JP2003331884A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JP2003331884A
JP2003331884A JP2002140970A JP2002140970A JP2003331884A JP 2003331884 A JP2003331884 A JP 2003331884A JP 2002140970 A JP2002140970 A JP 2002140970A JP 2002140970 A JP2002140970 A JP 2002140970A JP 2003331884 A JP2003331884 A JP 2003331884A
Authority
JP
Japan
Prior art keywords
fuel cell
gas flow
cell
passage
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002140970A
Other languages
Japanese (ja)
Other versions
JP3922089B2 (en
Inventor
Harumichi Nakanishi
治通 中西
Shinichi Matsumoto
信一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002140970A priority Critical patent/JP3922089B2/en
Publication of JP2003331884A publication Critical patent/JP2003331884A/en
Application granted granted Critical
Publication of JP3922089B2 publication Critical patent/JP3922089B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell capable of changing the cross section of a gas passage according to a request from the outside of the cell, and of forcibly changing the cross section of the passage independently of the environment in the cell, in improving durability of the fuel cell by closing a gas passage in OC (open circuit). <P>SOLUTION: (1) In this fuel cell, the cross sections of the gas passages 27 and 28 in a cell surface are variable, and the cross sections of the gas passages are varied according to a fuel cell load. (2) In OC, the gas passages 27 and 28 are completely closed. (3) Each gas passage is composed of a fixed part 18a, and a movable part 18b formed separately from the fixed part and movable with respect to the fixed part, and the gas passages 27 and 28 are changed between a state without a passage and a state with the passage by moving the moving part 18b. (4) The gas passages 27 and 28 are brought into the state without a passage in OC, and into the state with the passage enabling the variation of the passage cross section in outputting power. (5) For the gas passages 27 and 28, the passage cross section is fully opened when the demand output is small, and intermediately opened when the demand output is large. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は燃料電池に関し、と
くにガス流路断面積可変の燃料電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell, and more particularly to a fuel cell having a variable gas channel cross-sectional area.

【0002】[0002]

【従来の技術】図3、図4に示すように、固体高分子電
解質型燃料電池10は、膜−電極アッセンブリ(ME
A:Membrane-Electrode Assembly )とセパレータとの
積層体からなる。膜−電極アッセンブリは、イオン交換
膜からなる電解質膜11とこの電解質膜の一面に配置さ
れた触媒層12からなる電極(アノード、燃料極)14
および電解質膜の他面に配置された触媒層15からなる
電極(カソード、空気極)17とからなる。セパレータ
18にはアノード14、カソード17に燃料ガス(水
素)および酸化ガス(酸素、通常は空気)を供給するた
めのガス流路27、28(燃料ガス流路27、酸化ガス
流路28)および/または冷媒(通常、冷却水)を流す
ための冷媒流路26が形成されている。膜−電極アッセ
ンブリとセパレータ18との間には、アノード側、カソ
ード側にそれぞれ拡散層13、16が設けられる。膜−
電極アッセンブリとセパレータ18を重ねてセルを構成
し、少なくとも1つのセルからモジュールを構成し、モ
ジュールを積層してセル積層体とし、セル積層体のセル
積層方向両端に、ターミナル20、インシュレータ2
1、エンドプレート22を配置し、セル積層体をセル積
層方向に締め付け、セル積層体の外側でセル積層方向に
延びる締結部材(たとえば、テンションプレート2
4)、ボルト・ナット25にて固定して、スタック23
を構成する。各セルの、アノード側では、水素を水素イ
オン(プロトン)と電子にする反応が行われ、水素イオ
ンは電解質膜中をカソード側に移動し、カソード側では
酸素と水素イオンおよび電子(隣りのMEAのアノード
で生成した電子がセパレータを通してくる、またはセル
積層方向一端のセルのアノードで生成した電子が外部回
路を通して他端のセルのカソードにくる)から水を生成
するつぎの反応が行われる。 アノード側:H2 →2H+ +2e- カソード側:2H+ +2e- +(1/2)O2 →H2 O 水素イオンが電解質膜中を移動して上記発電反応が行わ
れるには電解質膜が適当に湿潤していることが必要であ
り、燃料ガスや酸化ガスは加湿してセルに供給される。
しかし、従来の燃料電池には、OC(オープンサーキッ
トすなわち電気的無負荷)における耐久の問題があっ
た。すなわち、OC時、電流0(自動車ではアイドル状
態)において、流速が0となり、水のもち出しが無く
なり、含水率が高い状態となり、含水率に比例して水
素のクロスリーク(アノードからカソードに膜を通して
水素が極く微量リークする現象)が増加し、クロスリ
ークした水素がカソード側で酸化ガス流路を流れる酸素
と反応しカソード側の電極が発熱、かつ、カソード側で
の生成水が無いので、著しい温度増、を誘発する、とい
う現象が連鎖的に起こり膜に穴が開き、耐久上問題とな
ることがある。その対策としては、OC時膜を乾燥さ
せる、アノード内の水素をクロスリークさせないため
に、電力として消費する、なるべくアノード電極に近
いところで、水素をカットする、などが考えられるが、
本発明ではOC時、電極へのガス供給を最小限に抑える
方法(ガス流路を閉塞する方法)を開発することとし
た。ガス流路断面積可変に関しては、特開2000−3
06591は、均一なガス分配を可能にするために(し
たがって、本発明の課題とは異なる課題)、燃料電池の
セル面内流路断面積を可変とする弁を設けるもの(流路
内温度に応じバイメタル弁等にて流路断面積を可変とす
るもの)を開示している。
2. Description of the Related Art As shown in FIGS. 3 and 4, a solid polymer electrolyte fuel cell 10 includes a membrane-electrode assembly (ME).
A: Membrane-Electrode Assembly) and a separator. The membrane-electrode assembly includes an electrode (anode, fuel electrode) 14 including an electrolyte membrane 11 made of an ion exchange membrane and a catalyst layer 12 arranged on one surface of the electrolyte membrane.
And an electrode (cathode, air electrode) 17 composed of a catalyst layer 15 arranged on the other surface of the electrolyte membrane. Gas flow channels 27, 28 (fuel gas flow channel 27, oxidizing gas flow channel 28) for supplying fuel gas (hydrogen) and oxidizing gas (oxygen, usually air) to the anode 14 and the cathode 17 in the separator 18 and A coolant flow path 26 for flowing a coolant (normally, cooling water) is formed. Diffusion layers 13 and 16 are provided between the membrane-electrode assembly and the separator 18 on the anode side and the cathode side, respectively. Membrane
A cell is constructed by stacking the electrode assembly and the separator 18, and a module is constructed from at least one cell, and the modules are laminated to form a cell laminated body, and the terminal 20 and the insulator 2 are provided at both ends of the cell laminated body in the cell laminating direction.
1, the end plates 22 are arranged, the cell stack is tightened in the cell stacking direction, and a fastening member (for example, the tension plate 2) extending outside the cell stack in the cell stacking direction is provided.
4), fix with bolts and nuts 25, and stack 23
Make up. On the anode side of each cell, a reaction is carried out to convert hydrogen into hydrogen ions (protons) and electrons, and the hydrogen ions move to the cathode side in the electrolyte membrane, and on the cathode side, oxygen, hydrogen ions and electrons (adjacent MEA Electrons generated at the anode of (1) come through the separator, or electrons generated at the anode of the cell at one end of the cell stacking direction come to the cathode of the cell at the other end through an external circuit) to generate water. Anode side: H 2 → 2H + + 2e Cathode side: 2H + + 2e + (1/2) O 2 → H 2 O Hydrogen ions move in the electrolyte membrane and the electrolyte membrane is required to carry out the power generation reaction. It is necessary to be properly moistened, and the fuel gas and the oxidizing gas are humidified and supplied to the cell.
However, the conventional fuel cell has a problem of durability in OC (open circuit, that is, no electric load). That is, at OC, at a current of 0 (in an automobile, in an idle state), the flow velocity becomes 0, the water does not stick out, and the water content becomes high, and the hydrogen cross leak is proportional to the water content (membrane from anode to cathode The amount of hydrogen that leaks through a very small amount increases), cross-leaked hydrogen reacts with oxygen flowing through the oxidizing gas flow path on the cathode side, the electrode on the cathode side generates heat, and there is no water produced on the cathode side. The phenomenon of causing a significant increase in temperature may occur in a chain and holes may be formed in the film, which may cause a problem in durability. As a countermeasure, it is possible to dry the membrane at the time of OC, consume hydrogen as electric power in order to prevent cross-leakage of hydrogen in the anode, and cut hydrogen as close to the anode electrode as possible.
In the present invention, it was decided to develop a method of suppressing gas supply to the electrode at the time of OC (method of closing gas passage). Regarding the variable gas channel cross-sectional area, Japanese Patent Laid-Open No. 2000-3
No. 06591 is provided with a valve for varying the flow passage cross-sectional area in the cell plane of the fuel cell in order to enable uniform gas distribution (thus, a subject different from the subject of the present invention) Accordingly, a bimetal valve or the like that can change the flow passage cross-sectional area) is disclosed.

【0003】[0003]

【発明が解決しようとする課題】従来燃料電池でOC時
耐久を改善するために、セル面内流路断面積を小にする
構造(特開2000−306591のバイメタル弁)を
採用して、OC時に電極へのガス供給を抑制しても、つ
ぎの問題が生じる。 従来構造ではセル内部の環境(たとえば、温度)に
応じて流路断面積を変えるため、セル内部の環境と独立
に、セル外部からの要求(たとえば、負荷)に応じて流
路断面積を変えることができない。また、流路断面積が
セル内部の環境(たとえば、温度)によって決まる値と
なり、流路断面積をセル内環境とは独立に強制的に変え
ることができない。 流路の1箇所にバイメタル弁を設ける構造では、弁
で流路を閉塞しても流路溝全体にわたって弁を拡散層に
押し付けることができないので、流路溝全体にわたって
拡散層とセパレータ間の接触面積をとることができず、
セパレータの電子通路断面積が増大せず、せっかくガス
流路を閉塞してもセパレータとの熱伝導は向上しない。 本発明の目的は、OC時ガス流路を閉塞して燃料電池耐
久を改善するに際し、セル外部からの要求に応じて流路
断面積を変えることができるとともに、流路断面積をセ
ル内環境とは独立に強制的に変えることができる燃料電
池を提供することにある。本発明のもう一つの目的は、
OC時ガス流路を閉塞して燃料電池耐久を改善するに際
し、セル外部からの要求に応じて流路断面積を変えるこ
とができるとともに、流路断面積をセル内環境とは独立
に強制的に変えることができ、かつ、OC時でガス流路
閉塞時にセパレータとの熱伝導性を向上できる燃料電池
を提供することにある。
In order to improve durability during OC in a conventional fuel cell, a structure (a bimetal valve of Japanese Patent Laid-Open No. 2000-306591) that reduces the cross-sectional area of the flow path in the cell plane is adopted, and the OC is improved. Even if the gas supply to the electrodes is sometimes suppressed, the following problems occur. In the conventional structure, since the flow passage cross-sectional area is changed according to the environment inside the cell (for example, temperature), the flow passage cross-sectional area is changed according to the request (for example, load) from the outside of the cell independently of the environment inside the cell. I can't. Further, the flow passage cross-sectional area becomes a value determined by the environment (for example, temperature) inside the cell, and the flow passage cross-sectional area cannot be forcibly changed independently of the environment inside the cell. In the structure in which the bimetal valve is provided at one place in the flow passage, even if the flow passage is closed by the valve, the valve cannot be pressed against the diffusion layer over the entire flow passage groove, so contact between the diffusion layer and the separator over the entire flow passage groove. I can not take the area,
The electron passage cross-sectional area of the separator does not increase, and heat conduction with the separator does not improve even if the gas passage is blocked. An object of the present invention is to improve the durability of a fuel cell by closing the gas passage at the time of OC, the passage cross-sectional area can be changed according to a request from the outside of the cell, and the passage cross-sectional area can be changed to the environment in the cell. To provide a fuel cell that can be forced to change independently. Another object of the present invention is to
When the gas flow path is closed at the time of OC to improve the fuel cell durability, the flow path cross-sectional area can be changed according to the demand from the outside of the cell, and the flow path cross-sectional area is forced independently of the environment inside the cell. It is an object of the present invention to provide a fuel cell that can be changed to the above and can improve the thermal conductivity with the separator when the gas flow path is closed at the time of OC.

【0004】[0004]

【課題を解決するための手段】上記目的を達成する本発
明はつぎの通りである。 (1) セル面内のガス流路の断面積が可変であり、燃
料電池負荷に応じてガス流路断面積を変化させた燃料電
池。 (2) OC時は前記ガス流路を全閉とした(1)記載
の燃料電池。 (3) セル面に形成されるガス流路を有する燃料電池
であって、前記ガス流路を、固定部と、該固定部とは別
部品で固定部に対して可動の可動部から構成し、前記可
動部を動かすことにより前記ガス流路を流路レスと流路
有りの状態との間で変化させた燃料電池。 (4) 前記ガス流路を、OC時には流路レスとし、出
力時には流路断面積可変の流路有りとする(3)記載の
燃料電池。 (5) 出力時の流路有りにおいて、前記ガス流路を、
要求出力が低い時には流路断面積を全開にし、要求出力
が高い時には流路断面積を中開にする(4)記載の燃料
電池。
The present invention which achieves the above object is as follows. (1) A fuel cell in which the cross-sectional area of the gas flow passage in the cell plane is variable, and the cross-sectional area of the gas flow passage is changed according to the fuel cell load. (2) The fuel cell according to (1), wherein the gas flow path is fully closed during OC. (3) A fuel cell having a gas flow path formed on a cell surface, wherein the gas flow path is composed of a fixed part and a movable part that is a part separate from the fixed part and is movable with respect to the fixed part. A fuel cell in which the gas flow path is changed between a flow path-less state and a flow path-present state by moving the movable part. (4) The fuel cell according to (3), wherein the gas flow passage is flowless when OC, and has a flow passage whose flow passage cross-sectional area is variable when output. (5) When there is a flow path at the time of output, the gas flow path is
The fuel cell according to (4), wherein the flow passage cross-sectional area is fully opened when the required output is low, and the flow passage cross-sectional area is opened when the required output is high.

【0005】上記(1)の燃料電池では、セル面内のガ
ス流路の断面積が可変であるため、OC時に流路断面積
を閉塞することが可能である。その際、負荷(外部から
の要求の一例)に応じてガス流路断面積を変化させるの
で、セル内環境に応じて変化させるものではないため、
セル内環境とは独立に強制的に変えることができ、制御
応答性を高めることができる。上記(2)の燃料電池で
は、OC時に流路断面積を閉塞することにより、水素の
クロスリークを防止でき、OC時耐久を改善することが
できる。上記(3)の燃料電池では、ガス流路を固定部
と可動部から構成し、可動部を動かして流路レスとする
ことができるため、OC時に流路レスとして流路を閉塞
することができる。また、可動部をセル外部からの要求
に応じて動かすことにより、流路断面積をセル内環境と
は独立に強制的に変えることができ、制御応答性を高め
ることができる。また、可動部を流路レスとなるように
動かすことができるので、OC時に流路レスとして可動
部全体を拡散層に押し付けることができ、OC時のガス
流路閉塞時のセパレータ熱伝導性を向上させることがで
きる。上記(4)の燃料電池では、OC時に流路レスと
して水素の供給を断つことにより、水素のクロスリーク
を防止でき、OC時耐久を改善することができる。上記
(5)の燃料電池では、出力時の流路有りにおいて、ガ
ス流路を、要求出力が低い時には流路断面積を全開に
し、要求出力が高い時には流路断面積を中開にするの
で、要求出力が低い時には圧損を低減させて燃費向上を
はかることができ、要求出力が高い時には流速を上げ生
成水を吹き飛ばして燃料電池出力を上げることができ
る。その結果、出力時には、要求出力に応じて燃費向上
と高出力の両立をはかることができる。
In the fuel cell of the above (1), since the cross sectional area of the gas flow passage in the cell surface is variable, it is possible to close the flow passage cross sectional area at the time of OC. At that time, since the gas flow passage cross-sectional area is changed according to the load (an example of a request from the outside), it is not changed according to the environment inside the cell.
It can be forcibly changed independently of the environment inside the cell, and the control response can be improved. In the fuel cell of the above (2), by closing the flow passage cross-sectional area at the time of OC, hydrogen cross-leak can be prevented and the durability at OC can be improved. In the fuel cell of the above (3), since the gas flow path is composed of the fixed part and the movable part and the movable part can be moved to make the flow path less, the flow path can be closed at the time of OC to close the flow path. it can. Further, by moving the movable portion in response to a request from outside the cell, the flow passage cross-sectional area can be forcibly changed independently of the environment inside the cell, and the control response can be improved. In addition, since the movable part can be moved so as to have no flow passage, the whole movable part can be pressed against the diffusion layer as a flow passage is not present at the time of OC, and the thermal conductivity of the separator when the gas flow passage is closed at the time of OC can be improved. Can be improved. In the fuel cell of the above (4), by cutting off the supply of hydrogen at the time of OC with no flow passage, it is possible to prevent cross-leakage of hydrogen and improve durability at OC. In the fuel cell of the above (5), in the presence of the flow passage at the time of output, the gas flow passage is fully opened when the required output is low, and is opened midway when the required output is high. When the required output is low, the pressure loss can be reduced to improve the fuel consumption, and when the required output is high, the flow velocity can be increased and the generated water can be blown off to increase the fuel cell output. As a result, at the time of output, it is possible to achieve both high fuel efficiency and high output depending on the required output.

【0006】[0006]

【発明の実施の形態】以下に、本発明の燃料電池を図1
〜図4を参照して説明する。図3、図4の従来の燃料電
池の一般構成は、本発明では、セパレータ18が固定部
と固定部に対して可動な可動部からなる点を除き、本発
明の燃料電池にも適用される。本発明の燃料電池は固体
高分子電解質型燃料電池10である。該燃料電池10
は、たとえば燃料電池自動車に搭載される。ただし、自
動車以外に用いられてもよい。
BEST MODE FOR CARRYING OUT THE INVENTION The fuel cell of the present invention is shown in FIG.
~ It demonstrates with reference to FIG. The general configuration of the conventional fuel cell of FIGS. 3 and 4 is also applied to the fuel cell of the present invention, except that the separator 18 is composed of a fixed portion and a movable portion movable with respect to the fixed portion in the present invention. . The fuel cell of the present invention is a solid polymer electrolyte fuel cell 10. The fuel cell 10
Is mounted in, for example, a fuel cell vehicle. However, it may be used for other than automobiles.

【0007】固体高分子電解質型燃料電池10は、図
1、図3、図4に示すように、膜−電極アッセンブリ
(MEA:Membrane-Electrode Assembly )とセパレー
タ18との積層体からなる。膜−電極アッセンブリは、
イオン交換膜からなる電解質膜11と、この電解質膜の
一面に配置された触媒層12からなる電極(アノード、
燃料極)14および電解質膜11の他面に配置された触
媒層15からなる電極(カソード、空気極)17とから
なる。セパレータ18にはアノード、カソードに燃料ガ
ス(水素)および酸化ガス(酸素、通常は空気)を供給
するためのガス流路27、28または冷媒を流すための
冷媒流路26が形成されている。膜−電極アッセンブリ
とセパレータ18との間には、アノード側、カソード側
にそれぞれ拡散層13、16が設けられる。図1は、ス
タック23のうち、1つのMEAとその両側のセパレー
タ18の、一部(ガス流路27、28のそれぞれの1流
路とその流路底壁、流路側壁部分)を示している。
As shown in FIGS. 1, 3, and 4, the solid polymer electrolyte fuel cell 10 is composed of a laminate of a membrane-electrode assembly (MEA: Membrane-Electrode Assembly) and a separator 18. The membrane-electrode assembly is
An electrode (anode, anode, composed of an electrolyte membrane 11 made of an ion exchange membrane and a catalyst layer 12 arranged on one surface of the electrolyte membrane)
A fuel electrode) 14 and an electrode (cathode, air electrode) 17 including a catalyst layer 15 disposed on the other surface of the electrolyte membrane 11. The separator 18 has gas passages 27 and 28 for supplying a fuel gas (hydrogen) and an oxidizing gas (oxygen, usually air) to the anode and cathode, or a refrigerant passage 26 for flowing a refrigerant. Diffusion layers 13 and 16 are provided between the membrane-electrode assembly and the separator 18 on the anode side and the cathode side, respectively. FIG. 1 shows one MEA and a part of the separator 18 on both sides of the stack 23 (one channel of each of the gas channels 27 and 28 and its channel bottom wall and channel sidewall portion). There is.

【0008】本発明の燃料電池では、図1に示すよう
に、セル面内の(セルの発電部領域にある)ガス流路2
7、28(燃料ガス流路27、酸化ガス流路28)の流
路断面積が可変とされており、セル外の要求、たとえば
燃料電池負荷、に応じてガス流路断面積が変化される。
流路断面積が可変とされるガス流路は、燃料ガス流路2
7と酸化ガス流路28の両方であることが望ましいが、
燃料ガス流路27と酸化ガス流路28の何れか一方のみ
でもOC耐久向上に対しては効果があるので、燃料ガス
流路27と酸化ガス流路28の何れか一方のみでもよ
い。以下の説明は、燃料ガス流路27と酸化ガス流路2
8の両方の場合を例にとる。ガス流路断面積が変化され
る場合、図2に示すように、OC時はガス流路27、2
8が全閉とされる。
In the fuel cell of the present invention, as shown in FIG. 1, the gas flow path 2 in the cell surface (in the power generation region of the cell)
The flow passage cross-sectional areas of Nos. 7 and 28 (fuel gas flow passage 27, oxidizing gas flow passage 28) are variable, and the gas flow passage cross-sectional area is changed according to the demand outside the cell, for example, the fuel cell load. .
The gas flow path whose flow path cross-sectional area is variable is the fuel gas flow path 2
7 and the oxidizing gas flow path 28 are both desirable,
Since only one of the fuel gas flow path 27 and the oxidizing gas flow path 28 is effective in improving the OC durability, only one of the fuel gas flow path 27 and the oxidizing gas flow path 28 may be used. The following description will be made on the fuel gas flow path 27 and the oxidizing gas flow path 2.
Take both cases of 8 as an example. When the gas flow passage cross-sectional area is changed, as shown in FIG.
8 is fully closed.

【0009】本発明の燃料電池は、図1に示すように、
セル面に形成されるガス流路27、28(燃料ガス流路
27、酸化ガス流路28)を有しており、ガス流路2
7、28は、それぞれ、固定部18aと、固定部18a
とは別部品で固定部18aに対して可動の可動部18b
から構成されている。固定部18aと可動部18bは、
それぞれ、セパレータ18の一部を構成している。可動
部18bを動かすことによりガス流路27,28は流路
レスと流路有りの状態との間で変化される。可動部18
bはセル外の要求、たとえば燃料電池負荷、に応じて動
かされ、可動部18bが動かされることによって、ガス
流路断面積が変化される。
The fuel cell of the present invention, as shown in FIG.
It has gas flow paths 27 and 28 (fuel gas flow path 27, oxidizing gas flow path 28) formed on the cell surface.
7 and 28 are a fixed portion 18a and a fixed portion 18a, respectively.
A movable part 18b which is a separate component from the fixed part 18a and is movable.
It consists of The fixed portion 18a and the movable portion 18b are
Each of them constitutes a part of the separator 18. By moving the movable portion 18b, the gas flow paths 27 and 28 are changed between a flow path-less state and a flow path-present state. Movable part 18
b is moved in response to a request outside the cell, for example, a fuel cell load, and the movable portion 18b is moved to change the gas flow passage cross-sectional area.

【0010】可動部18bは、ガス流路27、28の流
路溝深さ方向に動かされる。すなわち、固定部18aが
セパレータのリブを構成しており可動部18bがリブ間
の谷底を構成していて、可動部18bが動かされえるこ
とにより、固定のリブ間で可動の谷底が流路深さ方向に
拡散層13、16に接近・離反する方向(流路溝の深さ
が深くなったり浅くなったりする方向)に動かされる。
可動部18bの動きは、ガス流路27、28の流路長手
方向の動きも伴ってもよいが、流路長手方向の動きを伴
うと流路レス状態近傍で拡散層13、16をこするの
で、流路長手方向の動きは無い方がよい。可動部18b
は、従来のバイメタル弁のようにガス流路27、28の
1箇所に局所的に設けられるのではなく、ガス流路2
7、28の長手方向に長く設けられる。したがって、流
路レスの状態では、可動部18bは可動部18bの全長
にわたって拡散層13、16に押し付けられる。
The movable portion 18b is moved in the depth direction of the flow channel grooves of the gas flow channels 27 and 28. That is, the fixed portion 18a constitutes the rib of the separator, the movable portion 18b constitutes the valley bottom between the ribs, and the movable portion 18b can be moved, so that the movable valley bottom is formed between the fixed ribs. It is moved in the direction toward and away from the diffusion layers 13 and 16 (direction in which the depth of the channel groove becomes deeper or shallower).
The movement of the movable portion 18b may be accompanied by the movement of the gas passages 27, 28 in the passage longitudinal direction, but when accompanied by the movement in the passage longitudinal direction, the diffusion layers 13, 16 are rubbed near the passageless state. Therefore, it is better that there is no movement in the longitudinal direction of the flow path. Movable part 18b
Is not locally provided in one place of the gas flow paths 27 and 28 as in the conventional bimetal valve, but is provided in the gas flow path 2
It is provided long in the longitudinal direction of 7, 28. Therefore, in the flow pathless state, the movable portion 18b is pressed against the diffusion layers 13 and 16 over the entire length of the movable portion 18b.

【0011】上記の構造条件は、たとえば、固定部18
aを平板に並行穴を形成したものから構成しておき、可
動部18bを平板の一面に該平板から直交する方向に突
出する櫛歯状の多数の並行な流路底壁部を形成したもの
から構成しておき、可動部18bの櫛歯を固定部18a
の並行穴に差し込んで、並行穴の側面で流路側面を櫛歯
の帳面で流路底面を形成して、ガス流路27、28を構
成し、可動部18bを固定部18aに対して平板厚み方
向に動かして流路深さを変化させるようにした構造によ
って、達成される。ただし、この構造に流路構造が限定
されるものではない。
The above structural conditions are, for example, the fixed portion 18
a is formed by forming parallel holes in a flat plate, and the movable portion 18b is formed on one surface of the flat plate with a large number of parallel comb-shaped flow path bottom walls protruding in a direction orthogonal to the flat plate. And the comb teeth of the movable portion 18b are fixed to the fixed portion 18a.
Gas flow paths 27 and 28 are formed by inserting the side surfaces of the parallel holes into the side surfaces of the parallel holes to form the bottom surfaces of the flow paths with the comb teeth. This is achieved by a structure that moves in the thickness direction to change the depth of the flow path. However, the flow channel structure is not limited to this structure.

【0012】図2に示すように、各ガス流路27、28
は、OC時には流路レスとされ、出力時には流路断面積
可変の流路有りとされるように、可動部18bの動きが
制御される。また、出力時の流路有りにおいて、ガス流
路27、28は、図2のAのように要求出力が低い時
(低負荷時)には流路断面積を全開にし、図2のBのよ
うに要求出力が高い時(高負荷時)には流路断面積を中
開(全開と流路レスの全閉との中間にある開度)にする
ように、可動部18bの動きが制御される。上記の可動
部18bの動きの制御は、セル外の制御装置からの信号
によって、可動部18bの作動装置(たとえば、スタッ
ク23の側部に設けておき、これをセルの可動部18b
に連結しておく)を作動させることにより行う。可動部
18bの動きの制御は、スタック23の全セル、同時に
行うことが望ましい。
As shown in FIG. 2, each gas flow path 27, 28
The flow of the movable part 18b is controlled so that the flow path is not present at the time of OC, and the flow path having the variable flow passage cross-sectional area is provided at the time of output. Further, in the presence of the flow passage at the time of output, the gas flow passages 27 and 28 have the flow passage cross-sectional area fully opened when the required output is low as shown in A of FIG. As described above, when the required output is high (when the load is high), the movement of the movable portion 18b is controlled so that the flow passage cross-sectional area is opened midway (opening between the full open and the flow passageless closed). To be done. The movement of the movable part 18b is controlled by a signal from a control device outside the cell, and is provided in an operating device of the movable part 18b (for example, provided on a side part of the stack 23, which is then provided to the movable part 18b of the cell).
Connected to)). It is desirable to control the movement of the movable portion 18b in all cells of the stack 23 at the same time.

【0013】つぎに、本発明の燃料電池の作用について
説明する。上記燃料電池10では、セル面内のガス流路
27、28の流路断面積が可変であるため、OC時にガ
ス流路27、28を閉塞する(ガス流路27、28の流
路断面積を0にする)ことが可能である。その際、負荷
(外部からの要求の一例)に応じてガス流路断面積を変
化させるので、従来のようにセル内環境に応じて変化さ
せるものではないため、セル内環境とは独立に強制的に
変えることができ、要求に応じて先手先手で制御でき、
制御応答性を高めることができる。
Next, the operation of the fuel cell of the present invention will be described. In the above fuel cell 10, since the flow passage cross-sectional areas of the gas flow passages 27 and 28 in the cell plane are variable, the gas flow passages 27 and 28 are closed at the time of OC (the flow passage cross-sectional areas of the gas flow passages 27 and 28). Can be set to 0). At that time, the gas flow passage cross-sectional area is changed according to the load (an example from the outside), so it is not changed according to the environment inside the cell as in the past, so it is forced independently of the environment inside the cell. And can be controlled proactively on demand,
The control response can be improved.

【0014】また、OC時に流路断面積を閉塞するの
で、OC時に水素の供給を燃料ガス流路27全長にわた
ってカットでき、水素のクロスリークを防止でき、OC
時耐久を改善することができる。また、カソード側の流
路断面積を閉塞すると、たとえ極く微小量の水素がカソ
ード側にクロスリークしたとしても、酸素側での水素と
酸素との反応およびそれによる発熱と膜11の損傷を抑
えることができ、OC時耐久を改善することができる。
これに対し、従来のようなバイベタル弁によって水素の
供給流量を止めた場合には、燃料ガス流路27に残って
いる水素のクロスリークは必ず生じるので、効果的にO
C時耐久を改善することはできない。
Further, since the flow passage cross-sectional area is closed at the time of OC, the supply of hydrogen can be cut over the entire length of the fuel gas flow passage 27 at the time of OC, hydrogen cross leak can be prevented, and OC
When endurance can be improved. Further, if the flow path cross-sectional area on the cathode side is closed, even if a very small amount of hydrogen cross- leaks to the cathode side, the reaction between hydrogen and oxygen on the oxygen side and the resulting heat generation and damage to the membrane 11 may occur. It can be suppressed, and the durability at OC can be improved.
On the other hand, when the supply flow rate of hydrogen is stopped by the conventional bi-vetal valve, the cross leak of hydrogen remaining in the fuel gas flow path 27 is always generated, so that it is possible to effectively reduce O.
Durability at C cannot be improved.

【0015】本発明の燃料電池10では、ガス流路を固
定部18aと可動部18bから構成し、可動部18bを
動かして流路レスとすることができるため、OC時に流
路レスとして流路を閉塞することができる。また、可動
部18bをセル外部からの要求に応じて動かすことによ
り、従来のバイメタル弁のようにセル内環境条件によっ
て一義的になりゆきで作動させるものではないので、流
路断面積をセル内環境とは独立に、任意の値に、強制的
に変えることができ、制御応答性を高めることができ
る。
In the fuel cell 10 of the present invention, the gas flow path is composed of the fixed part 18a and the movable part 18b, and the movable part 18b can be moved to make the flow path less. Can be blocked. Further, since the movable part 18b is moved in response to a request from the outside of the cell, it is not uniquely operated according to the environmental conditions inside the cell unlike the conventional bimetal valve. It can be forcibly changed to an arbitrary value independently of the environment, and the control response can be improved.

【0016】また、ガス流路27、28が流路レスとな
るように可動部18bを動かすことができるので、OC
時に流路レスとして可動部18b全体を拡散層13、1
6に押し付けることができ、したがって、セパレータ1
8が、リブの部分も溝であった部分も含めて、全面で、
拡散層13、16に押し付けられ、OC時のガス流路閉
塞時のセパレータ18の電子通路が増大し、セパレータ
18との熱伝導性および導電性を向上させることができ
る。従来のバイメタル弁方式では、供給ガス流量を少な
くすることはできても、流路は依然溝状態にあって、そ
の部分ではセパレータは拡散層に接触してできないの
で、せっかくガスの供給を止めてもその流路をセパレー
タの電子通路に有効に利用できない。これに対し、本発
明では、流路レスとした時には、出力有り時に流路溝で
あった部分も可動部18bで埋めてセパレータ18の電
子通路として有効に利用できる。また、バイメタル方式
ではバイメタルの拡散層に対する接触圧が大きくならな
いので、接触抵抗が大となり、電子通路として有効に利
用できない。
Further, since the movable portion 18b can be moved so that the gas flow passages 27 and 28 are flow passageless, the OC
Sometimes the entire movable part 18b is made into a diffusion layer 13, 1 without a flow path.
6 can be pressed against the separator 1
8 is the entire surface, including the rib portion and the groove portion,
By being pressed against the diffusion layers 13 and 16, the electron passage of the separator 18 is increased when the gas flow path is closed at the time of OC, and the thermal conductivity and conductivity with the separator 18 can be improved. With the conventional bimetal valve method, although the flow rate of the supplied gas can be reduced, the flow path is still in the groove state, and the separator cannot contact the diffusion layer at that part, so stop the gas supply without any effort. However, the flow path cannot be effectively used for the electronic passage of the separator. On the other hand, in the present invention, when the flow path is not used, the portion that was the flow path groove when there is output can be effectively used as the electronic passage of the separator 18 by filling it with the movable portion 18b. Further, in the bimetal method, the contact pressure of the bimetal with respect to the diffusion layer does not become large, so the contact resistance becomes large and it cannot be effectively used as an electron passage.

【0017】可動部18bをもつ燃料電池10では、可
動部18bを作動させて、OC時に流路レスとして水
素、酸素の供給を断つことにより、水素のクロスリーク
を防止でき、かつクロスリークしてしまった水素と酸素
との反応を防止して発熱を抑え、膜11の損傷を防止で
き、OC時耐久を改善することができる。これに対し、
従来のようなバイベタル弁によって水素の供給流量を止
めた場合には、燃料ガス流路27に残っている水素のク
ロスリークは必ず生じるので、効果的にOC時耐久を改
善することはできない。
In the fuel cell 10 having the movable portion 18b, the movable portion 18b is operated to cut off the supply of hydrogen and oxygen without a flow passage at the time of OC, thereby preventing the cross leak of hydrogen and causing the cross leak. It is possible to prevent the reaction between hydrogen and oxygen that have been trapped, suppress heat generation, prevent damage to the film 11, and improve durability during OC. In contrast,
When the flow rate of hydrogen supply is stopped by the conventional bi-vetal valve, cross-leakage of hydrogen remaining in the fuel gas flow path 27 is inevitably generated, so that the OC durability cannot be effectively improved.

【0018】また、燃料電池10の出力時(流路有りの
状態)において、ガス流路を、図2に示すように、要求
出力が低い時には流路断面積を全開にし、要求出力が高
い時には流路断面積を中開にするので、要求出力が低い
時には圧損を低減させて燃費の向上をはかることがで
き、要求出力が高い時には流速を上げ生成水を吹き飛ば
し、酸化ガス下流域での出力密度を向上させて、燃料電
池出力を上げることができる(ただし、中開では圧損が
大になって、燃費は全開時に比べて低下する)。その結
果、出力時には、要求出力に応じて燃費向上と高出力の
両立をはかることができる。これに対し、従来のバイメ
タル弁方式では、温度に応じて一義的に弁開度が決まっ
てしまい、要求出力に応じて燃費をとったり出力をとっ
たりすることができないので、本発明のような燃費向上
と高出力の両立をはかることはできない。
Further, at the time of output of the fuel cell 10 (state with flow passage), as shown in FIG. 2, the gas flow passage is fully opened when the required output is low, and when the required output is high. Since the cross-sectional area of the flow path is medium open, pressure loss can be reduced to improve fuel efficiency when the required output is low, and when the required output is high, the flow velocity is increased and the generated water is blown away, and the output in the downstream region of the oxidizing gas is increased. The density can be improved and the fuel cell output can be increased (however, the pressure loss becomes large at middle opening and the fuel consumption is lower than at full opening). As a result, at the time of output, it is possible to achieve both high fuel efficiency and high output depending on the required output. On the other hand, in the conventional bimetal valve system, the valve opening is uniquely determined according to the temperature, and it is not possible to obtain the fuel consumption or output according to the required output, so that it is possible to improve the fuel consumption like the present invention. It is not possible to achieve both high output and high output.

【0019】[0019]

【発明の効果】請求項1の燃料電池によれば、セル面内
のガス流路の断面積が可変であるため、OC時に流路断
面積を閉塞することが可能である。その際、負荷(要求
出力)に応じてガス流路断面積を変化させるので、セル
内環境とは独立に強制的にガス流路断面積を変えること
ができ、制御応答性を高めることができる。請求項2の
燃料電池によれば、OC時に流路断面積を閉塞すること
により、水素のクロスリークを防止でき、OC時の燃料
電池の耐久を改善することができる。請求項3の燃料電
池によれば、ガス流路を固定部と可動部から構成し、可
動部を動かして流路レスとすることができるため、OC
時に流路レスとして流路を閉塞することができる。ま
た、可動部をセル外部からの要求に応じて動かすことに
より、流路断面積をセル内環境とは独立に強制的に変え
ることができ、制御応答性を高めることができる。ま
た、可動部を流路レスとなるように動かすことができる
ので、OC時に流路レスとして可動部全体を拡散層に押
し付けることができ、OC時のガス流路閉塞時のセパレ
ータとの熱伝導性を向上させることができる。請求項4
の燃料電池によれば、OC時に流路レスとして水素の供
給を断つことにより、水素のクロスリークを防止でき、
OC時耐久を改善することができる。請求項5の燃料電
池によれば、出力時の流路有りにおいて、ガス流路を、
要求出力が低い時には流路断面積を全開にし、要求出力
が高い時には流路断面積を中開にするので、要求出力が
低い時には圧損を低減させて燃費向上をはかることがで
き、要求出力が高い時には流速を上げ生成水を吹き飛ば
して燃料電池出力を上げることができる。その結果、出
力時において、燃費向上と高出力の両立をはかることが
できる。
According to the fuel cell of the first aspect, since the cross sectional area of the gas flow passage in the cell surface is variable, it is possible to close the flow passage cross sectional area at the time of OC. At that time, since the gas flow passage cross-sectional area is changed according to the load (required output), the gas flow passage cross-sectional area can be forcibly changed independently of the internal environment of the cell, and the control response can be improved. . According to the fuel cell of the second aspect, by closing the flow passage cross-sectional area at the time of OC, hydrogen cross-leak can be prevented and the durability of the fuel cell at the time of OC can be improved. According to the fuel cell of the third aspect, the gas passage is composed of the fixed portion and the movable portion, and the movable portion can be moved so as to eliminate the passage.
At times, the flow passage can be closed without using the flow passage. Further, by moving the movable portion in response to a request from outside the cell, the flow passage cross-sectional area can be forcibly changed independently of the environment inside the cell, and the control response can be improved. Further, since the movable part can be moved so as to have no flow passage, the whole movable part can be pressed against the diffusion layer as a flow passage is not present at the time of OC, and the heat conduction with the separator when the gas flow passage is closed at the time of OC. It is possible to improve the sex. Claim 4
According to the fuel cell of No. 3, the cross-leakage of hydrogen can be prevented by cutting off the supply of hydrogen at OC without a flow path.
The durability at OC can be improved. According to the fuel cell of claim 5, in the presence of the flow passage at the time of output, the gas flow passage is
When the required output is low, the flow passage cross-sectional area is fully opened, and when the required output is high, the flow passage cross-sectional area is opened midway.When the required output is low, it is possible to reduce pressure loss and improve fuel efficiency. When it is high, the flow velocity can be increased to blow off the produced water to increase the fuel cell output. As a result, at the time of output, both improvement in fuel consumption and high output can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の燃料電池の一部の拡大断面図である。FIG. 1 is an enlarged sectional view of a part of a fuel cell of the present invention.

【図2】本発明の燃料電池の電圧/電流密度のグラフで
ある。
FIG. 2 is a voltage / current density graph of the fuel cell of the present invention.

【図3】一般の燃料電池(ガス流路部以外は本発明にも
適用可能)の全体正面図である。
FIG. 3 is an overall front view of a general fuel cell (applicable to the present invention except for a gas flow path portion).

【図4】図3の燃料電池の一部拡大断面図である。4 is a partially enlarged cross-sectional view of the fuel cell of FIG.

【符号の説明】[Explanation of symbols]

10 (固体高分子電解質型)燃料電池 11 電解質膜 12 触媒層 13 拡散層 14 電極(アノード、燃料極) 15 触媒層 16 拡散層 17 電極(カソード、空気極) 18 セパレータ 18a 固定部 18b 可動部 19 モジュール 20 ターミナル 21 インシュレータ 22 エンドプレート 23 スタック 24 締結部材(テンションプレート) 25 ボルト 26 冷媒流路(冷却水流路) 27 燃料ガス流路 28 酸化ガス流路 10 (Polymer electrolyte type) fuel cell 11 Electrolyte membrane 12 Catalyst layer 13 Diffusion layer 14 electrodes (anode, fuel electrode) 15 Catalyst layer 16 diffusion layer 17 electrodes (cathode, air electrode) 18 separator 18a fixed part 18b movable part 19 modules 20 terminals 21 insulator 22 End plate 23 stack 24 Fastening member (tension plate) 25 volts 26 Refrigerant flow path (cooling water flow path) 27 Fuel gas flow path 28 Oxidizing gas flow path

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 セル面内のガス流路の断面積が可変であ
り、燃料電池負荷に応じてガス流路断面積を変化させた
燃料電池。
1. A fuel cell in which the cross-sectional area of the gas flow passage in the cell plane is variable and the cross-sectional area of the gas flow passage is changed according to the fuel cell load.
【請求項2】 OC時は前記ガス流路を全閉とした請求
項1記載の燃料電池。
2. The fuel cell according to claim 1, wherein the gas flow path is fully closed during OC.
【請求項3】 セル面に形成されるガス流路を有する燃
料電池であって、前記ガス流路を、固定部と、該固定部
とは別部品で固定部に対して可動の可動部から構成し、
前記可動部を動かすことにより前記ガス流路を流路レス
と流路有りの状態との間で変化させた燃料電池。
3. A fuel cell having a gas flow path formed on a cell surface, wherein the gas flow path is a movable part movable from the fixed part and a part separate from the fixed part. Configure and
A fuel cell in which the gas flow path is changed between a flow path-less state and a flow path-present state by moving the movable portion.
【請求項4】 前記ガス流路を、OC時には流路レスと
し、出力時には流路断面積可変の流路有りとする請求項
3記載の燃料電池。
4. The fuel cell according to claim 3, wherein the gas flow passage has no flow passage at OC and has a flow passage having a variable flow passage cross-sectional area at output.
【請求項5】 出力時の流路有りにおいて、前記ガス流
路を、要求出力が低い時には流路断面積を全開にし、要
求出力が高い時には流路断面積を中開にする請求項4記
載の燃料電池。
5. The gas flow passage having a flow passage at the time of output, the gas flow passage is fully opened when the required output is low, and is opened midway when the required output is high. Fuel cell.
JP2002140970A 2002-05-16 2002-05-16 Fuel cell Expired - Fee Related JP3922089B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002140970A JP3922089B2 (en) 2002-05-16 2002-05-16 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002140970A JP3922089B2 (en) 2002-05-16 2002-05-16 Fuel cell

Publications (2)

Publication Number Publication Date
JP2003331884A true JP2003331884A (en) 2003-11-21
JP3922089B2 JP3922089B2 (en) 2007-05-30

Family

ID=29701687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002140970A Expired - Fee Related JP3922089B2 (en) 2002-05-16 2002-05-16 Fuel cell

Country Status (1)

Country Link
JP (1) JP3922089B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005096427A1 (en) * 2004-03-31 2005-10-13 Nec Corporation Fuel cell
JP2005310548A (en) * 2004-04-21 2005-11-04 Seiko Instruments Inc Gas supply and exhaust system
JP2010040403A (en) * 2008-08-07 2010-02-18 Chino Corp Separator for fuel cell
JP2010055884A (en) * 2008-08-27 2010-03-11 Seiko Instruments Inc Fuel cell and fuel cell stack
US8050837B2 (en) 2006-09-04 2011-11-01 Toyota Jidosha Kabushiki Kaisha Mobile unit and control method of mobile unit

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005096427A1 (en) * 2004-03-31 2005-10-13 Nec Corporation Fuel cell
US7618733B2 (en) 2004-03-31 2009-11-17 Nec Corporation Fuel cell
JP4765935B2 (en) * 2004-03-31 2011-09-07 日本電気株式会社 Fuel cell
JP2005310548A (en) * 2004-04-21 2005-11-04 Seiko Instruments Inc Gas supply and exhaust system
US8050837B2 (en) 2006-09-04 2011-11-01 Toyota Jidosha Kabushiki Kaisha Mobile unit and control method of mobile unit
JP2010040403A (en) * 2008-08-07 2010-02-18 Chino Corp Separator for fuel cell
JP2010055884A (en) * 2008-08-27 2010-03-11 Seiko Instruments Inc Fuel cell and fuel cell stack

Also Published As

Publication number Publication date
JP3922089B2 (en) 2007-05-30

Similar Documents

Publication Publication Date Title
US7413821B2 (en) Solid polymer electrolyte fuel cell assembly with gas passages in serial communication, and method of supplying reaction gas in fuel cell
JP4572062B2 (en) Fuel cell stack
CA2600817C (en) Air-cooled fuel cell system
CA2456731C (en) Separator passage structure of fuel cell
AU2002234964A1 (en) Solid polymer electrolyte fuel cell assembly, fuel cell stack, and method of supplying reaction gas in fuel cell
JP5098128B2 (en) Fuel cell
US9343756B2 (en) Fuel cell separator and fuel cell stack and reactant gas control method thereof
JP4592940B2 (en) Polymer electrolyte fuel cell stack
JP2002260709A (en) Solid polymer cell assembly, fuel cell stack and operation method of fuel cell
JP4894311B2 (en) Thermal insulation dummy cell and fuel cell stack
JP5006506B2 (en) Fuel cell and operation method thereof
JP2004087457A (en) Fuel cell and fuel cell system
JP2003331884A (en) Fuel cell
KR20200072201A (en) Air-cooled fuel cell stack and air supply system including the same
JP2002216823A (en) Fuel cell
JPH05190193A (en) Solid high polymeric electrolyte type fuel cell
JP2008034248A (en) Fuel cell system
JP2004342442A (en) Fuel cell separator
JP2008146897A (en) Fuel cell separator, and fuel cell
JP2013157315A (en) Fuel battery
JP2003203649A (en) Fuel cell
JPH09161821A (en) Solid polymer electrolytic fuel cell
JP2004200132A (en) Fuel cell stack
JPH06333590A (en) Solid polyelectrolyte fuel cell
JP2006164545A (en) Fuel cell stack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070212

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees