の自己
放電や電流積算誤差などによる充電状態の低下を防ぐた
めに最低電圧ガードが設けられている。充電状態の低下
を検出するための従来技術として、電池使用中に電流デ
ータ、電圧データ、及び電池温度を測定して、これらデ
ータと電池温度毎に予め記憶した放電電流-電圧マップ
とを比較して電池の充電状態を検出する技術が公知とな
っている。この技術は、放電が大半を占める電気自動車
などの充電状態検出装置としては有効である。また、電
池使用中の電流を一定のサンプリング周期で検出して、
検出電流から電池の分極状態を検出する技術として、例
えば特開2000−258514公報においては、電流
の充放電履歴を考慮して算出された分極起電力を利用し
て、予め測定されている起電力と電池の充電状態との関
係を補正する技術が開示されている。この技術によれ
ば、電池の分極起電力の影響が適切に補償されるので、
電池の充電状態を精度よく検出することが可能となる。
In these systems, a minimum voltage guard is generally provided in order to prevent deterioration of the state of charge due to self-discharge of the battery, current integration error, and the like. As a conventional technique for detecting the deterioration of the state of charge, current data, voltage data, and battery temperature are measured while the battery is in use, and these data are compared with a discharge current-voltage map stored in advance for each battery temperature. A technique for detecting the state of charge of a battery has been known. This technology is effective as a state-of-charge detecting device for electric vehicles, etc., which is mostly discharged. Also, the current during battery use is detected at a fixed sampling cycle,
As a technique for detecting the polarization state of a battery from a detected current, for example, in Japanese Unexamined Patent Publication No. 2000-258514, an electromotive force measured in advance is used by using a polarization electromotive force calculated in consideration of current charge / discharge history. There is disclosed a technique for correcting the relationship between the battery charge state and the battery charge state. According to this technique, the influence of the polarization electromotive force of the battery is appropriately compensated,
It is possible to accurately detect the charge state of the battery.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、電気自
動車以外の車両においては、昼間の走行時などの低電気
負荷状態で、電池の放電が上述したような最低電圧ガー
ドにより行われない場合がある。従って、比較的頻繁に
実施される充電時に電池の充電状態(SOC)を検出す
ることは、充電状態が自己放電や暗電流放電で低下した
状態であっても、当該充電状態の低下を検出できる故に
有効である。
However, in vehicles other than electric vehicles, the battery may not be discharged by the above-mentioned minimum voltage guard under a low electric load condition such as during daytime running. Therefore, detecting the state of charge (SOC) of the battery at the time of charging, which is performed relatively frequently, can detect the decrease in the state of charge even if the state of charge is reduced by self-discharge or dark current discharge. Therefore, it is effective.

【0005】また、充電状態が60%程度に維持される
ように充電制御されるハイブリッド車では、電池容量の
低下と判断される充電状態が40%程度であるのに対
し、満充電状態よりも少し下の充電状態で維持されるよ
うに充電制御される車両では、電池容量の低下と判断さ
れる充電状態が50%程度であり、従って、かかる車両
に対しては、比較的高い充電状態における充電状態の変
化を検出するのに適した充電状態検出装置は有用であ
る。
In a hybrid vehicle in which charging is controlled so that the state of charge is maintained at about 60%, the state of charge determined to be low in battery capacity is about 40%, whereas it is more than that at full charge. In a vehicle in which the charging is controlled so as to be maintained at a slightly lower charging state, the state of charge determined to be a decrease in battery capacity is about 50%. A state-of-charge detecting device suitable for detecting a change in state of charge is useful.

【0006】また、充電状態を精度よく検出するために
は、特開2000−2585142記載の技術と同様
に、電池の分極が電流−電圧特性に与える影響を考慮す
る必要がある。一方、充電分極状態においては、分極の
影響が特に大きく、また水素過電圧により電圧が見かけ
上高くなるので、検出した電流−電圧特性の扱いが困難
となる。
Further, in order to detect the state of charge with high accuracy, it is necessary to consider the influence of the polarization of the battery on the current-voltage characteristics, as in the technique described in JP-A-2000-2585142. On the other hand, in the charge polarization state, the influence of polarization is particularly large, and the voltage becomes apparently high due to hydrogen overvoltage, which makes it difficult to handle the detected current-voltage characteristics.

【0007】そこで、本発明は、充電中においても電池
の充電状態を検出でき、充電分極状態においても高精度
に充電状態を検出できる、比較的高い充電状態における
充電状態の変化を検出するのに適した二次電池用電状態
検出装置の提供を目的とする。
Therefore, the present invention is capable of detecting the state of charge of a battery even during charging, and detecting the state of charge with high accuracy even in the state of charge polarization, and for detecting changes in the state of charge at a relatively high state of charge. An object is to provide a suitable electric state detection device for a secondary battery.

【0008】[0008]

【課題を解決するための手段】上記目的は、請求項1に
記載する如く、二次電池の電圧値を検出する電圧検出手
段と、上記二次電池の電流値を検出する電流検出手段と
を含む二次電池用充電状態検出装置であって、上記二次
電池の分極により該二次電池の電流−電圧特性が受ける
影響度合いを検出する分極状態検出手段を更に含み、上
記分極の影響度合いが所定値以上となる充電分極状態で
の上記二次電池の電圧値及び電流値を用いて、上記二次
電池の充電状態を判断することを特徴とする、二次電池
用充電状態検出装置によって達成される。
According to the first aspect of the present invention, there is provided a voltage detecting means for detecting a voltage value of a secondary battery and a current detecting means for detecting a current value of the secondary battery. A secondary battery charge state detection device including, further comprising a polarization state detection means for detecting the degree of influence of the current-voltage characteristics of the secondary battery by the polarization of the secondary battery, the degree of polarization influence. Achieved by a state-of-charge detecting device for a secondary battery, characterized in that the state of charge of the secondary battery is determined by using the voltage value and current value of the secondary battery in a charge polarization state of a predetermined value or more. To be done.

【0009】上記発明によれば、充電中の二次電池の電
圧及び電流を用いて二次電池の充電状態を判断するの
で、放電がほとんど行われない状態であっても、電池の
充電状態の低下を検出することができる。従って、本発
明によれば、昼間の走行時などの低電気負荷状態で二次
電池の放電が行われない場合であっても、自己放電や暗
電流放電による充電状態の低下を検出することができ
る。
According to the above-mentioned invention, the state of charge of the secondary battery is judged by using the voltage and current of the secondary battery being charged, so that the state of charge of the battery can be confirmed even if the battery is hardly discharged. A drop can be detected. Therefore, according to the present invention, even when the secondary battery is not discharged in a low electric load state such as during daytime running, it is possible to detect a decrease in the state of charge due to self-discharge or dark current discharge. it can.

【0010】また、請求項2に記載する如く、請求項1
記載の二次電池用充電状態検出装置において、上記分極
状態検出手段が、上記二次電池の充放電履歴から上記二
次電池の分極の影響度合いを推定することとすると、密
度計、濃度計、比重計等のような複雑な分極状態検出手
段を用いることなく電池の充電分極状態が検出できる。
Further, as described in claim 2, claim 1
In the charge state detection device for a secondary battery according to the description, the polarization state detection means, when estimating the influence degree of polarization of the secondary battery from the charge and discharge history of the secondary battery, a density meter, a densitometer, The charge polarization state of the battery can be detected without using a complicated polarization state detection means such as a hydrometer.

【0011】また、請求項3に記載する如く、請求項1
記載の二次電池用充電状態検出装置において、分極の影
響度合いが所定値以上となる充電分極状態での上記二次
電池の電圧値と、このときの電流値に依存する所定の閾
値とを比較することにより、上記二次電池の充電状態を
判断することとすると、二次電池の充電状態の低下を精
度よく検出することができる。即ち、充電状態が低い二
次電池は、分極の影響度合いが所定値を超えても電圧値
が高くならないという特性を利用することにより、二次
電池の充電状態の低下を精度よく検出することができ
る。このような特性は、特に充電状態が50%以下の二
次電池において顕著に現れるので、充電状態50%以下
を容量低下と判断し、容量低下と判断されない最大の充
電状態が70%程度の充電制御システムにおいて特に有
効となる。尚、電流値に依存する上記閾値は、当該電流
値に対応した、容量低下と判断されない最大の充電状態
における、分極の影響度合いが上記所定値であるとき
の、二次電池の電圧値であってよい。また、この閾値
は、分極の影響度合い及び各充電状態における上記特性
を考慮して、各電流値に対して予め用意されてよい。
Further, as described in claim 3, claim 1
In the state-of-charge detecting device for a secondary battery described above, the voltage value of the secondary battery in a charge polarization state in which the degree of influence of polarization is a predetermined value or more, and a predetermined threshold value depending on the current value at this time are compared. By doing so, if the state of charge of the secondary battery is determined, it is possible to accurately detect a decrease in the state of charge of the secondary battery. That is, a secondary battery with a low state of charge can accurately detect a decrease in the state of charge of the secondary battery by utilizing the characteristic that the voltage value does not increase even when the degree of influence of polarization exceeds a predetermined value. it can. Such characteristics are particularly remarkable in a secondary battery with a state of charge of 50% or less. Therefore, a state of charge of 50% or less is determined to be low capacity, and the maximum state of charge that is not determined to be low is about 70%. It is especially effective in control systems. The threshold value that depends on the current value is the voltage value of the secondary battery when the degree of influence of polarization is the above-mentioned predetermined value in the maximum state of charge that is not judged to be capacity reduction, corresponding to the current value. You may Further, this threshold value may be prepared in advance for each current value in consideration of the degree of influence of polarization and the above characteristics in each charge state.

【0012】また、上記目的は、請求項4に記載する如
く、交流発電機及びこの交流発電機の出力電圧を調整す
るレギュレータを搭載する車両に装備され上記レギュレ
ータの調整のもとに充放電される二次電池の電圧値を検
出する電圧検出手段と、上記二次電池の電流値を検出す
る電流検出手段と、上記二次電池の温度を検出する温度
検出手段とを含む二次電池用充電状態検出装置であっ
て、上記二次電池の分極により該二次電池の電流−電圧
特性が受ける影響度合いを検出する分極状態検出手段を
更に含み、上記二次電池の分極の影響度合いが所定値以
上となる充電分極状態での上記二次電池の電圧値と、こ
のときの電流値及び温度に依存する所定の閾値とを比較
することにより、上記二次電池の充電状態を判断するこ
と特徴とする、二次電池用充電状態検出装置によって達
成される。
[0012] Further, as described in claim 4, the above object is provided in a vehicle equipped with an AC generator and a regulator for adjusting an output voltage of the AC generator, and is charged and discharged under the adjustment of the regulator. Charging for a secondary battery including voltage detecting means for detecting a voltage value of the secondary battery, current detecting means for detecting a current value of the secondary battery, and temperature detecting means for detecting a temperature of the secondary battery. The state detection device further includes polarization state detection means for detecting a degree of influence on the current-voltage characteristics of the secondary battery due to polarization of the secondary battery, and the degree of influence of the polarization of the secondary battery is a predetermined value. By comparing the voltage value of the secondary battery in the above charge polarization state and a predetermined threshold value depending on the current value and temperature at this time, the state of charge of the secondary battery is determined. Yes, secondary It is achieved by ponds charging state detection device.

【0013】上記発明によれば、充電中の二次電池の電
圧及び電流を用いて二次電池の充電状態を判断するの
で、放電がほとんど行われない状態であっても、電池の
容量低下を検出することができる。また、充電状態が低
い二次電池は、分極の影響度合いが所定値を超えても電
圧値が高くならないという特性を利用することにより、
二次電池の充電状態の低下を精度よく検出することがで
きる。また、この特性は電池温度に依存することなく現
れるので、電池温度が変化する一般的な使用環境におい
て、当該電池温度の変化を補償して二次電池の充電状態
の低下を精度よく検出することができる。尚、電池温度
及び電流値に依存する上記閾値は、当該電池温度及び電
流値に対応した、容量低下と判断されない最大の充電状
態における、分極の影響度合いが上記所定値であるとき
の、二次電池の電圧値であってよい。また、この閾値
は、分極の影響度合い及び各充電状態における上記特性
を考慮して、各電流値及び各電池温度に対して予め用意
されてよい。
According to the above-mentioned invention, since the state of charge of the secondary battery is judged using the voltage and current of the secondary battery being charged, the capacity of the battery is reduced even if the secondary battery is hardly discharged. Can be detected. Further, the secondary battery with a low state of charge uses the characteristic that the voltage value does not increase even if the degree of influence of polarization exceeds a predetermined value.
It is possible to accurately detect a decrease in the state of charge of the secondary battery. Also, since this characteristic appears without depending on the battery temperature, it is necessary to compensate for the change in the battery temperature and detect the decrease in the state of charge of the secondary battery accurately in a general operating environment where the battery temperature changes. You can The threshold depending on the battery temperature and the current value is a secondary value when the degree of influence of polarization is the predetermined value in the maximum charge state that is not judged to be the capacity reduction corresponding to the battery temperature and the current value. It may be the voltage value of the battery. Further, this threshold value may be prepared in advance for each current value and each battery temperature in consideration of the influence degree of polarization and the above characteristics in each charge state.

【0014】また、請求項5に記載する如く、請求項4
記載の二次電池用充電状態検出装置において、上記比較
結果が、所定回数連続して同一となる場合に、上記二次
電池の充電状態の低下を検知することとすると、充電状
態の低下を高い確度で検出することができる。
Further, as described in claim 5, claim 4
In the secondary battery charge state detection device described, in the case where the comparison result is the same for a predetermined number of times consecutively, if the decrease in the charge state of the secondary battery is to be detected, the decrease in the charge state is high. It can be detected with accuracy.

【0015】本発明の他の目的、構成及び効果は、図面
を参照して行う以下の実施形態の説明から、より明らか
になるだろう。
Other objects, configurations and effects of the present invention will become more apparent from the following description of the embodiments with reference to the drawings.

【0016】[0016]

【発明の実施の形態】図1は、本発明に係る充電状態検
出方法を使用する、車両用バッテリを充電制御するため
の充電制御システム90の実施形態を示す。尚、このバ
ッテリは、鉛蓄電池のような二次電池Bにより構成され
ている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment of a charge control system 90 for controlling the charging of a vehicle battery using the charge state detecting method according to the present invention. This battery is composed of a secondary battery B such as a lead storage battery.

【0017】この充電制御システム90は、図1に示す
ように、交流発電機10(以下、発電機10という)
と、整流器20と、レギュレータ30とを備えている。
発電機10は、車両のエンジンにより駆動されて交流電
圧を発生する。整流器20は、発電機10の交流電圧を
整流して整流電圧を発生し二次電池B及びレギュレータ
30に供給する。レギュレータ30は、後述するマイク
ロコンピュータ70による制御のもと、整流器20の整
流電圧を調整して二次電池B及び電気的負荷Lに出力す
る。
As shown in FIG. 1, this charging control system 90 includes an AC generator 10 (hereinafter referred to as a generator 10).
And a rectifier 20 and a regulator 30.
The generator 10 is driven by the engine of the vehicle to generate an AC voltage. The rectifier 20 rectifies the AC voltage of the generator 10 to generate a rectified voltage and supplies the rectified voltage to the secondary battery B and the regulator 30. The regulator 30 adjusts the rectified voltage of the rectifier 20 and outputs the rectified voltage to the secondary battery B and the electrical load L under the control of the microcomputer 70 described later.

【0018】また、この充電制御システム90は、電流
センサ40と、電圧センサ50と、温度センサ60と、
マイクロコンピュータ70とを備えている。電流センサ
40は、二次電池Bの充電電流或いは放電電流を所定の
サンプリング周期で検出する。同様に、電圧センサ50
は、二次電池Bの端子電圧を所定のサンプリング周期で
検出する。温度センサ60は、二次電池Bの液温若しく
は、二次電池Bを格納するケース(図示せず)の側面又
は底面の温度を検出する。マイクロコンピュータ70
は、後述するフローチャートに従って制御プログラムを
実行する。この制御プログラムの実行中に、マイクロコ
ンピュータ70は、電流センサ40、電圧センサ50及
び温度センサ60の検出値に基づき二次電池Bの充電状
態の検出、レギュレータ30の制御に要する処理やデー
タの記憶処理などを行う。尚、マイクロコンピュータ7
0は、二次電池Bから常時給電されて作動状態にあり、
自動車のイグニッションスイッチIGのオンにより、後
述する制御プログラムの実行を開始する。尚、この制御
プログラムはマイクロコンピュータ70のROMに予め
記憶されている。
Further, the charging control system 90 includes a current sensor 40, a voltage sensor 50, a temperature sensor 60,
And a microcomputer 70. The current sensor 40 detects the charging current or the discharging current of the secondary battery B at a predetermined sampling cycle. Similarly, the voltage sensor 50
Detects the terminal voltage of the secondary battery B at a predetermined sampling cycle. The temperature sensor 60 detects the liquid temperature of the secondary battery B or the temperature of the side surface or the bottom surface of a case (not shown) that houses the secondary battery B. Microcomputer 70
Executes the control program according to the flowchart described later. During the execution of this control program, the microcomputer 70 detects the state of charge of the secondary battery B based on the detected values of the current sensor 40, the voltage sensor 50, and the temperature sensor 60, and stores the processing and data required for controlling the regulator 30. Perform processing, etc. The microcomputer 7
0 is always powered from the secondary battery B and is in an operating state,
When a vehicle ignition switch IG is turned on, execution of a control program described later is started. The control program is stored in the ROM of the microcomputer 70 in advance.

【0019】<分極状態を表す指数>本発明に係る充電
状態検出方法は、二次電池の分極が当該二次電池の電流
−電圧特性に与える影響度合い(以下、これを単に「分
極状態」という)を表す指数として、次式で与えられる
指数Pを用いる。
<Index Representing Polarization State> In the charge state detecting method according to the present invention, the degree of influence of the polarization of the secondary battery on the current-voltage characteristics of the secondary battery (hereinafter, simply referred to as “polarization state”). ), The index P given by the following equation is used.

【0020】[0020]

【数1】 この指数P(単位:A・sec)は、電極近傍の溶液濃
度を電気量で表現したものであり、充放電による電極近
傍の溶液濃度変化及び拡散による解消分を考慮してい
る。尚、本明細書中において、この指数PがP<0であ
る状態を、放電分極状態と定義し、P≧0である状態
を、充電分極状態と定義する。
[Equation 1] This index P (unit: A · sec) expresses the solution concentration in the vicinity of the electrode as an electric quantity, and takes into consideration the change in the solution concentration in the vicinity of the electrode due to charge / discharge and the amount dissolved by diffusion. In this specification, a state where the index P is P <0 is defined as a discharge polarization state, and a state where P ≧ 0 is defined as a charge polarization state.

【0021】ここで、式1において、Iは検出電流
(A)であり、I>0を充電、I<0を放電とする。γ
は二次電池Bの充電効率の変動に対する補正項(二次電
池Bの充電時に0〜1の値となるが、充放電が繰り返さ
れる場合は、ほぼ1となる)である。Tは時間(秒)で
ある。また、Idは二次電池B内の分極に起因する補正
項である。そして、P’をT1の1周期前における指数
Pの値とし、a、bをそれぞれ定数とすると、P’>0
のとき、Id=a×P’であり、P’=0のとき、Id
=0であり、P’<0のとき、Id=b×P’である。
ここで定数a、bを使い分ける理由は、放電後と充電後
で分極の影響時間が異なるためである。尚、式1は、マ
イクロコンピュータ70のROMに予め記憶されてい
る。
Here, in the equation 1, I is a detection current (A), and I> 0 is charged and I <0 is discharged. γ
Is a correction term for the fluctuation of the charging efficiency of the secondary battery B (it becomes a value of 0 to 1 when the secondary battery B is charged, but becomes approximately 1 when charging and discharging are repeated). T is time (second). Further, Id is a correction term caused by polarization in the secondary battery B. If P'is the value of the index P one cycle before T1 and a and b are constants, P '> 0
When, Id = a × P ′, and when P ′ = 0, Id = a × P ′
= 0 and P ′ <0, Id = b × P ′.
The reason why the constants a and b are used properly is that the influence time of polarization is different after discharging and after charging. Formula 1 is stored in advance in the ROM of the microcomputer 70.

【0022】<本発明による容量低下判定方法>次に、
本発明による容量低下判定方法を実現するための制御プ
ログラムの作動について図2を用いて説明する。
<Capacity reduction determination method according to the present invention>
The operation of the control program for realizing the capacity decrease determination method according to the present invention will be described with reference to FIG.

【0023】自動車のイグニッションスイッチIGのオ
ンにより、制御プログラムの実行が開始されると、ステ
ップ100において、分極状態を表す指数Pの値と電池
充放電容量の積算値Isumをゼロにリセットする。
When the ignition switch IG of the automobile is turned on to start the execution of the control program, in step 100, the value of the index P representing the polarization state and the integrated value I sum of the battery charge / discharge capacity are reset to zero.

【0024】次いで、ステップ110から190の処理
をサンプリング周期ΔT毎に実施する。ステップ110
では、電流センサ40の検出電流I、電圧センサ50の
検出電圧Vと温度センサ60の検出温度Tが読み込まれ
る。するとステップ120にて、電池充放電容量の積算
値Isumが次式に基づき1周期前の電池充放電容量の
積算値Isum’とステップ110で読み込んだ検出電
流Iに応じて算出される。
Next, the processing of steps 110 to 190 is carried out every sampling period ΔT. Step 110
Then, the detection current I of the current sensor 40, the detection voltage V of the voltage sensor 50, and the detection temperature T of the temperature sensor 60 are read. Then, in step 120, the integrated value I sum of the battery charge / discharge capacity is calculated based on the following equation according to the integrated value I sum ′ of the battery charge / discharge capacity one cycle before and the detection current I read in step 110.

【0025】Isum=Isum’+I×ΔT ここで、検出電流I>0を充電、I<を放電とする。I sum = I sum ' + I × ΔT Here, the detection current I> 0 is charged, and I <is discharged.

【0026】さらにステップ130において、調整電圧
の補正量ΔVmをステップ120で求めた電池充放電容
量の積算値Isumに応じて、例えば図3に示すマップ
に基づき算出する。続くステップ140では、調整電圧
Vmが次式に基づき、1周期前の調整電圧Vm’とステ
ップ130で算出した調整電圧の補正量ΔVmに応じて
算出される。
Further, in step 130, the correction amount ΔVm of the adjustment voltage is calculated according to the integrated value I sum of the battery charge / discharge capacity obtained in step 120, for example, based on the map shown in FIG. In the following step 140, the adjustment voltage Vm is calculated based on the following equation according to the adjustment voltage Vm ′ one cycle before and the adjustment amount ΔVm of the adjustment voltage calculated in step 130.

【0027】Vm=Vm’+ΔVm 尚、算出したVmが予め設定した上限値以上となった場
合は上限値に、予め設定した下限値以下となった場合は
下限値に変更する。これら処理により通常は、二次電池
Bの充放電収支が、ゼロとなるように制御され、電池の
過充電によるエネルギ損失が低減できる。
Vm = Vm '+ ΔVm When the calculated Vm is equal to or higher than a preset upper limit value, it is changed to an upper limit value, and when it is equal to or lower than a preset lower limit value, it is changed to a lower limit value. By these processes, the charge / discharge balance of the secondary battery B is usually controlled to be zero, and the energy loss due to overcharge of the battery can be reduced.

【0028】続くステップ150では、分極状態を表す
指数Pが、上記数1の式に基づき、上記ステップ110
で読み込んだ検出電流Iに応じて算出される。
In the following step 150, the index P representing the polarization state is calculated based on the equation (1), and the above step 110 is performed.
It is calculated according to the detected current I read in.

【0029】このようにして指数Pが算出されると、続
くステップ160において、指数Pが所定値、例えば4
00よりも大きいか否か(即ち、充電分極の影響度合い
が大きいか否か)、かつ検出電流Iがゼロよりも大きい
か(即ち、充電中か否か)が判定される。判定が否定さ
れた場合は、ステップ190に進み、判定が肯定された
場合は、ステップ170に進む。
When the index P is calculated in this way, in step 160, the index P is set to a predetermined value, for example, 4
00 (that is, whether the degree of influence of charge polarization is large), and whether the detected current I is larger than zero (that is, whether charging is being performed). If the determination is negative, the process proceeds to step 190, and if the determination is affirmative, the process proceeds to step 170.

【0030】ステップ170では、検出電流Iに対する
検出電圧Vのプロット点が、例えば図4に示す容量低下
判定用の境界線よりも下の領域に属するか否かの判定を
行う。この容量低下判定用の境界線は、図4に示すよう
に、電池温度に応じて予め用意されており、この容量低
下判定用の境界線は、上記ステップ110で読み込んだ
検出温度Tに応じて選択される。尚、この容量低下判定
用の境界線の設定方法については、後に詳説する。ステ
ップ170で判定が否定された場合は、ステップ190
に進み、判定が肯定された場合は、ステップ180に進
む。
In step 170, it is determined whether or not the plot point of the detection voltage V with respect to the detection current I belongs to a region below the boundary line for capacity reduction determination shown in FIG. 4, for example. As shown in FIG. 4, the boundary line for determining the capacity decrease is prepared in advance according to the battery temperature, and the boundary line for determining the capacity decrease corresponds to the detected temperature T read in step 110. To be selected. The method of setting the boundary line for determining the capacity decrease will be described in detail later. If the determination in step 170 is negative, step 190
If the determination is affirmative, the process proceeds to step 180.

【0031】ステップ180では、電池容量が低下して
いると判断し、充電状態の回復性を向上するために、調
整電圧を高めに設定して充電を行う通常制御へ移行し、
ステップ190に進む。尚、このステップ180では、
判断の確実性を向上すべく、ステップ170の条件が連
続して成立した場合に、電池容量が低下していると判断
するようにしてもよい。
In step 180, it is determined that the battery capacity is low, and in order to improve the recovery of the state of charge, the adjustment voltage is set higher and the normal control for charging is performed.
Proceed to step 190. In this step 180,
In order to improve the certainty of the determination, it may be determined that the battery capacity is low when the condition of step 170 is continuously satisfied.

【0032】ステップ190では、イグニッションスイ
ッチIGがオフされたか否かを判定し、判定が肯定され
た場合は、処理を終了する。一方、判定が否定された場
合は、ステップ110以後の処理が繰り返される。
In step 190, it is determined whether or not the ignition switch IG is turned off, and if the determination is affirmative, the process ends. On the other hand, if the determination is negative, the processing from step 110 onward is repeated.

【0033】<容量低下判定用の境界線の決定方法>次
に、図4に示す容量低下判定用の境界線の決定方法につ
いて、図5を用いて説明する。図5は、二次電池(電池
温度30℃、定格容量48Ah)を一定電流で充電した
場合における、数1の式で求めた指数Pに対する当該二
次電池の電圧曲線を示した図である。図5(A)は、電
流Ia=9.6(A)で充電した場合の結果を示し、図
5(B)は、電流Ib=24(A)充電した場合の結果
を示している。尚、図5の各図には、電池の充電状態
(以下、SOCという)の異なる二次電池(スタートS
OC:30%、50%、70%、90%)のそれぞれの
電圧曲線が示されている。
<Method of Determining Boundary Line for Capacity Reduction Judgment> Next, a method of determining a boundary line for capacity reduction determination shown in FIG. 4 will be described with reference to FIG. FIG. 5 is a diagram showing a voltage curve of a secondary battery (battery temperature 30 ° C., rated capacity 48 Ah) when the secondary battery is charged with a constant current, with respect to the index P obtained by the equation (1). FIG. 5A shows the result when the current Ia = 9.6 (A) was charged, and FIG. 5B shows the result when the current Ib = 24 (A) was charged. It should be noted that in each drawing of FIG. 5, the secondary battery (start S
OC: 30%, 50%, 70%, 90%) respective voltage curves are shown.

【0034】図5(A)及び図5(B)に示すように、
充電電流がIa=9.6(A)若しくはIb=24
(A)のいずれの場合においても、SOC50%以下の
状態では、指数Pが400(A・sec)を超える付近
から、電圧の上昇率が小さくなることがわかる。他言す
ると、充電を継続した場合、結果としてSOCが高くな
り電圧は上昇していくが、指数Pが約400(A・se
c)を超えると、SOC50%以下の二次電池では、S
OC70%以上の二次電池に比べて、その電圧上昇が低
下していることがわかる。
As shown in FIGS. 5A and 5B,
Charge current is Ia = 9.6 (A) or Ib = 24
In any of the cases (A), it can be seen that the rate of increase of the voltage decreases from the vicinity of the index P exceeding 400 (A · sec) when the SOC is 50% or less. In other words, when charging is continued, as a result, the SOC rises and the voltage rises, but the index P is about 400 (A · se).
Beyond c), in the secondary battery with SOC 50% or less, S
It can be seen that the voltage increase is lower than that of the secondary battery having an OC of 70% or more.

【0035】ここで、電池の容量低下の判断基準をSO
C50%以下とし、最大SOC70%以下までの充電状
態を許容する場合における、具体的な容量低下判定用の
境界線の決定方法について言及する。図5(A)に示す
ように、指数Pが400(A・sec)を超える範囲
で、SOC70%に係る電圧曲線とSOC50%以下の
電圧曲線を電圧Vaのラインにより仕切ることができ
る。同様に、図5(B)に示すように、指数Pが400
(A・sec)を超える範囲で、SOC70%に係る電
圧曲線とSOC50%以下の電圧曲線を電圧Vbのライ
ンにより仕切ることができる。これらの電圧Va、Vb
は、図5(A)及び図5(B)に示すように、SOC7
0%に係る電圧曲線におけるP=400でのそれぞれの
電圧値であってよいが、上記ステップ160で例えば4
00<P<500のような範囲で判定する場合には、P
=400での電圧値より低い電圧値であってもよい。
Here, the criterion for determining the battery capacity decrease is SO
Reference will be made to a specific method of determining a boundary line for capacity reduction determination in the case where C50% or less and a maximum SOC of 70% or less is allowed. As shown in FIG. 5A, in the range where the index P exceeds 400 (A · sec), the voltage curve relating to SOC 70% and the voltage curve relating to SOC 50% or less can be separated by the line of voltage Va. Similarly, as shown in FIG. 5B, the index P is 400
In the range exceeding (A · sec), the voltage curve relating to SOC 70% and the voltage curve relating to SOC 50% or less can be partitioned by the line of voltage Vb. These voltages Va and Vb
As shown in FIGS. 5 (A) and 5 (B), SOC7
It may be the respective voltage values at P = 400 in the voltage curve relating to 0%, but in the above step 160, for example, 4
When making a determination in the range of 00 <P <500, P
The voltage value may be lower than the voltage value at 400.

【0036】このようにして決定された電圧Va及びV
bを、それぞれ電流値Ia及びIbに対する判定電圧V
thresholdとして直線で結ぶことにより、図4に示す電
池温度30℃における容量低下判定用の境界線が得られ
る。尚、電流値Ia及びIb以外の電流値に対する判定
電圧Vthresholdは、この容量低下判定用の境界線上の
当該電流値に対する電圧値になる。同様に、電池温度を
変更して、図4に示すような各電池温度に対する境界線
が得られる。従って、判定電圧Vthresholdは、電流値
I及び電池温度Tを用いて、Vthreshold=f(I,
T)で表わされる(上記ステップ170参照)。
The voltages Va and V thus determined
b is the judgment voltage V for the current values Ia and Ib, respectively.
By connecting a straight line as the threshold , the boundary line for determining the capacity decrease at the battery temperature of 30 ° C. shown in FIG. 4 is obtained. The determination voltage V threshold for current values other than the current values Ia and Ib is the voltage value for the current value on the boundary line for determining the capacity decrease. Similarly, by changing the battery temperature, a boundary line for each battery temperature as shown in FIG. 4 is obtained. Therefore, the determination voltage V threshold is V threshold = f (I,
T) (see step 170 above).

【0037】尚、本例は、2つの電流値IaとIbに対
する各判定電圧に基づいて容量低下判定用の境界線を求
めるものであるが、より多くの電流値に対する各判定電
圧に基づいて容量低下判定用の境界線を求めるようにし
てもよい。また、本例は、SOC50%以下を容量低下
の検出目標とし、最大SOC70%以下までを許容する
として、容量低下判定用の境界線を決定したが、検出目
標は必要に応じて変更してもよい。
In this example, the boundary line for capacity decrease determination is obtained based on each determination voltage for two current values Ia and Ib, but the capacity is determined based on each determination voltage for more current values. You may make it determine | determine the boundary line for a fall determination. Further, in the present example, the SOC reduction target is set to 50% or less and the maximum SOC is set to 70% or less, and the boundary line for the capacity determination is determined, but the detection target may be changed as necessary. Good.

【0038】次に、このようにして設定された容量低下
判定用の境界線(検出目標をSOC50%以下とした境
界線)を用いた、上述の制御プログラムによる二次電池
の容量低下の検出結果について言及する。
Next, the detection result of the capacity decrease of the secondary battery by the above-mentioned control program using the capacity decrease determination boundary line (the boundary line where the detection target is SOC 50% or less) set in this way is used. To mention.

【0039】図6は、上述の制御プログラムのステップ
110(図2参照)により実際の車両走行中の電流と電
圧を測定し、測定点をサンプリング周期ΔT毎にプロッ
トした図であり、図6(A)は、SOC70%の二次電
池を使用した結果を示し、図6(B)は、SOC50%
の二次電池を使用した結果を示している。
FIG. 6 is a diagram in which the current and voltage during actual vehicle traveling are measured by step 110 (see FIG. 2) of the above-mentioned control program, and the measurement points are plotted for each sampling period ΔT. A) shows the result of using the secondary battery of SOC70%, FIG. 6 (B) shows SOC50%.
2 shows the result of using the secondary battery of FIG.

【0040】図6(A)に示すように、SOC70%で
のプロット点の幾つか(小さな○印のプロット点)は、
容量低下判定用の境界線よりも下の領域に属したが、電
池の分極状態を表す指数Pが400を超えるプロット点
(▲印のプロット点)に関しては、当該容量低下判定用
の境界線よりも下の領域に属することがなかったので、
上記ステップ180で容量低下との判断はなされなかっ
た。一方、SOC50%では、指数が400を超えるプ
ロット点(▲印のプロット点)であっても、図6(B)
に示すように、容量低下判定用の境界線より下の領域に
属したため、上記ステップ180で容量低下との判断が
なされた。この結果から、P>400の範囲で、上述し
たように設定された容量低下判定用の境界線により、S
OC50%以下となる充電状態の低下を確実に検出でき
ることが確認された。
As shown in FIG. 6A, some of the plot points at SOC 70% (the plot points with small circles) are as follows.
Although it belongs to a region below the boundary line for determining the capacity decrease, the plot points (plot points marked with ▲) where the index P representing the polarization state of the battery exceeds 400 are below the boundary line for determining the capacity decrease. Has never belonged to the area below,
In step 180 above, it was not determined that the capacity had decreased. On the other hand, when the SOC is 50%, even if the plot point has an index of more than 400 (the plot point marked with ▲), FIG.
As shown in (1), since it belongs to the area below the boundary line for capacity reduction determination, it is determined in step 180 that the capacity has decreased. From this result, in the range of P> 400, S is determined by the boundary line for capacity reduction determination set as described above.
It was confirmed that a decrease in the state of charge with an OC of 50% or less can be reliably detected.

【0041】尚、二次電池が劣化した場合、SOC70
%以上であっても、ほとんどの場合は、充電分極状態で
の電圧上昇が低下する(例えば、図5(B)のSOC5
0%の電圧曲線のようになる)ため、上記ステップ18
0で容量低下との判断が行われることが予測される。し
かしながら、この場合には、当該SOC70%の二次電
池から実際に取り出せる容量が低下していることになる
ので、当該SOC70%の二次電池に残っている容量
は、例えばSOC50%の新品の二次電池と略同一と考
えることができ、安全側の判定となる。
When the secondary battery deteriorates, the SOC 70
%, The voltage rise in the charge polarization state decreases in most cases (for example, SOC5 in FIG. 5B).
Since it looks like a 0% voltage curve), the above step 18
It is predicted that the capacity is judged to be reduced when 0. However, in this case, the capacity that can be actually taken out from the SOC 70% secondary battery has decreased, so the capacity remaining in the SOC 70% secondary battery is, for example, a new battery of SOC 50%. It can be considered to be almost the same as the next battery, and the judgment is made on the safe side.

【0042】以上説明したように、本発明では、容量低
下(充電状態が50%以下)状態では、過電圧が発生す
る充電分極状態であっても電圧の上昇が抑えられるとい
った点に着目し、所定値を超える充電分極状態であるに
も関わらず、予め定めた容量低下判定用の境界線より
も、検出した充電電流-電圧特性が下回る場合には、容
量低下と判断することによって、二次電池が発電機に並
列接続されているためにほとんど放電しない状態であっ
ても、当該二次電池の容量低下を検出することが可能と
なる。
As described above, in the present invention, when the capacity is reduced (the charge state is 50% or less), the voltage rise is suppressed even in the charge polarization state in which the overvoltage occurs, and the predetermined voltage is determined. If the detected charging current-voltage characteristics are lower than the predetermined boundary line for determining the capacity drop, even though the charge polarization state exceeds the value, the secondary battery is judged by the capacity drop. Since the battery is connected in parallel to the generator, it is possible to detect the decrease in the capacity of the secondary battery even when the battery is hardly discharged.

【0043】尚、特許請求の範囲に記載した「分極状態
検出手段」は、発明の詳細な説明に記載した制御プログ
ラムのステップ150をマイクロコンピュータ70が実
行することによって実現されている。
The "polarization state detecting means" described in the claims is realized by the microcomputer 70 executing step 150 of the control program described in the detailed description of the invention.

【0044】以上、本発明の好ましい実施例について詳
説したが、本発明は、上述した実施例に制限されること
はなく、本発明の範囲を逸脱することなく、上述した実
施例に種々の変形及び置換を加えることができる。例え
ば、上述した実施例においては、分極状態を判断するた
めに、数1の式で定義された指数を使用していたが、特
にこの式に限定されるものではなく、当該式に変更を加
えた式、同一の観点から導出された式若しくはその類の
式を本発明に適用することもできる。
Although the preferred embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various modifications can be made to the above-described embodiments without departing from the scope of the present invention. And substitutions can be added. For example, in the above-described embodiment, the index defined by the formula of Formula 1 is used to determine the polarization state, but the formula is not particularly limited to this formula, and the formula is modified. Formulas, formulas derived from the same point of view, or the like, can also be applied to the present invention.

【0045】[0045]

【発明の効果】本発明は、以上説明したようなものであ
るから、以下に記載されるような効果を奏する。請求項
1の発明によると、放電がほとんど行われない状態であ
っても、電池の容量低下を検出することができる。
Since the present invention is as described above, it has the following effects. According to the invention of claim 1, it is possible to detect the decrease in the capacity of the battery even in the state where the battery is hardly discharged.

【0046】また、請求項2の発明によると、低コスト
で電池の充電分極状態を確実に検出できる。また、請求
項3、4又は5の発明によると、充電状態が低い二次電
池は、所定値を超える分極の影響度合いであっても電圧
値が高くならないという特性が利用され、二次電池の充
電状態の低下を精度よく検出することができる。
According to the second aspect of the invention, the charge polarization state of the battery can be reliably detected at low cost. Further, according to the invention of claim 3, 4 or 5, the characteristic that the voltage value does not increase in the secondary battery having a low state of charge is utilized even if the degree of influence of polarization exceeds a predetermined value. The deterioration of the state of charge can be accurately detected.

【図面の簡単な説明】[Brief description of drawings]

【図1】車両用バッテリを充電制御する充電制御システ
ム90を示す図である。
FIG. 1 is a diagram showing a charging control system 90 that controls charging of a vehicle battery.

【図2】本発明によるマイクロコンピュータ70の動作
を示すフローチャートである。
FIG. 2 is a flowchart showing the operation of the microcomputer 70 according to the present invention.

【図3】調整電圧の補正量ΔVmを算出するために予め
用意されたマップである。
FIG. 3 is a map prepared in advance for calculating a correction amount ΔVm of an adjustment voltage.

【図4】容量低下判定用の境界線を示す図である。FIG. 4 is a diagram showing a boundary line for capacity reduction determination.

【図5】図5は、指数Pに対する二次電池の電圧曲線を
示した図であり、図5(A)は、電流Ia=9.6
(A)で充電した場合の結果を示し、図5(B)は、電
流Ib=24(A)充電した場合の結果を示す。
5 is a diagram showing a voltage curve of a secondary battery with respect to an index P, and FIG. 5 (A) shows a current Ia = 9.6.
FIG. 5B shows the result of charging with (A), and FIG. 5 (B) shows the result of charging with current Ib = 24 (A).

【図6】図6は、本発明による制御プログラムよる容量
低下の検出結果を示す図であり、図6(A)は、SOC
70%の結果を示し、図6(B)は、SOC50%の結
果を示す。
FIG. 6 is a diagram showing a detection result of a capacity decrease by the control program according to the present invention, and FIG.
The result of 70% is shown, and FIG. 6 (B) shows the result of SOC 50%.

【符号の説明】[Explanation of symbols]

10 交流発電機 20 整流器 30 レギュレータ 40 電流センサ 50 電圧センサ 60 温度センサ 70 マイクロコンピュータ 90 充電制御システム B 二次電池 L 電気的負荷 10 AC generator 20 rectifier 30 regulator 40 current sensor 50 voltage sensor 60 temperature sensor 70 Microcomputer 90 Charge control system B secondary battery L electrical load

───────────────────────────────────────────────────── フロントページの続き (72)発明者 堺 昭治 愛知県西尾市下羽角町岩谷14番地 株式会 社日本自動車部品総合研究所内 (72)発明者 橋川 淳 愛知県西尾市下羽角町岩谷14番地 株式会 社日本自動車部品総合研究所内 (72)発明者 鈴木 尚彦 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 森藤 雅之 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 名手 洋 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 佐田 岳士 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 Fターム(参考) 2G016 CA03 CB12 CB13 CB21 CB31 CC01 CC02 CC03 CC04 CC07 CC12 CC13 CC17 CC20 CC23 CC27 CC28 CF06 5H030 AA04 AS08 FF42 FF43 FF44   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Shoji Sakai             14 Iwatani Shimohakaku-cho, Nishio-shi, Aichi Stock Association             Company Japan Auto Parts Research Institute (72) Inventor Jun Hashikawa             14 Iwatani Shimohakaku-cho, Nishio-shi, Aichi Stock Association             Company Japan Auto Parts Research Institute (72) Inventor Naohiko Suzuki             1 Toyota Town, Toyota City, Aichi Prefecture Toyota Auto             Car Co., Ltd. (72) Inventor Masayuki Morito             1 Toyota Town, Toyota City, Aichi Prefecture Toyota Auto             Car Co., Ltd. (72) Inventor Hiroshi             1 Toyota Town, Toyota City, Aichi Prefecture Toyota Auto             Car Co., Ltd. (72) Inventor Takeshi Sada             1-1, Showa-cho, Kariya city, Aichi stock market             Inside the company DENSO F term (reference) 2G016 CA03 CB12 CB13 CB21 CB31                       CC01 CC02 CC03 CC04 CC07                       CC12 CC13 CC17 CC20 CC23                       CC27 CC28 CF06                 5H030 AA04 AS08 FF42 FF43 FF44

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 二次電池の電圧値を検出する電圧検出手
段と、上記二次電池の電流値を検出する電流検出手段と
を含む二次電池用充電状態検出装置であって、 上記二次電池の分極により該二次電池の電流−電圧特性
が受ける影響度合いを検出する分極状態検出手段を更に
含み、 上記分極の影響度合いが所定値以上となる充電分極状態
での上記二次電池の電圧値及び電流値を用いて、上記二
次電池の充電状態を判断することを特徴とする、二次電
池用充電状態検出装置。
1. A state-of-charge detecting device for a secondary battery, comprising a voltage detecting means for detecting a voltage value of a secondary battery and a current detecting means for detecting a current value of the secondary battery, wherein The secondary battery voltage in a charging polarization state further includes polarization state detection means for detecting the degree of influence of the current-voltage characteristics of the secondary battery due to the polarization of the battery, and the degree of influence of the polarization becomes a predetermined value or more. A state-of-charge detecting device for a secondary battery, wherein the state-of-charge of the secondary battery is determined using a value and a current value.
【請求項2】 上記分極状態検出手段は、上記二次電池
の充放電履歴から上記二次電池の分極の影響度合いを推
定する、請求項1記載の二次電池用充電状態検出装置。
2. The charge state detecting device for a secondary battery according to claim 1, wherein the polarization state detecting means estimates the degree of influence of polarization of the secondary battery from the charge / discharge history of the secondary battery.
【請求項3】 分極の影響度合いが所定値以上となる充
電分極状態での上記二次電池の電圧値と、このときの電
流値に依存する所定の閾値とを比較することにより、上
記二次電池の充電状態を判断する、請求項1又は2記載
の二次電池用充電状態検出装置。
3. The secondary battery is obtained by comparing a voltage value of the secondary battery in a charged polarized state in which the degree of influence of polarization is a predetermined value or more with a predetermined threshold value depending on a current value at this time. The charge state detection device for a secondary battery according to claim 1, which determines the charge state of the battery.
【請求項4】 交流発電機及びこの交流発電機の出力電
圧を調整するレギュレータを搭載する車両に装備され上
記レギュレータの調整のもとに充放電される二次電池の
電圧値を検出する電圧検出手段と、上記二次電池の電流
値を検出する電流検出手段と、上記二次電池の温度を検
出する温度検出手段とを含む二次電池用充電状態検出装
置であって、 上記二次電池の分極により該二次電池の電流−電圧特性
が受ける影響度合いを検出する分極状態検出手段を更に
含み、 上記二次電池の分極の影響度合いが所定値以上となる充
電分極状態での上記二次電池の電圧値と、このときの電
流値及び温度に依存する所定の閾値とを比較することに
より、上記二次電池の充電状態を判断すること特徴とす
る、二次電池用充電状態検出装置。
4. A voltage detector for detecting a voltage value of a secondary battery which is mounted on a vehicle equipped with an AC generator and a regulator for adjusting an output voltage of the AC generator and which is charged and discharged under the adjustment of the regulator. Means, a current detection means for detecting the current value of the secondary battery, a temperature detection means for detecting the temperature of the secondary battery, a state-of-charge detecting device for a secondary battery, comprising: The secondary battery in a charged polarization state, further comprising polarization state detection means for detecting the degree of influence of the current-voltage characteristics of the secondary battery due to polarization, wherein the degree of influence of the polarization of the secondary battery is a predetermined value or more. 2. The state of charge detecting device for a secondary battery, characterized in that the state of charge of the secondary battery is judged by comparing the voltage value of 1 with a predetermined threshold value depending on the current value and temperature at this time.
【請求項5】 上記比較結果が、所定回数連続して同一
となる場合に、上記二次電池の充電状態の低下を検知す
る、請求項4記載の二次電池用充電状態検出装置。
5. The state-of-charge detecting device for a secondary battery according to claim 4, wherein a decrease in the state of charge of the secondary battery is detected when the comparison result is the same for a predetermined number of times consecutively.
JP2002138785A 2002-05-14 2002-05-14 Secondary battery charge state detection device Expired - Fee Related JP4112895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002138785A JP4112895B2 (en) 2002-05-14 2002-05-14 Secondary battery charge state detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002138785A JP4112895B2 (en) 2002-05-14 2002-05-14 Secondary battery charge state detection device

Publications (2)

Publication Number Publication Date
JP2003331931A true JP2003331931A (en) 2003-11-21
JP4112895B2 JP4112895B2 (en) 2008-07-02

Family

ID=29700132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002138785A Expired - Fee Related JP4112895B2 (en) 2002-05-14 2002-05-14 Secondary battery charge state detection device

Country Status (1)

Country Link
JP (1) JP4112895B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7750602B2 (en) 2006-08-10 2010-07-06 Denso Corporation Method and apparatus for managing charge/discharge current of on-vehicle battery to control on-vehicle generator in consideration of offset of charge/discharge current
FR2942882A1 (en) * 2009-03-09 2010-09-10 Peugeot Citroen Automobiles Sa METHOD FOR DETERMINING THE CHARGE STATE OF AN ELECTROCHEMICAL SOURCE FOR THE ELECTRICAL TRACTION OF VEHICLES

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7750602B2 (en) 2006-08-10 2010-07-06 Denso Corporation Method and apparatus for managing charge/discharge current of on-vehicle battery to control on-vehicle generator in consideration of offset of charge/discharge current
FR2942882A1 (en) * 2009-03-09 2010-09-10 Peugeot Citroen Automobiles Sa METHOD FOR DETERMINING THE CHARGE STATE OF AN ELECTROCHEMICAL SOURCE FOR THE ELECTRICAL TRACTION OF VEHICLES
WO2010103216A1 (en) * 2009-03-09 2010-09-16 Peugeot Citroën Automobiles SA Method for determining the state of charge of an electrochemical source for electric vehicle traction

Also Published As

Publication number Publication date
JP4112895B2 (en) 2008-07-02

Similar Documents

Publication Publication Date Title
JP6384412B2 (en) Power supply
US9800086B2 (en) Electric storage device management system, electric storage device pack, and method of estimating state of charge
JP5223920B2 (en) Battery charge / discharge control device and hybrid vehicle equipped with the same
US9849793B2 (en) Electrical storage system for vehicle
CN111431261B (en) Power supply system for vehicle
JP5001938B2 (en) Method and apparatus for adjusting charge or discharge output of battery
WO2001018938A1 (en) Apparatus for battery capacity measurement and for remaining capacity calculation
EP3518376B1 (en) Secondary battery state detection device and secondary battery state detection method
EP2058891B1 (en) Charging control device for a storage battery
JP2000166109A (en) Charged state detecting device for battery
JP2008199860A (en) Targeted charged capacity calculating method, targeted charged capacity calculating device and charged capacity control unit
JP4700644B2 (en) Lead battery charge control device
JP2001351698A (en) Charged state detecting method for lead storage battery and deterioration judging method for the same
JP2003338325A (en) Method of determining deteriorated condition of storage battery and method of charging it
JP2003209935A (en) Charge controller for secondary battery for vehicle
JP3288257B2 (en) Battery state-of-charge detection device
JP2003127807A (en) Method and device for determining residual capacity of secondary battery mounted on vehicle having idling stop function
JP6699533B2 (en) Battery system
JP2003331931A (en) Charged state detecting device for secondary cell
JP4076211B2 (en) Secondary battery internal resistance detection device and charge control system using the same
JP3475894B2 (en) Apparatus for determining full charge of vehicle secondary battery and apparatus for calculating remaining capacity
JP2002340996A (en) Battery capacity judging apparatus
JP2000123886A (en) Full charge determination device of secondary battery for vehicle
JP3966810B2 (en) Storage battery full charge determination device, remaining capacity estimation device, full charge determination method, and remaining capacity estimation method
JP5081722B2 (en) Charge control device for secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080410

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees