JP2003329245A - ガスタービンエンジンの燃焼器用の環状一体形の波形ライナ - Google Patents

ガスタービンエンジンの燃焼器用の環状一体形の波形ライナ

Info

Publication number
JP2003329245A
JP2003329245A JP2003104717A JP2003104717A JP2003329245A JP 2003329245 A JP2003329245 A JP 2003329245A JP 2003104717 A JP2003104717 A JP 2003104717A JP 2003104717 A JP2003104717 A JP 2003104717A JP 2003329245 A JP2003329245 A JP 2003329245A
Authority
JP
Japan
Prior art keywords
liner
adjacent
corrugations
amplitude
combustor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003104717A
Other languages
English (en)
Other versions
JP2003329245A5 (ja
JP4256709B2 (ja
Inventor
Farmer Gilbert
ギルバート・ファーマー
Shaun M Devane
ショーン・エム・デベイン
John L Vandike
ジョン・エル・ヴァンダイク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JP2003329245A publication Critical patent/JP2003329245A/ja
Publication of JP2003329245A5 publication Critical patent/JP2003329245A5/ja
Application granted granted Critical
Publication of JP4256709B2 publication Critical patent/JP4256709B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • F23R3/50Combustion chambers comprising an annular flame tube within an annular casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

(57)【要約】 【課題】 ガスタービン(10)の燃焼器(16)用の
環状一体形のライナ(32、34)。 【解決手段】 このライナ(32、34)は、燃焼器
(16)の上流端に隣接する第1の端部(42)と、燃
焼器(16)の下流端に隣接する第2の端部(50)
と、第1及び第2の端部(42、50)の間に設置され
た複数の波形(54)とを含み、各波形(54)は、振
幅(56)及び隣接する波形(54)間の波長(58)
を有しており、振幅(56)及び/又は隣接する波形
(54)間の波長(58)の少なくとも1つのは、第1
の端部(42)から第2の端部(50)まで可変であ
る。

Description

【発明の詳細な説明】
【0001】
【発明が属する技術分野】本発明は、一般的にガスター
ビンエンジンの燃焼器用のライナに関し、具体的には、
波形の振幅及び/又は隣接する波形間の波長が上流端か
ら下流端まで変化する実質的に正弦波形の断面を有する
環状一体形の波形ライナに関する。
【0002】
【従来の技術】燃焼器ライナは、一般的にエンジンの圧
縮機とタービン部分との間に設置されたガスタービンエ
ンジンの燃焼部分において用いられるが、このようなラ
イナは、アフタバーナを用いる航空機エンジンの排気部
分においても用いることができる。燃焼器は、一般的に
外部ケーシングと、燃料が燃焼されて非常に高い温度
(例えば、3000°F(1650°C)又はそれより
更に高い温度)で高温ガスを生成する内部燃焼器とを含
む。この非常に高い熱がタービンに流出する前に、該高
い熱により燃焼器ケース及び周囲のエンジンが損傷する
のを防止するために、熱シールド又は燃焼器ライナが燃
焼器の内部に設けられる。
【0003】ライナ設計の1つの形式は、ろう付けによ
り結合された多数の環状の金属薄板バンドを含み、各バ
ンドは、形成された後にナゲット冷却孔及び指向性希釈
孔を組み入れるために穿孔加工を施される。次に各バン
ドは、隣接するバンドに仮付け溶接されてろう付けさ
れ、「腹バンド」として知られる補強材が金属薄板バン
ドに仮付け溶接されてろう付けされる。このライナの製
作は、主として補強材及び金属薄板バンドに施されるろ
う付け工程の非能率のために、手間がかかりしかも難し
いことが判っている。
【0004】複数の個々の金属薄板バンドを排除するた
めに、環状一体形の金属薄板ライナ設計が開発されてき
ており、それらは、特許文献1、特許文献2、特許文献
3、特許文献4及び特許文献5に開示されている。これ
らの特許の各々は、主として一体形のライナの様々な冷
却態様に関するものであるが、かかるライナの別の構成
が、波形の壁面を形成するように波形にされたものとし
て開示されていることに注目されたい。このようにし
て、そのようなライナに対する耐座屈性及びライナ変形
の制限が、改善されている。波形は、浅い正弦波形をも
つのが好ましいが、各波形(波)の振幅及び隣接する波
形(波)間の波長は、ライナの軸方向長さにわたって実
質的に一様であるものとして図示されまた説明されてい
る。
【0005】
【特許文献1】特開平05−118548号公報
【特許文献2】特開平04−283315号公報
【特許文献3】特開平04−283316号公報
【特許文献4】米国特許第5,465,572号公報
【特許文献5】米国特許第5,483,794号公報
【0006】
【発明が解決しようとする課題】一体形の金属薄板ライ
ナに対する剛度要件は、或る個所が他の個所より弱くな
ることになるので、その軸方向長さにわたって変化する
傾向にあることが判っている。従って、ライナの要求に
応じてその軸方向長さに沿う可変の剛度の大きさをもつ
ような、ガスタービンエンジン燃焼器に用いられる環状
一体形の波形ライナが、開発されるのが望ましいであろ
う。かかるライナが、該ライナがその上流端及び下流端
で取り付けられる方法を含めて、より容易に製作されか
つ組み立てられることもまた望ましいであろう。
【0007】
【課題を解決するための手段】本発明の第1の例示的な
実施形態では、ガスタービンエンジンの燃焼器用の環状
一体形のライナが開示されており、該ライナは、燃焼器
の上流端に隣接する第1の端部と、燃焼器の下流端に隣
接する第2の端部と、第1及び第2の端部の間に設置さ
れた複数の波形を含み、各波形は振幅及び隣接する波形
間の波長を有しており、波形の振幅は第1の端部から第
2の端部まで可変である。隣接する波形間の波長は、ラ
イナの第1の端部から第2の端部まで実質的に等しいか
又は可変とすることができる。
【0008】本発明の第2の例示的な実施形態では、ガ
スタービンエンジンの燃焼器用の環状一体形のライナが
開示されており、該ライナは、燃焼器の上流端に隣接す
る第1の端部と、燃焼器の下流端に隣接する第2の端部
と、第1及び第2の端部の間に設置された複数の波形と
を含み、各波形は振幅及び隣接する波形の間の波長を有
しており、隣接する波形間の波長は第1の端部から第2
の端部まで可変である。各波形の振幅は、ライナの第1
の端部から第2の端部まで実質的に等しいか又は可変と
することができる。
【0009】
【発明の実施の形態】さて、図面においては同一の符号
は各図を通して同じ要素を示しているが、この図面を詳
細に参照すると、図1は、直列に流体連通した、低圧圧
縮機12、高圧圧縮機14、及び燃焼器16を有する例
示的なガスタービンエンジン10を示す。燃焼器16
は、従来通りの方法で燃焼ガスを発生し、該燃焼ガスは
高圧タービンノズル組立体18を介して燃焼器16から
吐出され、次にこの燃焼ガスは高圧タービンノズル組立
体18から通常の高圧タービン20に流され、次に通常
の低圧タービン22に流される。高圧タービン20は適
当なシャフト24を介して高圧圧縮機14を駆動し、一
方、低圧タービン22は別の適当なシャフト26を介し
て低圧圧縮機12を駆動し、これら全てが長手方向すな
わち軸方向の中心軸線28の周りに同軸に配置されてい
る。
【0010】図2に見られるように、燃焼器16は更
に、外側ライナ32、内側ライナ34、及び該燃焼器の
上流端に設置されたドーム36により形成された燃焼室
30を含む。燃料/空気ミキサ38が、燃料と空気の混
合気を燃焼室30内に導入するようにドーム36の内部
に設置され、該燃焼室30において燃料と空気の混合気
が点火器(図示せず)により点火されて燃焼ガスが生成
され、該燃焼ガスはそれぞれ高圧タービン20及び低圧
タービン22を駆動するために用いられることが分かる
であろう。
【0011】本発明によると、図3及び図4から分かる
ように、外側ライナ32は形状が環状であり、ある種の
金属薄板から一体形の構造として形成されるのが好まし
い。より具体的には、外側ライナ32は、燃焼器16の
上流端に隣接して設置された第1の端部42を含み、こ
の第1の端部42は、リベットバンド40によってカウ
ル44及びドーム36に接合される(該リベットバンド
は、次にボルト46及びナット48のような機械的継
手、溶接継手、又は類似の取り付け形態によってカウル
44及びドーム36に接合される)。従って、外側ライ
ナ32は、リベット41を介してリベットバンド40に
接合されるのが好ましく、従って外側ライナ32が上流
端42において該外側ライナ上に形成されたフランジを
もつ必要性が排除されることが分かるであろう。スター
タスロット55及び57が、それぞれリベットバンド4
0及び外側ライナの上流端42に設けられ、外側ライナ
32の高温側面に沿って冷却フィルムの形成を促進する
のが好ましい。外側ライナ32はまた、燃焼器16の下
流端に隣接して設置された第2の端部50を含み、第2
の端部50は、リベット53によってシール組立体52
に接合されるのが好ましい。このようにして、外側ライ
ナ32は、該外側ライナが受けるあらゆる熱膨張及び/
又は圧力変動に対応して軸方向に移動することができ
る。
【0012】外側ライナ32は更に、全体を参照符号5
4(図3参照)によって特定された、第1の端部42と
第2の端部50との間でその中に形成された複数の波形
を含む。断面(図4参照)で見るとき、それを通して延
びる中立軸線59(図5参照)により分かるように、波
形54は、実質的に正弦波形を有することが分かるであ
ろう。図5から分かるように、各波形54は、所定の振
幅56と同時に隣接する波形54間の所定の波長58を
有する。ライナが実質的に同一の振幅及び波形間の波長
を備える波形を有するものとして開示されている従来技
術と対称的に、外側ライナ32の波形54は、可変の振
幅及び/又は隣接する波形間の可変の波長を有するよう
に構成されている。このようにして、外側ライナ32
は、その最も弱い個所に対して外側ライナ32を過剰設
計することなく、該ライナの様々な軸方向位置に沿って
所望される任意の剛度を得ることができる。
【0013】例えば、外側ライナ32の中間セクション
60は、一般的に最も弱く、最も座屈しやすいというこ
とが判っている。従って、中間セクション60内に設置
された波形64の振幅62(図6参照)は、第1の外側
ライナ端部42に隣接する外側ライナ32の上流セクシ
ョン70内に設置された波形68の振幅66(図7を参
照)よりも大きいことが好ましい。同様に、中間セクシ
ョン60内に設置された波形64の振幅62は、第2の
外側ライナ端部50に隣接する外側ライナ32の下流セ
クション76内に設置された波形74の振幅72(図8
参照)より大きいことが好ましい。第1の外側ライナ端
部42における外側ライナ32の固定接合は、第2の外
側ライナ端部50における固定接合よりも座屈を生じる
危険が僅かに大きく、また第1の外側ライナ端部42に
おける温度は、一般的に第2の外側ライナ端部50にお
ける温度よりも高いので、波形68の振幅66は、波形
74の振幅72に等しいか又はそれより大きいことが好
ましい。
【0014】それぞれ中間セクション60、上流セクシ
ョン70及び下流セクション76の波形64、68及び
74の振幅62、66及び72を変化させることと組み
合わせて又はそれとは独立してのいずれかで、その中の
隣接する波形間の波長を変化させることもまた、様々な
軸方向位置における外側ライナ32の剛度を調節するた
めに用いることができることが判った。従って、外側ラ
イナ32の中間セクション60が、最も座屈しやすいと
考えられる場合には、隣接する波形64間の波長78
は、上流セクション70の隣接する波形68間の波長8
0及び下流セクション76の隣接する波形74間の波長
82より小さいことが好ましい。同様に、上流セクショ
ン70の隣接する波形68間の波長80は、それらのそ
れぞれの振幅に関する上述の理由から、下流セクション
76の隣接する波形74間の波長82に等しいか又はそ
れより小さいことが好ましい。
【0015】最新の外側ライナにおけると、少なくとも
同じ程度の剛度を得るためには、外側ライナ32の全体
的な座屈マージンが、ほぼ35〜250psi (1psi=6.9
kPa)の範囲内にあるのが好ましいと判断された。外側ラ
イナ32のより好ましい全体的な座屈マージンの範囲
は、ほぼ85〜200psiであるが、このような全体的
な座屈マージンの最適な範囲は、ほぼ120〜180ps
iとなる。
【0016】外側ライナ32内に形成された波形54の
数、該外側ライナの厚さ84(図5参照)、及びこのよ
うな外側ライナ32を形成するのに用いられる材料を含
む、外側ライナ32の様々な構成が、試験され分析され
た。上述の全体的な座屈マージンは、最も重要な関心事
であるが、重量、コスト、及び材料を成形する能力など
を含む要因を考慮に入れなければならないので、関連す
る他のパラメータの最適化が重要であることが分かるで
あろう。従って、外側ライナ32内に形成される波形5
4の総数(波の総数により定められるような)は、ほぼ
6〜12個であることが好ましいことが判った。図1か
ら図4までに示す波形の総数は、6と1/2個であり、
これは例示の目的のみのために図示されているものであ
る。外側ライナ32の好ましい厚さ84は、金属薄板材
料(例えば、ニッケル基合金 Hastelloy
X、HS188、HA230等)が用いられる場合に
は、ほぼ0.030〜0.080インチであるのが好ま
しい。このようにして、波形54を備える材料は容易に
形成され、必要な剛度を備え、かつ従来のライナと比べ
てコストを節減することができる。
【0017】外側ライナ32の高温(半径方向内側)側
面に沿って冷却流を形成することに関して、特許文献
1、特許文献2及び特許文献4に記載されているような
多孔冷却パターンが該外側ライナ32内に形成され、用
いられる(即ち、関連する寸法及び形状など)ことが好
ましい。冷却孔のパターンは、波形54に対する該冷却
孔の配置、即ち外側ライナ32に沿う軸方向位置、外側
ライナ32に沿う半径方向位置、かかる波形の振幅56
及びかかる波形の波長58に応じて、変化させることが
できることが理解されるであろう。より具体的には、よ
り密な多孔冷却パターン(ほぼ20ミルの直径を有する
冷却孔の間の間隔が、直径のほぼ5倍になっている)
は、波形54の振幅が大きくされ及び/又は隣接する波
形間の波長が小さくされている場合のそれらの軸方向位
置で用いられるのが好ましい。このことは、より急勾配
であり従って上流の外側ライナ端部42からの冷却流を
より受け難いポケット88の内部により多くの冷却空気
が供給されるようにする必要性によるものである。ま
た、より密な多孔冷却パターンは、波形54の上流辺9
2上にかつ燃料/空気ミキサ38の半径方向位置近くに
設けられるのが好ましい。これと対照的に、それほど密
でない多孔冷却パターン(ほぼ20ミルの直径を有する
冷却孔の間の間隔が直径ほぼ7倍半になっている)は、
波形54の振幅が小さくされ及び/又は隣接する波形間
の波長が大きくされている外側ライナ32の軸方向位置
に設けられるのが好ましい。更に、それほど密でない多
孔冷却パターンは、波形54の下流辺94上にかつ隣接
する燃料/空気ミキサ38間の半径方向位置に置くのが
好ましい。
【0018】本発明の好ましい実施形態を図示しかつ説
明してきたが、当業者には、燃焼器16用の外側ライナ
32の別の適用例を、本発明の技術的範囲から逸脱する
ことなく、適当な変更形態によって達成することが可能
である。特に、本明細書中に説明されまた請求された技
術思想は、内側ライナ34にも用いることができ、それ
も依然として本発明に含まれることが理解されるであろ
う。内側ライナ34は、一般的に剛度要件を満たすため
にその中に波形が形成されることを必要としないが、製
造を簡単にしてコストを節減するために外側ライナ32
について説明したのと同様に、その上流端及び下流端に
おいてリベット留めすることができるフランジの無い構
成を内側ライナ34が有することは、特に有用であろ
う。
【0019】なお、特許請求の範囲に記載された符号
は、理解容易のためであってなんら発明の技術的範囲を
実施例に限縮するものではない。
【図面の簡単な説明】
【図1】 本発明による燃焼器ライナを含むガスタービ
ンエンジンの断面図。
【図2】 図1に示す燃焼器の拡大断面図。
【図3】 本発明による図1及び図2に示す燃焼器用の
外側ライナの一部の斜視図。
【図4】 図1から図3に示す外側ライナの拡大断面
図。
【図5】 波形の振幅及び隣接する波形間の波長が特定
されている図4に示す外側ライナの部分拡大断面図。
【図6】 図4に示す外側ライナの中間セクションの部
分拡大断面図。
【図7】 図4に示す外側ライナの上流セクションの部
分拡大断面図。
【図8】 図4に示す外側ライナの下流セクションの部
分拡大断面図。
【符号の説明】
16 燃焼器 30 燃焼室 32 外側ライナ 34 内側ライナ 36 ドーム 38 燃料/空気ミキサ 40 リベットバンド 44 カウル 52 シール組立体
───────────────────────────────────────────────────── フロントページの続き (72)発明者 ショーン・エム・デベイン アメリカ合衆国、オハイオ州、シンシナテ ィ、ケンパー・ロード・ナンバー・1709、 1440番 (72)発明者 ジョン・エル・ヴァンダイク アメリカ合衆国、オハイオ州、フェアフィ ールド、サウス・ティンバー・ハロウ、1 番

Claims (16)

    【特許請求の範囲】
  1. 【請求項1】 ガスタービンエンジン(10)の燃焼器
    (16)用の環状一体形のライナ(32、34)であっ
    て、 (a)前記燃焼器(16)の上流端に隣接する第1の端
    部(42)と、 (b)前記燃焼器(16)の下流端に隣接する第2の端
    部(50)と、 (c)前記第1及び第2の端部(42、50)の間に設
    置された複数の波形(54)と、を含み、 前記波形(54)の各々は、振幅(56)及び隣接する
    波形(54)間の波長(58)を有しており、 前記振幅(56)及び/又は前記隣接する波形(54)
    間の波長(58)のうちの少なくとも1つは、前記第1の
    端部(42)から前記第2の端部(50)まで可変であ
    る、ことを特徴とするライナ(32、34)。
  2. 【請求項2】 各波形(54)の前記振幅(56)は、
    前記ライナ(32、34)の軸方向位置における該ライ
    ナに対する剛度要件に従って形成されていることを特徴
    とする、請求項1に記載のライナ(32、34)。
  3. 【請求項3】 前記ライナ(32、34)の中間セクシ
    ョン(60)内に設置された波形(64)の振幅(6
    2)は、前記第1の端部(42)に隣接する前記ライナ
    (32、34)のセクション(70)内に設置された波
    形(68)の振幅(66)より大きいことを特徴とす
    る、請求項1に記載のライナ(32、34)。
  4. 【請求項4】 前記ライナ(32、34)の中間セクシ
    ョン(60)内に設置された波形(64)の振幅(6
    2)は、前記第2の端部(50)に隣接する前記ライナ
    (32、34)のセクション(70)内に設置された波
    形(74)の振幅(72)より大きいことを特徴とす
    る、請求項1に記載のライナ(32、34)。
  5. 【請求項5】 前記第1の端部(42)に隣接する前記
    ライナ(32、34)のセクション(70)内に設置さ
    れた波形(68)の振幅(66)は、前記第2の端部
    (50)に隣接する前記ライナ(32、34)のセクシ
    ョン(70)内に設置された波形(74)の振幅(7
    2)より少なくとも小さくないことを特徴とする、請求
    項1に記載のライナ(32、34)。
  6. 【請求項6】 各隣接する対の波形(54)間の前記波
    長(58)は、前記ライナ(32、34)の軸方向位置
    における該ライナに対する剛度要件に従って形成されて
    いることを特徴とする、請求項1に記載のライナ(3
    2、34)。
  7. 【請求項7】 前記ライナ(32、34)の中間セクシ
    ョン(60)内に設置された波形(64)間の波長(7
    8)は、前記第1の端部(42)に隣接する前記ライナ
    (32、34)のセクション(70)内に設置された波
    形(68)間の波長(80)より小さいことを特徴とす
    る、請求項1に記載のライナ(32、34)。
  8. 【請求項8】 前記ライナ(32、34)の中間セクシ
    ョン(60)内に設置された波形(64)間の波長(7
    8)は、前記第2の端部(50)に隣接する前記ライナ
    (32、34)のセクション(76)内に設置された波
    形(74)間の波長(82)より小さいことを特徴とす
    る、請求項1に記載のライナ(32、34)。
  9. 【請求項9】 前記第1の端部(42)に隣接する前記
    ライナ(32、34)のセクション(70)内に設置さ
    れた波形(68)間の波長(80)は、前記第2の端部
    (50)に隣接する前記ライナ(32、34)のセクシ
    ョン(76)内に設置された波形(74)間の波長(8
    2)より大きくないことを特徴とする、請求項1に記載
    のライナ(32、34)。
  10. 【請求項10】 前記ライナ(32、34)内の波形
    (54)の総数は、ほぼ6〜12個の範囲内にあること
    を特徴とする、請求項1に記載のライナ(32、3
    4)。
  11. 【請求項11】 各波形(54)の密度が該波形の前記
    振幅(56)に比例するような前記ライナ(32、3
    4)内に形成された多孔冷却パターンを更に含むことを
    特徴とする、請求項1に記載のライナ(32、34)。
  12. 【請求項12】 各波形(54)の密度が隣接する波形
    (54)間の前記波長(58)に比例するような前記ラ
    イナ(32、34)内に形成された多孔冷却パターンを
    更に含むことを特徴とする、請求項1に記載のライナ
    (32、34)。
  13. 【請求項13】 各波形(54)の前記振幅(56)
    は、実質的に等しいことを特徴とする、請求項1に記載
    のライナ(32、34)。
  14. 【請求項14】 隣接する波形(54)間の前記波長
    (58)は、実質的に等しいことを特徴とする、請求項
    1に記載のライナ(32、34)。
  15. 【請求項15】 前記ライナ(32、34)は、前記燃
    焼器(16)用の外側ライナ(32)であることを特徴
    とする、請求項1に記載のライナ(32、34)。
  16. 【請求項16】 前記ライナ(32、34)は、前記燃
    焼器(16)用の内側ライナ(34)であることを特徴
    とする、請求項1に記載のライナ(32、34)。
JP2003104717A 2002-04-10 2003-04-09 ガスタービンエンジンの燃焼器用の環状一体形の波形ライナ Expired - Fee Related JP4256709B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/119,649 2002-04-10
US10/119,649 US6655147B2 (en) 2002-04-10 2002-04-10 Annular one-piece corrugated liner for combustor of a gas turbine engine

Publications (3)

Publication Number Publication Date
JP2003329245A true JP2003329245A (ja) 2003-11-19
JP2003329245A5 JP2003329245A5 (ja) 2006-05-25
JP4256709B2 JP4256709B2 (ja) 2009-04-22

Family

ID=28453992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003104717A Expired - Fee Related JP4256709B2 (ja) 2002-04-10 2003-04-09 ガスタービンエンジンの燃焼器用の環状一体形の波形ライナ

Country Status (5)

Country Link
US (1) US6655147B2 (ja)
EP (1) EP1353127B1 (ja)
JP (1) JP4256709B2 (ja)
CN (1) CN100529543C (ja)
DE (1) DE60334172D1 (ja)

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1312865A1 (de) * 2001-11-15 2003-05-21 Siemens Aktiengesellschaft Ringbrennkammer für eine Gasturbine
US6725667B2 (en) * 2002-08-22 2004-04-27 General Electric Company Combustor dome for gas turbine engine
US6779268B1 (en) * 2003-05-13 2004-08-24 General Electric Company Outer and inner cowl-wire wrap to one piece cowl conversion
FR2867507B1 (fr) * 2004-03-15 2006-06-23 Snecma Moteurs Pontet de positionnement et son utilisation au canal support de tuyere d'un turbopropulseur
US8015818B2 (en) * 2005-02-22 2011-09-13 Siemens Energy, Inc. Cooled transition duct for a gas turbine engine
US7976274B2 (en) * 2005-12-08 2011-07-12 General Electric Company Methods and apparatus for assembling turbine engines
DE102005060704A1 (de) * 2005-12-19 2007-06-28 Rolls-Royce Deutschland Ltd & Co Kg Gasturbinenbrennkammer
US7908867B2 (en) * 2007-09-14 2011-03-22 Siemens Energy, Inc. Wavy CMC wall hybrid ceramic apparatus
US8202588B2 (en) * 2008-04-08 2012-06-19 Siemens Energy, Inc. Hybrid ceramic structure with internal cooling arrangements
US8327648B2 (en) * 2008-12-09 2012-12-11 Pratt & Whitney Canada Corp. Combustor liner with integrated anti-rotation and removal feature
US8904799B2 (en) * 2009-05-25 2014-12-09 Majed Toqan Tangential combustor with vaneless turbine for use on gas turbine engines
US8327644B2 (en) * 2009-11-06 2012-12-11 Jhrg Inc. Micro-turbine combustor
US8707708B2 (en) * 2010-02-22 2014-04-29 United Technologies Corporation 3D non-axisymmetric combustor liner
RU2530685C2 (ru) * 2010-03-25 2014-10-10 Дженерал Электрик Компани Структуры ударного воздействия для систем охлаждения
US20120208141A1 (en) * 2011-02-14 2012-08-16 General Electric Company Combustor
RU2598963C2 (ru) * 2011-12-05 2016-10-10 Дженерал Электрик Компани Многозонная камера сгорания
US8960525B2 (en) * 2013-01-31 2015-02-24 General Electric Company Brazing process and plate assembly
US9958160B2 (en) 2013-02-06 2018-05-01 United Technologies Corporation Gas turbine engine component with upstream-directed cooling film holes
EP2954261B1 (en) 2013-02-08 2020-03-04 United Technologies Corporation Gas turbine engine combustor
WO2014160299A1 (en) 2013-03-14 2014-10-02 United Technologies Corporation Combustor panel with increased durability
WO2015038293A1 (en) 2013-09-11 2015-03-19 United Technologies Corporation Combustor liner
EP3037728B1 (en) * 2014-12-22 2020-04-29 Ansaldo Energia Switzerland AG Axially staged mixer with dilution air injection
CN104896514A (zh) * 2015-05-13 2015-09-09 广东电网有限责任公司电力科学研究院 燃气轮机主燃烧室防振隔热壁
CN105605605A (zh) * 2016-01-25 2016-05-25 西北工业大学 一种地面燃机燃烧室的防振冷却壁
US10495309B2 (en) * 2016-02-12 2019-12-03 General Electric Company Surface contouring of a flowpath wall of a gas turbine engine
US10655541B2 (en) 2016-03-25 2020-05-19 General Electric Company Segmented annular combustion system
US11428413B2 (en) 2016-03-25 2022-08-30 General Electric Company Fuel injection module for segmented annular combustion system
US10584876B2 (en) 2016-03-25 2020-03-10 General Electric Company Micro-channel cooling of integrated combustor nozzle of a segmented annular combustion system
US10830442B2 (en) 2016-03-25 2020-11-10 General Electric Company Segmented annular combustion system with dual fuel capability
US10584880B2 (en) 2016-03-25 2020-03-10 General Electric Company Mounting of integrated combustor nozzles in a segmented annular combustion system
US10641491B2 (en) 2016-03-25 2020-05-05 General Electric Company Cooling of integrated combustor nozzle of segmented annular combustion system
US10563869B2 (en) 2016-03-25 2020-02-18 General Electric Company Operation and turndown of a segmented annular combustion system
US10520194B2 (en) 2016-03-25 2019-12-31 General Electric Company Radially stacked fuel injection module for a segmented annular combustion system
US10605459B2 (en) 2016-03-25 2020-03-31 General Electric Company Integrated combustor nozzle for a segmented annular combustion system
US11156362B2 (en) 2016-11-28 2021-10-26 General Electric Company Combustor with axially staged fuel injection
US10690350B2 (en) 2016-11-28 2020-06-23 General Electric Company Combustor with axially staged fuel injection
US10738646B2 (en) 2017-06-12 2020-08-11 Raytheon Technologies Corporation Geared turbine engine with gear driving low pressure compressor and fan at common speed, and failsafe overspeed protection and shear section
US10612555B2 (en) 2017-06-16 2020-04-07 United Technologies Corporation Geared turbofan with overspeed protection
US11460191B2 (en) 2020-08-31 2022-10-04 General Electric Company Cooling insert for a turbomachine
US11614233B2 (en) 2020-08-31 2023-03-28 General Electric Company Impingement panel support structure and method of manufacture
US11994293B2 (en) 2020-08-31 2024-05-28 General Electric Company Impingement cooling apparatus support structure and method of manufacture
US11371702B2 (en) 2020-08-31 2022-06-28 General Electric Company Impingement panel for a turbomachine
US11994292B2 (en) 2020-08-31 2024-05-28 General Electric Company Impingement cooling apparatus for turbomachine
US11255545B1 (en) 2020-10-26 2022-02-22 General Electric Company Integrated combustion nozzle having a unified head end
US11898755B2 (en) 2022-06-08 2024-02-13 General Electric Company Combustor with a variable volume primary zone combustion chamber
US11835236B1 (en) 2022-07-05 2023-12-05 General Electric Company Combustor with reverse dilution air introduction
US11767766B1 (en) 2022-07-29 2023-09-26 General Electric Company Turbomachine airfoil having impingement cooling passages

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3398527A (en) * 1966-05-31 1968-08-27 Air Force Usa Corrugated wall radiation cooled combustion chamber
US4833881A (en) * 1984-12-17 1989-05-30 General Electric Company Gas turbine engine augmentor
US4696431A (en) * 1985-11-29 1987-09-29 United Technologies Corporation Augmentor liner support band having finger positioners
US4930729A (en) * 1986-05-22 1990-06-05 Rolls-Royce Plc Control of fluid flow
US5233828A (en) 1990-11-15 1993-08-10 General Electric Company Combustor liner with circumferentially angled film cooling holes
US5181379A (en) 1990-11-15 1993-01-26 General Electric Company Gas turbine engine multi-hole film cooled combustor liner and method of manufacture
CA2056592A1 (en) 1990-12-21 1992-06-22 Phillip D. Napoli Multi-hole film cooled combustor liner with slotted film starter
GB9127505D0 (en) 1991-03-11 2013-12-25 Gen Electric Multi-hole film cooled afterburner combustor liner
JP2597800B2 (ja) * 1992-06-12 1997-04-09 ゼネラル・エレクトリック・カンパニイ ガスタービンエンジン用燃焼器
US5363654A (en) 1993-05-10 1994-11-15 General Electric Company Recuperative impingement cooling of jet engine components
US5460002A (en) 1993-05-21 1995-10-24 General Electric Company Catalytically-and aerodynamically-assisted liner for gas turbine combustors
FR2716933B1 (fr) * 1994-03-03 1996-04-05 Snecma Elément de chemise de protection thermique pour turbomachine et ses procédés de fabrication.

Also Published As

Publication number Publication date
DE60334172D1 (de) 2010-10-28
CN100529543C (zh) 2009-08-19
EP1353127B1 (en) 2010-09-15
EP1353127A2 (en) 2003-10-15
JP4256709B2 (ja) 2009-04-22
EP1353127A3 (en) 2005-01-12
CN1450304A (zh) 2003-10-22
US6655147B2 (en) 2003-12-02
US20030192320A1 (en) 2003-10-16

Similar Documents

Publication Publication Date Title
JP4256709B2 (ja) ガスタービンエンジンの燃焼器用の環状一体形の波形ライナ
US5197289A (en) Double dome combustor
US6568187B1 (en) Effusion cooled transition duct
EP1340941B1 (en) Corrugated cowl for combustor of a gas turbine engine and method for configuring the same
JP4597489B2 (ja) ガスタービンエンジンの燃焼器ライナ用の多孔パッチ
EP2481983B1 (en) Turbulated Aft-End liner assembly and cooling method for gas turbine combustor
JP4216052B2 (ja) 熱コンプライアンス性を有する抑制シール
US5154060A (en) Stiffened double dome combustor
RU2289035C2 (ru) Подверженный во время работы воздействию высоких тепловых нагрузок элемент конструкции и способ его изготовления
US8955330B2 (en) Turbine combustion system liner
US6725667B2 (en) Combustor dome for gas turbine engine
US20090120093A1 (en) Turbulated aft-end liner assembly and cooling method
EP2211105A2 (en) Turbulated combustor aft-end liner assembly and related cooling method
JPH05118548A (ja) ガスタービンエンジンの多孔気膜冷却燃焼器ライナーおよびその製造方法
US3738106A (en) Variable geometry combustors
GB2074307A (en) Combustor liner construction for gas turbine engine
JP2010526274A (ja) それを貫通した一様でない直径を有するガスタービン燃焼器ライナのための冷却孔
JP2003014237A (ja) フランジ付中空構造物
EP2230456A2 (en) Combustion liner with mixing hole stub
US8127552B2 (en) Transition scrolls for use in turbine engine assemblies
US4149373A (en) Combustion chamber stress reducing means
GB2361302A (en) Discharge nozzle for a gas turbine engine combustion chamber
US7578134B2 (en) Methods and apparatus for assembling gas turbine engines
JPS6055723B2 (ja) 定置ガスタ−ビン用燃焼器
CA2643956A1 (en) Transition scrolls for use in turbine engine assemblies

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060405

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees