JP2003324801A - Method of connecting power source in electric vehicle - Google Patents

Method of connecting power source in electric vehicle

Info

Publication number
JP2003324801A
JP2003324801A JP2002129895A JP2002129895A JP2003324801A JP 2003324801 A JP2003324801 A JP 2003324801A JP 2002129895 A JP2002129895 A JP 2002129895A JP 2002129895 A JP2002129895 A JP 2002129895A JP 2003324801 A JP2003324801 A JP 2003324801A
Authority
JP
Japan
Prior art keywords
opening
closing
closing means
power supply
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002129895A
Other languages
Japanese (ja)
Inventor
Tadashi Shimada
正 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2002129895A priority Critical patent/JP2003324801A/en
Publication of JP2003324801A publication Critical patent/JP2003324801A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of connecting a power source in an electric vehicle which prevents the fault in a connection circuit between a battery and electric load from occurring, when precharging a smoothing capacitor installed in the electric load. <P>SOLUTION: A controller 42 performs the precharge treatment for charging the smoothing capacitor 21 installed in the electric load 3, by closing a first opening and closing contact 31 after closing a third opening and closing contact 33 in the first place, when connecting a fuel cell 2 with the electric load 3; and after the finishing of that precharge treatment, the controller 42 opens the third opening and closing contact 33 and also closes a second opening and closing contact 32, thereby connecting the fuel cell 2 with the electric load 3. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電気自動車に備え
られた電池と電気負荷とを接続する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for connecting a battery and an electric load provided in an electric vehicle.

【0002】[0002]

【従来の技術】例えば燃料電池のように出力電圧が高い
電池を駆動源とする電気自動車においては、該燃料電池
と該燃料電池から供給される電力により作動する電気負
荷は、車体から絶縁して(浮かせて)搭載される。
2. Description of the Related Art In an electric vehicle such as a fuel cell having a high output voltage as a drive source, an electric load operated by the fuel cell and electric power supplied from the fuel cell is isolated from the vehicle body. It is installed (floating).

【0003】図2(a)は、電気自動車の車体から絶縁
して設けられた燃料電池50と電気負荷51とを接続す
るための回路構成を示したものであり、燃料電池50の
セル52の正極53と車体アースBE間には静電容量5
5が存在し、負極56と車体アースBE間には静電容量
56が存在する。
FIG. 2A shows a circuit configuration for connecting a fuel cell 50 and an electric load 51, which are provided so as to be insulated from the vehicle body of an electric vehicle, and shows a cell 52 of the fuel cell 50. A capacitance of 5 is provided between the positive electrode 53 and the vehicle body BE.
5 exists, and the electrostatic capacitance 56 exists between the negative electrode 56 and the vehicle body ground BE.

【0004】また、電気負荷51には、電力を消費する
負荷抵抗60の他に正側の電源ライン64と負側の電源
ライン64間に平滑コンデンサ61が備えられ、正側の
電源ライン64と車体アースBE間には静電容量62が
存在し、負側の電源ライン65と車体アースBE間には
静電容量63が存在する。
In addition to the load resistor 60 that consumes electric power, the electric load 51 is provided with a smoothing capacitor 61 between the positive power supply line 64 and the negative power supply line 64. An electrostatic capacitance 62 exists between the vehicle body ground BE, and an electrostatic capacitance 63 exists between the negative power line 65 and the vehicle body ground BE.

【0005】そして、燃料電池50と電気負荷51とを
接続するために、開閉接点70,71,73,74と、
これらの開閉接点の作動を制御するコントローラ80と
が備えられている。開閉接点70,71は燃料電池50
と電気負荷51を直結するためのものであり、2接点リ
レーに備えられて同時に開閉する。一方、開閉接点7
3,74は電気負荷51に備えられた平滑コンデンサ6
1をプリチャージするためのものであり、2接点リレー
に備えられて同時に開閉する。
Then, in order to connect the fuel cell 50 and the electric load 51, switching contacts 70, 71, 73, 74,
A controller 80 for controlling the operation of these open / close contacts is provided. The switching contacts 70 and 71 are the fuel cell 50.
And the electric load 51 are directly connected to each other. The two-contact relay is provided to open and close at the same time. On the other hand, switching contact 7
3 and 74 are smoothing capacitors 6 provided in the electric load 51.
It is for precharging 1, and is equipped with a two-contact relay to open and close at the same time.

【0006】ここで、燃料電池50と電気負荷51を接
続する場合、開閉接点70,71をいきなり閉成する
と、燃料電池50から平滑コンデンサ61に過大な充電
電流が流れて開閉接点70の溶着が生じるおそれがあ
る。そこで、コントローラ80は、先ず、開閉接点7
3,74を閉成して燃料電池50の正極53から電流制
限用抵抗72を介して平滑コンデンサ61に充電電流を
供給し、平滑コンデンサ61を充電するプリチャージを
行うようにしていた。
Here, when connecting the fuel cell 50 and the electric load 51, if the opening / closing contacts 70 and 71 are suddenly closed, an excessive charging current flows from the fuel cell 50 to the smoothing capacitor 61, and the opening / closing contact 70 is welded. May occur. Therefore, the controller 80 first sets the open / close contact 7
3, 74 are closed, and a charging current is supplied from the positive electrode 53 of the fuel cell 50 to the smoothing capacitor 61 via the current limiting resistor 72 so that the smoothing capacitor 61 is precharged.

【0007】そして、平滑コンデンサ61を充電した
後、開閉接点70,71を閉成すると共に開閉接点7
3,74を開成して、燃料電池50と電気負荷51を直
接接続することにより、平滑コンデンサ61に過大な充
電電流が流れることを防止していた。
After charging the smoothing capacitor 61, the switching contacts 70 and 71 are closed and the switching contact 7 is closed.
By opening 3, 74 and directly connecting the fuel cell 50 and the electric load 51, an excessive charging current is prevented from flowing to the smoothing capacitor 61.

【0008】しかし、図2(a)に示した回路構成によ
り平滑コンデンサ61のプリチャージを行った場合に、
開閉接点74に過大な電流が流れて、開閉接点74の破
損する場合があった。
However, when the smoothing capacitor 61 is precharged by the circuit configuration shown in FIG.
An excessive current may flow through the switching contact 74, causing damage to the switching contact 74.

【0009】[0009]

【発明が解決しようとする課題】本発明は、上記背景を
鑑みてなされたものであり、電気負荷に備えられた平滑
コンデンサをプリチャージする際に、電池と電気負荷を
接続する開閉接点の故障が生じることを防止した電気自
動車における電源接続方法を提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above background, and when a smoothing capacitor provided in an electric load is precharged, a failure of a switching contact that connects a battery and an electric load. It is an object of the present invention to provide a power supply connection method in an electric vehicle that prevents the occurrence of the above.

【0010】[0010]

【課題を解決するための手段】本願発明者らは、上述し
た図2(a)に示した開閉接点74の破損が生じる要因
を調査検討した結果、主として機械的な要因により2接
点リレーに備えられた開閉接点73,74の閉成タイミ
ングにずれが生じると、開閉接点73,74を閉成して
平滑コンデンサ61のプリチャージを行うときに、開閉
接点74が開閉接点73よりも先に閉成した場合に、開
閉接点74に過大な電流が流れて開閉接点74の溶着等
が生じることを解明した。
DISCLOSURE OF THE INVENTION As a result of investigating and studying the cause of the breakage of the switching contact 74 shown in FIG. 2A, the inventors of the present application have mainly prepared a two-contact relay for mechanical reasons. When the closing timings of the opened and closed contacts 73 and 74 are deviated, when the opening and closing contacts 73 and 74 are closed to precharge the smoothing capacitor 61, the opening and closing contact 74 is closed before the opening and closing contact 73. It was clarified that an excessive current flows through the switching contact 74 to cause welding or the like of the switching contact 74 when it is formed.

【0011】具体的には、開閉接点74に過大な電流が
流れる原因は、図2(b)を参照して、開閉接点74の
みが閉成された場合、燃料電池50に存在する静電容量
56から、車体アースBE、電気負荷51に存在する静
電容量63、電気負荷51の負側の電源ライン65、及
び開閉接点74を経由して燃料電池50の負極54に至
る閉回路が形成され、そのため、静電容量56に充電さ
れていた電荷が開閉接点74に流れて開閉接点74の溶
着が生じるためであると考えられる。
Specifically, the reason why an excessive current flows through the switching contact 74 is that the electrostatic capacity existing in the fuel cell 50 when only the switching contact 74 is closed with reference to FIG. 2B. A closed circuit from 56 to the negative electrode 54 of the fuel cell 50 is formed via the vehicle body earth BE, the electrostatic capacity 63 existing in the electric load 51, the negative power line 65 of the electric load 51, and the opening / closing contact 74. Therefore, it is considered that the electric charge charged in the electrostatic capacitance 56 flows to the opening / closing contact 74 and welding of the opening / closing contact 74 occurs.

【0012】そこで、本発明の電気自動車における電源
接続方法は、車体から絶縁して設けられた電池と、車体
から絶縁して設けられて直流電源ライン間に平滑コンデ
ンサが接続された電気負荷とを備えた電気自動車におい
て、該電池と該電気負荷とを接続する方法であって、前
記電池の正極を電流制限用抵抗を介して前記電気負荷の
正側の電源ラインと接続した後、前記電池の負極を前記
電気負荷の負側の電源ラインと接続して、前記電池の正
極から前記電流制限用抵抗を介して前記電気負荷の正側
の電源ラインに供給される電流により前記平滑コンデン
サを充電するプリチャージ処理と、該プリチャージ処理
の終了後、前記電池の負極を前記電気負荷の負側の電源
ラインに接続すると共に、前記電池の正極を前記電流制
限用抵抗を介さずに前記電気負荷の正側の電源ラインと
接続する直結処理とを行って、前記電池と前記電気負荷
とを接続することを特徴とする。
Therefore, the power supply connection method for an electric vehicle according to the present invention comprises a battery insulated from the vehicle body and an electric load insulated from the vehicle body and having a smoothing capacitor connected between the DC power supply lines. A method of connecting the battery and the electric load in an electric vehicle provided, wherein the positive electrode of the battery is connected to a power line on the positive side of the electric load via a current limiting resistor, The negative electrode is connected to the negative power source line of the electric load, and the smoothing capacitor is charged by the current supplied from the positive electrode of the battery to the positive power source line of the electric load via the current limiting resistor. After the precharge process and the end of the precharge process, the negative electrode of the battery is connected to the negative power source line of the electric load, and the positive electrode of the battery is bypassed through the current limiting resistor. Performing a direct process of connecting the power supply line of the positive side of the electrical load, characterized by connecting the electrical load and the battery.

【0013】かかる本発明によれば、前記プリチャージ
処理において、先ず前記電池の正極を電流制限用抵抗を
介して前記電気負荷の正側の電源ラインと接続され、こ
れにより、前記電池の正極と車体間の静電容量に充電さ
れていた電荷が前記電流制限用抵抗を介して前記電気負
荷の正側の電源ライン間の静電容量に流れるが、電流制
限用抵抗により流れる電流が制限されるため、接続回路
に過大な電流が流れて該接続回路の破損が生じることが
ない。そして、次に前記電池の負極と前記電気負荷の負
側の電源ラインと接続され、これにより前記電流制限用
抵抗により制限された電流により前記平滑コンデンサを
充電することができる。
According to the present invention, in the precharge process, first, the positive electrode of the battery is connected to the positive power source line of the electric load through the current limiting resistor, whereby the positive electrode of the battery is connected. The electric charge charged in the capacitance between the vehicle bodies flows into the capacitance between the power lines on the positive side of the electric load via the current limiting resistor, but the current flowing is limited by the current limiting resistor. Therefore, an excessive current does not flow into the connection circuit and the connection circuit is not damaged. Then, next, the negative electrode of the battery is connected to the negative power source line of the electric load, whereby the smoothing capacitor can be charged by the current limited by the current limiting resistor.

【0014】また、前記電気自動車が、前記電気負荷の
正負の電源ライン間の電圧を検出する電源電圧検出手段
と、前記電池の負極と前記電気負荷の負側の電源ライン
間の導通/遮断を切り替える第1の開閉手段と、前記電
池の正極と前記電気負荷の正側の電源ライン間の導通/
遮断を切り替える第2の開閉手段と、前記第2の開閉手
段と並列に接続された第3の開閉手段と電流制限用抵抗
とからなる直列回路とを備え、前記プリチャージ処理を
前記第3の開閉手段を閉成した後に前記第1の開閉手段
を閉成して行った後、前記直結処理を前記第3の開閉手
段を開成すると共に前記第2の開閉手段を閉成して行う
場合には、前記第1の開閉手段と前記第3の開閉手段の
故障を検知することができる。
In the electric vehicle, a power supply voltage detecting means for detecting a voltage between positive and negative power supply lines of the electric load, and conduction / interruption between a negative electrode of the battery and a negative power supply line of the electric load. First switching means for switching, and continuity / between the positive electrode of the battery and the power line on the positive side of the electric load.
A second opening / closing means for switching the cutoff, a series circuit including a third opening / closing means connected in parallel with the second opening / closing means, and a current limiting resistor are provided, and the precharge process is performed by the third opening / closing means. When the first opening / closing means is closed and then the first opening / closing means is closed, and then the direct connection process is performed by opening the third opening / closing means and closing the second opening / closing means. Can detect a failure of the first opening / closing means and the third opening / closing means.

【0015】すなわち、前記プリチャージ処理におい
て、前記第3の開閉手段を閉成する制御を行なうったと
きに前記電源電圧検出手段の検出電圧が上昇したときに
は、前記第1の開閉手段が既に閉成された状態にあっ
て、前記平滑コンデンサの充電が開始されたと判断する
ことができる。そのため、この場合には、前記故障検知
手段は、前記第1の開閉手段が閉故障状態にあると判断
することができる。
That is, in the precharge process, when the detection voltage of the power supply voltage detecting means rises when the control for closing the third opening / closing means is performed, the first opening / closing means is already closed. It can be determined that the charging of the smoothing capacitor has started in the state of being formed. Therefore, in this case, the failure detection means can determine that the first opening / closing means is in the closed failure state.

【0016】また、前記プリチャージ処理において、前
記第1の開閉手段を閉成する制御を行なったときに前記
電源電圧検出手段の検出電圧が上昇しなかったときに
は、前記第1の開閉手段と前記第3の開閉手段とのうち
の少なくともいずれか一方が開故障状態にあり、そのた
めに前記平滑コンデンサの充電がなされていないと判断
することができる。そのため、この場合は、前記故障検
知手段は前記第1の開閉手段と第3の開閉手段とのうち
の少なくともいすれか一方が開故障状態にあると判断す
ることができる。
Further, in the precharge process, when the detection voltage of the power supply voltage detecting means does not rise when the control for closing the first opening / closing means is performed, the first opening / closing means and the above-mentioned It can be determined that at least one of the third opening / closing means is in the open circuit failure state, and therefore the smoothing capacitor is not charged. Therefore, in this case, the failure detection means can determine that at least one of the first opening / closing means and the third opening / closing means is in the open failure state.

【0017】さらに、前記電気自動車が前記電池の出力
電圧を検出する電池電圧検出手段を備えた場合は、前記
第2の開閉手段の故障を検知することができる。
Further, when the electric vehicle is provided with a battery voltage detecting means for detecting the output voltage of the battery, it is possible to detect a failure of the second opening / closing means.

【0018】すなわち、前記直結処理において、前記第
2の開閉手段を閉成する制御がなされたときに前記電源
電圧検出手段の検出電圧と前記電池電圧検出手段の検出
電圧が異なるときには、前記第2の開閉手段が開故障状
態にあるために、前記電池の正極と前記電気負荷の正側
の電源ラインが導通した状態となっていないと判断する
ことができる。そのため、この場合は、前記第2の開閉
手段が開故障状態にあると判断することができる。
That is, in the direct connection process, when the detection voltage of the power supply voltage detecting means and the detection voltage of the battery voltage detecting means are different when the control for closing the second opening / closing means is performed, the second voltage is detected. It can be determined that the positive electrode of the battery and the positive-side power supply line of the electric load are not electrically connected to each other because the opening / closing means is in the open failure state. Therefore, in this case, it can be determined that the second opening / closing means is in the open failure state.

【0019】[0019]

【発明の実施の形態】本発明の実施の形態の一例につい
て、図1を参照して説明する。図1は、電気自動車に備
えられた燃料電池と電気負荷とを接続する電源接続装置
の回路構成図である。
BEST MODE FOR CARRYING OUT THE INVENTION An example of an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a circuit configuration diagram of a power supply connection device that connects a fuel cell and an electric load included in an electric vehicle.

【0020】図3を参照して、電気自動車の電源接続装
置1(以下、単に電源接続装置1という)は、燃料電池
2(本発明の電池に相当する)を駆動源とする電気自動
車に搭載されて、燃料電池2と電気負荷3(空調機器等
の電装補機)の接続と遮断を行う。
Referring to FIG. 3, a power supply connection device 1 for an electric vehicle (hereinafter, simply referred to as power supply connection device 1) is mounted on an electric vehicle driven by a fuel cell 2 (corresponding to a battery of the present invention). Then, the fuel cell 2 and the electric load 3 (electrical auxiliary equipment such as an air conditioner) are connected and disconnected.

【0021】燃料電池2と電気負荷3は電気自動車の車
体から絶縁して設けられている。そのため、燃料電池セ
ル10の正極11と車体アースBE間には静電容量13
が存在し、燃料電池セル10の負極12と車体アースB
E間にも静電容量14が存在する。また、電気負荷3に
も、正側の電源ライン24と車体アースBE間に静電容
量22が存在し、負側の電源ライン25と車体アースB
E間に静電容量23が存在する。さらに、電気負荷3の
正側の電源ライン24と負側の電源ライン25間には、
電源電圧の変動を抑制するための平滑コンデンサ21が
備えられている。
The fuel cell 2 and the electric load 3 are provided so as to be insulated from the vehicle body of the electric vehicle. Therefore, the capacitance 13 is provided between the positive electrode 11 of the fuel cell unit 10 and the vehicle body BE.
Exists, the negative electrode 12 of the fuel cell 10 and the vehicle body ground B
The capacitance 14 also exists between E. The electric load 3 also has a capacitance 22 between the positive power line 24 and the vehicle body ground BE, and the negative power line 25 and the vehicle ground B.
There is a capacitance 23 between E. Further, between the positive side power line 24 and the negative side power line 25 of the electric load 3,
A smoothing capacitor 21 for suppressing fluctuations in power supply voltage is provided.

【0022】ここで、燃料電池2と電気負荷3とを常時
接続状態とすると、電気負荷3が作動していないときに
も燃料電池から電気負荷3に漏れ電流が流れて無駄な電
流が消費される。そのため、電気負荷が作動していない
ときには燃料電池2と電気負荷3とを遮断して漏れ電流
が流れることを防止し、電気負荷3を作動させるときに
のみ燃料電池2と電気負荷3を接続するため、電源接続
装置1が備えられている。
Here, if the fuel cell 2 and the electric load 3 are constantly connected, a leak current flows from the fuel cell to the electric load 3 even when the electric load 3 is not operating, and wasteful current is consumed. It Therefore, when the electric load is not operating, the fuel cell 2 and the electric load 3 are cut off to prevent a leakage current from flowing, and the fuel cell 2 and the electric load 3 are connected only when the electric load 3 is operated. Therefore, the power supply connection device 1 is provided.

【0023】電源接続装置1は、燃料電池2の負極12
と電気負荷3の負側の電源ライン25間を導通/遮断す
る第1の開閉接点31(本発明の第1の開閉手段に相当
する)、燃料電池2の正極11と電気負荷3の正側の電
源ライン24間を導通/遮断する第2の開閉接点32
(本発明の第2の開閉手段に相当する)、燃料電池2の
正極11と電気負荷3の正側の電源ライン24を電流制
限用抵抗34を介して接続する第3の開閉接点33(本
発明の第3の開閉手段に相当する)、燃料電池2の出力
電圧を検出する電池電圧検出器40(本発明の電池電圧
検出手段に相当する)、及び電気負荷3の正負の電源ラ
イン24,25間の電圧を検出する電源電圧検出器41
(本発明の電源電圧検出手段に相当する)を備えてい
る。
The power supply connection device 1 includes a negative electrode 12 of the fuel cell 2.
And a first opening / closing contact 31 (corresponding to a first opening / closing means of the present invention) for connecting / disconnecting between the negative side power supply line 25 of the electric load 3 and the positive side of the positive electrode 11 of the fuel cell 2 and the electric load 3. Second open / close contact 32 for connecting / disconnecting between the power supply lines 24 of
A third opening / closing contact 33 (corresponding to the second opening / closing means of the present invention) for connecting the positive electrode 11 of the fuel cell 2 and the positive power supply line 24 of the electric load 3 via the current limiting resistor 34 (Corresponding to the third opening / closing means of the invention), a battery voltage detector 40 for detecting the output voltage of the fuel cell 2 (corresponding to the battery voltage detecting means of the invention), and positive and negative power supply lines 24 of the electric load 3, Power supply voltage detector 41 for detecting voltage between 25
(Corresponding to the power supply voltage detecting means of the present invention).

【0024】そして、マイクロコンピュータやメモリ等
により構成されたコントローラ42から出力される制御
信号により、第1の開閉接点31、第2の開閉接点3
2、及び第3の開閉接点33の開閉状態が切り替えら
れ、電池電圧検出器40と電源電圧検出器41の電圧検
出信号がコントローラ42に入力される。
Then, the first opening / closing contact 31 and the second opening / closing contact 3 are controlled by a control signal output from the controller 42 composed of a microcomputer, a memory and the like.
The open / closed states of the second and third open / close contacts 33 are switched, and the voltage detection signals of the battery voltage detector 40 and the power supply voltage detector 41 are input to the controller 42.

【0025】ここで、第1の開閉接点31、第2の開閉
接点32、及び第3の開閉接点33は、それぞれ別個の
リレーに備えられた機械接点であり、各リレーの駆動コ
イルに通電されたときに閉成し、該駆動コイルへの通電
が遮断されたときに開成する。そして、コントローラ4
2は、別個の制御信号により第1の開閉接点31、第2
の開閉接点、及び第3の開閉接点の開閉状態を独立して
切り替える。
The first opening / closing contact 31, the second opening / closing contact 32, and the third opening / closing contact 33 are mechanical contacts provided in separate relays, and the drive coil of each relay is energized. It opens when the drive coil is closed, and opens when the power supply to the drive coil is cut off. And the controller 4
2 is a first switching contact 31 and a second
The open / close state of the open / close contact and the open / close state of the third open / close contact are independently switched.

【0026】次に、コントローラ42により燃料電池2
と電器抵抗3とを接続する手順について説明する。
Next, the fuel cell 2 is controlled by the controller 42.
The procedure for connecting the electric resistor 3 and the electric resistor 3 will be described.

【0027】燃料電池2を電気抵抗3と接続して電器抵
抗3を作動させるときに、第1の開閉接点31と第2の
開閉接点32を直ちに閉成して、燃料電池2と電気抵抗
3を直接接続すると、燃料電池2の正極11から第2の
開閉接点32を介して、インピーダンスの低い平滑コン
デンサ21に過大な電流が流れ、第2の開閉手段32に
溶着等が生じて第2の開閉接点32が故障してしまう。
When the fuel cell 2 is connected to the electric resistance 3 and the electric resistance 3 is operated, the first opening / closing contact 31 and the second opening / closing contact 32 are immediately closed, and the fuel cell 2 and the electric resistance 3 are connected. Is directly connected, an excessive current flows from the positive electrode 11 of the fuel cell 2 through the second opening / closing contact 32 to the smoothing capacitor 21 having a low impedance, and welding or the like occurs in the second opening / closing means 32. The open / close contact 32 fails.

【0028】そこで、コントローラ42は、先に平滑コ
ンデンサ21を充電するプリチャージ処理を行った後
に、燃料電池2と電気負荷3を直接接続する直結処理を
行うことによって、燃料電池2から電気負荷3に過大な
電流が流れることを防止している。
Therefore, the controller 42 first performs a precharge process for charging the smoothing capacitor 21 and then performs a direct connection process for directly connecting the fuel cell 2 and the electric load 3 so that the electric load 3 is changed from the fuel cell 2 to the electric load 3. It prevents the flow of excessive current.

【0029】プリチャージ処理において、コントローラ
42は、先ず第3の開閉接点33を閉成する。これによ
り、燃料電池2の正極11から、電流制限用抵抗34、
正側の静電量22、車体アースBE、及び燃料電池2の
負極12側の静電容量14を介して電流が流れるが、こ
の電流は電流制限用抵抗34により制限されるため、過
大な電流が第3の開閉接点33を流れることはなく、第
3の開閉接点33の溶着等の故障が生じることはない。
なお、第3の開閉接点33と電流制限用抵抗とにより、
本発明の直列回路が構成される。
In the precharge process, the controller 42 first closes the third opening / closing contact 33. As a result, from the positive electrode 11 of the fuel cell 2 to the current limiting resistor 34,
A current flows through the positive side electrostatic quantity 22, the vehicle body BE, and the electrostatic capacity 14 on the negative electrode 12 side of the fuel cell 2, but since this current is limited by the current limiting resistor 34, an excessive current is generated. There is no flow through the third opening / closing contact 33, and no failure such as welding of the third opening / closing contact 33 occurs.
In addition, by the third switching contact 33 and the current limiting resistor,
A series circuit of the present invention is constructed.

【0030】そして、次に、コントローラ42は、第1
の開閉接点31を閉成し、これにより、燃料電池2の正
極11から電流制限用抵抗34を介して供給される電流
により平滑コンデンサ21が充電される。
Then, the controller 42,
The open / close contact 31 is closed, whereby the smoothing capacitor 21 is charged by the current supplied from the positive electrode 11 of the fuel cell 2 through the current limiting resistor 34.

【0031】ここで、第3の開閉接点33を閉成してか
ら第1の開閉接点31を閉成するまでの時間間隔は、静
電容量14,23に充電された電荷が放電されるのに十
分な時間として、例えば0.5〜1.0秒に設定されて
いる。
Here, in the time interval from the closing of the third opening / closing contact 33 to the closing of the first opening / closing contact 31, the electric charges charged in the electrostatic capacitances 14 and 23 are discharged. Is set to 0.5 to 1.0 seconds, for example.

【0032】コントローラ42は、電源電圧器41の検
出電圧から平滑コンデンサ21の充電完了を検知したと
きにプリチャージ処理を終了し、第3の開閉接点33を
開成すると共に第2の開閉接点32を閉成して、燃料電
池2と電気負荷3を直接(電流制限用抵抗を介すること
なく)接続する直結処理を行う。
When the controller 42 detects the completion of charging of the smoothing capacitor 21 from the voltage detected by the power supply voltage device 41, the precharge process is terminated, the third opening / closing contact 33 is opened, and the second opening / closing contact 32 is opened. After closing, a direct connection process is performed in which the fuel cell 2 and the electric load 3 are directly connected (without a current limiting resistor).

【0033】以上説明したプリチャージ処理と直結処理
を行うことによって、燃料電池2と電気負荷3とを接続
する際に、燃料電池2から電気負荷3に過大な電流が流
れて、電流経路中に故障が生じることを防止することが
できる。
By performing the precharge process and the direct connection process described above, when the fuel cell 2 and the electric load 3 are connected, an excessive current flows from the fuel cell 2 to the electric load 3 and the electric current flows in the current path. It is possible to prevent a failure from occurring.

【0034】また、コントローラ42は、上述したプリ
チャージ処理及び直結処理において、第1の開閉接点3
1、第2の開閉接点32、及び第3の開閉接点33の故
障検知を行う。
Further, the controller 42 uses the first opening / closing contact 3 in the above-mentioned precharge process and direct connection process.
The failure detection of the first, second switching contacts 32, and the third switching contacts 33 is performed.

【0035】先ず、プリチャージ処理において、コント
ローラ42は、第3の開閉接点33を閉成したときの電
源電圧検出器41の検出電圧の上昇の有無を確認する。
第3の開閉接点33を閉成したときに、第1の開閉接点
31が開成状態であれば、平滑コンデンサ21は充電さ
れないために電源電圧検出器41の検出電圧は上昇しな
い。
First, in the precharge process, the controller 42 confirms whether or not the detection voltage of the power supply voltage detector 41 rises when the third switching contact 33 is closed.
When the first opening / closing contact 31 is in the open state when the third opening / closing contact 33 is closed, the smoothing capacitor 21 is not charged and the detection voltage of the power supply voltage detector 41 does not rise.

【0036】一方、第3の開閉接点33を閉成したとき
に、第1の開閉接点31が閉故障状態にあったときに
は、平滑コンデンサ21が充電されるため、電源電圧検
出器41の検出電圧は上昇する。そこで、コントローラ
42は、電源電圧検出器41の検出電圧の上昇を検知し
たときには、第1の開閉接点31の閉故障状態にあると
判断して故障報知(運転席のディスプレイへのエラー表
示やブザーの鳴動等)を行う。
On the other hand, when the third opening / closing contact 33 is closed and the first opening / closing contact 31 is in the closing failure state, the smoothing capacitor 21 is charged, so that the detection voltage of the power supply voltage detector 41 is detected. Rises. Therefore, when the controller 42 detects a rise in the detection voltage of the power supply voltage detector 41, the controller 42 determines that the first open / close contact 31 is in the closed failure state and issues a failure notification (error display or buzzer display on the driver's seat). Sounding).

【0037】また、プリチャージ処理において、コント
ローラ42は、第3の開成接点33を閉成し、続いて第
1の開成接点31を閉成したときの電源電圧検出器41
の検出電圧の上昇の有無を確認する。コントローラ42
が第1の開閉接点31と第3の開閉接点33を閉成する
制御信号を出力したときに、第1の開閉接点31と第3
の開閉接点33が共に正常に作動して閉成されれば、平
滑コンデンサ21が充電されるために電源電圧検出器4
1の検出電圧が上昇する。
In the precharge process, the controller 42 closes the third opening contact 33 and then closes the first opening contact 31. Then, the power supply voltage detector 41 is closed.
Check if the detection voltage of has risen. Controller 42
Outputs a control signal for closing the first opening / closing contact 31 and the third opening / closing contact 33, the first opening / closing contact 31 and the third opening / closing contact 31
If the switching contacts 33 of both are normally operated and closed, the smoothing capacitor 21 is charged, so that the power supply voltage detector 4
The detection voltage of 1 rises.

【0038】一方、第1の開閉接点31と第3の開閉接
点33のうちの少なくともいづれか一方が開故障状態に
あるときには、平滑コンデンサ21が充電されないた
め、電源電圧検出器41の検出電圧は上昇しない。そこ
で、コントローラ42は、電源電圧検出器41の検出電
圧の上昇を検知したときには、第1の開閉接点31と第
3の開閉接点33とのうちの少なくともいずれか一方が
開故障状態にあると判断して故障報知を行う。
On the other hand, when at least one of the first open / close contact 31 and the third open / close contact 33 is in the open circuit failure state, the smoothing capacitor 21 is not charged, and the detection voltage of the power supply voltage detector 41 rises. do not do. Therefore, when the controller 42 detects a rise in the detection voltage of the power supply voltage detector 41, the controller 42 determines that at least one of the first opening / closing contact 31 and the third opening / closing contact 33 is in the open failure state. Then, the failure is notified.

【0039】また、上述した直結処理において、コント
ローラ42は、第3の開閉接点を開成して第2の開閉接
点32を閉成したときに、電池電圧検出器40の検出電
圧(V1)と電源電圧検出器41の検出電圧(V2)が等
しくなるか否かを確認する。
In the direct connection process described above, the controller 42 opens the third open / close contact and closes the second open / close contact 32 to detect the voltage (V1) of the battery voltage detector 40 and the power source. It is confirmed whether the detection voltage (V2) of the voltage detector 41 becomes equal.

【0040】コントローラ42が第2の開閉接点32を
閉成する制御信号を出力したときに、第2の開閉接点3
2が正常に作動して閉成状態となれば、第1の開成接点
31は既に閉成された状態にあるので、電池電圧検出器
40と電源電圧検出器41の正側及び負側の端子同士が
導通状態となるため、電池電圧検出器40の検出電圧
(V1)と電源電圧検出器41の検出電圧(V2)は等し
くなる。
When the controller 42 outputs a control signal for closing the second opening / closing contact 32, the second opening / closing contact 3
When 2 operates normally and is in the closed state, the first open contact 31 is already in the closed state, so the positive and negative terminals of the battery voltage detector 40 and the power supply voltage detector 41. Since the two are brought into conduction, the detection voltage (V1) of the battery voltage detector 40 and the detection voltage (V2) of the power supply voltage detector 41 become equal.

【0041】一方、第2の開閉接点32が開故障状態で
あるときには、電池電圧検出器40と電源電圧検出器4
1の正側の端子が導通状態とならないため、電池電圧検
出器40の検出電圧(V1)と電源電圧検出器41の検
出器(V2)は等しくならない。そこで、コントローラ
42は、電池電圧検出器40の検出電圧(V1)と電源
電圧検出器41の検出電圧(V2)が異なるときに、第
2の開閉接点32が開故障状態にあると判断して故障報
知を行う。
On the other hand, when the second open / close contact 32 is in the open failure state, the battery voltage detector 40 and the power supply voltage detector 4
Since the positive terminal of 1 does not become conductive, the detection voltage (V1) of the battery voltage detector 40 and the detector (V2) of the power supply voltage detector 41 are not equal. Therefore, when the detected voltage (V1) of the battery voltage detector 40 and the detected voltage (V2) of the power supply voltage detector 41 are different, the controller 42 determines that the second opening / closing contact 32 is in the open failure state. Issue a failure notification.

【0042】なお、本実施の形態では、本発明の電池と
して燃料電池を示したが、電気自動車の車体から絶縁し
て搭載される電池と電気負荷を接続する場合であれば、
他の種類の電池であっても、本発明の適用が可能であ
る。
In the present embodiment, the fuel cell is shown as the battery of the present invention, but in the case of connecting the electric load to the battery mounted insulated from the vehicle body of the electric vehicle,
The present invention can be applied to other types of batteries.

【0043】また、本実施の形態では、本発明の第1の
開閉手段、第2の開閉手段、及び第3の開閉手段として
リレー接点を用いたが、トランジスタやFET等の無接
点の開閉手段を用いる場合であっても、本発明の適用が
可能である。
In the present embodiment, the relay contacts are used as the first opening / closing means, the second opening / closing means, and the third opening / closing means of the present invention, but a contactless opening / closing means such as a transistor or FET is used. Even when using, the present invention can be applied.

【0044】また、本実施の形態では、上述したプリチ
ャージ処理及び直結処理において、開閉接点の故障の有
無を検知する処理を行ったが、該処理を行わない場合で
あっても、本発明の効果を得ることができる。
Further, in the present embodiment, in the above-described precharge process and direct connection process, the process of detecting the presence or absence of a failure of the switching contact is performed, but even if the process is not performed, the present invention is performed. The effect can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】電気自動車に備えられた燃料電池と電気負荷と
を接続する本発明の電源接続装置の回路構成図。
FIG. 1 is a circuit configuration diagram of a power supply connection device of the present invention for connecting a fuel cell provided in an electric vehicle and an electric load.

【図2】電気自動車に備えら得た燃料電池と電気負荷と
を接続する従来の電源接続装置の回路構成図。
FIG. 2 is a circuit configuration diagram of a conventional power supply connection device for connecting a fuel cell provided in an electric vehicle and an electric load.

【符号の説明】[Explanation of symbols]

1…電気自動車の電源接続装置、2…燃料電池、3…電
気負荷、11…燃料電池の正極、12…燃料電池の負
極、13,14…燃料電池の静電容量、21…平滑コン
デンサ、22,23…電気負荷の静電容量、24…電気
負荷の正側の電源ライン、25…電気負荷の負側の電源
ライン、31…第1の開閉接点、32…第2の開閉接
点、33…第3の開閉接点、34…電流制限用抵抗、4
0…電池電圧検出器、41…電源電圧検出器、42…コ
ントローラ
DESCRIPTION OF SYMBOLS 1 ... Electric vehicle power supply connection device, 2 ... Fuel cell, 3 ... Electric load, 11 ... Fuel cell positive electrode, 12 ... Fuel cell negative electrode, 13, 14 ... Fuel cell electrostatic capacity, 21 ... Smoothing capacitor, 22 , 23 ... Capacitance of electric load, 24 ... Power line on positive side of electric load, 25 ... Power line on negative side of electric load, 31 ... First opening / closing contact, 32 ... Second opening / closing contact, 33 ... Third open / close contact, 34 ... Current limiting resistor, 4
0 ... Battery voltage detector, 41 ... Power supply voltage detector, 42 ... Controller

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】車体から絶縁して設けられた電池と、車体
から絶縁して設けられて直流電源ライン間に平滑コンデ
ンサが接続された電気負荷とを備えた電気自動車におい
て、該電池と該電気負荷とを接続する方法であって、 前記電池の正極を電流制限用抵抗を介して前記電気負荷
の正側の電源ラインと接続した後、前記電池の負極を前
記電気負荷の負側の電源ラインと接続して、前記電池の
正極から前記電流制限用抵抗を介して前記電気負荷の正
側の電源ラインに供給される電流により前記平滑コンデ
ンサを充電するプリチャージ処理と、 該プリチャージ処理の終了後、前記電池の負極を前記電
気負荷の負側の電源ラインに接続すると共に、前記電池
の正極を前記電流制限用抵抗を介さずに前記電気負荷の
正側の電源ラインと接続する直結処理とを行って、前記
電池と前記電気負荷とを接続することを特徴とする電気
自動車における電源接続方法。
1. An electric vehicle comprising a battery insulated from a vehicle body and an electric load insulated from the vehicle body and having a smoothing capacitor connected between DC power supply lines, the battery and the electric vehicle being provided. A method of connecting to a load, wherein the positive electrode of the battery is connected to a positive power source line of the electric load via a current limiting resistor, and then the negative electrode of the battery is negative power source line of the electric load. And a precharge process for charging the smoothing capacitor with a current supplied from the positive electrode of the battery to the positive side power supply line of the electric load via the current limiting resistor, and the precharge process ends. Then, a direct connection process in which the negative electrode of the battery is connected to the negative power source line of the electric load, and the positive electrode of the battery is connected to the positive power source line of the electric load without the current limiting resistor. Performing bets, power connection method in an electric vehicle, characterized in that for connecting the battery and the electrical load.
【請求項2】前記電気自動車は、前記電気負荷の正負の
電源ライン間の電圧を検出する電源電圧検出手段と、前
記電池の負極と前記電気負荷の負側の電源ライン間の導
通/遮断を切り替える第1の開閉手段と、前記電池の正
極と前記電気負荷の正側の電源ライン間の導通/遮断を
切り替える第2の開閉手段と、前記第2の開閉手段と並
列に接続された第3の開閉手段と電流制限用抵抗とから
なる直列回路とを備え、 前記プリチャージ処理を前記第3の開閉手段を閉成した
後に前記第1の開閉手段を閉成して行った後、前記直結
処理を前記第3の開閉手段を開成すると共に前記第2の
開閉手段を閉成して行い、 前記プリチャージ処理において、前記第3の開閉手段を
閉成する制御を行なったときに前記電源電圧検出手段の
検出電圧が上昇したときには、前記第1の開閉手段が閉
故障していると判断することを特徴とする請求項1記載
の電気自動車における電源接続方法。
2. The electric vehicle includes a power supply voltage detecting means for detecting a voltage between positive and negative power supply lines of the electric load, and conduction / interruption between a negative electrode of the battery and a negative power supply line of the electric load. A first opening / closing means for switching, a second opening / closing means for switching conduction / interruption between the positive electrode of the battery and a positive power supply line of the electric load, and a third opening / closing means connected in parallel with the second opening / closing means. And a series circuit including a current limiting resistor, the pre-charge processing is performed by closing the first opening / closing means after closing the third opening / closing means, and then performing the direct connection. The processing is performed by opening the third opening / closing means and closing the second opening / closing means, and in the precharge processing, when the control for closing the third opening / closing means is performed, the power supply voltage is The detection voltage of the detection means has increased Kiniwa, said power supply connection in an electric vehicle according to claim 1, wherein the first opening and closing means, characterized in that determined to be closing failure.
【請求項3】前記電気自動車は、前記電気負荷の正負の
電源ライン間の電圧を検出する電源電圧検出手段と、前
記電池の負極と前記電気負荷の負側の電源ライン間の導
通/遮断を切り替える第1の開閉手段と、前記電池の正
極と前記電気負荷の正側の電源ライン間の導通/遮断を
切り替える第2の開閉手段と、前記第2の開閉手段と並
列に接続された第3の開閉手段と電流制限用抵抗とから
なる直列回路とを備え、 前記プリチャージ処理を前記第3の開閉手段を閉成した
後に前記第1の開閉手段を閉成して行った後、前記直結
処理を前記第3の開閉手段を開成すると共に前記第2の
開閉手段を閉成して行い、 前記プリチャージ処理において、前記第1の開閉手段を
閉成する制御を行ったときに前記電源電圧検出手段の検
出電圧が上昇しなかったときには、前記第1の開閉手段
と前記第3の開閉手段のうちの少なくともいずれか一方
が開故障していると判断することを特徴とする請求項1
記載の電気自動車における電源接続方法。
3. The electric vehicle includes power supply voltage detecting means for detecting a voltage between positive and negative power supply lines of the electric load, and conduction / interruption between a negative electrode of the battery and a negative power supply line of the electric load. A first opening / closing means for switching, a second opening / closing means for switching conduction / interruption between the positive electrode of the battery and a positive power supply line of the electric load, and a third opening / closing means connected in parallel with the second opening / closing means. And a series circuit including a current limiting resistor, the pre-charge processing is performed by closing the first opening / closing means after closing the third opening / closing means, and then performing the direct connection. The processing is performed by opening the third opening / closing means and closing the second opening / closing means, and in the precharge processing, the power supply voltage is set when the control for closing the first opening / closing means is performed. Is the detection voltage of the detection means rising? When the can, according to claim 1, characterized in that it is determined that at least one is open failure of said first switching means and said third switching means
A method for connecting a power source in the electric vehicle described.
【請求項4】前記電気自動車は、前記電気負荷の正負の
電源ライン間の電圧を検出する電源電圧検出手段と、前
記電池の出力電圧を検出する電池電圧検出手段と、前記
電池の負極と前記電気負荷の負側の電源ライン間の導通
/遮断を切り替える第1の開閉手段と、前記電池の正極
と前記電気負荷の正側の電源ライン間の導通/遮断を切
り替える第2の開閉手段と、前記第2の開閉手段と並列
に接続された第3の開閉手段と電流制限用抵抗とからな
る直列回路とを備え、 前記プリチャージ処理を前記第3の開閉手段を閉成した
後に前記第1の開閉手段を閉成して行った後、前記直結
処理を前記第3の開閉手段を開成すると共に前記第2の
開閉手段を閉成して行い、 前記直結処理において、前記第2の開閉手段を閉成する
制御がなされたときに前記電源電圧検出手段の検出電圧
と前記電池電圧検出手段の検出電圧が異なったときに
は、前記第2の開閉手段が開故障していると判断するこ
とを特徴とする請求項1記載の電気自動車における電源
接続方法。
4. The electric vehicle includes a power supply voltage detecting means for detecting a voltage between positive and negative power supply lines of the electric load, a battery voltage detecting means for detecting an output voltage of the battery, a negative electrode of the battery, and the battery. First opening / closing means for switching between conduction / interruption between the negative power supply line of the electric load, and second opening / closing means for switching between conduction / interruption between the positive electrode of the battery and the positive power supply line of the electric load, A series circuit including a third opening / closing means connected in parallel with the second opening / closing means and a current limiting resistor, wherein the precharge process is performed after closing the third opening / closing means. After opening and closing the opening and closing means, the direct connection processing is performed by opening the third opening and closing means and closing the second opening and closing means, and in the direct connection processing, the second opening and closing means. When the control to close the The electric vehicle according to claim 1, wherein when the detected voltage of the power supply voltage detecting means and the detected voltage of the battery voltage detecting means are different from each other, it is determined that the second opening / closing means has an open failure. Power connection method.
JP2002129895A 2002-05-01 2002-05-01 Method of connecting power source in electric vehicle Pending JP2003324801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002129895A JP2003324801A (en) 2002-05-01 2002-05-01 Method of connecting power source in electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002129895A JP2003324801A (en) 2002-05-01 2002-05-01 Method of connecting power source in electric vehicle

Publications (1)

Publication Number Publication Date
JP2003324801A true JP2003324801A (en) 2003-11-14

Family

ID=29543170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002129895A Pending JP2003324801A (en) 2002-05-01 2002-05-01 Method of connecting power source in electric vehicle

Country Status (1)

Country Link
JP (1) JP2003324801A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005192324A (en) * 2003-12-25 2005-07-14 Toyota Motor Corp Device for detecting fault in power supply system
JP2006129567A (en) * 2004-10-27 2006-05-18 Daihatsu Motor Co Ltd Fault detection processing method and fault detection processing device
US7083017B2 (en) * 2002-11-28 2006-08-01 Honda Motor Co., Ltd. Fuel cell vehicle
KR100623750B1 (en) 2004-07-06 2006-09-19 현대자동차주식회사 Fuel cell-supercap hybrid and method of controlling a starting for the same
JP2007250335A (en) * 2006-03-15 2007-09-27 Toyota Motor Corp Power supply control device
JP2009268214A (en) * 2008-04-24 2009-11-12 Denso Corp Power supply apparatus module
JP2010179889A (en) * 2009-02-09 2010-08-19 Denso Corp Electric heater drive device
CN102198799A (en) * 2010-03-27 2011-09-28 三洋电机株式会社 Power supply device for vehicle and vehicle equipped with the power supply device
JP2012102640A (en) * 2010-11-09 2012-05-31 Denso Corp Starter control device
JP2013009552A (en) * 2011-06-27 2013-01-10 Kawasaki Heavy Ind Ltd Failure determining device, failure determining method, and failure processing system
EP2570289A1 (en) * 2011-09-16 2013-03-20 Magna E-Car Systems GmbH & Co OG Device for determining the insulation resistance of a high-voltage battery system
JP2014187768A (en) * 2013-03-22 2014-10-02 Mitsubishi Electric Corp Power-supply protection circuit
WO2016103721A1 (en) * 2014-12-24 2016-06-30 株式会社Gsユアサ Power supply protection device, power supply device, and switch fault diagnosis method
CN107539148A (en) * 2017-08-28 2018-01-05 奇瑞汽车股份有限公司 The dynamical system and electric automobile of electric automobile
JP2020202646A (en) * 2019-06-10 2020-12-17 本田技研工業株式会社 Power supply system and control method therefor
CN115236534A (en) * 2022-07-29 2022-10-25 苏州浪潮智能科技有限公司 Server RTC battery voltage detection device and detection method

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7083017B2 (en) * 2002-11-28 2006-08-01 Honda Motor Co., Ltd. Fuel cell vehicle
JP2005192324A (en) * 2003-12-25 2005-07-14 Toyota Motor Corp Device for detecting fault in power supply system
JP4604485B2 (en) * 2003-12-25 2011-01-05 トヨタ自動車株式会社 Power system abnormality detection device
KR100623750B1 (en) 2004-07-06 2006-09-19 현대자동차주식회사 Fuel cell-supercap hybrid and method of controlling a starting for the same
JP2006129567A (en) * 2004-10-27 2006-05-18 Daihatsu Motor Co Ltd Fault detection processing method and fault detection processing device
JP4565963B2 (en) * 2004-10-27 2010-10-20 ダイハツ工業株式会社 Failure detection processor
JP2007250335A (en) * 2006-03-15 2007-09-27 Toyota Motor Corp Power supply control device
JP2009268214A (en) * 2008-04-24 2009-11-12 Denso Corp Power supply apparatus module
JP2010179889A (en) * 2009-02-09 2010-08-19 Denso Corp Electric heater drive device
CN102198799A (en) * 2010-03-27 2011-09-28 三洋电机株式会社 Power supply device for vehicle and vehicle equipped with the power supply device
JP2011211761A (en) * 2010-03-27 2011-10-20 Sanyo Electric Co Ltd Power supply device for vehicle, and vehicle equipped with the same
JP2012102640A (en) * 2010-11-09 2012-05-31 Denso Corp Starter control device
JP2013009552A (en) * 2011-06-27 2013-01-10 Kawasaki Heavy Ind Ltd Failure determining device, failure determining method, and failure processing system
CN103048545A (en) * 2011-09-16 2013-04-17 麦格纳电动汽车系统公司 Device for determining the insulation resistance of a high-voltage battery system
US9244108B2 (en) 2011-09-16 2016-01-26 Samsung Sdi Co., Ltd. Device for detecting the insulation resistance of a high voltage battery system
EP2570289A1 (en) * 2011-09-16 2013-03-20 Magna E-Car Systems GmbH & Co OG Device for determining the insulation resistance of a high-voltage battery system
JP2014187768A (en) * 2013-03-22 2014-10-02 Mitsubishi Electric Corp Power-supply protection circuit
US10690724B2 (en) 2014-12-24 2020-06-23 Gs Yuasa International Ltd. Power supply protective device, power supply device and switch failure diagnosing method
WO2016103721A1 (en) * 2014-12-24 2016-06-30 株式会社Gsユアサ Power supply protection device, power supply device, and switch fault diagnosis method
JPWO2016103721A1 (en) * 2014-12-24 2017-10-05 株式会社Gsユアサ Power supply protection device, power supply device, and switch failure diagnosis method
US10338141B2 (en) 2014-12-24 2019-07-02 Gs Yuasa International Ltd. Power supply protective device, power supply device and switch failure diagnosing method
CN107539148A (en) * 2017-08-28 2018-01-05 奇瑞汽车股份有限公司 The dynamical system and electric automobile of electric automobile
JP2020202646A (en) * 2019-06-10 2020-12-17 本田技研工業株式会社 Power supply system and control method therefor
JP7177005B2 (en) 2019-06-10 2022-11-22 本田技研工業株式会社 Power supply system and its control method
CN115236534A (en) * 2022-07-29 2022-10-25 苏州浪潮智能科技有限公司 Server RTC battery voltage detection device and detection method
CN115236534B (en) * 2022-07-29 2023-11-14 苏州浪潮智能科技有限公司 Device and method for detecting voltage of RTC battery of server

Similar Documents

Publication Publication Date Title
JP2003324801A (en) Method of connecting power source in electric vehicle
US7586214B2 (en) High voltage energy storage connection monitoring system and method
CN108349406B (en) Drive circuit of electric vehicle and control method thereof
US20130278273A1 (en) Method and device for detecting short circuit
US20170059658A1 (en) Electrical storage system
JP5541743B2 (en) Contactor welding detector
CN111193296B (en) Pre-charging control device and method
JP2009038925A (en) Power supply unit for vehicle, and control method thereof
CN108725351B (en) Fault diagnosis system for vehicle relay
KR20170097481A (en) Charging or discharging system and method for diagnosing state of contactor
KR102663546B1 (en) Pre-charge method and system for high voltage link capacitor of vehicle
KR102357373B1 (en) Battery system
JP4604485B2 (en) Power system abnormality detection device
JP2006238509A (en) Control device of electric vehicle, control method of the electric vehicle, program and computer-readable recording medium
JP6623794B2 (en) Relay sticking detection system
JP7221193B2 (en) Secondary battery system
US11774499B2 (en) Relay diagnosis device, relay diagnosis method, battery system, and electric vehicle
JP3536716B2 (en) Relay welding detector
JP2016090366A (en) Irregularity detection circuit
CN111605404B (en) Charge-discharge circuit sharing pre-charging resistor, control method and automobile
KR20230055077A (en) Fault diagnosis method for contactor, and battery system providing the same
CN113022312B (en) High-voltage power-on control method, high-voltage power-on circuit and electric vehicle
JP7365962B2 (en) battery unit
CN112271915B (en) Pre-charging and discharging method of electric drive controller and electric vehicle
KR20150083802A (en) Method for detecting the functionality of a load switch of a battery, and battery having a device for detecting the functionality of a load switch of the battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060808