JP2003329775A - Method for measuring concentration of radioactive nuclide such as radon and apparatus used therefor - Google Patents

Method for measuring concentration of radioactive nuclide such as radon and apparatus used therefor

Info

Publication number
JP2003329775A
JP2003329775A JP2002138469A JP2002138469A JP2003329775A JP 2003329775 A JP2003329775 A JP 2003329775A JP 2002138469 A JP2002138469 A JP 2002138469A JP 2002138469 A JP2002138469 A JP 2002138469A JP 2003329775 A JP2003329775 A JP 2003329775A
Authority
JP
Japan
Prior art keywords
plastic scintillator
liquid
gas
radionuclide
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002138469A
Other languages
Japanese (ja)
Other versions
JP3992536B2 (en
Inventor
Masaaki Saito
正明 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Metropolitan Government
Original Assignee
Tokyo Metropolitan Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Metropolitan Government filed Critical Tokyo Metropolitan Government
Priority to JP2002138469A priority Critical patent/JP3992536B2/en
Publication of JP2003329775A publication Critical patent/JP2003329775A/en
Application granted granted Critical
Publication of JP3992536B2 publication Critical patent/JP3992536B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To continuously and highly accurately measure the concentration of a radioactive nuclide by making the radioactive nuclide absorbed into a plastic scintillator and emit light by leaving the plastic scintillator in a liquid or a gas. <P>SOLUTION: A fluorescent substance PPO is dispersed in a plastic scintillator 1, and the scintillator 1 is brought into contact with the liquid or the gas. the radioactive nuclide Rn in the liquid or the gas is made to be absorbed in the plastic scintillator 1 by the contact. The fluorescent substance PPO is caused to emit light by radiation 2 emitted by the radioactive nuclide Rn in the plastic scintillator 1. Light 3 emitted by the nuclide Rn and transmitted through a surface 4 of the plastic scintillator 1 by the light emission is detected by an optical sensor 5 arranged opposed to the surface 4 in the method for measuring the concentration of the radioactive nuclide in the liquid or the gas. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は地核変動の観測に用
いるラドン濃度測定に代表される、液体又は気体中にお
ける放射性核種の濃度測定方法とこの方法に用いる装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the concentration of radionuclides in a liquid or a gas, which is typified by the radon concentration measurement used for observing changes in the earth's core, and an apparatus used for this method.

【0002】[0002]

【従来の技術】出願人は特開2001−21652号公
報において、固体高分子物質、例えばポリスチレンブロ
ックを液体又は気体中に一定時間設置して放射性核種を
吸収させ、該放射性核種を吸収したポリスチレンブロッ
クを溶媒にて溶解し、該溶解液の放射線計数値から上記
液体又は気体中の放射性核種の濃度を測定する方法を提
供している。
2. Description of the Related Art In Japanese Patent Application Laid-Open No. 2001-21652, the applicant has set a solid polymer substance such as a polystyrene block in a liquid or a gas for a certain period of time to absorb a radionuclide, and the polystyrene block having absorbed the radionuclide. Is dissolved in a solvent, and the concentration of the radionuclide in the liquid or gas is measured from the radiation count value of the solution.

【0003】[0003]

【発明が解決しようとする課題】然しながら上記測定法
は放射性核種を吸収したポリスチレンブロックを溶媒の
入った容器中に浸漬して液化し、この放射性核種が溶解
した液体を該容器中に密閉して液体シンチレーション検
出器にかける操作を要し、所謂個別測定であるので、連
続測定が不能であり、加えて数工程の測定作業を要す
る。
However, in the above-mentioned measuring method, the polystyrene block absorbing the radionuclide is immersed in a container containing a solvent to liquefy, and the liquid in which the radionuclide is dissolved is sealed in the container. Since the operation for applying the liquid scintillation detector is required and the so-called individual measurement is performed, continuous measurement is impossible, and in addition, measurement work of several steps is required.

【0004】[0004]

【課題を解決するための手段】本発明は蛍光物質含有ポ
リスチレンシンチレータに代表されるプラスチックシン
チレータを用い、該プラスチックシンチレータを液体又
は気体中に存置せしめ、該液体又は気体との接触により
該液体又は気体中の放射性核種を該プラスチックシンチ
レータ中に吸収せしめ、該吸収放射性核種が該プラスチ
ックシンチレータ中において発する放射線により上記蛍
光物質を発光せしめる。
The present invention uses a plastic scintillator typified by a fluorescent substance-containing polystyrene scintillator, the plastic scintillator is kept in a liquid or gas, and the liquid or gas is contacted with the liquid or gas. The radionuclide therein is absorbed in the plastic scintillator, and the fluorescent substance is caused to emit light by the radiation emitted by the absorbed radionuclide in the plastic scintillator.

【0005】そして該発光により上記プラスチックシン
チレータの表面を透過せる光を該表面と対向配置せる光
センサで検知し、液体又は気体中における放射性核種の
濃度を測定する方法を採る。
Then, the light transmitted through the surface of the plastic scintillator by the light emission is detected by an optical sensor arranged opposite to the surface to measure the concentration of the radionuclide in the liquid or gas.

【0006】又上記測定方法に用いる装置は、容器中に
蛍光物質を分散させたプラスチックシンチレータを配置
し、該容器に該容器内へ液体又は気体を導入する導入口
と該容器内から液体又は気体を導出する導出口とを設
け、該容器内の液体又は気体を上記容器内のプラスチッ
クシンチレータと接触せしめて液体又は気体中の放射性
核種を該プラスチックシンチレータ中に吸収せしめ、該
放射性核種が該プラスチックシンチレータ中において発
する放射線により上記蛍光物質を発光せしめる構成を有
する。
Further, the apparatus used in the above measuring method comprises a plastic scintillator in which a fluorescent substance is dispersed in a container, and an inlet for introducing liquid or gas into the container and a liquid or gas from the container. And a liquid outlet in which the liquid or gas in the container is brought into contact with the plastic scintillator in the container so that the radionuclide in the liquid or gas is absorbed in the plastic scintillator, and the radionuclide is the plastic scintillator. The fluorescent substance is made to emit light by the radiation emitted therein.

【0007】他方上記容器に上記プラスチックシンチレ
ータの表面と対向せる光センサを取り付け、上記発光に
より上記プラスチックシンチレータの表面を透過せる光
を該光センサで検知する構成を有する。
On the other hand, an optical sensor facing the surface of the plastic scintillator is attached to the container, and light emitted from the plastic scintillator through the surface of the plastic scintillator is detected by the optical sensor.

【0008】上記液体又は気体中における放射性核種の
濃度測定方法と装置は、放射性核種を吸収せるプラスチ
ックシンチレータを液体又は気体中に存置したままで同
シンチレータ中へ放射性核種を吸収させ発光せしめるこ
とにより、蛍光物質含有プラスチックシンチレータの液
化操作等の何らの操作を要せずに、放射性核種の濃度測
定を連続的に且つ高精度に実行可能である。
The method and apparatus for measuring the concentration of a radionuclide in a liquid or a gas described above is such that a plastic scintillator capable of absorbing a radionuclide is left in a liquid or a gas, and the radionuclide is absorbed into the scintillator to emit light. The radionuclide concentration measurement can be continuously and accurately performed without any operation such as liquefaction of the fluorescent substance-containing plastic scintillator.

【0009】[0009]

【発明の実施の形態】以下本発明の実施形態を図1乃至
図4に基づいて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to FIGS.

【0010】放射性核種吸収体として図1,図2に示す
如き、蛍光物質PPOを分散せるプラスチックシンチレ
ータ1を用いる。このプラスチックシンチレータ1は透
明、即ち透光性を有する。
As the radionuclide absorber, a plastic scintillator 1 in which a fluorescent substance PPO is dispersed, as shown in FIGS. 1 and 2, is used. The plastic scintillator 1 is transparent, that is, transparent.

【0011】上記放射性核種吸収体を形成するプラスチ
ックとしては、放射性核種の吸収性に富み、且つ放射線
エネルギー伝達性に優れたポリスチレンが有効である。
その他、ポリメタクリル酸メチル、ポリエチレン、ポリ
プロピレン等のポリビニール樹脂の使用が可能である。
As the plastic forming the above-mentioned radionuclide absorber, polystyrene, which is rich in the absorption of radionuclides and excellent in radiation energy transfer, is effective.
In addition, polyvinyl resins such as polymethylmethacrylate, polyethylene and polypropylene can be used.

【0012】上記プラスチックシンチレータは薄膜が好
ましい。即ち薄膜はラドンに代表される放射性核種Rn
の吸収が速く、平衡状態を迅速に形成する。又薄膜の
他、プレート、任意形状のブロック等を用いることがで
きる。
The plastic scintillator is preferably a thin film. That is, the thin film is a radionuclide Rn represented by radon.
Absorbs rapidly and quickly forms an equilibrium state. In addition to the thin film, a plate, a block having an arbitrary shape, or the like can be used.

【0013】上記吸収とは、放射性核種Rnをプラスチ
ックシンチレータ1の組織内に取り込むことを意味し、
物質表面に付着せしめる吸着を含まない。
The above absorption means that the radionuclide Rn is taken into the tissue of the plastic scintillator 1,
Does not include adsorption that adheres to the material surface.

【0014】上記プラスチックシンチレータ1を液体又
は気体中に存置せしめ、該液体又は気体との接触により
該液体又は気体中の放射性核種を該プラスチックシンチ
レータ1中に吸収せしめ、該放射性核種が該プラスチッ
クシンチレータ1中において発する放射線により上記蛍
光物質PPOを発光せしめる。
The plastic scintillator 1 is kept in a liquid or a gas, and the radionuclide in the liquid or the gas is absorbed into the plastic scintillator 1 by contact with the liquid or the gas, and the radionuclide is the plastic scintillator 1. The fluorescent substance PPO is caused to emit light by the radiation emitted therein.

【0015】非結晶性プラスチックは吸収性能に富み、
上記測定方法と装置に用いるプラスチックシンチレータ
1として有効である。
Amorphous plastics are highly absorbent,
It is effective as the plastic scintillator 1 used in the above measuring method and apparatus.

【0016】上記発光のメカニズムについて詳述する
と、図3に示すように、プラスチックシンチレータ1中
に吸収されたラドンに代表される放射性核種Rnは放射
線(α線,β線)2を発し、該放射線2はプラスチック
シンチレータ1、殊にポリスチレンを組成するベンゼン
基に当たってエネルギー伝搬し、蛍光物質PPOに到達
する。
The above-mentioned mechanism of light emission will be described in detail. As shown in FIG. 3, the radionuclide Rn typified by radon absorbed in the plastic scintillator 1 emits radiation (α-ray, β-ray) 2 and the radiation is emitted. 2 is a plastic scintillator 1, especially a benzene group constituting polystyrene, which propagates energy and reaches the fluorescent substance PPO.

【0017】これにより蛍光物質PPOは放射線エネル
ギーを多方向性と到達性に優れた光エネルギーに変換
し、発光する。又ベンゼン環はπ電子雲を有し、エネル
ギー伝達性が極めて高く、プラスチックシンチレータ1
内部における発光を効率よく惹起する。
As a result, the fluorescent substance PPO converts radiation energy into light energy having excellent multidirectionality and reachability, and emits light. In addition, the benzene ring has a π-electron cloud and has extremely high energy transfer properties, and the plastic scintillator 1
Efficiently induces light emission inside.

【0018】上記発光により上記プラスチックシンチレ
ータ1の表面4を透過せる光3を同シンチレータ表面4
と対向配置せる光センサ5で検知し、液体又は気体中に
おける放射性核種Rnの濃度を測定する方法を採る。該
光センサ5は既知の光電子増倍管等である。
The light 3 which is transmitted by the surface of the plastic scintillator 1 by the above-mentioned light emission and the surface 4 of the scintillator 1
A method of measuring the concentration of the radionuclide Rn in the liquid or gas by detecting it with an optical sensor 5 arranged opposite to The photosensor 5 is a known photomultiplier tube or the like.

【0019】図4は上記液体又は気体中における放射性
核種の濃度測定方法に用いる装置を示している。
FIG. 4 shows an apparatus used in the method for measuring the concentration of radionuclide in the liquid or gas.

【0020】同図に示すように、気密及び遮光構造の容
器6中に、蛍光物質PPOを分散させた上記ポリスチレ
ンシンチレータ等から成る1枚又は複数枚の円形又は方
形等のプラスチックシンチレータ1を配置する。該プラ
スチックシンチレータ1はその表面4が垂直となるよう
に容器6内に縦設する。
As shown in the figure, one or more plastic scintillators 1 such as polystyrene scintillator or the like in which the fluorescent substance PPO is dispersed are arranged in a container 6 having an airtight and light-shielding structure. . The plastic scintillator 1 is vertically installed in a container 6 so that its surface 4 is vertical.

【0021】例えば複数枚のプラスチックシンチレータ
1をその各表面4が互いに平行し、且つ垂直となるよう
に容器6内に縦設する。
For example, a plurality of plastic scintillators 1 are vertically installed in a container 6 such that their surfaces 4 are parallel to each other and perpendicular to each other.

【0022】上記容器6に該容器内へ液体又は気体10
を導入する導入口7を設けると共に、該容器6内から液
体又は気体10を導出する導出口8を設け、容器6内を
常に新しい液体又は気体10で満たす。
Liquid or gas 10 is added to the container 6 into the container.
In addition to providing an inlet 7 for introducing the liquid, a lead-out port 8 for leading out the liquid or gas 10 from the container 6 is provided so that the container 6 is always filled with new liquid or gas 10.

【0023】上記容器6内の液体又は気体10を上記容
器6内のプラスチックシンチレータ1と接触せしめて液
体又は気体10中の放射性核種Rnを該プラスチックシ
ンチレータ1中に吸収せしめ、該放射性核種Rnが該プ
ラスチックシンチレータ1中において発する放射線2に
より上記蛍光物質PPOを発光せしめる。
The liquid or gas 10 in the container 6 is brought into contact with the plastic scintillator 1 in the container 6 so that the radionuclide Rn in the liquid or gas 10 is absorbed in the plastic scintillator 1, and the radionuclide Rn is The fluorescent substance PPO is caused to emit light by the radiation 2 emitted in the plastic scintillator 1.

【0024】プラスチックシンチレータ1中のラドン濃
度は液体又は気体中10の濃度に比例する。例えば水中
濃度が2倍になればプラスチックシンチレータ1中の濃
度も2倍になる。従ってプラスチックシンチレータ1の
平衡状態での発光を測定することによって液体中濃度を
知ることができる。
The radon concentration in the plastic scintillator 1 is proportional to the concentration of 10 in liquid or gas. For example, if the concentration in water doubles, the concentration in the plastic scintillator 1 also doubles. Therefore, the concentration in the liquid can be known by measuring the light emission of the plastic scintillator 1 in the equilibrium state.

【0025】上記容器6に上記プラスチックシンチレー
タ1の表面4と対向せる光センサ5を取り付け、上記発
光により上記プラスチックシンチレータ1の表面4を透
過せる光3を該光センサ5の透光窓9で受光し検知す
る。この透光窓9は常に上記液体又は気体と接してい
る。
An optical sensor 5 facing the surface 4 of the plastic scintillator 1 is attached to the container 6, and the light 3 transmitted through the surface 4 of the plastic scintillator 1 by the light emission is received by a light transmitting window 9 of the optical sensor 5. And detect. The transparent window 9 is always in contact with the liquid or gas.

【0026】蛍光物質PPOは放射性核種Rnの分子数
と比例してパルス発光し、この光3の発生回数(パルス
数)を光センサ5で検知し濃度測定を行う。
The fluorescent substance PPO emits pulsed light in proportion to the number of molecules of the radionuclide Rn, and the number of times this light 3 is generated (the number of pulses) is detected by the optical sensor 5 to measure the concentration.

【0027】上記液体又は気体の導入口7は容器6の底
部付近、例えば底板に設け、同導出口8は容器6の上部
付近、例えば天板に設け、液体又は気体が容器6の底部
から上部へ向けプラスチックシンチレータ1の表面4に
沿って上昇流となって流れるようにし、他方上記光セン
サ5は上記容器6の側板に取り付け、その受光軸が上記
プラスチックシンチレータ1の表面4と直交するように
配置する。
The liquid or gas inlet port 7 is provided near the bottom of the container 6, for example, the bottom plate, and the outlet port 8 is provided near the upper part of the container 6, for example, the top plate, and the liquid or gas is transferred from the bottom to the top of the container 6. To flow upward along the surface 4 of the plastic scintillator 1, while the optical sensor 5 is attached to the side plate of the container 6 so that its light receiving axis is orthogonal to the surface 4 of the plastic scintillator 1. Deploy.

【0028】水中のラドンはその保持している運動エネ
ルギーに応じて一定比でプラスチックシンチレータ1中
に分配される。この分配係数は温度にのみ依存する変数
であるので、一定温度条件では水中濃度に正比例したラ
ドンがプラスチックシンチレータ1中に分配されること
になり、測定値とラドン水濃度の間には直線関係が認め
られる。
Radon in water is distributed in the plastic scintillator 1 at a constant ratio according to the kinetic energy it holds. Since this distribution coefficient is a variable that depends only on temperature, radon that is directly proportional to the concentration in water will be distributed in the plastic scintillator 1 under constant temperature conditions, and there is a linear relationship between the measured value and the concentration of radon water. Is recognized.

【0029】[0029]

【発明の効果】本発明によれば、プラスチックシンチレ
ータを液体又は気体中に存置したままで同シンチレータ
中へ放射性核種を吸収させ発光せしめることにより、前
記従来例の如き液化操作等の何らの操作を伴わず、放射
性核種の濃度を連続的に且つ高精度に測定できる。又測
定操作乃至装置が簡素であり、ローコストで測定でき
る。
According to the present invention, any operation such as the liquefaction operation as in the above-mentioned conventional example is carried out by absorbing the radionuclide into the scintillator while allowing the plastic scintillator to remain in the liquid or gas to emit light. Without this, the radionuclide concentration can be measured continuously and with high accuracy. In addition, the measurement operation or device is simple, and the measurement can be performed at low cost.

【0030】本発明は地核変動の観測(地震の予知)に
用いられているラドン測定に有効である。
The present invention is effective for the radon measurement used for the observation of earth movement (earthquake prediction).

【図面の簡単な説明】[Brief description of drawings]

【図1】放射性核種吸収体を構成する薄膜状にした蛍光
物質含有プラスチックシンチレータの平面図。
FIG. 1 is a plan view of a thin film fluorescent substance-containing plastic scintillator that constitutes a radionuclide absorber.

【図2】同一部拡大断面図。FIG. 2 is an enlarged sectional view of the same portion.

【図3】上記プラスチックシンチレータ中における発光
メカニズムを説明するベンゼン環を有する同シンチレー
タの拡大断面図。
FIG. 3 is an enlarged cross-sectional view of a scintillator having a benzene ring for explaining a light emitting mechanism in the plastic scintillator.

【図4】上記放射性核種の濃度測定装置の縦断面図。FIG. 4 is a vertical sectional view of the radionuclide concentration measuring device.

【符号の説明】[Explanation of symbols]

1…プラスチックシンチレータ、2…放射線、3…光、
4…プラスチックシンチレータの表面、5…光センサ、
6…気密遮光構造の容器、7…液体又は気体の導入口、
8…液体又は気体の導出口、9…透光窓、10…液体又
は気体、PPO…蛍光物質、Rn…ラドンに代表される
放射性核種
1 ... plastic scintillator, 2 ... radiation, 3 ... light,
4 ... Surface of plastic scintillator, 5 ... Optical sensor,
6 ... Container of airtight light shielding structure, 7 ... Inlet for introducing liquid or gas,
8 ... Liquid or gas outlet, 9 ... Transparent window, 10 ... Liquid or gas, PPO ... Fluorescent substance, Rn ... Radionuclide represented by radon

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】蛍光物質を分散させたプラスチックシンチ
レータを液体又は気体と接触せしめ、該接触により液体
又は気体中の放射性核種を該プラスチックシンチレータ
中に吸収せしめ、該放射性核種が該プラスチックシンチ
レータ中において発する放射線により上記蛍光物質を発
光せしめ、該発光により上記プラスチックシンチレータ
の表面を透過せる光を該表面と対向配置せる光センサで
検知することを特徴とするラドン等の放射性核種の濃度
測定方法。
1. A plastic scintillator in which a fluorescent substance is dispersed is brought into contact with a liquid or gas, and the radionuclide in the liquid or gas is absorbed in the plastic scintillator by the contact, and the radionuclide is emitted in the plastic scintillator. A method for measuring the concentration of a radionuclide such as radon, which is characterized in that the fluorescent substance is caused to emit light by radiation, and the light transmitted through the surface of the plastic scintillator by the emitted light is detected by an optical sensor arranged opposite to the surface.
【請求項2】上記蛍光物質を分散させたプラスチックシ
ンチレータがポリスチレンであることを特徴とする請求
項1記載のラドン等の放射性核種の濃度測定方法。
2. The method for measuring the concentration of radionuclide such as radon according to claim 1, wherein the plastic scintillator in which the fluorescent substance is dispersed is polystyrene.
【請求項3】蛍光物質を分散させたプラスチックシンチ
レータを容器中に配置し、該容器に該容器内へ液体又は
気体を導入する導入口と該容器内から液体又は気体を導
出する導出口とを設け、該容器内の液体又は気体を上記
容器内のプラスチックシンチレータと接触せしめ、該接
触により液体又は気体中の放射性核種を該プラスチック
シンチレータ中に吸収せしめ、該放射性核種が該プラス
チックシンチレータ中において発する放射線により上記
蛍光物質を発光せしめ、他方上記容器に上記プラスチッ
クシンチレータの表面と対向せる光センサを取り付け、
上記発光により上記プラスチックシンチレータの表面を
透過せる光を該光センサで検知することを特徴とするラ
ドン等の放射性核種の濃度測定装置。
3. A plastic scintillator in which a fluorescent substance is dispersed is arranged in a container, and an inlet for introducing liquid or gas into the container and an outlet for discharging liquid or gas from the container are provided in the container. Provided, the liquid or gas in the container is brought into contact with the plastic scintillator in the container, and the radionuclide in the liquid or gas is absorbed in the plastic scintillator by the contact, and the radioactive nuclide emits in the plastic scintillator. The fluorescent substance is caused to emit light by the other, while an optical sensor facing the surface of the plastic scintillator is attached to the container,
A device for measuring the concentration of a radionuclide such as radon, characterized in that the light sensor detects light transmitted through the surface of the plastic scintillator by the light emission.
JP2002138469A 2002-05-14 2002-05-14 Concentration measuring method of radionuclide such as radon and apparatus used for this method Expired - Fee Related JP3992536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002138469A JP3992536B2 (en) 2002-05-14 2002-05-14 Concentration measuring method of radionuclide such as radon and apparatus used for this method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002138469A JP3992536B2 (en) 2002-05-14 2002-05-14 Concentration measuring method of radionuclide such as radon and apparatus used for this method

Publications (2)

Publication Number Publication Date
JP2003329775A true JP2003329775A (en) 2003-11-19
JP3992536B2 JP3992536B2 (en) 2007-10-17

Family

ID=29699899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002138469A Expired - Fee Related JP3992536B2 (en) 2002-05-14 2002-05-14 Concentration measuring method of radionuclide such as radon and apparatus used for this method

Country Status (1)

Country Link
JP (1) JP3992536B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100973507B1 (en) 2008-05-13 2010-08-03 한국원자력연구원 Core-shell polymer type of polymeric emulsion for a measurement of the degree of radioactive contamination, the preparation method thereof and removal of radionuclide using the same
WO2015068478A1 (en) * 2013-11-07 2015-05-14 富士電機株式会社 Radiation measuring method and metal nanoparticle composite to be used therein
JP2020091159A (en) * 2018-12-04 2020-06-11 東京インキ株式会社 Radioactivity measurement method of radioactive substance by plastic scintillator for radiation detection
CN117310780A (en) * 2023-11-28 2023-12-29 成都核盛科技有限公司 Dual-channel full-automatic on-line measurement system and method for radon concentration in water

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100973507B1 (en) 2008-05-13 2010-08-03 한국원자력연구원 Core-shell polymer type of polymeric emulsion for a measurement of the degree of radioactive contamination, the preparation method thereof and removal of radionuclide using the same
WO2015068478A1 (en) * 2013-11-07 2015-05-14 富士電機株式会社 Radiation measuring method and metal nanoparticle composite to be used therein
JPWO2015068478A1 (en) * 2013-11-07 2017-03-09 富士電機株式会社 Radiation measurement method and metal nanoparticle composite used therefor
JP2020091159A (en) * 2018-12-04 2020-06-11 東京インキ株式会社 Radioactivity measurement method of radioactive substance by plastic scintillator for radiation detection
JP7169183B2 (en) 2018-12-04 2022-11-10 東京インキ株式会社 Method for measuring radioactivity of radioactive substances by plastic scintillator for radiation detection
CN117310780A (en) * 2023-11-28 2023-12-29 成都核盛科技有限公司 Dual-channel full-automatic on-line measurement system and method for radon concentration in water
CN117310780B (en) * 2023-11-28 2024-02-06 成都核盛科技有限公司 Dual-channel full-automatic on-line measurement system and method for radon concentration in water

Also Published As

Publication number Publication date
JP3992536B2 (en) 2007-10-17

Similar Documents

Publication Publication Date Title
US8039810B2 (en) Scintillation-based continuous monitor for beta-emitting radionuclides in a liquid medium
JP2009538435A (en) Neutron and gamma ray monitors
EP3374801B1 (en) Device for determining a deposited dose and associated method
JP5904511B2 (en) Radiation measurement method and apparatus
WO2020014765A1 (en) Gamma and neutron radiation detection unit
US11808719B2 (en) Device and method for measuring total cross-sectional phase fraction of multiphase flow based on ray coincidence measurement
JP2003329775A (en) Method for measuring concentration of radioactive nuclide such as radon and apparatus used therefor
JPH0360073B2 (en)
JPS59218977A (en) Radiant ray measuring tool
Shirakawa et al. Radiation counting characteristics on surface-modified polyethylene naphthalate scintillators
JP2016080557A (en) Radioactive substance measurement device and radioactive substance measurement method
JP2005077377A (en) Neutron detector and neutron detecting method
RU2444762C1 (en) Scintillation detector
US3202819A (en) Beta and gamma measuring apparatus for fluids
KR102390801B1 (en) Apparatus for measuring beta-ray in situ and measuring method using the same
Zhang et al. Discriminating cosmic muons and radioactivity using a liquid scintillation fiber detector
US4808831A (en) Container for wet and dry radioactive samples
Jebur et al. Level of radionuclide contents in surface water from Shutt-al-arab river in Basrah governorate, Iraq
US3763371A (en) Method and apparatus for obtaining the relation between the channels ratio and the efficiency in a liquid scintillation standard sample
Pourtangestani et al. Optimization of plastic scintillator thicknesses for online beta/gamma detection
RU88456U1 (en) ALPHA OR BETA RADIATION SCINTILLATION DETECTOR IN LIQUID MEDIA
RU2181900C2 (en) Radiometric devices for measuring low-energy beta-radiators such as tritium
Tertyshnik et al. Determination of the efficiency of a detector in gamma spectrometry of large-volume samples
Philip Development of a Multi Radiation Type Survey Meter Using Aromatic Ring Polymers Undoped with Fluorescent Molecules
JP2003050278A (en) Radiation measuring device and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050331

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070724

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees