JP2003327691A - Manufacturing method for polyamide - Google Patents

Manufacturing method for polyamide

Info

Publication number
JP2003327691A
JP2003327691A JP2002135527A JP2002135527A JP2003327691A JP 2003327691 A JP2003327691 A JP 2003327691A JP 2002135527 A JP2002135527 A JP 2002135527A JP 2002135527 A JP2002135527 A JP 2002135527A JP 2003327691 A JP2003327691 A JP 2003327691A
Authority
JP
Japan
Prior art keywords
polyamide
temperature
diamine
melting point
diamine component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002135527A
Other languages
Japanese (ja)
Other versions
JP4168233B2 (en
Inventor
Koji Yamamoto
山本  幸司
Takeo Hayashi
武夫 林
Takatomo Takano
隆大 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2002135527A priority Critical patent/JP4168233B2/en
Publication of JP2003327691A publication Critical patent/JP2003327691A/en
Application granted granted Critical
Publication of JP4168233B2 publication Critical patent/JP4168233B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rational manufacturing method for synthesizing a polyamide the melting point of which is higher than the boiling point under atmospheric pressure of a diamine component being a raw material. <P>SOLUTION: When the polyamide is synthesized by directly subjecting the raw material diamine component and a dicarboxylic acid component to polycondensation reaction under pressure, a rise in the viscosity of a reaction product at the time of temperature rise in a polycondensation reaction process is suppressed to achieve the efficiency of the temperature rise and, after the temperature in the polycondensation reaction reaches a desired temperature, the polycondensation reaction is completed. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ジアミン成分とジ
カルボン酸成分とを直接重縮合反応させる新規なポリア
ミドの製造方法に関する。詳しくは、生成するポリアミ
ドの融点よりも沸点が低いジアミンとジカルボン酸とを
直接反応することにより、ポリアミドを得る製造法に関
する。
TECHNICAL FIELD The present invention relates to a novel method for producing a polyamide in which a diamine component and a dicarboxylic acid component are directly subjected to a polycondensation reaction. More specifically, the present invention relates to a method for producing a polyamide by directly reacting a diamine having a boiling point lower than the melting point of the produced polyamide with a dicarboxylic acid.

【0002】[0002]

【従来の技術】一般にジカルボン酸とジアミンから合成
されるポリアミドは、ジカルボン酸とジアミンとの塩
(いわゆるナイロン塩)の水溶液を出発原料として用
い、ポリアミド形成温度に保ちながら加圧下で溶媒であ
る水を留去しながら重縮合させることによって製造され
ている。この場合、溶媒として用いた水を反応系から排
除するために、多量の熱量と極めて長い反応時間を要す
るのみならず、1回の反応で得られるポリアミド収量が
少なく、経済性に欠ける。また、反応中の液面の変動が
大きいため、反応缶壁面にポリマーが付着し、そのポリ
マーは局部的に過熱されて劣化が起こり易く、従って、
従来一般に行われている方法で均質で良好な製品を得る
には多くの不都合が残されている。
2. Description of the Related Art Generally, a polyamide synthesized from a dicarboxylic acid and a diamine uses an aqueous solution of a salt of a dicarboxylic acid and a diamine (so-called nylon salt) as a starting material. It is produced by polycondensing while distilling off. In this case, in order to remove water used as a solvent from the reaction system, not only a large amount of heat and an extremely long reaction time are required, but also the yield of polyamide obtained in one reaction is small, which is not economical. Further, since the fluctuation of the liquid level during the reaction is large, the polymer adheres to the wall surface of the reaction vessel, and the polymer is locally overheated and easily deteriorates.
There are many disadvantages to obtaining a homogeneous and good product by the conventional method.

【0003】これらの欠点を解決する方法として、ジカ
ルボン酸とジアミンとのナイロン塩を直接重合する方法
(特公昭33−15700号公報、特公昭43−228
74号公報など)が提案されている。しかし、この方法
ではナイロン塩を単離し、精製する工程を必要とし、効
率の良い方法とは言い難い。さらには、ジアミンとジカ
ルボン酸とを直接混合し、加圧下で重縮合を行う方法
(U.S.P.2240347号明細書)も提案されている。
しかし、この方法では、高価な横型撹拌反応機の利用が
強いられる。また、溶融した少量の水を含有するジアミ
ンを常圧下220℃以下の温度で溶融したジカルボン酸
と混合し、次いで重縮合を行う方法(特開昭48−12
390号公報)も提案されている。しかし、この方法
は、ジアミンとジカルボン酸を直接重合する方法に比べ
ると、水の留去に要する時間、更には熱量が必要となる
ことから、効率の良い方法とは言い難い。
As a method for solving these drawbacks, a method of directly polymerizing a nylon salt of dicarboxylic acid and diamine (Japanese Patent Publication No. 33-15700, Japanese Patent Publication No. 43-228).
No. 74, etc.) has been proposed. However, this method requires a step of isolating and purifying a nylon salt, and is not an efficient method. Furthermore, a method (US Pat. No. 2,240,347) in which a diamine and a dicarboxylic acid are directly mixed and polycondensation is performed under pressure is also proposed.
However, this method requires the use of an expensive horizontal stirring reactor. Further, a method in which a molten diamine containing a small amount of water is mixed with a molten dicarboxylic acid at a temperature of 220 ° C. or lower under normal pressure, and then polycondensation is carried out (JP-A-48-12).
No. 390) is also proposed. However, this method requires more time and more heat to distill off water than a method of directly polymerizing a diamine and a dicarboxylic acid, and thus cannot be said to be an efficient method.

【0004】また、常圧下でジアミンとジカルボン酸の
みを直接重縮合させて、経済的にポリアミドを得る方法
(特開昭58−111829や特公平1−14925)
が提案されている。この方法は溶融したジカルボン酸に
ジアミンを添加すると共に重合温度を上昇させ、最終的
にポリマーの融点以上での添加を行い、溶融重合してポ
リアミドを得る。しかしながら、得られるポリアミドの
融点に対して原料であるジアミン成分の沸点が低い場
合、この方法を用いると添加したジアミン成分が揮発し
て系外へ多量に留出する。その結果、生成するポリアミ
ドのモル比(ジアミン/ジカルボン酸)が1から大きく
ずれ、目標とする分子量のポリアミドを得ることが難し
い。また、得られるポリアミドの融点に対して原料であ
るジアミン成分の沸点が低い場合、分縮器を用いことに
より、系外へ留出するジアミンの量は減少するものの、
分縮器から系内に戻った多量のジアミンにより、系内の
温度が低下することから、熱量が余分に必要となってし
まい、効率の良い方法とは言い難い。
A method for economically obtaining a polyamide by directly polycondensing only a diamine and a dicarboxylic acid under atmospheric pressure (Japanese Patent Laid-Open No. 58-1111829 and Japanese Patent Publication No. 14925).
Is proposed. In this method, a diamine is added to molten dicarboxylic acid, the polymerization temperature is raised, and finally, the addition is carried out at a temperature equal to or higher than the melting point of the polymer to carry out melt polymerization to obtain a polyamide. However, when the boiling point of the diamine component as a raw material is lower than the melting point of the obtained polyamide, the added diamine component is volatilized and a large amount is distilled out of the system by using this method. As a result, the molar ratio of the produced polyamide (diamine / dicarboxylic acid) deviates greatly from 1, and it is difficult to obtain a polyamide having a target molecular weight. Further, when the boiling point of the raw material diamine component is low with respect to the melting point of the obtained polyamide, by using a dephlegmator, although the amount of diamine distilled out of the system is reduced,
Since a large amount of diamine returned from the dephlegmator into the system lowers the temperature in the system, an extra amount of heat is required, and it is hard to say that this is an efficient method.

【0005】以上のことから、原料であるジアミン成分
の常圧下における沸点に対し、得られるポリアミドの融
点が高いポリアミドの合成は実用的にはナイロン塩水溶
液を出発原料として使用する方法を用いている。
From the above, synthesis of polyamide having a high melting point of the obtained polyamide with respect to the boiling point of the diamine component as a raw material under normal pressure practically uses a method of using an aqueous solution of a nylon salt as a starting raw material. .

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、原料
であるジアミン成分の常圧下における沸点に対し、得ら
れるポリアミドの融点が高いポリアミドを合成する、合
理的な製造法を提供することである。
An object of the present invention is to provide a rational production method for synthesizing a polyamide having a high melting point of the obtained polyamide with respect to the boiling point of the diamine component as a raw material under normal pressure. is there.

【0007】[0007]

【課題を解決するための手段】本発明者らは、原料であ
るジアミン成分の常圧下における沸点に対して得られる
ポリアミドの融点が高いポリアミドにおいて、加圧下、
直接重縮合反応させて短時間でポリアミドを経済的に製
造する方法を見出すべく鋭意検討を進め、重縮合反応工
程における昇温時の反応生成物の粘度上昇を抑制して昇
温の効率化を図り、所望の温度に昇温を終えてから重縮
合反応を完結することにより該ポリアミドを合理的に製
造できることを見出し、本発明に至った。
Means for Solving the Problems In the polyamide having a high melting point of the obtained polyamide with respect to the boiling point of the diamine component as a raw material under normal pressure, the present inventors
In order to find a method for economically producing a polyamide in a short time by direct polycondensation reaction, we have conducted intensive studies to suppress the increase in the viscosity of the reaction product at the time of temperature increase in the polycondensation reaction process and improve the efficiency of temperature increase. The present inventors have found that the polyamide can be rationally produced by completing the polycondensation reaction after the temperature is raised to a desired temperature, and the present invention has been completed.

【0008】すなわち本発明は、生成するポリアミドの
融点よりも常圧下における沸点が低いジアミン成分と、
ジカルボン酸成分を直接重縮合させてポリアミドを製造
する方法において、ジアミン成分の沸点が、生成するポ
リアミドの融点より20℃以上高くなるように反応缶内
の加圧を行い、前記ジカルボン酸成分を融点以上の温度
に加熱して溶融し、これにジアミン成分を2段階で添加
して、反応混合物の溶融状態を維持しつつ重縮合を行う
ポリアミド製造法であって、1段目のジアミン成分添加
量が、ジアミン成分/ジカルボン酸成分のモル比で0.
700〜0.750の範囲の量であり、全ジアミン成分
量が該モル比で0.990〜1.010の範囲の量であ
り、且つ最終的に反応混合物の温度を、目的とするポリ
アミドの融点以上まで昇温した後、常圧まで降圧し、重
縮合を完結させることを特徴とするポリアミド製造法に
関するものである。
That is, the present invention comprises a diamine component having a lower boiling point under atmospheric pressure than the melting point of the produced polyamide,
In the method for producing a polyamide by directly polycondensing a dicarboxylic acid component, pressure in the reaction vessel is applied so that the boiling point of the diamine component is 20 ° C. or higher than the melting point of the polyamide to be produced, and the dicarboxylic acid component is melted. A method for producing a polyamide by heating to the above temperature to melt, and adding a diamine component in two stages thereto to carry out polycondensation while maintaining the molten state of the reaction mixture. In a molar ratio of diamine component / dicarboxylic acid component of 0.
The amount of total diamine components is in the range of 0.990 to 1.010 in the molar ratio, and the temperature of the reaction mixture is finally set to that of the target polyamide. The present invention relates to a method for producing a polyamide, which comprises heating to a temperature equal to or higher than the melting point and then reducing the pressure to atmospheric pressure to complete polycondensation.

【0009】[0009]

【発明の実施の形態】本発明の方法によって、着色の小
さい均質なポリアミドを製造するためには、反応缶へジ
カルボン酸成分を仕込むに先立って、反応缶内を不活性
ガスで十分に置換することが好ましい。ジカルボン酸成
分は、反応缶中でその融点以上に加熱されて溶融状態に
されても、溶融された状態で反応缶に仕込まれても、い
ずれの態様で反応缶に存在してもよい。
BEST MODE FOR CARRYING OUT THE INVENTION In order to produce a homogeneous polyamide having a small color by the method of the present invention, the inside of the reaction vessel is sufficiently replaced with an inert gas prior to charging the dicarboxylic acid component into the reaction vessel. It is preferable. The dicarboxylic acid component may be heated to a temperature higher than its melting point in the reaction vessel to be in a molten state, charged in the reaction vessel in a molten state, or may be present in the reaction vessel in any manner.

【0010】本発明で用いられるジカルボン酸成分は、
コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベ
リン酸、アゼライン酸、セバシン酸、ウンデカン二酸、
ドデカン二酸等のα,ω−直鎖脂肪族ジカルボン酸、テ
レフタル酸、イソフタル酸、2,6−ナフタレンジカル
ボン酸、4,4’−ビフェニルジカルボン酸等の芳香族
ジカルボン酸類、1,4−シクロヘキサンジカルボン
酸、1,3−シクロヘキサンジカルボン酸、デカリンジ
カルボン酸、テトラリンジカルボン酸等の脂環族ジカル
ボン酸類等の中から一種以上を所望に応じて適宜選択で
き、好ましくはアジピン酸を70モル%以上含有するも
のである。
The dicarboxylic acid component used in the present invention is
Succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid,
Α, ω-linear aliphatic dicarboxylic acids such as dodecanedioic acid, terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, aromatic dicarboxylic acids such as 4,4′-biphenyldicarboxylic acid, 1,4-cyclohexane One or more can be appropriately selected as desired from alicyclic dicarboxylic acids such as dicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, decalindicarboxylic acid, tetralindicarboxylic acid, etc., and preferably contains 70 mol% or more of adipic acid. To do.

【0011】本発明の方法で用いるジアミン成分は、得
られるポリアミドの融点よりジアミンの沸点が低いもの
であれば良く、一般的に知られているテトラメチレンジ
アミン、ペンタメチレンジアミン、ヘキサメチレンジア
ミン、オクタメチレンジアミン、ノナメチレンジアミン
等の脂肪族ジアミン、パラキシリレンジアミン、パラフ
ェニレンジアミン、メタキシリレンジアミン等の芳香環
を有するジアミン類、1,3−ビス(アミノメチル)シ
クロヘキサン、1,4−ビス(アミノメチル)シクロヘ
キサン等の脂環族ジアミン類等の中から一種以上を所望
に応じて適宜選択出来、好ましくはトランス−1,4−
ビス(アミノメチル)シクロヘキサン30〜70モル%
とシス−1,4−ビス(アミノメチル)シクロヘキサン
70〜30モル%からなるジアミン混合物(モル%の合
計は100モル%である)を70モル%以上含有してい
るものである。
The diamine component used in the method of the present invention may be any one having a boiling point of diamine lower than the melting point of the obtained polyamide, such as tetramethylenediamine, pentamethylenediamine, hexamethylenediamine and octamethylenediamine, which are generally known. Aliphatic diamines such as methylenediamine and nonamethylenediamine, diamines having an aromatic ring such as paraxylylenediamine, paraphenylenediamine and metaxylylenediamine, 1,3-bis (aminomethyl) cyclohexane, 1,4-bis One or more can be appropriately selected as desired from alicyclic diamines such as (aminomethyl) cyclohexane, and preferably trans-1,4-
Bis (aminomethyl) cyclohexane 30-70 mol%
And cis-1,4-bis (aminomethyl) cyclohexane in an amount of 70 mol% or more containing a diamine mixture consisting of 70 to 30 mol% (the total of mol% is 100 mol%).

【0012】上記ジカルボン酸成分とジアミン成分との
混合物は、ジカルボン酸成分の融点以上の温度に保たれ
て重縮合反応を開始するが、実質的にアミド化反応が生
起するためには160℃以上の温度に昇温されることが
好ましい。更に中間体として生成するオリゴアミド及び
/またはポリアミドが溶融状態となって反応系全体が均
一な流動状態を保持し得る温度に設定されていることが
好ましい。
The mixture of the dicarboxylic acid component and the diamine component is kept at a temperature equal to or higher than the melting point of the dicarboxylic acid component to start the polycondensation reaction. However, in order to substantially cause the amidation reaction, it is 160 ° C. or higher. It is preferable to raise the temperature to. Furthermore, it is preferable that the oligoamide and / or polyamide produced as an intermediate is in a molten state and is set to a temperature at which the entire reaction system can maintain a uniform fluidized state.

【0013】具体的な重縮合操作は、反応缶中で溶融状
態にあるジカルボン酸成分を撹拌し、これにジアミン成
分を加圧下に添加し、反応混合物を所定の温度に保持す
ることにより、行われる。
A specific polycondensation operation is carried out by stirring a dicarboxylic acid component in a molten state in a reaction vessel, adding a diamine component thereto under pressure, and maintaining the reaction mixture at a predetermined temperature. Be seen.

【0014】本発明では、生成するポリアミドの融点に
比べて、常圧下における沸点が低いジアミン成分を用い
ることから、加圧下で反応を行う。反応時の反応缶内圧
力は、添加するジアミンの沸点が、得られるポリアミド
の融点より20℃以上高くなるように設定する。好まし
くは、添加するジアミンの沸点が、得られるポリアミド
の融点より20℃以上高く、且つ350℃以下の温度範
囲内になるように加圧を行う。使用するジカルボン酸成
分およびジアミン成分により必要な圧力は異なるが、一
般的には0.1〜0.6MPaの範囲である。加圧は、
窒素によるものでも良いし、反応縮合水によっても良
い。
In the present invention, since the diamine component having a lower boiling point under normal pressure than the melting point of the produced polyamide is used, the reaction is carried out under pressure. The pressure in the reaction vessel during the reaction is set so that the boiling point of the added diamine is higher than the melting point of the obtained polyamide by 20 ° C. or more. Preferably, the pressurization is performed so that the boiling point of the diamine to be added is 20 ° C. or more higher than the melting point of the obtained polyamide and 350 ° C. or less. The required pressure varies depending on the dicarboxylic acid component and diamine component used, but it is generally in the range of 0.1 to 0.6 MPa. Pressurization is
Nitrogen may be used, or reaction condensation water may be used.

【0015】反応缶を加圧にする工程の時期は、反応缶
にジカルボン酸成分を添加後から、常圧でのジアミン成
分の沸点より10℃低い温度までの間であればよい。好
ましくは、反応缶にジカルボン酸成分を添加後から、常
圧でのジアミン成分の沸点より20℃低い温度までの間
である。ジアミン成分の沸点より10℃低い温度以上で
ジアミン成分を滴下した場合、ジアミン成分の揮発が激
しく、系外への留出が多くなる。結果、系内のジアミン
成分が少なくなり、所望のモル比を持つポリアミドを得
ることが困難になる。また、分縮器を用いことにより、
系外へ留出するジアミンの量は減少させることができる
が、分縮器から系内に戻った多量のジアミンにより、系
内の温度が低下することから、熱量が余分に必要となっ
てしまい、更には部分的な温度低下により、得られるポ
リアミド中に未溶融物が発生し、反応釜からの取り出し
が困難となることもあり、効率の良い方法とは言い難
い。
The timing of the step of applying pressure to the reaction vessel may be from after the dicarboxylic acid component is added to the reaction vessel to a temperature 10 ° C. lower than the boiling point of the diamine component at normal pressure. Preferably, it is between the temperature after the addition of the dicarboxylic acid component to the reaction vessel and the temperature 20 ° C. lower than the boiling point of the diamine component at normal pressure. When the diamine component is added dropwise at a temperature 10 ° C. lower than the boiling point of the diamine component, the diamine component volatilizes violently, and the amount of distilling out of the system increases. As a result, the amount of diamine component in the system decreases, and it becomes difficult to obtain a polyamide having a desired molar ratio. Also, by using a decompressor,
The amount of diamine distilled out of the system can be reduced, but due to the large amount of diamine returned to the system from the dephlegmator, the temperature in the system will decrease, so an additional amount of heat will be required. Moreover, unmelted matter is generated in the obtained polyamide due to a partial temperature decrease, and it may be difficult to take it out from the reaction kettle, so it cannot be said to be an efficient method.

【0016】本発明では、ジアミン成分を2段階で添加
する。1段目のジアミン成分添加量は、ジアミン成分/
ジカルボン酸成分のモル比で0.700〜0.750の
範囲の量であり、全ジアミン成分量が該モル比で0.9
90〜1.010の範囲の量である。1段目では、ジカ
ルボン酸成分の融点以上に保たれた溶融ジカルボン酸成
分中へ連続的もしくは間欠的にジアミン成分を添加す
る。この添加する間に反応混合物の温度を逐次昇温させ
ることにより反応混合物の溶融状態を維持する。ここ
で、反応混合物の融点〜該融点+20℃の範囲に温度制
御することが好ましい。また、1段目は、反応混合物の
温度が生成するポリアミドの融点から20℃低い温度以
上で終了させることが好ましい。次いで、2段目として
残余のジアミン成分を、上記昇温した反応混合物に添加
し、該反応混合物の溶融状態を維持しつつ、最終的に反
応混合物の温度を目的とするポリアミドの融点以上まで
昇温した後、常圧まで降圧し、重縮合反応を完結させ、
所望のポリアミドを得る。
In the present invention, the diamine component is added in two stages. The amount of diamine component added in the first step is diamine component /
The amount of the dicarboxylic acid component is in the range of 0.700 to 0.750, and the total amount of the diamine components is 0.9.
The amount is in the range of 90 to 1.010. In the first step, the diamine component is added continuously or intermittently to the molten dicarboxylic acid component kept at the melting point of the dicarboxylic acid component or higher. The molten state of the reaction mixture is maintained by successively raising the temperature of the reaction mixture during this addition. Here, it is preferable to control the temperature within a range from the melting point of the reaction mixture to the melting point + 20 ° C. In addition, it is preferable that the first stage is terminated at a temperature 20 ° C. or lower lower than the melting point of the polyamide produced by the reaction mixture. Then, as a second step, the residual diamine component is added to the reaction mixture whose temperature has been raised, and while the molten state of the reaction mixture is maintained, the temperature of the reaction mixture is finally raised to the melting point of the intended polyamide or higher. After warming, the pressure is reduced to normal pressure to complete the polycondensation reaction,
The desired polyamide is obtained.

【0017】1段目のジアミン成分の添加速度は、アミ
ド化反応の生成熱、縮合生成水の留去に消費される熱
量、熱媒から反応缶壁を通して供給される熱量、縮合生
成水と原料化合物とを分離する分縮器および冷却器の構
造等を勘案し、所定の反応温度、すなわち、反応系を均
一な溶融状態に保持し得る温度を考慮して選定される。
通常、ジアミン成分の添加に要する時間は、反応缶の規
模によって変化するが、0.5時間から5時間の範囲内
である。この間、反応の進行と共に生成する縮合水は、
分縮器と全縮器を通して反応系外に留出される。飛散す
るジアミン、ジカルボン酸等の原料は、分縮器で分離さ
れ、反応缶に再度戻される。また、2段目のジアミン成
分の添加は、反応缶内の発泡による液面の上昇が缶内上
部にまで達しないように、かつ生成物の温度が一定に保
持されるように条件を選定すればよい。一般には、2段
目のジアミン成分の添加は10〜120分の範囲で行わ
れる。
The addition rate of the first-stage diamine component is determined by the heat of formation of the amidation reaction, the amount of heat consumed to distill off the condensation product water, the amount of heat supplied from the heating medium through the reactor wall, the condensation product water and the raw materials. In consideration of the structures of the dephlegmator and the cooler for separating the compound from each other, the reaction temperature is selected in consideration of a predetermined reaction temperature, that is, a temperature at which the reaction system can be kept in a uniform molten state.
Usually, the time required for adding the diamine component varies depending on the scale of the reaction can, but is within the range of 0.5 hours to 5 hours. During this time, the condensed water produced as the reaction progresses,
It is distilled out of the reaction system through the partial condenser and the total condenser. Raw materials such as diamine and dicarboxylic acid that are scattered are separated by a partial condenser and returned to the reaction can again. In addition, the addition of the second-stage diamine component should be selected such that the rise in the liquid level due to foaming in the reaction can does not reach the upper part of the can and the temperature of the product is kept constant. Good. Generally, the addition of the diamine component in the second stage is performed within the range of 10 to 120 minutes.

【0018】本発明の方法を実施した場合、従来公知の
水溶液加圧法の場合と同様にジアミン成分の反応系外へ
の留出は避けがたく、従って、重縮合反応装置には分縮
器を備えることが必要である。分縮器の温度は、一定に
制御している反応缶の圧力での水の沸点と、その温度よ
り20℃高い温度の範囲内で制御される。分縮器を備え
ることにより、反応中にジアミン成分が留出することを
効果的に防ぎ得、その結果、アジピン酸を含むジカルボ
ン酸成分に対するジアミン成分の仕込みモル比を0.9
90〜1.010の範囲に設定することにより、再現性
良く一定の分子量を有するポリアミドを製造することが
出来る。
When the method of the present invention is carried out, it is unavoidable to distill the diamine component out of the reaction system as in the case of the conventionally known aqueous solution pressure method. Therefore, a polycondensation reactor is equipped with a dephlegmator. It is necessary to prepare. The temperature of the partial condenser is controlled within the range of the boiling point of water at the pressure of the reaction vessel which is controlled to be constant and the temperature 20 ° C. higher than that temperature. By providing a partial condenser, it is possible to effectively prevent the diamine component from distilling out during the reaction, and as a result, the charging molar ratio of the diamine component to the dicarboxylic acid component containing adipic acid is 0.9.
By setting the range of 90 to 1.010, a polyamide having a constant molecular weight can be produced with good reproducibility.

【0019】本発明の方法で用いられる重縮合反応装置
は、従来公知の水溶液加圧法で用いられる装置が耐圧
1.8MPa以上必要であるのに比べて、耐圧が0.3
〜1MPaで良いことから、比較的安価に製造できる。
加えて、本発明の方法では、従来公知の水溶液加圧法の
場合に必要な溶媒である水の留去に要する時間を全く必
要としないため、重縮合に必要な時間を著しく短縮する
ことが出来、さらには、従来法では水溶液濃縮に必要で
あった熱量を全く必要としないうえ、一回の反応に仕込
み得る量を多く取ることができて生産性が高められ、ポ
リアミドの製造法として極めて経済的な方法が提供され
る。
The polycondensation reaction apparatus used in the method of the present invention has a pressure resistance of 0.3 MPa as compared with the apparatus used in the conventionally known aqueous solution pressurization method which requires a pressure resistance of 1.8 MPa or more.
Since ~ 1 MPa is sufficient, it can be manufactured relatively inexpensively.
In addition, in the method of the present invention, the time required for distilling off water which is the solvent required in the case of the conventionally known aqueous solution pressure method is not required at all, and therefore the time required for polycondensation can be significantly shortened. Furthermore, the conventional method does not require the amount of heat required for concentrating an aqueous solution at all, and a large amount can be charged in one reaction to improve productivity, which is extremely economical as a method for producing polyamide. Methods are provided.

【0020】[0020]

【実施例】以下に実施例および比較例を示し、本発明の
方法を具体的に説明する。なお本発明における評価のた
めの測定は以下の方法によった。 (イ)末端アミノ基濃度(μeq/g) ポリアミドを精秤し、フェノール/エタノール=4/1
容量溶液に20〜30℃で撹拌溶解した。完全に溶解し
た後、撹拌しつつ0.1モル/リットル(以下リットル
を「L」と示す)塩酸水溶液で中和滴定して求めた。 (ロ)末端カルボキシル基濃度(μeq/g) ポリアミドを精秤し、ベンジルアルコールに窒素雰囲気
下160〜180℃で撹拌溶融した。完全に溶解した
後、窒素気流下80℃以下まで冷却し、撹拌しつつメタ
ノールを10cc加え、0.1モル/L水酸化ナトリウ
ム水溶液で中和滴定して求めた。 (ハ)数平均分子量 末端アミノ基濃度および末端カルボキシル基濃度から次
式により求めた。 数平均分子量=2×106/({NH2}+{COO
H}) ({NH2}は末端アミノ基濃度(μeq/g)、{C
OOH}は末端カルボキシル基濃度(μeq/g)を表
す。) (ニ)融点 島津製作所(株)製(DSC−50型)DSCを用い、昇
温速度10℃/分で窒素気流下で測定した。
EXAMPLES Hereinafter, the method of the present invention will be specifically described by showing Examples and Comparative Examples. The measurement for evaluation in the present invention was carried out by the following method. (B) Terminal amino group concentration (μeq / g) Polyamide is precisely weighed and phenol / ethanol = 4/1
The solution was stirred and dissolved in the volumetric solution at 20 to 30 ° C. After completely dissolved, neutralization titration was performed with a 0.1 mol / liter (hereinafter, liter is referred to as "L") hydrochloric acid aqueous solution with stirring to obtain the value. (B) Terminal carboxyl group concentration (μeq / g) The polyamide was precisely weighed and melted in benzyl alcohol with stirring at 160 to 180 ° C under a nitrogen atmosphere. After completely dissolved, the mixture was cooled to 80 ° C. or lower under a nitrogen stream, 10 cc of methanol was added with stirring, and the titration was performed by neutralization titration with a 0.1 mol / L sodium hydroxide aqueous solution. (C) Number average molecular weight It was calculated from the terminal amino group concentration and terminal carboxyl group concentration by the following formula. Number average molecular weight = 2 × 106 / ({NH2} + {COO
H}) ({NH2} is the terminal amino group concentration (μeq / g), {C
OOH} represents the terminal carboxyl group concentration (μeq / g). (D) Melting point Using a DSC (manufactured by Shimadzu Corporation (DSC-50 type) DSC, the temperature was raised at a rate of 10 ° C./min under a nitrogen stream.

【0021】実施例1 攪拌機、分縮器、冷却器、滴下槽、および窒素ガス導入
管を備えたジャケット付きの50L反応缶(耐圧2.5
MPa)にアジピン酸を10.00kg(68.43m
ol)秤量して仕込み、十分窒素置換してから、窒素で
0.3MPaに加圧し、189℃に昇温、アジピン酸を
均一に溶融した。次いで、内容物を撹拌しながら、1,
4−ビス(アミノメチル)シクロヘキサン(トランス体
/シス体=55/45、沸点=241℃(常圧)、30
3℃(0.3MPa))6.97kg(49.01mo
l)を撹拌下に140分を要して滴下した。この間、内
温は189℃から279℃にまで連続的に上昇させた。
引き続き、1,4−ビス(アミノメチル)シクロヘキサ
ン(トランス体/シス体=55/45)2.71kg
(19.05mol)を撹拌下に83分を要して滴下し
た。この間、内温は279℃から304℃にまで連続的
に上昇させた。滴下工程では、圧力を0.3MPaに制
御し、留出する水は、分縮器および冷却器を通して系外
に除いた。分縮器の温度は142〜146℃の範囲に制
御した。1,4−ビス(アミノメチル)シクロヘキサン
(トランス体/シス体=55/45)滴下終了後、7分
間撹拌を行い、この間に内温は304℃を保持した。そ
の後、14分間で常圧まで降圧し、21分間反応を継続
した。1,4−ビス(アミノメチル)シクロヘキサン滴
下開始以降に要した反応時間は、合計265分であっ
た。反応の全過程で生成するオリゴマーまたはポリアミ
ドが固化、析出する現象は全く認められず、終始均一な
溶融状態を保った。得られたポリマーの末端アミノ基濃
度は38(μeq/g)、末端カルボキシル基濃度は8
0(μeq/g)、数平均分子量は16900、融点は
288℃であった。
Example 1 A jacketed 50 L reactor equipped with a stirrer, a partial condenser, a cooler, a dropping tank, and a nitrogen gas introducing pipe (pressure resistance: 2.5).
10.00 kg (68.43 m) of adipic acid in MPa)
ol) Weighed and charged, sufficiently replaced with nitrogen, pressurized to 0.3 MPa with nitrogen, heated to 189 ° C., and adipic acid was melted uniformly. Then, while stirring the contents,
4-bis (aminomethyl) cyclohexane (trans isomer / cis isomer = 55/45, boiling point = 241 ° C. (normal pressure), 30
3 ° C. (0.3 MPa) 6.97 kg (49.01 mo)
1) was added dropwise with stirring over 140 minutes. During this time, the internal temperature was continuously increased from 189 ° C to 279 ° C.
Subsequently, 2.71 kg of 1,4-bis (aminomethyl) cyclohexane (trans isomer / cis isomer = 55/45)
(19.05 mol) was added dropwise with stirring over 83 minutes. During this time, the internal temperature was continuously increased from 279 ° C to 304 ° C. In the dropping step, the pressure was controlled to 0.3 MPa, and the distilled water was removed from the system through the partial condenser and the cooler. The temperature of the partial condenser was controlled in the range of 142 to 146 ° C. After the completion of dropwise addition of 1,4-bis (aminomethyl) cyclohexane (trans isomer / cis isomer = 55/45), the mixture was stirred for 7 minutes, and the internal temperature was kept at 304 ° C during this. Then, the pressure was reduced to normal pressure in 14 minutes, and the reaction was continued for 21 minutes. The total reaction time required after the start of dropwise addition of 1,4-bis (aminomethyl) cyclohexane was 265 minutes. No solidification or precipitation of the oligomer or polyamide formed in the whole reaction process was observed, and a uniform molten state was maintained throughout. The obtained polymer has a terminal amino group concentration of 38 (μeq / g) and a terminal carboxyl group concentration of 8
0 (μeq / g), the number average molecular weight was 16900, and the melting point was 288 ° C.

【0022】実施例2 攪拌機、分縮器、冷却器、滴下槽、および窒素ガス導入
管を備えたジャケット付きの50L反応缶(耐圧2.5
MPa)にアジピン酸を10.00kg(68.43m
ol)秤量して仕込み、十分窒素置換してから、窒素で
0.5MPaに加圧し、189℃に昇温、アジピン酸を
均一に溶融した。次いで、内容物を撹拌しながら、1,
4−ビス(アミノメチル)シクロヘキサン(トランス体
/シス体=65/35、沸点=241℃(常圧)、33
6℃(0.5MPa))6.97kg(49.01mo
l)を撹拌下に160分を要して滴下した。この間、内
温は189℃から299℃にまで連続的に上昇させた。
引き続き、1,4−ビス(アミノメチル)シクロヘキサ
ン(トランス体/シス体=65/35)2.71kg
(19.05mol)を撹拌下に95分を要して滴下し
た。この間、内温は299℃から316℃にまで連続的
に上昇させた。滴下工程では、圧力を0.5MPaに制
御し、留出する水は、分縮器および冷却器を通して系外
に除いた。分縮器の温度は160±2℃に制御した。
1,4−ビス(アミノメチル)シクロヘキサン(トラン
ス体/シス体=65/35)滴下終了後、10分間撹拌
を行い、この間に内温は316℃を保持した。その後、
15分間で常圧まで降圧し、15分間反応を継続した。
1,4−ビス(アミノメチル)シクロヘキサン滴下開始
以降に要した反応時間は、合計295分であった。反応
の全過程で生成するオリゴマーまたはポリアミドが固
化、析出する現象は全く認められず、終始均一な溶融状
態を保った。得られたポリマーの末端アミノ基濃度は3
3(μeq/g)、末端カルボキシル基濃度は90(μ
eq/g)、数平均分子量は16300、融点は303
℃であった。
Example 2 A jacketed 50 L reactor equipped with a stirrer, a partial condenser, a cooler, a dropping tank, and a nitrogen gas introducing pipe (pressure resistance: 2.5).
10.00 kg (68.43 m) of adipic acid in MPa)
ol) Weighed and charged, and after sufficiently replacing with nitrogen, the pressure was increased to 0.5 MPa with nitrogen and the temperature was raised to 189 ° C. to uniformly melt adipic acid. Then, while stirring the contents,
4-bis (aminomethyl) cyclohexane (trans isomer / cis isomer = 65/35, boiling point = 241 ° C. (normal pressure), 33
6 ° C (0.5 MPa) 6.97 kg (49.01 mo)
1) was added dropwise with stirring over 160 minutes. During this time, the internal temperature was continuously increased from 189 ° C to 299 ° C.
Subsequently, 2.71 kg of 1,4-bis (aminomethyl) cyclohexane (trans isomer / cis isomer = 65/35)
(19.05 mol) was added dropwise with stirring over 95 minutes. During this time, the internal temperature was continuously increased from 299 ° C to 316 ° C. In the dropping step, the pressure was controlled to 0.5 MPa, and the distilled water was removed from the system through the partial condenser and the cooler. The temperature of the partial condenser was controlled at 160 ± 2 ° C.
After the dropwise addition of 1,4-bis (aminomethyl) cyclohexane (trans isomer / cis isomer = 65/35), the mixture was stirred for 10 minutes, and the internal temperature was kept at 316 ° C during this. afterwards,
The pressure was lowered to normal pressure in 15 minutes, and the reaction was continued for 15 minutes.
The total reaction time required after the start of dropwise addition of 1,4-bis (aminomethyl) cyclohexane was 295 minutes. No solidification or precipitation of the oligomer or polyamide formed in the whole reaction process was observed, and a uniform molten state was maintained throughout. The terminal amino group concentration of the obtained polymer is 3
3 (μeq / g), terminal carboxyl group concentration is 90 (μeq
eq / g), number average molecular weight 16300, melting point 303
It was ℃.

【0023】比較例1 常圧で分縮器の温度を103〜107℃にした以外は、
実施例1と同様に反応を行ったところ、内温を189℃
から279℃にまで連続的に上昇させるのに、223分
間必要であり、更に279℃から304℃にまで連続的
に上昇させるのに、158分間必要であった。1,4−
ビス(アミノメチル)シクロヘキサン(トランス体/シ
ス体=55/45)滴下終了後、7分間撹拌を行い、こ
の間に内温は304℃を保持した。その後、14分間で
常圧まで降圧し、21分間反応を継続した。1,4−ビ
ス(アミノメチル)シクロヘキサン滴下開始以降に要し
た反応時間は、合計423分であった。また、取り出し
時ポリアミド中に多くの未溶融物が確認され、取り出し
途中でストランドダイが閉塞した。
Comparative Example 1 Except that the temperature of the partial condenser was set to 103 to 107 ° C. under normal pressure,
When the reaction was carried out in the same manner as in Example 1, the internal temperature was 189 ° C.
It took 223 minutes to continuously elevate from 279 ° C to 279 ° C, and 158 minutes to continuously elevate from 279 ° C to 304 ° C. 1,4-
After the completion of dropwise addition of bis (aminomethyl) cyclohexane (trans isomer / cis isomer = 55/45), the mixture was stirred for 7 minutes, and the internal temperature was kept at 304 ° C during this. Then, the pressure was reduced to normal pressure in 14 minutes, and the reaction was continued for 21 minutes. The total reaction time required after the start of dropwise addition of 1,4-bis (aminomethyl) cyclohexane was 423 minutes. Further, many unmelted substances were confirmed in the polyamide at the time of taking out, and the strand die was blocked during the taking out.

【0024】[0024]

【発明の効果】本発明のポリアミド製造法によって、以
下の効果が得られる。 (イ)ナイロン塩の水溶液を出発原料として使用しない
ため、溶媒としての水を除去する工程が無く、反応時間
を極めて短くすることが出来る。 (ロ)溶媒として水を必要としないため、仕込み量、収
量の増大が可能である。 (ハ)ナイロン塩の水溶液を出発原料として使用しない
ため、多量の水を除去する際のポリアミドの発泡、固化
等が回避でき、更に溶媒としての水を除去するためのエ
ネルギー損失がない。 (ニ)仕込みのモルバランスが精度よくポリアミドのモ
ルバランスに再現されるため、モルバランスの制御、つ
まり重合度の制御が極めて容易となる。 (ホ)ナイロン塩の水溶液を出発原料として使用しない
ため、従来用いられている加圧溶融重合の反応缶に比べ
て、低い耐圧の反応缶を用いることが出来る。 すなわち、本発明の方法によれば、全く溶媒を使用する
ことなく、加圧下でジカルボン酸とジアミンとから直接
ポリアミドを製造することが可能となり、従来の加圧下
におけるポリアミドの製造方での問題点を解消して、反
応時間の短縮、溶媒である水の留去に必要なエネルギー
の節減、仕込量と収量の増大等が一挙に達成され、本発
明の方法の実用的な意義は極めて大きい。
The following effects are obtained by the method for producing a polyamide of the present invention. (A) Since an aqueous solution of nylon salt is not used as a starting material, there is no step of removing water as a solvent, and the reaction time can be extremely shortened. (B) Since water is not required as a solvent, it is possible to increase the amount charged and the yield. (C) Since an aqueous solution of a nylon salt is not used as a starting material, it is possible to avoid foaming or solidification of polyamide when removing a large amount of water, and there is no energy loss for removing water as a solvent. (D) Since the molar balance of charging is accurately reproduced to the molar balance of polyamide, it becomes extremely easy to control the molar balance, that is, the degree of polymerization. (E) Since an aqueous solution of a nylon salt is not used as a starting material, it is possible to use a reaction vessel having a lower pressure resistance than a conventionally used pressure melting polymerization reaction vessel. That is, according to the method of the present invention, it is possible to directly produce a polyamide from a dicarboxylic acid and a diamine under pressure without using any solvent, which is a problem in the conventional method for producing a polyamide under pressure. As a result, the reaction time can be shortened, the energy required for distilling off water as a solvent can be saved, and the charging amount and the yield can be increased all at once.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高野 隆大 神奈川県平塚市東八幡5丁目6番2号 三 菱瓦斯化学株式会社平塚研究所内 Fターム(参考) 4J001 DA01 DB04 EB03 EB06 EB07 EB08 EB14 EB36 EB37 EB46 EC04 EC07 EC09 EC14 EC46 EC47 EC48 FA01 FB03 FC06 GA12 GB04 GB11    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Takahiro Takano             5-6 Higashi-Hachiman 5-2, Hiratsuka City, Kanagawa Prefecture             Ryogas Chemical Co., Ltd. Hiratsuka Research Center F-term (reference) 4J001 DA01 DB04 EB03 EB06 EB07                       EB08 EB14 EB36 EB37 EB46                       EC04 EC07 EC09 EC14 EC46                       EC47 EC48 FA01 FB03 FC06                       GA12 GB04 GB11

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】生成するポリアミドの融点よりも常圧下に
おける沸点が低いジアミン成分と、ジカルボン酸成分を
直接重縮合させてポリアミドを製造する方法において、
ジアミン成分の沸点が、生成するポリアミドの融点より
20℃以上高くなるように反応缶内の加圧を行い、前記
ジカルボン酸成分を融点以上の温度に加熱して溶融し、
これにジアミン成分を2段階で添加して、反応混合物の
溶融状態を維持しつつ重縮合を行うポリアミド製造法で
あって、1段目のジアミン成分添加量が、ジアミン成分
/ジカルボン酸成分のモル比で0.700〜0.750
の範囲の量であり、全ジアミン成分量が該モル比で0.
990〜1.010の範囲の量であり、且つ最終的に反
応混合物の温度を、目的とするポリアミドの融点以上ま
で昇温した後、常圧まで降圧し、重縮合を完結させるこ
とを特徴とするポリアミド製造法。
1. A method for producing a polyamide by directly polycondensing a diamine component having a boiling point under atmospheric pressure lower than the melting point of the polyamide to be produced and a dicarboxylic acid component,
The boiling point of the diamine component is increased by 20 ° C. or more than the melting point of the polyamide to be produced, and the pressure in the reaction vessel is increased, and the dicarboxylic acid component is heated to a temperature of the melting point or higher to melt it.
This is a method for producing a polyamide in which a diamine component is added in two stages to carry out polycondensation while maintaining the molten state of the reaction mixture, and the addition amount of the diamine component in the first stage is a molar ratio of diamine component / dicarboxylic acid component. 0.700 to 0.750 by comparison
And the total amount of the diamine components is 0.
The amount is in the range of 990 to 1.010, and after the temperature of the reaction mixture is finally raised to the melting point of the target polyamide or higher, the pressure is reduced to atmospheric pressure to complete the polycondensation. Method for producing polyamide.
【請求項2】前記1段目のジアミン成分の添加が連続
的、もしくは間欠的であり、且つ反応混合物の温度が、
該反応混合物の融点〜該融点+20℃の範囲となるよう
に温度制御し、反応混合物の溶融状態を維持する請求項
1に記載のポリアミド製造法。
2. The addition of the first-stage diamine component is continuous or intermittent, and the temperature of the reaction mixture is
The method for producing a polyamide according to claim 1, wherein the molten state of the reaction mixture is maintained by controlling the temperature so as to fall within the range of the melting point of the reaction mixture to the melting point + 20 ° C.
【請求項3】前記ジアミン成分が、トランス−1,4−
ビス(アミノメチル)シクロヘキサン30〜70モル%
とシス−1,4−ビス(アミノメチル)シクロヘキサン
70〜30モル%からなるジアミン混合物(モル%の合
計は100モル%である)を70モル%以上含有するも
のであり、且つ前記ジカルボン酸成分がアジピン酸を7
0モル%以上含有するものである請求項1または2に記
載のポリアミド製造法。
3. The diamine component is trans-1,4-
Bis (aminomethyl) cyclohexane 30-70 mol%
And a diamine mixture consisting of 70 to 30 mol% of cis-1,4-bis (aminomethyl) cyclohexane (the total of mol% is 100 mol%) in an amount of 70 mol% or more, and the dicarboxylic acid component. Adipic acid 7
The method for producing a polyamide according to claim 1 or 2, wherein the content is 0 mol% or more.
JP2002135527A 2002-05-10 2002-05-10 Polyamide production method Expired - Lifetime JP4168233B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002135527A JP4168233B2 (en) 2002-05-10 2002-05-10 Polyamide production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002135527A JP4168233B2 (en) 2002-05-10 2002-05-10 Polyamide production method

Publications (2)

Publication Number Publication Date
JP2003327691A true JP2003327691A (en) 2003-11-19
JP4168233B2 JP4168233B2 (en) 2008-10-22

Family

ID=29697829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002135527A Expired - Lifetime JP4168233B2 (en) 2002-05-10 2002-05-10 Polyamide production method

Country Status (1)

Country Link
JP (1) JP4168233B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010032692A1 (en) 2008-09-18 2010-03-25 三菱瓦斯化学株式会社 Method for producing polyamide
EP2505598A1 (en) * 2009-11-27 2012-10-03 Mitsubishi Gas Chemical Company, Inc. Process for production of polyamide
EP2505597A1 (en) * 2009-11-27 2012-10-03 Mitsubishi Gas Chemical Company, Inc. Copolymerized polyamide resin, method for producing same, resin composition, and molded article formed from the copolymerized polyamide resin or the resin composition

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010032692A1 (en) 2008-09-18 2010-03-25 三菱瓦斯化学株式会社 Method for producing polyamide
US20110245454A1 (en) * 2008-09-18 2011-10-06 Mitsubishi Gas Chemical Company, Inc. Method for producing polyamide
US8835596B2 (en) * 2008-09-18 2014-09-16 Mitsubishi Gas Chemical Company, Inc. Method for producing polyamide
JP5664242B2 (en) * 2008-09-18 2015-02-04 三菱瓦斯化学株式会社 Method for producing polyamide
EP2505598A1 (en) * 2009-11-27 2012-10-03 Mitsubishi Gas Chemical Company, Inc. Process for production of polyamide
EP2505597A1 (en) * 2009-11-27 2012-10-03 Mitsubishi Gas Chemical Company, Inc. Copolymerized polyamide resin, method for producing same, resin composition, and molded article formed from the copolymerized polyamide resin or the resin composition
EP2505598A4 (en) * 2009-11-27 2014-08-13 Mitsubishi Gas Chemical Co Process for production of polyamide
EP2505597A4 (en) * 2009-11-27 2014-11-19 Mitsubishi Gas Chemical Co Copolymerized polyamide resin, method for producing same, resin composition, and molded article formed from the copolymerized polyamide resin or the resin composition
US9260563B2 (en) 2009-11-27 2016-02-16 Mitsubishi Gas Chemical Company, Inc. Process for production of polyamide

Also Published As

Publication number Publication date
JP4168233B2 (en) 2008-10-22

Similar Documents

Publication Publication Date Title
JP5664242B2 (en) Method for producing polyamide
KR101699558B1 (en) Batch process for preparing polyamides
JPH0114925B2 (en)
JPH05310924A (en) Novel synthesis of polyamide
US9359477B2 (en) Production method for polyamide
JPS58111829A (en) Preparation of polyamide
JP5343704B2 (en) Method for producing polyamide
JP5633519B2 (en) Method for producing polyamide
US20130085257A1 (en) Methods for producing aqueous diamine dicarboxylic acid salt solution and polyamide
US6489435B2 (en) Process for producing polyamide
JP3528875B2 (en) Production method of copolyamide
JP2003327691A (en) Manufacturing method for polyamide
EP0680987B1 (en) Copolyamide production method
JP3551991B2 (en) Production method of copolyamide
JP2001200053A (en) Preparation method of polyamide
JPH09104751A (en) Production of polyamide
JP2005139219A (en) Method for producing polyamide
JP2003002967A (en) Method for producing polyamide resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080709

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080722

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4168233

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

EXPY Cancellation because of completion of term