JP2003329632A - Method of determining occurrence of pitting corrosion - Google Patents

Method of determining occurrence of pitting corrosion

Info

Publication number
JP2003329632A
JP2003329632A JP2002133072A JP2002133072A JP2003329632A JP 2003329632 A JP2003329632 A JP 2003329632A JP 2002133072 A JP2002133072 A JP 2002133072A JP 2002133072 A JP2002133072 A JP 2002133072A JP 2003329632 A JP2003329632 A JP 2003329632A
Authority
JP
Japan
Prior art keywords
potential
corr
pitting corrosion
corrosion
pitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002133072A
Other languages
Japanese (ja)
Other versions
JP3971953B2 (en
Inventor
Hiroo Nagano
博夫 長野
Jun Ito
純 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2002133072A priority Critical patent/JP3971953B2/en
Publication of JP2003329632A publication Critical patent/JP2003329632A/en
Application granted granted Critical
Publication of JP3971953B2 publication Critical patent/JP3971953B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make performable effective anti-corrosion measures about heat transfer tubes, waste water tanks, discharged water storage tanks, and the like. <P>SOLUTION: A Kelvin probe 2 is placed opposite to, but so as not to be in contact with, the surface of a metallic material covered with a thin water film w. A bias voltage Vbias is measured while the probe 2 is excited, thereby finding effective self-potential E'corr. equal to the bias voltage Vbias in absolute value but reverse thereto in polarity. The occurrence and growth of pitting corrosion is determined by comparing the self-potential E'corr. with pitting corrosion potential Vc. Since the self-potential E'corr. appropriately expresses the state of a metallic material corroded in an actual use environment, the occurrence and growth of a pitting corrosion can be suppressed by anti-corrosion measures that are employed when a sudden fall is detected in the self-potential E'corr.. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水膜が形成される条件
下で金属材料の自然電位を測定し、孔食の発生・成長を
判定する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of measuring the spontaneous potential of a metal material under conditions where a water film is formed and determining the occurrence / growth of pitting corrosion.

【0002】[0002]

【従来の技術】ステンレス鋼は、表面に数十Å程度の不
動態皮膜が形成されているため優れた耐食性を発現す
る。不動態皮膜によって腐食が抑制される材料として
は、ステンレス鋼の他にアルミニウム,アルミニウム合
金,ニッケル,ニッケル合金,チタン,チタン合金,ジ
ルコニウム,ジルコニウム合金,マグネシウム,マグネ
シウム合金等があり、耐食性を活かした用途に使用され
ている。腐食性環境の中でも、伝熱管,タンク等では水
又は電解質溶液が凝縮した水膜で金属材表面が覆われ
る。しかも、金属材の表面が水膜に常時接触していると
は限らず、水膜に接する湿潤状態と乾燥状態が繰り返さ
れる雰囲気に曝されることもある。このような環境下で
は、金属材表面に孔食が発生しやすい。更に、孔食発生
個所に加わる応力が閾値を超えると応力腐食割れに進展
し、構造物自体の致命的な破壊に至ることもある。
2. Description of the Related Art Stainless steel exhibits excellent corrosion resistance because a passivation film of about several tens of liters is formed on the surface. In addition to stainless steel, aluminum, aluminum alloys, nickel, nickel alloys, titanium, titanium alloys, zirconium, zirconium alloys, magnesium, magnesium alloys, etc. are used as materials whose corrosion is suppressed by the passivation film. Used for purposes. Even in a corrosive environment, in a heat transfer tube, a tank, etc., the surface of a metal material is covered with a water film in which water or an electrolyte solution is condensed. Moreover, the surface of the metal material is not always in contact with the water film, and may be exposed to an atmosphere in which the wet state and the dry state are in contact with each other. Under such an environment, pitting easily occurs on the surface of the metal material. Furthermore, if the stress applied to the pitting occurrence point exceeds a threshold value, it may progress to stress corrosion cracking, which may lead to fatal destruction of the structure itself.

【0003】孔食の発生は、水に浸漬した金属材料の自
然電位Ecorr.(以下、バルク自然電位Ecorr.という)
を測定し、JIS G0577に準拠して予め測定しておいた孔
食電位Vcと比較することにより予測している。バルク
自然電位Ecorr.が孔食電位V cを超える場合に孔食が発
生し、孔食電位Vcを超えない場合に孔食が発生しない
と判定される。たとえば、各種ステンレス鋼の孔食電位
cは既知の値(表1)であり、この値とバルク自然電
位Ecorr.の測定値とを比較することにより孔食発生の
有無が判る。
The occurrence of pitting corrosion depends on the self-existence of metallic materials immersed in water.
Natural potential Ecorr.(Hereinafter, bulk natural potential Ecorr.Say)
Holes that have been measured in advance according to JIS G 0577
Eating potential VcPredict by comparing with. Bulk
Natural potential Ecorr.Is the pitting potential V cPitting corrosion
Pitting potential VcPitting corrosion does not occur if it does not exceed
Is determined. For example, the pitting potential of various stainless steels
VcIs a known value (Table 1).
Rank Ecorr.Of pitting corrosion by comparing
I know the existence.

【0004】 [0004]

【0005】[0005]

【発明が解決しようとする課題】ところが、従来の測定
法で孔食が発生しないと判定される条件下でも、現実に
は孔食が発生する場合がある。このことは、従来法では
孔食発生条件が十分に把握されていないことを意味す
る。本発明者等は、このような孔食の発生メカニズムを
次のように推察した。薄い水膜で覆われた金属表面の自
然電位E'corr.(以下、実効自然電位E' co rr.とい
う)は、バルク自然電位Ecorr.よりかなり高くなって
おり、バルク自然電位Ecorr.が孔食電位Vc以下であっ
ても水膜下の孔食が発生する。この点、水膜下における
金属材料の孔食発生可能性を予測する指標としてバルク
自然電位E corr.は適切でなく、バルク自然電位Ecorr.
によって孔食発生現象を正確に把握できないといえる。
However, the conventional measurement
Even under the condition that pitting corrosion does not occur by the method,
May cause pitting corrosion. This is
It means that the conditions for pitting corrosion are not fully understood.
It The present inventors have investigated the mechanism of occurrence of such pitting corrosion.
I guessed as follows. A metal surface covered with a thin water film
Natural potential E 'corr.(Hereafter, effective natural potential E 'co rr.Toi
U) is the bulk spontaneous potential Ecorr.Much higher
And bulk natural potential Ecorr.Is the pitting potential VcIs below
However, pitting corrosion under the water film occurs. In this respect, under the water film
Bulk as an index to predict the possibility of pitting corrosion of metallic materials
Natural potential E corr.Is not appropriate, and bulk spontaneous potential Ecorr.
Therefore, it can be said that the phenomenon of pitting corrosion cannot be accurately grasped.

【0006】また、不動態皮膜が表面に形成された金属
材料は、表面が撥水性を呈することが多く、人工的に水
膜を形成した条件下で自然電位Ecorr.を測定しても、
自然に形成される水膜下と異なった測定値になりやす
く、自然電位Ecorr.の測定値に信頼性が欠ける。しか
し、薄い水膜下で自然電位Ecorr.を正確に測定するこ
とは不可能であった。
In addition, a metal material having a passivation film formed on its surface often exhibits water repellency, and even if the spontaneous potential E corr. Is measured under the condition that a water film is artificially formed,
The measured value tends to be different from that under the water film formed naturally, and the measured value of the natural potential E corr. Is unreliable. However, it was impossible to accurately measure the spontaneous potential E corr. Under a thin water film.

【0007】[0007]

【課題を解決するための手段】本発明は、このような問
題を解消すべく案出されたものであり、従来法で測定さ
れる自然電位Ecorr.が水膜下の自然電位を正確に表し
ていないとの前提に立って、水膜に対向させたケルビン
プローブを用いて測定した自然電位を基準とすることに
より、孔食の発生・成長を高精度で判定し、必要な防食
対策を可能にすることを目的とする。本発明の判定方法
は、その目的を達成するため、金属材料の表面上にある
水又は電解質溶液の水膜に非接触で対向させたケルビン
プローブを加振しながらバイアス電圧を測定し、バイア
ス電圧と絶対値が等しく逆極性にあるケルビン電位から
実効自然電位を求め、該実効自然電位を孔食電位と比較
することを特徴とする。
The present invention has been devised to solve such a problem, and the natural potential E corr. Measured by the conventional method accurately determines the natural potential under the water film . Based on the premise that it is not shown, the self-potential measured using a Kelvin probe facing the water film is used as a reference to accurately determine the occurrence and growth of pitting corrosion, and to take necessary anticorrosion measures. The purpose is to enable. In order to achieve the object, the determination method of the present invention measures a bias voltage while vibrating a Kelvin probe that is opposed to a water film of water or an electrolyte solution on the surface of a metal material in a non-contact manner. The effective natural potential is obtained from the Kelvin potential having the same absolute value and the opposite polarity, and the effective natural potential is compared with the pitting potential.

【0008】自然電位は、金属材料から離れた位置に保
持されているケルビンプローブを一定振幅で振動させな
がらバイアス電圧Vbiasを測定し、バイアス電圧Vbias
と逆極性で絶対値が等しいケルビン電位Vkp(=−V
bias)を求める。金属材料と参照電極との間のケルビン
電位Vkpを関係式Vkp=E'corr.+K(K:測定装置固
有の定数であり、予め判明している自然電位Ecorr.
用いて測定される)に代入することにより、金属材料の
実効自然電位E' corr.が算出される。被測定対象の金
属材料としては、表面に不動態皮膜が生成するステンレ
ス鋼,アルミニウム,アルミニウム合金,ニッケル,ニ
ッケル合金,チタン,チタン合金,ジルコニウム,ジル
コニウム合金,マグネシウム,マグネシウム合金等があ
る。
[0008] Natural potential, while a Kelvin probe held in a position away from the metallic material is vibrated at a constant amplitude measured bias voltage V bias, the bias voltage V bias
Kelvin potential V kp (= -V)
bias ). The Kelvin potential V kp between the metal material and the reference electrode is expressed by a relational expression V kp = E ' corr. + K (K: a constant peculiar to the measuring device, which is measured by using a known natural potential E corr. Substituting into the above), the effective natural potential E'corr. Of the metal material is calculated. Examples of the metal material to be measured include stainless steel, aluminum, aluminum alloys, nickel, nickel alloys, titanium, titanium alloys, zirconium, zirconium alloys, magnesium, magnesium alloys, etc., on which a passive film is formed.

【0009】[0009]

【作用】不動態皮膜生成によって優れた耐食性を呈する
金属材料がCl-等の腐食性イオンを含む水膜で覆われ
ると、腐食性イオンによって不動態皮膜が破壊され、孔
食発生の起点になる。水膜に含まれている腐食性イオン
の濃度が高くなるほど、孔食が発生しやすくなる。この
場合の孔食発生機構は、次のように説明される。不動態
皮膜が形成されている金属材料は、外部から電位差を与
えながら材料表面の電位及び電流密度を測定すると、一
般的に図1の電位−電流曲線(分極曲線)を示す。測定
に際しては、はんだ付け等で金属材料に陰極又は陽極を
接続し、電位を陽極方向又は陰極方向に変化させ、電位
−電流密度を測定する。図中、実線が陽極電流密度分極
曲線を示し、破線が陰極電流密度分極曲線を示す。
[Function] When a metallic material exhibiting excellent corrosion resistance due to the formation of a passive film is covered with a water film containing corrosive ions such as Cl , the passive film is destroyed by the corrosive ions, which becomes a starting point of occurrence of pitting corrosion. . The higher the concentration of corrosive ions contained in the water film, the more likely pitting corrosion will occur. The pitting corrosion generation mechanism in this case is explained as follows. The metal material on which the passivation film is formed generally shows the potential-current curve (polarization curve) of FIG. 1 when the potential and current density of the material surface are measured while applying a potential difference from the outside. At the time of measurement, a cathode or an anode is connected to a metal material by soldering or the like, the potential is changed in the anode direction or the cathode direction, and the potential-current density is measured. In the figure, the solid line shows the anode current density polarization curve, and the broken line shows the cathode current density polarization curve.

【0010】腐食は、金属材料の表面から金属がイオン
化し、外部溶液の陰イオンと反応し酸化物や水酸化物を
形成する現象である。陽極電流密度分極曲線によって金
属材料表面の腐食状態を表すことができる。陽極電流密
度分極曲線において、電位の低い状態では活性態領域が
形成され、通常のサビが発生する状態にある。電位が高
くなるに従い金属材料表面に薄い酸化皮膜が形成され、
生成した酸化皮膜によって更なる酸化が抑制される不動
態領域になり、電流密度は低い一定値を維持したままで
推移する。更に電位を高くすると、金属材料を不動態化
させていた酸化皮膜が一挙に剥離又は破壊し、腐食が促
進すると共に電流密度が増加する過不動態域になる。
Corrosion is a phenomenon in which a metal is ionized from the surface of a metal material and reacts with anions of an external solution to form an oxide or a hydroxide. The anodic current density polarization curve can represent the corrosion state of the metal material surface. In the anodic current density polarization curve, an active state region is formed when the potential is low, and normal rust is generated. As the potential increases, a thin oxide film is formed on the metal material surface,
The formed oxide film becomes a passive region where further oxidation is suppressed, and the current density changes while maintaining a low constant value. When the potential is further increased, the oxide film that has been passivated on the metal material is exfoliated or destroyed all at once, which promotes corrosion and leads to an excessive passivation region where the current density increases.

【0011】ところが、不動態化されている金属材料で
も、薄い水膜が表面上に形成されている状態では、不動
態皮膜の一部に微小な局所酸化領域が形成され、腐食
(孔食)が進行することがある。孔食が一旦発生する
と、不動態域であっても電流密度が急激に立ち上がり、
孔食が急速に進行するようになる。孔食が発生し始める
電位(孔食電位)は、JIS等で測定できる。JIS法では、
陽極電流密度が10μA/cm2のときの孔食電位をV
c.10で表し、100μA/cm2のときの孔食電位をV
c.100で表している。Vc.10とVc.100は大差なく、実用
的には何れの孔食電位も孔食発生基準として使用でき
る。分極曲線の測定では外部から電力を供給しているの
で、陰極電流密度と陽極電流密度は等しくなっていな
い。他方、外部からの電力供給がない自然状態では、陽
極電流密度iaと陰極電流密度icの絶対値が等しい。そ
こで、図1の分極曲線においてia=|ic|のときの電位
を自然電位Ecorr.と称している。
However, even in the case of a passivated metal material, when a thin water film is formed on the surface, a minute local oxidation region is formed in a part of the passivation film, resulting in corrosion (pitting corrosion). May progress. Once pitting occurs, the current density rises sharply even in the passive region,
Pitting corrosion becomes rapid. The potential at which pitting corrosion starts to occur (pitting corrosion potential) can be measured by JIS or the like. According to the JIS method,
V is the pitting potential when the anode current density is 10 μA / cm 2.
It is expressed as c.10 , and the pitting potential at 100 μA / cm 2 is V
It is represented by c.100 . V c.10 and V C.100 without much difference, any pitting potential practically can also be used as pitting reference. Since electric power is supplied from the outside in the measurement of the polarization curve, the cathode current density and the anode current density are not equal. On the other hand, in a natural state in which no power is supplied from the outside, the absolute values of the anode current density i a and the cathode current density i c are equal. Therefore, the potential when i a = | i c | in the polarization curve of FIG. 1 is referred to as the natural potential E corr .

【0012】自然電位Ecorr.が孔食電位Vcを下回って
いると孔食が発生しないが、孔食電位Vcを上回ると孔
食発生の虞がある。しかし、薄い水膜で覆われている金
属表面の実効自然電位E'corr.を測定する方法がないた
め、水に浸漬した金属材料のバルク自然電位Ecorr.
もって孔食の発生を予測している。ところが、金属表面
を覆う水膜は、ガス拡散速度の大きなO2,Cl2等の濃
度が高い。そのため、水膜下の実効自然電位E' corr.
はバルク自然電位Ecorr.より数百mV高く、バルク水
中で耐食性を示しても水膜下では孔食発生の虞が高くな
る。したがって、水膜下の実効自然電位E'corr.を測定
することは、伝熱管,排水タンク等の稼動雰囲気を考慮
するとき材料選定に重要な影響を及ぼす。
If the spontaneous potential E corr. Is lower than the pitting corrosion potential V c , pitting corrosion does not occur, but if it exceeds the pitting corrosion potential V c , pitting corrosion may occur. However, since there is no method to measure the effective spontaneous potential E'corr. Of the metal surface covered with a thin water film, the occurrence of pitting corrosion is predicted by the bulk spontaneous potential E corr. Of the metallic material immersed in water . There is. However, the water film covering the metal surface has a high concentration of O 2 , Cl 2 or the like having a high gas diffusion rate. Therefore, the effective natural potential E'corr.
Is several hundred mV higher than the bulk natural potential E corr. Even if corrosion resistance is exhibited in bulk water, pitting corrosion is more likely to occur under the water film. Therefore, the measurement of the effective spontaneous potential E'corr. Under the water film has an important influence on the material selection when the operating atmosphere of the heat transfer tube, the drain tank, etc. is taken into consideration.

【0013】本発明においては、次のように水膜下の実
効自然電位Ecorr.を非接触的に測定する。自然電位測
定装置は、薄い水膜wに覆われた試験片s,水膜に浸漬
した細い参照電極1,ケルビンプローブ2,バイアス電
池3で構成された回路をもつ。ケルビンプローブ2とバ
イアス電池3の陰極側がリード線4で、バイアス電池3
の陽極側と試験片sがリード線5で接続されている。ケ
ルビン電位Vkpは、ケルビンプローブ2を基準として薄
い水膜で覆われた試験片sとのボルタ電位差又は接触電
位差を意味する。自然電位E' corr.は、ケルビン電位
kpと等価でなくVkp=E'corr.+Kの関係をもってい
ることが本発明者等による研究結果から始めて判った。
実際、ステンレス鋼は表面が不動態化しているので、表
面が1000μmの水膜で覆われている状態でE'
corr.>Ec orr.とは考えられなかった。
In the present invention, the effective spontaneous potential E corr. Under the water film is measured in a non-contact manner as follows. The spontaneous potential measuring device has a circuit composed of a test piece s covered with a thin water film w, a thin reference electrode immersed in the water film 1, a Kelvin probe 2, and a bias battery 3. The cathode 4 side of the Kelvin probe 2 and the bias battery 3 is the lead wire 4, and the bias battery 3
The anode side and the test piece s are connected by the lead wire 5. The Kelvin potential V kp means a voltaic potential difference or a contact potential difference with the test piece s covered with a thin water film with the Kelvin probe 2 as a reference. It was found from the results of the study by the present inventors that the natural potential E'corr. Is not equivalent to the Kelvin potential V kp and has a relationship of V kp = E ' corr. + K.
In fact, the surface of stainless steel is passivated, so E'when the surface is covered with a water film of 1000 μm
corr.> E c orr. and was not considered.

【0014】ケルビン電位Vkpは、実効自然電位E'
corr.(腐食電位)との間でVkp=E'c orr.+K(定
数)の関係にある(DENNKI GAKKAI第60巻第5号(1998)第
493頁)。E'corr.及びKは、定数Kは回路に固有の値
であり、腐食電位Ecorr.が知られているケルビン電位
kpを測定して得られたEcorr./Vkpの一次関数から
求められる。たとえば、厚み0.5mm程度の0.1M
NaCl溶液の液膜で覆われた試験片sと参照電極1の
電位差(Ecorr.)をポテンショスタットで測定し、同
時にケルビン電位Vkpを測定することにより定数Kを決
定できる。ケルビン電位Vkpは、ケルビンプローブ2の
材質及び環境に依存する値であることから、参照電極1
を基準にした値から不動態皮膜上にある孔食発生部の電
位を測定することが好ましい。なお、参照電極1は、定
数Kの算出に必要な電位測定に使用されるが、実効自然
電位E'corr.の測定には使用しない。
The Kelvin potential V kp is the effective natural potential E '.
corr. (corrosion potential) V kp = E 'c orr between. + K a relationship of (Constant) (DENNKI Gakkai Volume 60, No. 5 (1998) The
493). E'corr. And K are constants K, which are values unique to the circuit, from the linear function of E corr. / V kp obtained by measuring the Kelvin potential V kp , which is known as the corrosion potential E corr. Desired. For example, 0.1M with a thickness of about 0.5mm
The constant K can be determined by measuring the potential difference (E corr. ) Between the test piece s covered with the liquid film of the NaCl solution and the reference electrode 1 with a potentiostat and simultaneously measuring the Kelvin potential V kp . Since the Kelvin potential V kp depends on the material and environment of the Kelvin probe 2, the reference electrode 1
It is preferable to measure the potential of the pitting corrosion-occurring portion on the passive film from the value based on the above. The reference electrode 1 is used for measuring the potential necessary for calculating the constant K, but not for measuring the effective natural potential E'corr .

【0015】ケルビンプローブ法によるバイアス電圧V
biasの測定では、ケルビンプローブ2と試験片sとの間
に空隙があるので、ポテンショスタット法等の従来法で
使用していた直流電流による測定は適当でなく、空隙が
存在しても電気回路を構成させるために交流電流が供給
される。交流電流の供給は、電源部で発生させた交流電
流を供給する方法もあるが、電源部から供給した直流電
流をケルビンプローブ加振することにより交流電流成分
を誘起させる方法が好ましい。ケルビンプローブ2の加
振には、金属材料の表面からケルビンプローブ2の先端
までの距離や金属材料の表面に対向するケルビンプロー
ブ2の面積を変動させる方法等が採用される。ケルビン
プローブ2の加振によってケルビンプローブ2と試験片
sとの間にコンデンサが形成され、微弱な交流電流が発
生する。
Bias voltage V by Kelvin probe method
In the measurement of bias , since there is a gap between the Kelvin probe 2 and the test piece s, the measurement by the direct current used in the conventional method such as the potentiostat method is not suitable, and even if there is a gap, the electric circuit An alternating current is supplied to configure the. The AC current may be supplied by an AC current generated by a power supply unit, but a method of inducing an AC current component by exciting a DC current supplied from the power supply unit by a Kelvin probe is preferable. For the vibration of the Kelvin probe 2, a method of varying the distance from the surface of the metal material to the tip of the Kelvin probe 2 or the area of the Kelvin probe 2 facing the surface of the metal material is adopted. By vibrating the Kelvin probe 2, a capacitor is formed between the Kelvin probe 2 and the test piece s, and a weak alternating current is generated.

【0016】交流電流に起因してバイアス電圧Vbias
生じるが、本発明では該バイアス電圧Vbiasを測定す
る。バイアス電圧Vbiasは、ケルビン電位Vkpと絶対値
が等しく逆極性(−Vbias=Vkp)である。このバイア
ス電圧Vbiasからケルビン電位Vkpを求め、実効自然電
位E'corr.を算出することにより、薄膜化した水膜内に
拡散するO2,Cl2等の拡散速度増加に派生する自然電
位Ecorr.のシフトを正確に測定でき、従来の浸漬法で
得られる自然電位EEcorr.測定値よりも現実に即した
測定値が得られる。その結果、信頼度の高い実効自然電
位E'Ecorr.が得られ、液膜で覆われている金属材料の
孔食発生有無を正確に判定できる。
Although the bias voltage V bias is generated due to the alternating current, the bias voltage V bias is measured in the present invention. The bias voltage V bias has the same absolute value as the Kelvin potential V kp and the opposite polarity (−V bias = V kp ). The Kelvin potential V kp is calculated from the bias voltage V bias and the effective natural potential E'corr. Is calculated to derive the natural potential derived from the increase in the diffusion rate of O 2 , Cl 2 and the like diffused in the thinned water film. The shift of E corr. Can be measured accurately, and a more realistic measured value than the spontaneous potential EE corr. Measured value obtained by the conventional dipping method can be obtained. As a result, a highly reliable effective natural potential E′E corr. Is obtained, and it is possible to accurately determine whether pitting corrosion has occurred in the metal material covered with the liquid film.

【0017】[0017]

【実施例1】SUS304(18%Cr−8%Ni),SUS316
(18%Cr−8%Ni−2%Mo),329J4L(25%
Cr−7%Ni−3%Mo−0.5%Cu−0.3%W−
0.15%N)のステンレス鋼を試験片sに使用し、試
験片sの表面に水膜wを形成した。試験片sが撥水性の
新鮮表面をもつ初期段階では安定な水膜wが形成されな
かったが、経時変化によって水膜wが一定膜厚に安定化
した。水膜wが安定化した段階で、ケルビンプローブ2
を水膜wに対向させ、図2の自然電位測定装置により被
試験体の自然電位Ecorr.を求めた。測定に際し、試験
片sの表面からケルビンプローブ2の先端までの距離を
3±0.5mmの変動範囲に設定し、1000Hzの周
期でケルビンプローブ2を加振させた。測定結果を水膜
wの膜厚で整理したところ、図3に示すように水膜wの
膜厚が1000μm以上になると鋼種に拘らず実効自然
電位E' corr.が低下した。低下した実効自然電位E'
corr.の値は、バルク溶液に浸漬した金属材料の自然電
位Ecorr.を測定した従来値に相当する。
[Example 1] SUS304 (18% Cr-8% Ni), SUS316
(18% Cr-8% Ni-2% Mo), 329J4L (25%
Cr-7% Ni-3% Mo-0.5% Cu-0.3% W-
A 0.15% N) stainless steel was used for the test piece s, and a water film w was formed on the surface of the test piece s. A stable water film w was not formed in the initial stage where the test piece s had a water-repellent fresh surface, but the water film w was stabilized to a constant film thickness due to changes with time. When the water film w is stabilized, Kelvin probe 2
Was made to face the water film w, and the spontaneous potential E corr. Of the test object was determined by the spontaneous potential measuring device of FIG. During the measurement, the distance from the surface of the test piece s to the tip of the Kelvin probe 2 was set within a fluctuation range of 3 ± 0.5 mm, and the Kelvin probe 2 was vibrated at a cycle of 1000 Hz. When the measurement results were sorted by the film thickness of the water film w, as shown in FIG. 3, when the film thickness of the water film w was 1000 μm or more, the effective spontaneous potential E ′ corr. Decreased regardless of the steel type. Reduced effective spontaneous potential E '
The corr. value corresponds to the conventional value obtained by measuring the spontaneous potential E corr. of the metallic material immersed in the bulk solution.

【0018】ところが、水膜wの膜厚が1000μmを
下回ると、実効自然電位E' corr.が貴側に急激に変化
した。たとえば、ステンレス鋼の実効自然電位E'
corr.は、3%NaCl溶液の水膜が存在する系で30
0mV(vs. Ag/AgCl電極基準),1000pp
mCl-溶液の水膜が存在する系で350mV(vs. A
g/AgCl電極基準)にまで上昇した。水膜存在下の
実効自然電位E' corr.を孔食発生電位(表1)と比較
すると、1000ppmCl-溶液の水膜が存在すると
きSUS304では孔食発生の危険性,3%NaCl溶液の水
膜が存在するときSUS304及びSUS316では孔食発生の危険
性が高いことが判る。
However, when the film thickness of the water film w is less than 1000 μm, the effective natural potential E'corr. Suddenly changes to the noble side. For example, the effective natural potential E'of stainless steel
corr. is a system in which a water film of 3% NaCl solution is present.
0 mV (vs. Ag / AgCl electrode standard), 1000 pp
mCl -. In a system where water film exists of a solution 350 mV (vs A
g / AgCl electrode standard). When the effective natural potential E in the presence of water film 'corr is compared with pitting potential (Table 1), 1000ppmCl -. Risk of SUS304 in pitting occurs when the water film of the solution is present, water 3% NaCl solution It can be seen that SUS304 and SUS316 have a high risk of pitting corrosion when a film is present.

【0019】[0019]

【実施例2】SUS304ステンレス鋼が孔食を発生させる前
後において実効自然電位E' corr.の経時変化を調査し
た。実効自然電位E' corr.の測定では、図2の自然電
位測定装置を用い、表面に薄い水膜を形成させたSUS304
ステンレス鋼の自然電位E' corr.を連続的に測定した。
図4の調査結果にみられるように、水膜下でSUS304ステ
ンレス鋼に孔食が発生すると実効自然電位E' corr.
急激に低下することが判った。換言すると、実効自然電
位E' corr.の急激な低下は、測定点近傍で微小な孔食
が発生し、或いは発生した孔食が成長していることを意
味する。
[Example 2] Before SUS304 stainless steel causes pitting corrosion
After that, the effective natural potential E 'corr.To investigate the changes over time
It was Effective natural potential E 'corr.In the measurement of
SUS304 with a thin water film formed on the surface using a position measuring device
Natural potential E'of stainless steel corr.Was measured continuously.
As shown in the survey results in Fig. 4, under the water film, SUS304
Effective self-potential E'when pitting corrosion occurs in stainless steelcorr.But
It turns out that it drops sharply. In other words, effective natural electricity
Rank E 'corr.The sharp decrease in the
That the pitting corrosion has occurred or that the pitting corrosion that has occurred is growing.
To taste.

【0020】孔食の発生・成長を示す実効自然電位E'
corr.の急激な低下は、防食処理を実施する指標として
も使用される。具体的には、実効自然電位E' corr.
急激に低下した場合、測定点近傍のステンレス鋼表面を
清浄化し、或いは硝酸ナトリウム溶液等の再不動態化促
進薬剤,モリブデン酸イオン等の腐食防止剤及び/又は
水酸化ナトリウム溶液等の中和剤を測定点近傍に注入す
ることによりSUS304ステンレス鋼が孔食から保護され
る。
Effective natural potential E'indicating the occurrence and growth of pitting corrosion
The sharp decrease in corr. is also used as an index for implementing anticorrosion treatment. Specifically, when the effective natural potential E'corr. Drops sharply, the stainless steel surface near the measurement point is cleaned, or a repassivation promoting agent such as sodium nitrate solution, a corrosion inhibitor such as molybdate ion, etc. And / or by injecting a neutralizing agent such as sodium hydroxide solution in the vicinity of the measurement point, the SUS304 stainless steel is protected from pitting corrosion.

【0021】[0021]

【発明の効果】以上に説明したように、ケルビンプロー
ブを加振しながら薄い水膜で覆われている金属材料の実
効自然電位E' corr.を求め、実効自然電位E' corr.
孔食電位Vcと比較することによって孔食の発生・成長が
予測できる。この方法は、バルク水に浸漬した金属材料
のバルク自然電位から孔食発生を予測する従来法と異な
り、凝縮水が薄い水膜となって表面が覆われている金属
材料の表面電位を正確に且つ実際的に測定でき、伝熱
管,廃水地タンク,排水貯蔵タンク,金属性インフラス
トラクチャ等に対して実効的な防食対策を可能にする。
As described above, the effective natural potential E'corr. Of a metal material covered with a thin water film is obtained while vibrating the Kelvin probe, and the effective natural potential E'corr. Is pitted. The occurrence and growth of pitting corrosion can be predicted by comparing with the potential V c . This method differs from the conventional method that predicts the occurrence of pitting corrosion from the bulk spontaneous potential of a metallic material immersed in bulk water, and accurately determines the surface potential of a metallic material whose surface is covered by a thin water film of condensed water. It can be measured practically and enables effective anti-corrosion measures for heat transfer pipes, wastewater tanks, drainage storage tanks, metallic infrastructure, etc.

【図面の簡単な説明】[Brief description of drawings]

【図1】 金属材料の電位−電流曲線を示すグラフFIG. 1 is a graph showing a potential-current curve of a metal material.

【図2】 非浸漬型自然電位測定装置を示す概略図FIG. 2 is a schematic view showing a non-immersion type self-potential measuring device.

【図3】 金属材料表面にある水膜の厚みが自然電位に
及ぼす影響を示したグラフ
FIG. 3 is a graph showing the effect of the thickness of a water film on the surface of a metal material on the spontaneous potential.

【図4】 孔食発生時にSUS304ステンレス鋼の自然電位
が急激に低下することを示すグラフ
FIG. 4 is a graph showing that the spontaneous potential of SUS304 stainless steel sharply decreases when pitting corrosion occurs.

【符号の説明】[Explanation of symbols]

1:参照電極 2:ケルビンプローブ 3:バイア
ス電池 4,5:リード線 s:試験片 w:水膜
1: Reference electrode 2: Kelvin probe 3: Bias battery 4,5: Lead wire s: Test piece w: Water film

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01N 27/46 M ─────────────────────────────────────────────────── ─── Continued Front Page (51) Int.Cl. 7 Identification Code FI Theme Coat (Reference) G01N 27/46 M

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 金属材料の表面上にある水又は電解質溶
液の水膜に非接触で対向させたケルビンプローブを加振
しながらバイアス電圧を測定し、バイアス電圧と絶対値
が等しく逆極性にあるケルビン電位から実効自然電位を
求め、該実効自然電位を孔食電位と比較することを特徴
とする孔食発生の判定方法。
1. A bias voltage is measured while vibrating a Kelvin probe facing a water film of water or an electrolyte solution on the surface of a metal material in a non-contact manner, and the bias voltage has the same absolute value and opposite polarity. A method for determining the occurrence of pitting corrosion, which comprises obtaining an effective spontaneous potential from a Kelvin potential and comparing the effective spontaneous potential with a pitting potential.
【請求項2】 金属材料の表面からケルビンプローブま
での距離、又は金属材料の表面に対向するケルビンプロ
ーブの面積を変動させることによりケルビンプローブを
加振する請求項1記載の判定方法。
2. The determination method according to claim 1, wherein the Kelvin probe is excited by varying the distance from the surface of the metal material to the Kelvin probe or the area of the Kelvin probe facing the surface of the metal material.
【請求項3】 表面が不動態皮膜で覆われている金属材
料を測定対象とする請求項1又は2記載の判定方法。
3. The determination method according to claim 1, wherein a metal material whose surface is covered with a passivation film is a measurement target.
JP2002133072A 2002-05-08 2002-05-08 Judgment method of pitting corrosion occurrence Expired - Fee Related JP3971953B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002133072A JP3971953B2 (en) 2002-05-08 2002-05-08 Judgment method of pitting corrosion occurrence

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002133072A JP3971953B2 (en) 2002-05-08 2002-05-08 Judgment method of pitting corrosion occurrence

Publications (2)

Publication Number Publication Date
JP2003329632A true JP2003329632A (en) 2003-11-19
JP3971953B2 JP3971953B2 (en) 2007-09-05

Family

ID=29696267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002133072A Expired - Fee Related JP3971953B2 (en) 2002-05-08 2002-05-08 Judgment method of pitting corrosion occurrence

Country Status (1)

Country Link
JP (1) JP3971953B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009035803A (en) * 2007-08-06 2009-02-19 Sumitomo Heavy Ind Ltd Method of forming sliding surface
EP2221601A1 (en) 2009-02-24 2010-08-25 Hitachi Plant Technologies, Ltd. Pitting corrosion diagnostic method and apparatus for stainless steel and for seawater pump using stainless steel as a structural member
JP2013072647A (en) * 2011-09-26 2013-04-22 Idemitsu Kosan Co Ltd Method and device for evaluating performance of protective film
CN105929011A (en) * 2016-04-29 2016-09-07 河海大学常州校区 Corrosive pitting detection method for intergranular corrosion of stainless steel
CN106918545A (en) * 2015-12-28 2017-07-04 沈阳中科腐蚀控制工程技术有限公司 The quick corrosion tests and device for realizing stainless steel spot corrosion occurrence and development

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009035803A (en) * 2007-08-06 2009-02-19 Sumitomo Heavy Ind Ltd Method of forming sliding surface
EP2221601A1 (en) 2009-02-24 2010-08-25 Hitachi Plant Technologies, Ltd. Pitting corrosion diagnostic method and apparatus for stainless steel and for seawater pump using stainless steel as a structural member
JP2010197116A (en) * 2009-02-24 2010-09-09 Hitachi Plant Technologies Ltd Method and apparatus for diagnosing pitting of stainless steel, and method and apparatus for diagnosing pitting of seawater pump using stainless steel as structural member
JP2013072647A (en) * 2011-09-26 2013-04-22 Idemitsu Kosan Co Ltd Method and device for evaluating performance of protective film
CN106918545A (en) * 2015-12-28 2017-07-04 沈阳中科腐蚀控制工程技术有限公司 The quick corrosion tests and device for realizing stainless steel spot corrosion occurrence and development
CN106918545B (en) * 2015-12-28 2023-11-03 沈阳中科腐蚀控制工程技术有限公司 Corrosion test method and device for rapidly realizing occurrence and development of stainless steel pitting corrosion
CN105929011A (en) * 2016-04-29 2016-09-07 河海大学常州校区 Corrosive pitting detection method for intergranular corrosion of stainless steel
CN105929011B (en) * 2016-04-29 2018-10-26 河海大学常州校区 A kind of spot corrosion detection method of stainless steel intercrystalline corrosion

Also Published As

Publication number Publication date
JP3971953B2 (en) 2007-09-05

Similar Documents

Publication Publication Date Title
Cheng et al. The role of chloride ions in pitting of carbon steel studied by the statistical analysis of electrochemical noise
Laycock et al. Temperature dependence of pitting potentials for austenitic stainless steels above their critical pitting temperature
Zhang et al. Corrosion of X65 steel in CO2-saturated oilfield formation water in the absence and presence of acetic acid
Ortíz et al. Determination of the crevice corrosion stabilization and repassivation potentials of a corrosion-resistant alloy
Kim et al. Influence of surface roughness on the electrochemical behavior of carbon steel
JP2007532887A (en) An improved method for measuring local corrosion degree using a multi-electrode array sensor
Tyusenkov CHEMICAL RESISTANCE OF STEEL 13CrV (RUS 13XФA).
Morton et al. Atmospheric pitting corrosion of AA7075‐T6 under evaporating droplets with and without inhibitors
Moshrefi et al. A study of the galvanic corrosion of titanium/L 316 stainless steel in artificial seawater using electrochemical noise (EN) measurements and electrochemical impedance spectroscopy (EIS)
Williams et al. Pitting corrosion of steam turbine blading steels: the influence of chromium content, temperature, and chloride ion concentration
Nazarov et al. Scanning Kelvin probe investigation of corrosion under thick marine paint systems applied on carbon steel
JP3971953B2 (en) Judgment method of pitting corrosion occurrence
JP2008292408A (en) Temporal evaluation method for crevice corrosion initiation
JP7205126B2 (en) Corrosion sensors and corrosion evaluation systems
JP6342783B2 (en) Hydrogen penetration evaluation method
Zhukova et al. Kinetic regularities and mechanism of formation of nanosize passive films on titanium alloys for medical application and their electrochemical behavior in simulated physiological media
JP6762536B2 (en) Water corrosiveness judgment method and water corrosiveness judgment device
JP6540596B2 (en) Method of measuring intruding hydrogen amount and intruding hydrogen amount measuring device
JP2536364B2 (en) Test piece
Bastos et al. Concerning the efficiency of corrosion inhibitors as given by SVET
Fernández-Domene et al. Study of passive films formed on AISI 316L stainless steel in non-polluted and underwater-volcano-polluted seawater
JP2019184364A (en) Device for determining corrosion of water and method for determining corrosion of water
Rybalka et al. Corrosion behavior of aluminum in 1 M HCl solution
JP2003050222A (en) Evaluation method for crevice corrosion initiation time
Geng et al. Galvanic corrosion behavior between Ti6Al4V and CoCrMo alloys in saline solution

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070116

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070307

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070611

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees