JP2003330418A - Display device and its driving method - Google Patents

Display device and its driving method

Info

Publication number
JP2003330418A
JP2003330418A JP2002137910A JP2002137910A JP2003330418A JP 2003330418 A JP2003330418 A JP 2003330418A JP 2002137910 A JP2002137910 A JP 2002137910A JP 2002137910 A JP2002137910 A JP 2002137910A JP 2003330418 A JP2003330418 A JP 2003330418A
Authority
JP
Japan
Prior art keywords
light emitting
emitting element
display device
voltage
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002137910A
Other languages
Japanese (ja)
Other versions
JP4593868B2 (en
Inventor
Toshiaki Imai
利明 今井
Shin Asano
慎 浅野
Hiroshi Hasegawa
洋 長谷川
Tatsuya Sasaoka
龍哉 笹岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2002137910A priority Critical patent/JP4593868B2/en
Publication of JP2003330418A publication Critical patent/JP2003330418A/en
Application granted granted Critical
Publication of JP4593868B2 publication Critical patent/JP4593868B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a display device capable of correcting the change of luminance caused by secular change with a simple circuit configuration without using an photo-conductive element, and to provide its driving method. <P>SOLUTION: In the display device, the change of luminance of the thin film light emitting element 11 caused by the secular change is corrected by detecting the voltage or the current of a circuit including the thin film light emitting element 11 whose luminance depends on a driving current with a detection circuit 12 and by controlling the ratio of a light emission period (Duty) or the current value of the element 11 by a correction circuit 13 based on the detection signal of the detection circuit 12. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、表示装置およびそ
の駆動方法に関し、特に輝度が駆動電流に依存する発光
素子を有する表示装置およびその駆動方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a display device and a driving method thereof, and more particularly to a display device having a light emitting element whose brightness depends on a driving current and a driving method thereof.

【0002】[0002]

【従来の技術】輝度が駆動電流に依存する発光素子、例
えば有機材料のエレクトロルミネッセンス(electrolumi
nescence)素子(以下、有機EL素子と記す)において、
その経時変化として、定電流駆動を行った場合に、駆動
電圧の上昇や発光効率(輝度/電流)の低下がある。こ
れを補償する方法として、両面に透明電極を使用した有
機EL素子を用い、その一方の透明電極側からの出射光
に基づいて発光輝度をモニターしてフィードバックをか
ける方法(特開2001−76882号公報参照)や、
表示に使用しないモニター用有機EL素子を別に作り、
このモニター用有機EL素子で発光輝度をモニターして
フィードバックをかける方法(国際公開第98/408
71号パンフレット参照)等が知られている。
2. Description of the Related Art A light emitting device whose brightness depends on a driving current, for example, electroluminescence of an organic material.
nescence) element (hereinafter referred to as an organic EL element),
As a change with time, there is an increase in drive voltage and a decrease in luminous efficiency (luminance / current) when constant current driving is performed. As a method of compensating for this, a method of using an organic EL element using transparent electrodes on both sides and monitoring the emission brightness based on the light emitted from one of the transparent electrodes to give feedback (Japanese Patent Laid-Open No. 2001-76882). (See the official gazette),
Make a separate organic EL element for the monitor that is not used for display,
A method of monitoring the emission brightness with this organic EL element for monitoring and giving feedback (International Publication No. 98/408)
No. 71 pamphlet) and the like are known.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来技術に係る方法では、有機EL素子の輝度を直接検出
する構成を採っているため、その検出の際に光導電素子
や複雑な回路が必要になり、その分だけコストが高くな
ってしまう。また、周辺の駆動回路の回路規模も大きく
なるため、その分だけ画素領域(表示領域)の面積を狭
めざるを得なく、開口率の低下も余儀なくされる。これ
に伴って輝度が低下し、また同程度の輝度を維持するた
めには大きめの電流を流す必要があるため、発光素子の
寿命低下といった弊害をもたらす。
However, in the method according to the above-mentioned prior art, since the brightness of the organic EL element is directly detected, a photoconductive element or a complicated circuit is required for the detection. Therefore, the cost will increase accordingly. In addition, since the circuit scale of the peripheral drive circuit also becomes large, the area of the pixel region (display region) must be narrowed by that amount, and the aperture ratio must be reduced. Along with this, the brightness is lowered, and a large current needs to be passed in order to maintain the same level of brightness, which causes an adverse effect such as shortening the life of the light emitting element.

【0004】本発明は、上記課題に鑑みてなされたもの
であり、その目的とするところは、光導電素子を用いる
ことなく、単純な回路構成にて経時変化に伴う輝度の変
化を補うことが可能な表示装置およびその駆動方法を提
供することにある。
The present invention has been made in view of the above problems, and it is an object of the present invention to compensate for changes in luminance due to aging with a simple circuit configuration without using a photoconductive element. An object of the present invention is to provide a display device capable of driving and a driving method thereof.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明では、輝度が駆動電流に依存する発光素子を
含む回路の電圧または電流を検出し、その検出結果に基
づいて当該発光素子の輝度変化を補正する構成を採って
いる。
In order to achieve the above object, in the present invention, the voltage or current of a circuit including a light emitting element whose brightness depends on a driving current is detected, and the light emitting element is detected based on the detection result. It adopts a configuration that corrects the brightness change of.

【0006】発光素子は、経時変化に伴ってその電流−
電圧特性が高電圧側に移動する。一方、定電流にて発光
素子を駆動した場合、発光素子の電圧と輝度は、ある相
関を持った関数で表される。したがって、発光素子の電
流−電圧特性から発光素子の輝度を見積もることができ
る。この点に着目し、発光素子を含む回路の電圧または
電流を検出することで、光導電素子を用いなくてもその
検出結果から発光素子の輝度を知ることができる。そし
て、検出した電圧または電流を基に、発光素子の経時変
化に伴う輝度変化について補正を行うことができる。
The light emitting element has a current-
The voltage characteristic moves to the high voltage side. On the other hand, when the light emitting element is driven with a constant current, the voltage and luminance of the light emitting element are expressed by a function having a certain correlation. Therefore, the luminance of the light emitting element can be estimated from the current-voltage characteristics of the light emitting element. Focusing on this point, by detecting the voltage or current of the circuit including the light emitting element, the brightness of the light emitting element can be known from the detection result without using the photoconductive element. Then, based on the detected voltage or current, it is possible to correct the change in luminance of the light emitting element due to the change over time.

【0007】[0007]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照して詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

【0008】図1は、本発明の一実施形態に係る表示装
置を示す概念図である。図1から明らかなように、本実
施形態に係る表示装置は、輝度が駆動電流に依存する発
光素子、例えば薄膜発光素子11と、この薄膜発光素子
11を含む回路の電圧または電流を検出する検出回路1
2と、この検出回路12の検出信号に基づいて薄膜発光
素子11の輝度変化を補正する補正回路13とを有する
構成となっている。
FIG. 1 is a conceptual diagram showing a display device according to an embodiment of the present invention. As is apparent from FIG. 1, the display device according to the present embodiment is a light-emitting element whose brightness depends on a driving current, for example, a thin-film light-emitting element 11, and a detection circuit that detects voltage or current of a circuit including the thin-film light-emitting element 11. Circuit 1
2 and a correction circuit 13 for correcting the luminance change of the thin film light emitting element 11 based on the detection signal of the detection circuit 12.

【0009】ここで、薄膜発光素子11は、1組以上マ
トリクス状に配線された走査線とデータ線との間に直接
されて単位画素を構成する(パッシブマトリクス)か、
あるいは駆動トランジスタ(画素トランジスタ)と直列
に接続されて単位画素を構成する(アクティブマトリク
ス)。この薄膜発光素子11としては、例えば、有機E
L素子や無機発光ダイオード等が挙げられる。有機EL
素子には、画素の発光素子として液晶セルを用いてなる
液晶表示装置において、液晶のバックライトとして用い
られるEL素子も含まれる。
Here, the thin film light emitting device 11 is directly connected between the scanning lines and the data lines arranged in one or more sets to form a unit pixel (passive matrix), or
Alternatively, it is connected in series with a driving transistor (pixel transistor) to form a unit pixel (active matrix). As the thin film light emitting device 11, for example, organic E
Examples include L elements and inorganic light emitting diodes. Organic EL
The element also includes an EL element used as a backlight of liquid crystal in a liquid crystal display device using a liquid crystal cell as a light emitting element of a pixel.

【0010】ここで、経時変化に伴って、薄膜発光素子
11の電流(I)−電圧(V)特性は、図2に示すよう
に、高電圧側に移動する。一方、定電流にて薄膜発光素
子11を駆動した場合、薄膜発光素子11の電圧(V)
と輝度(L)は、図3に示すように、ある相関を持った
関数で表される。したがって、薄膜発光素子11の電流
−電圧特性から発光素子の輝度を見積もることができ
る。図3において、Voは初期電圧、Loは初期輝度、
Vは長時間使用後の電圧、Lは長時間使用後の輝度をそ
れぞれ表している。
Here, the current (I) -voltage (V) characteristic of the thin film light emitting device 11 shifts to the high voltage side as shown in FIG. On the other hand, when the thin film light emitting device 11 is driven with a constant current, the voltage (V) of the thin film light emitting device 11
And luminance (L) are represented by a function having a certain correlation, as shown in FIG. Therefore, the luminance of the light emitting element can be estimated from the current-voltage characteristics of the thin film light emitting element 11. In FIG. 3, Vo is an initial voltage, Lo is an initial luminance,
V represents the voltage after long-term use, and L represents the luminance after long-term use.

【0011】上述した薄膜発光素子11の特性に着目
し、本発明では、薄膜発光素子11を含む回路の電圧ま
たは電流を検出回路12によって検出することで、光導
電素子を用いて薄膜発光素子11の輝度を直接検出しな
くても、薄膜発光素子11の輝度を電気的に検出し、そ
の検出結果を薄膜発光素子11にフィードバックするこ
とにより、当該薄膜発光素子11の経時変化に伴う輝度
変化を補正する構成を採っている。薄膜発光素子11を
含む回路の電圧または電流を検出する検出回路12とし
ては、次の構成が考えられる。
Focusing on the characteristics of the thin film light emitting element 11 described above, in the present invention, by detecting the voltage or current of the circuit including the thin film light emitting element 11 by the detection circuit 12, the thin film light emitting element 11 is formed by using a photoconductive element. Even if the luminance of the thin film light emitting element 11 is not directly detected, the luminance of the thin film light emitting element 11 is electrically detected, and the detection result is fed back to the thin film light emitting element 11, so that the luminance change with the aging of the thin film light emitting element 11 can be suppressed. It adopts a configuration to correct. The detection circuit 12 that detects the voltage or current of the circuit including the thin film light emitting element 11 may have the following configuration.

【0012】図4は、パッシブマトリクス型表示装置の
画素部の構成を示す回路図である。図4において、走査
線21とデータ線22とがマトリクス状に配線されてお
り、これら走査線21とデータ線22との間に薄膜発光
素子11が直接接続されている。このパッシブマトリク
ス型表示装置において、データ線22と基準電位(例え
ば、グランド)との間に電圧計23を接続することによ
り、この電圧計23によって薄膜発光素子11の電圧
(本例では、アノード電圧)を直接検出することができ
る。すなわち、本例では、電圧計23が検出回路12に
相当することになる。
FIG. 4 is a circuit diagram showing the structure of a pixel portion of a passive matrix type display device. In FIG. 4, the scanning lines 21 and the data lines 22 are arranged in a matrix, and the thin film light emitting element 11 is directly connected between the scanning lines 21 and the data lines 22. In this passive matrix display device, by connecting a voltmeter 23 between the data line 22 and a reference potential (for example, ground), the voltage of the thin film light emitting element 11 (in this example, the anode voltage) is connected by the voltmeter 23. ) Can be detected directly. That is, in this example, the voltmeter 23 corresponds to the detection circuit 12.

【0013】図5は、アクティブマトリクス型表示装置
の単位画素の構成を示す回路図である。図5において、
第1電源(例えば、グランド)と第2電源(例えば、正
電源Vdd)との間に、薄膜発光素子11とこれを駆動
するトランジスタ(画素トランジスタ)24とが直列に
接続されて単位画素を構成している。ここでは、単位画
素の要部の構成を示しているに過ぎず、この構成に限ら
れるものではない。このアクティブマトリクス型表示装
置において、薄膜発光素子11の一方の端部、本例では
アノード端と基準電位(例えば、グランド)との間に電
圧計25を接続することにより、この電圧計25によっ
て薄膜発光素子11の電圧(本例では、アノード電圧)
を直接検出することができる。すなわち、本例では、電
圧計25が検出回路12に相当することになる。
FIG. 5 is a circuit diagram showing a configuration of a unit pixel of the active matrix type display device. In FIG.
A thin film light emitting element 11 and a transistor (pixel transistor) 24 for driving the thin film light emitting element 11 are connected in series between a first power source (eg, ground) and a second power source (eg, positive power source Vdd) to form a unit pixel. is doing. Here, only the configuration of the main part of the unit pixel is shown, and the configuration is not limited to this. In this active matrix type display device, by connecting a voltmeter 25 between one end of the thin film light emitting element 11, which is an anode end in this example, and a reference potential (for example, ground), the thin film light emitting element 11 is connected by the voltmeter 25. Voltage of light emitting element 11 (anode voltage in this example)
Can be detected directly. That is, in this example, the voltmeter 25 corresponds to the detection circuit 12.

【0014】以上の2つの検出方法は、薄膜発光素子1
1の電流−電圧特性を判断するために素子電圧を検出す
る方法である。これに対して、薄膜発光素子11の電流
−電圧特性を判断するために素子電流を検出するには、
薄膜発光素子11にある電圧をかけたときの薄膜発光素
子11に流れる電流値を検出すれば良い。
The above two detection methods are used in the thin film light emitting device 1
This is a method of detecting the element voltage in order to determine the current-voltage characteristic of No. 1. On the other hand, to detect the device current in order to determine the current-voltage characteristics of the thin film light emitting device 11,
It suffices to detect the current value flowing through the thin film light emitting element 11 when a certain voltage is applied to the thin film light emitting element 11.

【0015】ただし、図5に示すアクティブマトリクス
型表示装置において、トランジスタ24のゲート電圧V
Gが低い場合、薄膜発光素子11の特性変化による電流
値の変化を読み取ることが難しい。何故ならば、ゲート
電圧VGが低いと、トランジスタ24の特性は、図6に
示すように、ドレイン電流Idの電流値が一定になり始
めるときのドレイン電圧Vdの電圧値が低い。これによ
り、図7において、電流I′の場合のように、薄膜発光
素子11の電流−電圧特性が変化しても電流値に変化が
現れないためである。
However, in the active matrix type display device shown in FIG. 5, the gate voltage V of the transistor 24 is
When G is low, it is difficult to read the change in the current value due to the change in the characteristics of the thin film light emitting device 11. Because, when the gate voltage VG is low, the characteristic of the transistor 24 is that, as shown in FIG. 6, the drain voltage Vd is low when the drain current Id starts to become constant. Thereby, in FIG. 7, even when the current-voltage characteristic of the thin film light emitting element 11 changes, the current value does not change as in the case of the current I ′.

【0016】この課題を解決するためには、電流値を読
むときに一時的にトランジスタ24のゲート電圧VGを
高くすれば良い。トランジスタ24のゲート電圧VGを
高くすることで、トランジスタ24がリニア領域で動作
するため、図7において、電流I0,I1の場合のよう
に、薄膜発光素子11の特性変化による電流値の変化を
読み取ることができる。また、上記課題を解決する他の
方法として、電源電圧Vddを下げるか、もしくは薄膜
発光素子11のカソードの電位を上げることも考えられ
る。
To solve this problem, the gate voltage VG of the transistor 24 may be temporarily increased when reading the current value. Since the transistor 24 operates in the linear region by increasing the gate voltage VG of the transistor 24, the change in the current value due to the characteristic change of the thin film light emitting element 11 is read as in the case of the currents I0 and I1 in FIG. be able to. Further, as another method for solving the above problem, it is conceivable to decrease the power supply voltage Vdd or increase the potential of the cathode of the thin film light emitting element 11.

【0017】図5に示すアクティブマトリクス型表示装
置において、上記の電流検出を実現するには、図8に示
すように、薄膜発光素子11に対して例えばそのカソー
ド側に電流計26を直列に接続する回路を組むようにす
る。そして、ゲート電圧VGを高く設定してトランジス
タ24をリニア領域で動作させ、その電流値を電流計2
6で読み取ることで、薄膜発光素子11に流れる電流値
(本例では、カソード電流)を検出することができる。
すなわち、本例では、電流計26が検出回路12に相当
することになる。
In order to realize the above current detection in the active matrix type display device shown in FIG. 5, as shown in FIG. 8, an ammeter 26 is connected in series to the thin film light emitting element 11 on the cathode side, for example. Try to build a circuit. Then, the gate voltage VG is set high to operate the transistor 24 in the linear region, and the current value is measured by the ammeter 2
By reading with 6, it is possible to detect the current value (cathode current in this example) flowing through the thin film light emitting element 11.
That is, in this example, the ammeter 26 corresponds to the detection circuit 12.

【0018】以下では、検出回路12での検出法とし
て、薄膜発光素子11に流れる電流値を検出する方法
(図8)を用い、この検出した電流値に基づいて薄膜発
光素子11の経時変化に伴う輝度変化を補正する具体例
について説明する。なお、先述したように、当該電流検
出法を用いる場合には、薄膜発光素子11に直列に接続
されたトランジスタ24に対して、当該トランジスタ2
4をリニア領域で動作させ得るゲート電圧VGをかけた
状態で行われる。また、薄膜発光素子11に流れる電流
値の検出動作は、非表示期間、例えばシステム電源の立
ち上げ直後などに行われる。
In the following, as the detection method in the detection circuit 12, the method of detecting the current value flowing in the thin film light emitting element 11 (FIG. 8) is used, and the change over time of the thin film light emitting element 11 is based on the detected current value. A specific example of correcting the accompanying luminance change will be described. As described above, when the current detection method is used, the transistor 24 connected to the thin film light emitting element 11 in series is not used.
4 is applied with a gate voltage VG capable of operating in the linear region. The operation of detecting the value of the current flowing through the thin film light emitting element 11 is performed in the non-display period, for example, immediately after the system power supply is turned on.

【0019】[第1具体例]図9は、薄膜発光素子とし
て例えば有機EL素子を用いた第1具体例に係る有機E
L表示装置を示す概略構成図であり、モノクロ方式の有
機EL表示装置に適用した場合を例に採って示してい
る。ここでは、図面の簡略化のために、6行37列の画
素配列の場合を例に採って示している。
[First Specific Example] FIG. 9 shows an organic E according to a first specific example in which, for example, an organic EL element is used as a thin film light emitting element.
FIG. 1 is a schematic configuration diagram showing an L display device, and shows an example in which the L display device is applied to a monochrome organic EL display device. Here, for simplification of the drawing, a case of a pixel array of 6 rows and 37 columns is shown as an example.

【0020】図9において、有機ELパネル31は、透
明ガラスなどの基板上に有機EL素子32が行列状に多
数配された構成となっている。具体的には、基板上に、
透明導電膜からなる第1の電極(例えば、陽極)が形成
され、その上にさらに正孔輸送層、発光層、電子輸送層
および電子注入層が順次堆積されることで有機層が形成
され、この有機層上にさらに低仕事関数の金属からなる
第2の電極(例えば、陰極)が形成されることで有機E
L素子32が形成されている。
In FIG. 9, the organic EL panel 31 has a structure in which a large number of organic EL elements 32 are arranged in a matrix on a substrate such as transparent glass. Specifically, on the substrate,
A first electrode (for example, an anode) made of a transparent conductive film is formed, and a hole transport layer, a light emitting layer, an electron transport layer and an electron injection layer are sequentially deposited on the first electrode to form an organic layer, A second electrode (for example, a cathode) made of a metal having a low work function is further formed on this organic layer to form an organic E
The L element 32 is formed.

【0021】この有機EL素子32において、第1の電
極と第2の電極との間に直流電圧を印加することによ
り、正孔が第1の電極(陽極)から正孔輸送層を経て、
電子が第2の電極(陰極)から電子輸送層を経てそれぞ
れ発光層内に注入され、この注入された正負のキャリア
によって発光層内の蛍光分子が励起状態となり、この励
起分子の緩和過程で発光が得られるようになっている。
In this organic EL element 32, by applying a DC voltage between the first electrode and the second electrode, holes pass from the first electrode (anode) through the hole transport layer,
Electrons are injected into the light emitting layer from the second electrode (cathode) via the electron transport layer, and the injected positive and negative carriers cause the fluorescent molecules in the light emitting layer to be in an excited state and emit light in the relaxation process of the excited molecules. Is obtained.

【0022】有機EL素子32を含む画素回路におい
て、有機EL素子32を駆動する駆動トランジスタとし
て、一般的に、薄膜トランジスタ(Thin Film Transisto
r;TFT)が用いられる。当該画素回路は、通常、TF
Tを複数個有するとともに、画素情報(輝度情報)を保
持するキャパシタを有する構成となっている。ただし、
ここでは、図面の簡略化のために、画素回路として、有
機EL素子32に対して直列に接続されて当該素子32
を駆動するためのTFT33のみを代表して示してい
る。
In a pixel circuit including the organic EL element 32, a thin film transistor (Thin Film Transistor) is generally used as a driving transistor for driving the organic EL element 32.
r; TFT) is used. The pixel circuit is usually TF
In addition to having a plurality of Ts, a capacitor for holding pixel information (luminance information) is provided. However,
Here, for simplification of the drawing, the pixel circuit is connected in series to the organic EL element 32 and is connected to the element 32.
Only the TFT 33 for driving is shown as a representative.

【0023】有機EL素子32には、TFT33を通し
て駆動電圧が選択的に与えられる。これにより、有機E
L素子32の駆動が行われる。ここで、有機EL素子3
2が例えば流れる電流によって輝度が変化するタイプの
素子であるとすると、各画素の有機EL素子32に流れ
る電流は、各画素の輝度情報に応じて図示せぬTFTに
よって制御されることになる。
A drive voltage is selectively applied to the organic EL element 32 through the TFT 33. This allows organic E
The L element 32 is driven. Here, the organic EL element 3
If 2 is, for example, a type of element whose brightness changes depending on the flowing current, the current flowing through the organic EL element 32 of each pixel is controlled by a TFT (not shown) according to the brightness information of each pixel.

【0024】有機EL素子32の一端(本例では、カソ
ード端)は全画素共通に接続され、さらに電流検出回路
34の入力端に接続されている。電流検出回路34は、
図8の電流計26に相当し、有機EL素子32の電流−
電圧特性を判断するために、非表示期間において、TF
T33の各々に対して高いゲート電圧、具体的には当該
TFT33をリニア領域で動作させ得る程度のゲート電
圧をかけた状態で全画素のTFT33に流れる平均電流
を検出する。
One end (cathode end in this example) of the organic EL element 32 is commonly connected to all pixels, and further connected to an input end of the current detection circuit 34. The current detection circuit 34 is
Corresponding to the ammeter 26 of FIG. 8, the current of the organic EL element 32 −
In order to judge the voltage characteristics, in the non-display period, TF
A high gate voltage, specifically, an average current flowing through the TFTs 33 of all pixels is detected with a high gate voltage applied to each T33, specifically, a gate voltage that allows the TFT 33 to operate in a linear region.

【0025】電流検出回路34で検出された電流値は、
電流−電圧変換回路35で電圧値に変換され、検出電圧
Vdetとして出力される。先述したように、薄膜発光
素子(本例では、有機EL素子)の電流−電圧特性から
発光素子の輝度を見積もることができることから、検出
電圧Vdetの電圧値は有機EL素子32の輝度に対応
している。検出電圧Vdetは比較器36に供給され、
当該比較器36において基準電圧Vrefと比較され
る。
The current value detected by the current detection circuit 34 is
It is converted into a voltage value by the current-voltage conversion circuit 35 and output as the detection voltage Vdet. As described above, since the luminance of the light emitting element can be estimated from the current-voltage characteristics of the thin film light emitting element (organic EL element in this example), the voltage value of the detection voltage Vdet corresponds to the luminance of the organic EL element 32. ing. The detection voltage Vdet is supplied to the comparator 36,
The comparator 36 compares it with the reference voltage Vref.

【0026】ここで、比較電圧Vrefとしては、有機
EL素子32の初期輝度に対応した電圧値が設定されて
いる。そして、比較器36は、基準電圧Vrefに対し
て検出電圧Vdetを比較することでその差分を検出
し、デューティ制御回路37にそのデューティ設定情報
として与える。デューティ制御回路37は、比較器36
から与えられたデューティ設定情報を保持し、表示期間
において当該デューティ設定情報を基に、有機EL素子
32の1フレーム当たりの発光/非発光の割合、即ちデ
ューティ比を制御することにより、経時変化に伴う有機
EL素子32の輝度変化を補正する。
Here, a voltage value corresponding to the initial brightness of the organic EL element 32 is set as the comparison voltage Vref. Then, the comparator 36 detects the difference by comparing the detection voltage Vdet with the reference voltage Vref, and supplies it to the duty control circuit 37 as the duty setting information. The duty control circuit 37 includes a comparator 36.
By holding the duty setting information given from, and controlling the ratio of light emission / non-light emission per frame of the organic EL element 32, that is, the duty ratio, based on the duty setting information in the display period, the change over time can be achieved. The accompanying luminance change of the organic EL element 32 is corrected.

【0027】すなわち、電流−電圧変換回路35、比較
器36およびデューティ制御回路37は、電流検出回路
34の検出電流値に基づいて有機EL素子32の輝度変
化、具体的には経時変化に伴う輝度変化を補正する補正
手段(図1の補正回路13に相当)を構成している。
That is, the current-voltage conversion circuit 35, the comparator 36, and the duty control circuit 37, based on the detected current value of the current detection circuit 34, change the brightness of the organic EL element 32, specifically, the brightness accompanying a change over time. A correction unit (corresponding to the correction circuit 13 in FIG. 1) that corrects the change is configured.

【0028】ここで、有機EL素子32の発光期間割合
をDuty、ピーク輝度をLpeakとすると、有機E
L素子32の平均輝度Laveは、 Lave =Duty・Lpeak で表される。
Here, if the light emitting period ratio of the organic EL element 32 is Duty and the peak luminance is Lpeak, the organic E element is
The average luminance Lave of the L element 32 is represented by Lave = Duty · Lpeak.

【0029】有機EL素子32の電流−電圧特性が経時
変化に伴って変化したとすると、ピーク輝度Lpeakのみ
が小さくなる。そこで、有機EL素子32の発光期間割
合Dutyを、図10に示すように、経時変化に伴う電
流−電圧特性の変化に応じて制御し、有機EL素子32
の初期輝度をLo、長時間使用後の有機EL素子32の
電圧をV、初期電圧をVoとするとき、有機EL素子3
2の輝度Lを、 L≒Lo×V/Vo になるように補正する。これにより、経時変化に伴って
電流−電圧特性が変化したとしても、有機EL素子32
のピーク輝度Lpeakを一定に、即ち初期ピーク輝度値に
保つことができる。
If the current-voltage characteristic of the organic EL element 32 changes with time, only the peak luminance Lpeak becomes small. Therefore, the light emission period ratio Duty of the organic EL element 32 is controlled according to the change of the current-voltage characteristic with the aging as shown in FIG.
Is Lo, the voltage of the organic EL element 32 after long-term use is V, and the initial voltage is Vo, the organic EL element 3
The luminance L of 2 is corrected so that L≈Lo × V / Vo. As a result, even if the current-voltage characteristic changes with time, the organic EL element 32
The peak brightness Lpeak of can be kept constant, that is, the initial peak brightness value.

【0030】一般的には、経時変化に伴って有機EL素
子32の電流−電圧特性が悪化する方向に変化すること
から、図10において、有機EL素子32の発光期間割
合Dutyを初期時には下限近傍に設定しておき、経時
変化に伴う電流−電圧特性の変化に応じて、発光期間割
合Dutyを上げていくようにすることで、発光期間割
合Dutyの制御範囲を広く設定することができる。
In general, since the current-voltage characteristics of the organic EL element 32 deteriorate with the lapse of time, the emission period ratio Duty of the organic EL element 32 in FIG. The light emission period ratio Duty can be set to a wide range by increasing the light emission period ratio Duty in accordance with the change of the current-voltage characteristics with the lapse of time.

【0031】上述したように、有機EL素子32を含む
発光画素が行列状に配置されてなるモノクロ方式の有機
EL表示装置において、有機EL素子32を含む回路の
電流を検出し、その検出結果に基づいて有機EL素子3
2の発光期間割合Dutyを制御することにより、光導
電素子を用いることなく、単純な回路構成にて有機EL
素子32の経時変化に伴う輝度変化を補正することがで
きる。したがって、有機EL素子32のピーク輝度Lpe
akを一定に保つことができるため、経時変化の影響を受
けることなく、常に最適な表示状態を維持できることに
なる。
As described above, in the monochrome type organic EL display device in which the light emitting pixels including the organic EL elements 32 are arranged in a matrix, the current of the circuit including the organic EL elements 32 is detected, and the detection result is shown. Based on organic EL element 3
By controlling the light emission period ratio Duty of 2, the organic EL device has a simple circuit configuration without using a photoconductive element.
It is possible to correct the luminance change of the element 32 with the passage of time. Therefore, the peak luminance Lpe of the organic EL element 32 is
Since ak can be kept constant, the optimum display state can always be maintained without being affected by the change over time.

【0032】[第2実施形態]図11は、第2具体例に
係る有機EL表示装置を示す概略構成図であり、カラー
方式の有機EL表示装置に適用した場合を例に採って示
している。
[Second Embodiment] FIG. 11 is a schematic structural view showing an organic EL display device according to a second specific example, and shows the case of application to a color type organic EL display device as an example. .

【0033】図11において、有機ELパネル41上に
は、R(赤)G(緑)B(青)の各有機EL素子42
R,42G,42Bが各行ごとに例えばRGBの順に繰
返し配列されている。そして、有機EL素子42R,4
2G,42Bの各一端(本例では、カソード端)が各色
共通に接続され、さらに電流検出回路24の入力端に接
続されている。
In FIG. 11, each organic EL element 42 of R (red) G (green) B (blue) is formed on the organic EL panel 41.
R, 42G, and 42B are repeatedly arranged in each row in the order of RGB, for example. Then, the organic EL elements 42R, 4
One end (cathode end in this example) of 2G and 42B is commonly connected to each color, and further connected to the input end of the current detection circuit 24.

【0034】電流検出回路44は、TFT43R,43
G,43Bの各々に対してこれらTFTをリニア領域で
動作させ得るゲート電圧をかけた状態で各色ごとに有機
EL素子42R,42G,42Bに流れる平均電流を検
出し、その検出した電流値を電流−電圧変換回路45に
供給する。電流−電圧変換回路45はRGBの各色に対
応した回路部分を有し、電流検出回路44で検出された
各色ごとの電流値を電圧値に変換し、その電圧値を各色
ごとに比較器46に供給する。
The current detection circuit 44 includes TFTs 43R and 43
An average current flowing through the organic EL elements 42R, 42G, 42B is detected for each color with a gate voltage for operating these TFTs in the linear region applied to each of G, 43B, and the detected current value is used as the current. -Supply to the voltage conversion circuit 45. The current-voltage conversion circuit 45 has a circuit portion corresponding to each color of RGB, converts the current value of each color detected by the current detection circuit 44 into a voltage value, and the voltage value is supplied to the comparator 46 for each color. Supply.

【0035】比較器46はRGBの各色に対応した回路
部分を有し、電流−電圧変換回路45から各色ごとに出
力される検出電圧VdetR,VdetG,VdetB
を、例えば各色ごとに初期輝度に対応して設定された基
準電圧Vrefr,Vrefg,Vrefbと比較し、
その差分をデューティ制御回路47にそのデューティ設
定情報として与える。
The comparator 46 has a circuit portion corresponding to each color of RGB, and the detection voltages VdetR, VdetG, VdetB output from the current-voltage conversion circuit 45 for each color.
Is compared with, for example, reference voltages Vrefr, Vrefg, and Vrefb set corresponding to the initial luminance for each color,
The difference is given to the duty control circuit 47 as the duty setting information.

【0036】デューティ制御回路47はRGBの各色に
対応した回路部分を有し、比較器76から与えられたデ
ューティ設定情報を保持し、表示期間において当該デュ
ーティ設定情報を基に、各色ごとに有機EL素子42
R,42G,42Bの1フレーム当たりの発光/非発光
の割合、即ちデューティ比を制御することにより、経時
変化に伴う有機EL素子42R,42G,42Bの輝度
変化を補正する。
The duty control circuit 47 has a circuit portion corresponding to each color of RGB, holds the duty setting information given from the comparator 76, and based on the duty setting information in the display period, the organic EL for each color. Element 42
By controlling the emission / non-emission ratio of R, 42G, and 42B per frame, that is, the duty ratio, the change in luminance of the organic EL elements 42R, 42G, and 42B due to change over time is corrected.

【0037】このカラー方式の有機EL表示装置におい
ては、一連の輝度補正に際しては、先ずRについて補正
処理を行い、次いでGについて補正処理を行い、最後に
Bについて補正処理を行う、というような具合に各色ご
とに順番に補正処理を行うことになる。ただし、その順
番はR→G→Bの順に限られるものではなく任意であ
る。
In this color type organic EL display device, when performing a series of brightness corrections, first the correction process is performed on R, then the correction process is performed on G, and finally the correction process is performed on B. Then, the correction process is sequentially performed for each color. However, the order is not limited to the order of R → G → B and is arbitrary.

【0038】ところで、有機EL素子の場合、例えば液
晶セルではカラーフィルタを用いるのと異なり、発光層
の材料を変えることでRGBの各色を発光するようにな
っている。このため、経時変化に伴う有機EL素子の電
圧(V/Vo)−輝度(L/Lo)特性の変化が、図1
2に示すように、RGBの有機EL素子42R,42
G,42Bごとに異なることになる。これにより、経時
変化に伴って有機EL素子42R,42G,42Bの各
電流−電圧特性が変化すると、有機EL素子42R,4
2G,42Bの各ピーク輝度Lpeakがばらつくことにな
るため、色度のバランスが崩れることになる。
By the way, in the case of an organic EL element, unlike the case where a color filter is used in a liquid crystal cell, for example, each color of RGB is emitted by changing the material of the light emitting layer. Therefore, the change in the voltage (V / Vo) -luminance (L / Lo) characteristic of the organic EL element with the aging is shown in FIG.
2, the RGB organic EL elements 42R, 42
It will be different for each G and 42B. As a result, when the current-voltage characteristics of the organic EL elements 42R, 42G, and 42B change with the lapse of time, the organic EL elements 42R and 4R change.
Since the peak luminance Lpeak of 2G and 42B varies, the chromaticity balance is lost.

【0039】これに対して、本具体例に係るカラー方式
の有機EL表示装置では、有機EL素子42R,42
G,42Bを含む回路の各々の電流を検出し、その検出
電流値に基づいて有機EL素子42R,42G,42B
の各々の発光期間割合Dutyを制御するようにするこ
とにより、先の具体例の場合と同様に、光導電素子を用
いることなく、単純な回路構成にて有機EL素子42
R,42G,42Bの経時変化に伴う輝度変化を補正す
ることができる。
On the other hand, in the color type organic EL display device according to this example, the organic EL elements 42R and 42R are formed.
The respective currents of the circuits including G and 42B are detected, and the organic EL elements 42R, 42G, and 42B are detected based on the detected current values.
By controlling each of the light emitting period ratios Duty, the organic EL element 42 has a simple circuit configuration without using a photoconductive element, as in the case of the previous specific example.
It is possible to correct the luminance change of R, 42G, and 42B with the lapse of time.

【0040】これに加えて、経時変化によって有機EL
素子の電圧−輝度特性の変化が有機EL素子42R,4
2G,42Bの各色ごとに異なったとしても、上述した
各色ごとの輝度変化の補正動作によって有機EL素子4
2R,42G,42Bの各ピーク輝度Lpeakを一定に保
つことで、色度バランスを保つことができるため、経時
変化の影響を受けることなく、常に最適な色度バランス
での表示状態を維持できることになる。
In addition to this, the organic EL is changed by aging.
The change in the voltage-luminance characteristic of the element is caused by the organic EL elements 42R, 4R.
Even if different for each color of 2G and 42B, the organic EL element 4 is corrected by the above-described correction operation of the luminance change for each color.
Since the chromaticity balance can be maintained by keeping the respective peak luminances Lpeak of 2R, 42G, and 42B constant, it is possible to always maintain the display state in the optimum chromaticity balance without being affected by the change over time. Become.

【0041】なお、上記実施形態では、経時変化に伴う
薄膜発光素子の輝度変化を、薄膜発光素子の発光期間割
合Dutyを制御することで補正する場合を例に挙げて
説明したが、これに限られるものではなく、薄膜発光素
子のピーク輝度Lpeakは入力データDATAの関数であ
るため、薄膜発光素子の電流値を制御することによって
も、上記の場合と同様に、薄膜発光素子のピーク輝度L
peakを一定に保つように補正することが可能である。
In the above embodiment, the case where the luminance change of the thin film light emitting element due to the change with time is corrected by controlling the light emitting period ratio Duty of the thin film light emitting element has been described as an example, but the present invention is not limited to this. However, since the peak luminance Lpeak of the thin film light emitting element is a function of the input data DATA, the peak luminance Lpeak of the thin film light emitting element can be controlled by controlling the current value of the thin film light emitting element as in the above case.
It is possible to correct so that the peak is kept constant.

【0042】また、上記実施形態においては、検出電圧
Vdetと基準電圧Vrefとを比較し、その差分に基
づいて薄膜発光素子の発光期間割合Dutyを決めると
したが、ある一定の関数L=F(V)で電圧から輝度お
よび発光期間割合Dutyあるいは電流値を算出するよ
うにすることも可能である。すなわち、初期輝度と初期
電圧をそれぞれLo,Vo、長時間使用後の輝度と電圧
をそれぞれL,Vとした場合、図3に示すように、L/
LoとVo/Vは相関関係を持つので、ある一定の関数
L=F(V)で電圧から輝度および発光期間割合Dut
yあるいは電流値を算出することで、薄膜発光素子の経
時変化に伴う輝度変化を補正することができる。
In the above embodiment, the detection voltage Vdet and the reference voltage Vref are compared, and the light emission period ratio Duty of the thin film light emitting element is determined based on the difference between them. However, a certain function L = F ( It is also possible to calculate the luminance and the light emitting period ratio Duty or the current value from the voltage in V). That is, when the initial luminance and the initial voltage are Lo and Vo, respectively, and the luminance and the voltage after long-term use are L and V, respectively, as shown in FIG.
Since Lo and Vo / V have a correlation, with a certain fixed function L = F (V), the voltage changes to the luminance and the light emission period ratio Dut.
By calculating y or the current value, it is possible to correct the change in luminance of the thin film light emitting element due to change over time.

【0043】さらには、比較あるいは演算によって発光
期間割合Dutyあるいは電流値を決める以外に、あら
かじめ電圧と輝度、輝度と発光期間割合Dutyあるい
は電流値との対応表を作り、図13に示すように、これ
をルックアップテーブル(LUT)としてメモリ14に
格納しておき、補正回路13は検出回路12の検出信号
に基づいてメモリ14のルックアップテーブルを参照し
て薄膜発光素子の発光期間割合Dutyあるいは電流値
を決めるようにすることも可能である。
Further, in addition to determining the light emission period ratio Duty or current value by comparison or calculation, a correspondence table of voltage and luminance, brightness and light emission period ratio Duty or current value is prepared in advance, and as shown in FIG. This is stored in the memory 14 as a look-up table (LUT), and the correction circuit 13 refers to the look-up table of the memory 14 based on the detection signal of the detection circuit 12 to refer to the light emission period ratio Duty or the current of the thin film light emitting element. It is also possible to decide the value.

【0044】[0044]

【発明の効果】以上説明したように、本発明によれば、
輝度が駆動電流に依存する発光素子を含む回路の電圧ま
たは電流を検出し、その検出結果に基づいて発光素子の
輝度変化を補正することにより、光導電素子を用いるこ
となく、単純な回路構成にて経時変化に伴う発光素子の
輝度変化を補うことができる。
As described above, according to the present invention,
By detecting the voltage or current of the circuit including the light emitting element whose brightness depends on the drive current and correcting the brightness change of the light emitting element based on the detection result, a simple circuit configuration can be realized without using a photoconductive element. As a result, it is possible to compensate for the change in luminance of the light emitting element due to the change over time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態に係る表示装置を示す概念
図である。
FIG. 1 is a conceptual diagram showing a display device according to an embodiment of the present invention.

【図2】発光素子の電流−電圧特性を示す特性図であ
る。
FIG. 2 is a characteristic diagram showing current-voltage characteristics of a light emitting element.

【図3】発光素子の電圧−輝度特性を示す特性図であ
る。
FIG. 3 is a characteristic diagram showing a voltage-luminance characteristic of a light emitting element.

【図4】パッシブマトリクス型表示装置の画素部の構成
を示す回路図である。
FIG. 4 is a circuit diagram showing a configuration of a pixel portion of a passive matrix display device.

【図5】アクティブマトリクス型表示装置の単位画素の
構成を示す回路図である。
FIG. 5 is a circuit diagram showing a configuration of a unit pixel of an active matrix display device.

【図6】トランジスタのドレイン電圧−ドレイン電流特
性を示す特性図である。
FIG. 6 is a characteristic diagram showing drain voltage-drain current characteristics of a transistor.

【図7】トランジスタのドレイン電圧−ドレイン電流特
性に対して発光素子の電圧−輝度特性が変化した場合の
関係を示す特性図である。
FIG. 7 is a characteristic diagram showing a relationship when a voltage-luminance characteristic of a light emitting element changes with respect to a drain voltage-drain current characteristic of a transistor.

【図8】発光素子に流れる電流を検出する場合の回路図
である。
FIG. 8 is a circuit diagram for detecting a current flowing through a light emitting element.

【図9】第1具体例に係る有機EL表示装置を示す概略
構成図であり、モノクロ方式に適用した場合を例に採っ
て示している。
FIG. 9 is a schematic configuration diagram showing an organic EL display device according to a first specific example, and shows a case where it is applied to a monochrome system as an example.

【図10】デューティ制御による発光期間−非発光期間
の関係を示す波形図である。
FIG. 10 is a waveform diagram showing a relationship between a light emitting period and a non-light emitting period under duty control.

【図11】第2具体例に係る有機EL表示装置を示す概
略構成図であり、カラー方式に適用した場合を例に採っ
て示している。
FIG. 11 is a schematic configuration diagram showing an organic EL display device according to a second specific example, and shows a case where it is applied to a color system as an example.

【図12】RGB各色ごとの発光素子の電圧−輝度特性
を示す特性図である。
FIG. 12 is a characteristic diagram showing voltage-luminance characteristics of a light emitting element for each of RGB colors.

【図13】本発明の他の実施形態に係る表示装置を示す
概念図である。
FIG. 13 is a conceptual diagram showing a display device according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11…薄膜発光素子、12…検出回路、13…補正回
路、31,41…有機ELパネル、32,42R,42
G,42B…有機EL素子、33,43R,43G,4
3B…TFT(薄膜トランジスタ)、34,44…電流
検出回路、35,45…電流−電圧変換回路、36,4
6…比較器、37,47…デューティ制御回路
11 ... Thin film light emitting element, 12 ... Detection circuit, 13 ... Correction circuit, 31, 41 ... Organic EL panel, 32, 42R, 42
G, 42B ... Organic EL element, 33, 43R, 43G, 4
3B ... TFT (thin film transistor), 34, 44 ... Current detection circuit, 35, 45 ... Current-voltage conversion circuit, 36, 4
6 ... Comparator, 37, 47 ... Duty control circuit

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G09G 3/20 642 G09G 3/20 642L 642P 670 670J (72)発明者 長谷川 洋 東京都品川区西五反田3丁目9番17号 ソ ニーエンジニアリング株式会社内 (72)発明者 笹岡 龍哉 東京都品川区北品川6丁目7番35号 ソニ ー株式会社内 Fターム(参考) 5C080 AA06 BB05 DD03 DD29 EE28 FF11 JJ02 JJ03 JJ04 JJ05Continuation of front page (51) Int.Cl. 7 identification code FI theme code (reference) G09G 3/20 642 G09G 3/20 642L 642P 670 670J (72) Inventor Hiroshi Hasegawa 3-9, Nishigotanda, Shinagawa-ku, Tokyo No. 17 Inside Sony Engineering Co., Ltd. (72) Inventor Tatsuya Sasaoka 6-35 Kita-Shinagawa, Shinagawa-ku, Tokyo F-Term inside Sony Co., Ltd. (reference) 5C080 AA06 BB05 DD03 DD29 EE28 FF11 JJ02 JJ03 JJ04 JJ05

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 輝度が駆動電流に依存する発光素子と、 前記発光素子を含む回路の電圧または電流を検出する検
出手段と、 前記検出手段の検出信号に基づいて前記発光素子の輝度
変化を補正する補正手段とを備えたことを特徴とする表
示装置。
1. A light emitting element whose brightness depends on a drive current, a detecting means for detecting a voltage or a current of a circuit including the light emitting element, and a brightness change of the light emitting element is corrected based on a detection signal of the detecting means. A display device comprising:
【請求項2】 前記検出手段の検出動作および前記補正
手段の補正動作を、R(赤)G(緑)B(青)の各発光
色に対応して設けられた発光素子毎に行うことを特徴と
する請求項1記載の表示装置。
2. The detecting operation of the detecting means and the correcting operation of the correcting means are performed for each light emitting element provided corresponding to each emission color of R (red) G (green) B (blue). The display device according to claim 1, wherein the display device is a display device.
【請求項3】 前記検出手段の検出動作を非表示期間に
行うことを特徴とする請求項1記載の表示装置。
3. The display device according to claim 1, wherein the detecting operation of the detecting means is performed in a non-display period.
【請求項4】 前記発光素子が走査線とデータ線との間
に直接接続されてなるパッシブマトリクス型表示装置に
おいて、 前記検出手段は前記発光素子の電位を直接検出すること
を特徴とする請求項1記載の表示装置。
4. A passive matrix display device in which the light emitting element is directly connected between a scanning line and a data line, wherein the detecting means directly detects the potential of the light emitting element. 1. The display device according to 1.
【請求項5】 前記発光素子とこれを駆動するトランジ
スタとが直列に接続されて単位画素を構成するアクティ
ブマトリクス型表示装置において、 前記検出手段は前記発光素子の電位を直接検出すること
を特徴とする請求項1記載の表示装置。
5. In an active matrix type display device in which the light emitting element and a transistor for driving the light emitting element are connected in series to form a unit pixel, the detection means directly detects the potential of the light emitting element. The display device according to claim 1.
【請求項6】 前記発光素子とこれを駆動するトランジ
スタとが直列に接続されて単位画素を構成するアクティ
ブマトリクス型表示装置において、 前記検出手段は前記発光素子に流れる一つの電流もしく
は複数の電流の合計を検出することを特徴とする請求項
1記載の表示装置。
6. In an active matrix type display device in which the light emitting element and a transistor for driving the light emitting element are connected in series to form a unit pixel, the detection means detects one current or a plurality of currents flowing in the light emitting element. The display device according to claim 1, wherein a total is detected.
【請求項7】 前記トランジスタがリニア領域で動作す
ることを特徴とする請求項6記載の表示装置。
7. The display device according to claim 6, wherein the transistor operates in a linear region.
【請求項8】 前記補正手段は、前記検出手段の検出信
号に応じて前記発光素子の発光期間を変化させることを
特徴とする請求項1記載の表示装置。
8. The display device according to claim 1, wherein the correction unit changes a light emission period of the light emitting element according to a detection signal of the detection unit.
【請求項9】 前記補正手段は、前記検出手段の検出信
号に応じて前記発光素子に流す電流値を変化させること
を特徴とする請求項1記載の表示装置。
9. The display device according to claim 1, wherein the correction unit changes a value of a current supplied to the light emitting element according to a detection signal of the detection unit.
【請求項10】 前記補正手段は、前記発光素子の初期
輝度をLo、長時間使用後の前記発光素子の電圧をV、
初期電圧をVoとするとき、前記発光素子の輝度Lを、 L≒Lo×V/Vo とすることを特徴とする請求項1記載の表示装置。
10. The correcting means sets the initial luminance of the light emitting element to Lo, and the voltage of the light emitting element after long-time use is V,
The display device according to claim 1, wherein when the initial voltage is Vo, the luminance L of the light emitting element is L≈Lo × V / Vo.
【請求項11】 前記補正手段は、輝度と電圧の対応表
を基に前記検出手段で検出された電圧から輝度を見積も
って補正することを特徴とする請求項1記載の表示装
置。
11. The display device according to claim 1, wherein the correction unit estimates and corrects the brightness from the voltage detected by the detection unit based on a correspondence table between the brightness and the voltage.
【請求項12】 前記発光素子は、第1、第2の電極お
よびこれら電極間に発光層を含む有機層を有する有機エ
レクトロルミネッセンス素子であることを特徴とする請
求項1記載の表示装置。
12. The display device according to claim 1, wherein the light emitting element is an organic electroluminescence element having first and second electrodes and an organic layer including a light emitting layer between these electrodes.
【請求項13】 輝度が駆動電流に依存する発光素子を
含む回路の電圧または電流を検出し、その検出結果に基
づいて前記発光素子の輝度変化を補正することを特徴と
する表示装置の駆動方法。
13. A method of driving a display device, comprising detecting a voltage or a current of a circuit including a light emitting element, the luminance of which depends on a driving current, and correcting the luminance change of the light emitting element based on the detection result. .
【請求項14】 前記電圧または電流の検出動作および
前記輝度変化の補正動作を、R(赤)G(緑)B(青)
の各発光色に対応して設けられた発光素子毎に行うこと
を特徴する請求項13記載の表示装置の駆動方法。
14. The detection operation of the voltage or current and the correction operation of the brightness change are performed by R (red) G (green) B (blue).
14. The method for driving a display device according to claim 13, wherein the method is performed for each light emitting element provided corresponding to each emission color.
JP2002137910A 2002-05-14 2002-05-14 Display device and driving method thereof Expired - Fee Related JP4593868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002137910A JP4593868B2 (en) 2002-05-14 2002-05-14 Display device and driving method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002137910A JP4593868B2 (en) 2002-05-14 2002-05-14 Display device and driving method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008287736A Division JP2009042788A (en) 2008-11-10 2008-11-10 Display device and driving method thereof

Publications (2)

Publication Number Publication Date
JP2003330418A true JP2003330418A (en) 2003-11-19
JP4593868B2 JP4593868B2 (en) 2010-12-08

Family

ID=29699498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002137910A Expired - Fee Related JP4593868B2 (en) 2002-05-14 2002-05-14 Display device and driving method thereof

Country Status (1)

Country Link
JP (1) JP4593868B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004234011A (en) * 2003-01-31 2004-08-19 Eastman Kodak Co Organic light emitting diode (oled) display
JP2005308857A (en) * 2004-04-19 2005-11-04 Sony Corp Active matrix type display apparatus and driving method for the same
JP2005321786A (en) * 2004-05-04 2005-11-17 Au Optronics Corp Organic luminescence display and its color shift compensation method
JP2006047668A (en) * 2004-08-04 2006-02-16 Hitachi Displays Ltd Electroluminescent display device and driving method thereof
JP2006285236A (en) * 2005-03-31 2006-10-19 Samsung Sdi Co Ltd Light emitting display and method of driving the same
JP2006285235A (en) * 2005-03-31 2006-10-19 Samsung Sdi Co Ltd Light emitting display and method of driving the same
JP2007121757A (en) * 2005-10-28 2007-05-17 Tohoku Pioneer Corp Apparatus and method for driving light-emitting display panel
WO2007060898A1 (en) * 2005-11-28 2007-05-31 Kyocera Corporation Image display and method for driving same
JP2007156044A (en) * 2005-12-05 2007-06-21 Sony Corp Spontaneous light emission display device, gray scale value/deterioration rate conversion table update device, and program
JP2007164003A (en) * 2005-12-16 2007-06-28 Sony Corp Self-luminous display device, image processing device, lighting time length control device, and program
JP2007206463A (en) * 2006-02-02 2007-08-16 Sony Corp Self-luminous display device, input display data correction device, and program
JP2007206464A (en) * 2006-02-02 2007-08-16 Sony Corp Spontaneous display device, estimation degradation information correction device, input display data compensation device, and program
JP2007240801A (en) * 2006-03-08 2007-09-20 Sony Corp Spontaneous light emission display device, luminance half-life controller, and program
JP2008026762A (en) * 2006-07-25 2008-02-07 Sony Corp Controller and control method for light emission condition, image processor, self-luminous light emitting display device, electronic equipment, and computer program
CN100421140C (en) * 2003-11-28 2008-09-24 精工爱普生株式会社 Display apparatus and method of driving the same
CN102646386A (en) * 2011-05-13 2012-08-22 京东方科技集团股份有限公司 Pixel unit circuit, pixel array, panel and panel driving method
US8310414B2 (en) 2004-10-13 2012-11-13 Sony Corporation Method and apparatus for processing information, recording medium, and computer program
US8330684B2 (en) 2007-02-02 2012-12-11 Samsung Display Co., Ltd. Organic light emitting display and its driving method
JP2015157391A (en) * 2014-02-24 2015-09-03 コニカミノルタ株式会社 Optical writing device and image formation device
US9576530B2 (en) 2013-08-26 2017-02-21 Samsung Display Co., Ltd. Electro-optical device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015156002A (en) 2014-02-21 2015-08-27 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Display device and control method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0736410A (en) * 1993-07-19 1995-02-07 Pioneer Electron Corp Driving circuit for display device
WO1998040871A1 (en) * 1997-03-12 1998-09-17 Seiko Epson Corporation Pixel circuit, display device and electronic equipment having current-driven light-emitting device
JPH10254410A (en) * 1997-03-12 1998-09-25 Pioneer Electron Corp Organic electroluminescent display device, and driving method therefor
JP2000267628A (en) * 1999-03-18 2000-09-29 Sanyo Electric Co Ltd Active el display device
JP2001056670A (en) * 1999-08-17 2001-02-27 Seiko Instruments Inc Self light emitting display element driving device
JP2002032058A (en) * 2000-07-18 2002-01-31 Nec Corp Display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0736410A (en) * 1993-07-19 1995-02-07 Pioneer Electron Corp Driving circuit for display device
WO1998040871A1 (en) * 1997-03-12 1998-09-17 Seiko Epson Corporation Pixel circuit, display device and electronic equipment having current-driven light-emitting device
JPH10254410A (en) * 1997-03-12 1998-09-25 Pioneer Electron Corp Organic electroluminescent display device, and driving method therefor
JP2000267628A (en) * 1999-03-18 2000-09-29 Sanyo Electric Co Ltd Active el display device
JP2001056670A (en) * 1999-08-17 2001-02-27 Seiko Instruments Inc Self light emitting display element driving device
JP2002032058A (en) * 2000-07-18 2002-01-31 Nec Corp Display device

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004234011A (en) * 2003-01-31 2004-08-19 Eastman Kodak Co Organic light emitting diode (oled) display
CN100421140C (en) * 2003-11-28 2008-09-24 精工爱普生株式会社 Display apparatus and method of driving the same
CN101354865B (en) * 2003-11-28 2012-04-04 精工爱普生株式会社 Display apparatus and method of driving the same
JP2005308857A (en) * 2004-04-19 2005-11-04 Sony Corp Active matrix type display apparatus and driving method for the same
JP2005321786A (en) * 2004-05-04 2005-11-17 Au Optronics Corp Organic luminescence display and its color shift compensation method
CN100424740C (en) * 2004-05-04 2008-10-08 友达光电股份有限公司 Method for color displacement and compensation of organic illuminated display
JP2006047668A (en) * 2004-08-04 2006-02-16 Hitachi Displays Ltd Electroluminescent display device and driving method thereof
US8310414B2 (en) 2004-10-13 2012-11-13 Sony Corporation Method and apparatus for processing information, recording medium, and computer program
JP2006285236A (en) * 2005-03-31 2006-10-19 Samsung Sdi Co Ltd Light emitting display and method of driving the same
JP2006285235A (en) * 2005-03-31 2006-10-19 Samsung Sdi Co Ltd Light emitting display and method of driving the same
US8022907B2 (en) 2005-03-31 2011-09-20 Samsung Mobile Display Co., Ltd. Brightness controlled organic light emitting display and method of driving the same
JP2007121757A (en) * 2005-10-28 2007-05-17 Tohoku Pioneer Corp Apparatus and method for driving light-emitting display panel
US8154483B2 (en) 2005-11-28 2012-04-10 Lg Display Co., Ltd. Image display apparatus and driving method thereof
JP5455307B2 (en) * 2005-11-28 2014-03-26 エルジー ディスプレイ カンパニー リミテッド Image display device and driving method thereof
WO2007060898A1 (en) * 2005-11-28 2007-05-31 Kyocera Corporation Image display and method for driving same
JP2007156044A (en) * 2005-12-05 2007-06-21 Sony Corp Spontaneous light emission display device, gray scale value/deterioration rate conversion table update device, and program
JP2007164003A (en) * 2005-12-16 2007-06-28 Sony Corp Self-luminous display device, image processing device, lighting time length control device, and program
JP2007206463A (en) * 2006-02-02 2007-08-16 Sony Corp Self-luminous display device, input display data correction device, and program
JP2007206464A (en) * 2006-02-02 2007-08-16 Sony Corp Spontaneous display device, estimation degradation information correction device, input display data compensation device, and program
JP2007240801A (en) * 2006-03-08 2007-09-20 Sony Corp Spontaneous light emission display device, luminance half-life controller, and program
JP2008026762A (en) * 2006-07-25 2008-02-07 Sony Corp Controller and control method for light emission condition, image processor, self-luminous light emitting display device, electronic equipment, and computer program
US8330684B2 (en) 2007-02-02 2012-12-11 Samsung Display Co., Ltd. Organic light emitting display and its driving method
CN102646386A (en) * 2011-05-13 2012-08-22 京东方科技集团股份有限公司 Pixel unit circuit, pixel array, panel and panel driving method
KR101401606B1 (en) 2011-05-13 2014-06-02 보에 테크놀로지 그룹 컴퍼니 리미티드 Pixel unit circuit, pixel array, panel and method for driving panel
US9218766B2 (en) 2011-05-13 2015-12-22 Boe Technology Group Co., Ltd. Pixel unit circuit, pixel array, display panel and display panel driving method
US9576530B2 (en) 2013-08-26 2017-02-21 Samsung Display Co., Ltd. Electro-optical device
JP2015157391A (en) * 2014-02-24 2015-09-03 コニカミノルタ株式会社 Optical writing device and image formation device

Also Published As

Publication number Publication date
JP4593868B2 (en) 2010-12-08

Similar Documents

Publication Publication Date Title
JP4593868B2 (en) Display device and driving method thereof
JP5535627B2 (en) Method and display for compensating for pixel luminance degradation
US7224332B2 (en) Method of aging compensation in an OLED display
KR100665970B1 (en) Automatic voltage forcing driving method and circuit for active matrix oled and data driving circuit using of it
US6618030B2 (en) Active matrix light emitting diode pixel structure and concomitant method
US7061452B2 (en) Spontaneous light-emitting display device
TWI502568B (en) Electroluminescent display initial-nonuniformity-compensated drive signal
US7609234B2 (en) Pixel circuit and driving method for active matrix organic light-emitting diodes, and display using the same
US20050269960A1 (en) Display with current controlled light-emitting device
US20030090446A1 (en) Display and driving method thereof
US20110025676A1 (en) Organic light emitting display device and driving voltage setting method thereof
US20030160743A1 (en) Color organic EL display device
US20090167644A1 (en) Resetting drive transistors in electronic displays
KR100530559B1 (en) Display driving circuit
US20080266214A1 (en) Sub-pixel current measurement for oled display
KR20070066491A (en) Organic elecroluminescence device and driving method of the same
JP5666778B2 (en) Method for controlling a display panel by capacitive coupling
JP2003122305A (en) Organic el display device and its control method
US20090073094A1 (en) Image display device
JP2000330517A (en) Display device and its driving method
US9153168B2 (en) Method for deciding duty factor in driving light-emitting device and driving method using the duty factor
JP2009042788A (en) Display device and driving method thereof
KR20190073004A (en) Method for driving Organic light emitting diode display device
KR20090080357A (en) Device for controlling black luminance using voltage booster and display using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080310

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081110

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081114

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20081212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091016

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091016

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees