JP2003322562A - Ultraviolet ray detecting device - Google Patents

Ultraviolet ray detecting device

Info

Publication number
JP2003322562A
JP2003322562A JP2002131691A JP2002131691A JP2003322562A JP 2003322562 A JP2003322562 A JP 2003322562A JP 2002131691 A JP2002131691 A JP 2002131691A JP 2002131691 A JP2002131691 A JP 2002131691A JP 2003322562 A JP2003322562 A JP 2003322562A
Authority
JP
Japan
Prior art keywords
ultraviolet ray
ultraviolet
discharge tube
detectors
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002131691A
Other languages
Japanese (ja)
Other versions
JP4521153B2 (en
Inventor
Kazuo Seki
一夫 関
Satoshi Kadoya
聡 門屋
Giichi Nishino
義一 西野
Kenjiro Tanaka
健治郎 田中
Tetsuya Yamada
哲也 山田
Keisuke Sumiyoshi
啓介 住吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2002131691A priority Critical patent/JP4521153B2/en
Priority to CNB03810220XA priority patent/CN100414271C/en
Priority to AU2003235842A priority patent/AU2003235842A1/en
Priority to PCT/JP2003/005653 priority patent/WO2003095958A1/en
Publication of JP2003322562A publication Critical patent/JP2003322562A/en
Application granted granted Critical
Publication of JP4521153B2 publication Critical patent/JP4521153B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/429Photometry, e.g. photographic exposure meter using electric radiation detectors applied to measurement of ultraviolet light

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultraviolet ray detecting device constructible in a relatively small shape having no adverse influence between mutually adjacent detectors at detecting time when detecting an ultraviolet ray from flame by using a plurality of kinds of discharge tube type ultraviolet ray detectors different in detectable wave length area. <P>SOLUTION: This ultraviolet ray detector is formed by arranging an anode 11 and a cathode 12 in a discharge tube 10 for passing an ultraviolet ray, and is constituted by filling ionizable gas in the discharge tube 10. A plurality of ultraviolet ray detectors 1, 2, and 3 mutually different in a construction material of the cathode 12 are arranged on the ultraviolet ray incident side. When supplying prescribed voltage to the electrodes 11 and 12 of the respective ultraviolet ray detectors 1, 2, and 3, the voltage is impressed on the adjacent ultraviolet ray detectors by staggering the time so as not to be simultaneous. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば燃焼炉内の
火炎から発生する紫外線を正確に且つ効率良く検出する
ための紫外線検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultraviolet ray detecting device for accurately and efficiently detecting ultraviolet rays generated from a flame in a combustion furnace.

【0002】[0002]

【従来の技術】燃焼炉においては、所望の温度を達成し
維持するために空気或いは燃料の供給量を調整する温度
制御が行われているが、その一方で、有害な酸化窒素
(NO)や一酸化炭素(CO)等の発生を抑えると共
に燃焼効率を高めることが要請されている。そこで、空
燃比(空気と燃料との混合割合を示す比率)を検出し、
それに基づいて燃焼を制御することが考えられている。
そのための手段として、火炎から出る可視光を受光する
カメラとこれで得られた画像から空燃比を算出する画像
処理装置とを含む火炎内空燃比分布の画像計測検出装置
が提案されている。
2. Description of the Related Art In a combustion furnace, temperature control is performed to adjust the supply amount of air or fuel in order to achieve and maintain a desired temperature. On the other hand, harmful nitrogen oxides (NO x ) are used. It is required to suppress the generation of carbon monoxide (CO) and the like and to improve the combustion efficiency. Therefore, the air-fuel ratio (ratio indicating the mixing ratio of air and fuel) is detected,
It is considered to control combustion based on that.
As a means therefor, an image measurement and detection device for the air-fuel ratio distribution in the flame has been proposed which includes a camera that receives visible light emitted from the flame and an image processing device that calculates the air-fuel ratio from the image obtained by the camera.

【0003】一方、上記の要請に応えるため、炉壁の温
度が高く(600℃〜900℃)運用されることが多くなって
きた。そのような高温では、炉内の火炎だけでなく炉壁
からも可視光が放射されるので、上記のように可視光に
基づく計測検出装置では、空燃比を正しく測定すること
ができない。そこで、火炎から放射される、可視光より
も波長が短い(400nmより短い)領域の紫外線を検出
し、それに基づいて空燃比を計測することが考えられ
る。そのため紫外線を検出する手段としては、放電管
型、光電管型或いはガイガーミュラー型の紫外線検出器
(以下では、これらを「放電管型」と称する)の紫外線検
出器と半導体型の紫外線検出器が知られているが、上記
のような火炎から出る紫外線は比較的弱いため、感度の
低い半導体型の紫外線検出器では対応できず、高感度の
放電管型紫外線検出器を用いる必要がある。
On the other hand, in order to meet the above demands, the temperature of the furnace wall has been increased (600 ° C. to 900 ° C.) and the operation is often performed. At such a high temperature, visible light is radiated not only from the flame in the furnace but also from the furnace wall, and thus the measurement / detection device based on visible light cannot accurately measure the air-fuel ratio. Therefore, it is conceivable to detect ultraviolet rays emitted from the flame in a region having a wavelength shorter than visible light (shorter than 400 nm) and measure the air-fuel ratio based on the detected ultraviolet rays. Therefore, as a means for detecting ultraviolet rays, there are known discharge tube type, photoelectric tube type or Geiger-Muller type ultraviolet ray detectors (hereinafter referred to as "discharge tube type") ultraviolet ray detectors and semiconductor type ultraviolet ray detectors. However, since the ultraviolet rays emitted from the flame as described above are relatively weak, a semiconductor type ultraviolet ray detector having a low sensitivity cannot be used, and it is necessary to use a highly sensitive discharge tube type ultraviolet ray detector.

【0004】従来の放電管型紫外線検出器は、紫外線が
透過し得る放電管の中に1対の電極(陽極と陰極)を設
置すると共に放電管内にイオン化可能なガス(ペニング
ガス)を充填して構成されている。ペニングガスとして
は、ネオン―水素、ヘリウム―水素、或いはネオン―ア
ルゴン―水素の混合ガスが用いられる。そして、1対の
電極の間に300ボルト程度の電圧が印加されたとき、紫
外線を検出できる状態(オン状態)となり、紫外線が陰
極に当ると放電状態になる。
In a conventional discharge tube type ultraviolet detector, a pair of electrodes (anode and cathode) are installed in a discharge tube through which ultraviolet rays can pass and an ionizable gas (Penning gas) is filled in the discharge tube. It is configured. As the Penning gas, a mixed gas of neon-hydrogen, helium-hydrogen, or neon-argon-hydrogen is used. Then, when a voltage of about 300 V is applied between the pair of electrodes, it becomes a state where ultraviolet rays can be detected (ON state), and when ultraviolet rays hit the cathode, it becomes a discharge state.

【0005】これによって検出される火炎からの紫外線
のスペクトル分布では、火炎中のNO、OH、CH等の
各成分に対応した波形が表われるが、それらの波形が表
れる波長領域が検出可能かどうかは、放電管内の電極の
材質による。すなわち、この種の放電管に用いられる電
極の材料は、タングステン(W)、ニッケル(Ni)、
モリブデン(Mo)、銅(Cu)、鉄(Fe)、金(A
u)、銀(Ag)、タンタル(Ta)、炭素(C)等で
あるが、陰極(カソード)がどの材料で作られているか
によって、検出可能な波長領域が決められる。
In the spectrum distribution of ultraviolet rays from the flame detected by this, waveforms corresponding to respective components such as NO, OH, CH, etc. in the flame appear, and whether the wavelength region in which these waveforms appear can be detected or not. Depends on the material of the electrodes in the discharge tube. That is, the materials of the electrodes used in this type of discharge tube are tungsten (W), nickel (Ni),
Molybdenum (Mo), copper (Cu), iron (Fe), gold (A
u), silver (Ag), tantalum (Ta), carbon (C), and the like, but the detectable wavelength region is determined by which material the cathode (cathode) is made of.

【0006】このような放電管型の紫外線検出器は、そ
の電極の材質によって検出可能な紫外線の領域が限定さ
れるものの、紫外線の有無は検知できるので、燃焼炉内
の火炎を監視するための手段として用いられている。
[0006] In such a discharge tube type ultraviolet detector, although the detectable ultraviolet region is limited depending on the material of the electrode, the presence or absence of ultraviolet can be detected, so that the flame inside the combustion furnace is monitored. It is used as a means.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、近年の
燃焼炉に対する要請に応じるためには、火炎中のNO、
OH、CH等の成分を正しく検出する必要があり、火炎
から放射された紫外線を検出する手段として従来の放電
管型紫外線検出器を用いるならば、次のような問題点が
生ずる。
However, in order to meet the recent demands for combustion furnaces, NO in the flame,
It is necessary to correctly detect the components such as OH and CH, and if the conventional discharge tube type ultraviolet ray detector is used as a means for detecting the ultraviolet rays emitted from the flame, the following problems occur.

【0008】まず、火炎中のNO、OH、CH等の各成
分が表われる波長領域で検出するためには、上記のよう
に電極の材料によって検出可能な紫外線領域が決められ
ている検出器をそれらの成分を含む波長領域毎に、従っ
て複数種類、用意しなければならない。そして、それら
検出可能な波長領域の異なる複数個の放電管型紫外線検
出器は、炉内の火炎から放射される紫外線を同じ条件で
検出できるように定めた場所に密接して配置することが
要求され、それらの配置のスペースを必要とする。
First, in order to detect in the wavelength region in which each component such as NO, OH, and CH in the flame appears, a detector in which the detectable ultraviolet region is determined by the electrode material as described above is used. Therefore, it is necessary to prepare a plurality of types for each wavelength region including those components. And, it is required that a plurality of discharge tube type ultraviolet ray detectors with different wavelength regions that can be detected are closely arranged in a determined place so that the ultraviolet rays emitted from the flame in the furnace can be detected under the same conditions. And need space for their placement.

【0009】また、複数個の放電管型紫外線検出器を密
接して配置すると、一の検出器が紫外線の入射によって
放電を生じたとき、その放電に伴って電磁場が生じると
共に当該検出器それ自体からも紫外線が発生する。それ
らの電磁場及び紫外線により、隣接する検出器が悪影響
を受けることがあり、火炎からの紫外線について正確な
検出が困難になる。
Further, when a plurality of discharge tube type ultraviolet ray detectors are closely arranged, when one detector discharges due to the incidence of ultraviolet rays, an electromagnetic field is generated along with the discharge and the detector itself. Ultraviolet rays are also emitted from. Adjacent detectors can be adversely affected by those electromagnetic fields and UV radiation, making accurate detection of UV radiation from flames difficult.

【0010】上記のように隣接する検出器同士で互いに
悪影響を及ぼし合うのを防止するため、各検出器には炉
内の火炎からの紫外線のみが入射するように、放電管の
壁面に可視光や紫外線の反射を阻止する処理を施した
り、電磁気的な遮蔽(シールド)を強化することが考え
られる。しかし、そのような処理やシールドで、隣接す
る検出器同士で悪影響を完全に除去しようとすると、炉
内の火炎検出部の全体が大型化せざるを得ない。
In order to prevent the adjacent detectors from adversely affecting each other as described above, visible light is irradiated on the wall surface of the discharge tube so that only ultraviolet rays from the flame in the furnace are incident on each detector. It is conceivable to give a treatment to prevent the reflection of ultraviolet rays or to strengthen the electromagnetic shielding. However, in order to completely remove the adverse effect between the adjacent detectors by such processing and shield, the size of the flame detection unit in the furnace must be increased.

【0011】本発明は、上記のように検出可能な波長領
域が異なる複数種類の放電管型紫外線検出器を用いて火
炎からの紫外線を検出する場合、隣接する検出器同士で
検出時に悪影響を及ぼし合うことがなく、比較的小型に
構成できる紫外線検出装置を提供することを目的とす
る。
According to the present invention, when ultraviolet rays from a flame are detected by using a plurality of types of discharge tube type ultraviolet ray detectors having different detectable wavelength regions as described above, adjacent detectors adversely affect each other during detection. It is an object of the present invention to provide an ultraviolet detection device that does not fit and that can be configured in a relatively small size.

【0012】[0012]

【課題を解決するための手段】本発明の第1の態様は、
紫外線が透過し得る放電管の中に陽極及び陰極を設置す
ると共に該放電管内にイオン化可能なガスを充填して構
成した紫外線検出器であって前記陰極の材質が互いに異
なる複数の紫外線検出器を、紫外線の入射側に配置し、
各紫外線検出器の電極に所定の電圧を供給するとき、隣
接する紫外線検出器には同時にならないように時間をず
らして当該電圧を印加することを特徴とする。
The first aspect of the present invention is as follows.
An ultraviolet detector in which an anode and a cathode are installed in a discharge tube through which ultraviolet rays can pass and an ionizable gas is filled in the discharge tube, and a plurality of ultraviolet detectors having different cathode materials are provided. , Placed on the incident side of ultraviolet rays,
When a predetermined voltage is supplied to the electrodes of each ultraviolet ray detector, the voltage is applied to the adjacent ultraviolet ray detectors at different times so that they do not occur simultaneously.

【0013】この態様の紫外線検出装置においては、複
数の紫外線検出器の電極には電圧を順番に印加すること
が好適である。
In the ultraviolet detector of this aspect, it is preferable to apply a voltage in sequence to the electrodes of the plurality of ultraviolet detectors.

【0014】本発明のもう1つの態様は、紫外線が透過
し得る放電管と、該放電管の中に封入されたイオン化可
能ガスと、該放電管の内部に設置された1つの陽極及び
これに対向するように配置された複数の異なる材料から
成る陰極で構成した電極部と、該電極部に所定の電圧を
印加する電圧供給回路とを備え、該電圧供給回路は、複
数の陰極のうち少なくとも隣接する陰極同士では同時で
なく時間をずらして電圧を印加することを特徴とする。
Another aspect of the present invention is to provide a discharge tube capable of transmitting ultraviolet rays, an ionizable gas sealed in the discharge tube, an anode installed inside the discharge tube, and an anode. An electrode section composed of a plurality of cathodes made of different materials arranged so as to face each other, and a voltage supply circuit for applying a predetermined voltage to the electrode section, wherein the voltage supply circuit is at least one of the plurality of cathodes. It is characterized in that the voltage is applied between adjacent cathodes not at the same time but at different times.

【0015】この態様の紫外線検出装置においては、電
圧供給回路から電極部に供給される電圧の印加時間を可
変にすることが好ましい。
In the ultraviolet detector of this aspect, it is preferable that the application time of the voltage supplied from the voltage supply circuit to the electrode portion is variable.

【0016】[0016]

【作用及び効果】第1の態様によれば、陰極の材質が互
いに異なる複数の紫外線検出器に対し、隣接する紫外線
検出器では同時にならないように時間をずらして、所定
の電圧を印加するようにしたので、隣接する検出器同士
で放電時に悪影響を及ぼし合うことがなく、また、電磁
気的な遮蔽その他の付加的な構造が不要であるから、全
体が比較的小型に構成できる。
[Advantageous Effects] According to the first aspect, the predetermined voltage is applied to the plurality of ultraviolet ray detectors having different cathode materials so that the adjacent ultraviolet ray detectors are not shifted at the same time. Therefore, adjacent detectors do not adversely affect each other at the time of discharge, and no electromagnetic shielding or other additional structure is required, so that the entire structure can be made relatively small.

【0017】もう1つの態様によれば、1つの放電管の
中で1つの(共通)陽極と複数の異なる材料から成る陰
極とで電極部を構成した、すなわち、複数種類の検出器
を一体化して1つの放電管で複数の紫外線検出領域をカ
バーするようにしたので、全体がより小型に形成される
と共に、単体の装置であるから取扱いも便利である。
According to another aspect, in one discharge tube, one (common) anode and a cathode made of a plurality of different materials constitute an electrode portion, that is, a plurality of types of detectors are integrated. Since a single discharge tube covers a plurality of ultraviolet ray detection regions, the entire device is made smaller, and it is convenient to handle because it is a single device.

【0018】本発明によれば、上記のどの態様であって
も、燃焼火炎から放射される紫外線を検出することで空
燃比を算定し、火炎の状態が正常か異常かを判定するこ
とができる。従って、焼入れ等に用いられる燃焼炉の状
態診断や各種施設における火災検知など、種々の用途に
適した紫外線検出装置が提供される。
According to the present invention, in any of the above-mentioned modes, it is possible to calculate the air-fuel ratio by detecting the ultraviolet rays emitted from the combustion flame and determine whether the flame state is normal or abnormal. . Therefore, an ultraviolet ray detection device suitable for various purposes such as state diagnosis of a combustion furnace used for quenching and the like and fire detection in various facilities is provided.

【0019】[0019]

【発明の実施の形態】図1は、本発明の第1実施例の紫
外線検出装置の構成を示す。この検出装置は、複数(図
示の場合、3個)の放電管型紫外線検出器1,2,3を
紫外線の入射側に向けて配置して構成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows the configuration of an ultraviolet ray detector according to a first embodiment of the present invention. This detection device is configured by arranging a plurality (three in the illustrated case) of discharge tube type ultraviolet ray detectors 1, 2 and 3 toward the incident side of ultraviolet rays.

【0020】各紫外線検出器1,2,3は、紫外線透過
ガラスで作られた放電管10の中に1対の電極(陽極1
1と陰極12)を所定の間隔をとって平行に設置すると
共に放電管10内にイオン化可能なガス(ペニングガ
ス)を充填している構成は共通であるが、各検出器の陰
極(カソード)12は互いに異なる材料(図示の場合、
W、Cu、Ag)で作られている。
Each of the ultraviolet detectors 1, 2 and 3 has a pair of electrodes (anode 1) in a discharge tube 10 made of ultraviolet transmitting glass.
1 and the cathode 12) are arranged in parallel at a predetermined interval and the discharge tube 10 is filled with an ionizable gas (Penning gas), but the cathode (cathode) 12 of each detector is common. Are different materials (in the case shown,
Made of W, Cu, Ag).

【0021】なお、陽極(アノード)11は、網目状の
金属材料(例えば、Mo、Ni、又はW)で作られてい
る。アノード11を網目状にすることにより、紫外線は
放電管10の上端から内部に入り、カソード12に当
る。このタイプの紫外線検出器は、前述のように、1対
の電極の間に300ボルト程度の電圧が印加された状態
(オン状態)で紫外線が陰極に当ると放電状態になる。
それによって生じた電流を検出することにより、紫外線
を計測できる。
The anode 11 is made of a mesh metal material (for example, Mo, Ni, or W). By forming the anode 11 in a mesh shape, ultraviolet rays enter the inside of the discharge tube 10 from the upper end and hit the cathode 12. As described above, this type of ultraviolet detector is in a discharge state when ultraviolet rays hit the cathode while a voltage of about 300 V is applied between the pair of electrodes (on state).
Ultraviolet rays can be measured by detecting the current generated thereby.

【0022】図1の各紫外線検出器1,2,3におい
て、1対の電極、すなわちアノード11とカソード12
は、それぞれに接続した金属製の棒状支持部材13と1
4によって、放電管10の内側上部に平行に近接した関
係で支持されている。
In each of the ultraviolet detectors 1, 2 and 3 shown in FIG. 1, a pair of electrodes, that is, an anode 11 and a cathode 12 is provided.
Are metal rod-shaped support members 13 and 1 connected to each.
It is supported in parallel and close relation to the inner upper part of the discharge tube 10 by means of 4.

【0023】各紫外線検出器1,2,3は、例えば図2
に示す駆動回路によって駆動される。この駆動回路は、
上記のように異なる材料で作られたカソード12を有す
る各紫外線検出器1,2,3を順次オン状態に駆動する
ように構成されている。各検出器は、オン状態で紫外線
を受けることによって放電状態となり、アノード11か
らカソード12へのパルス電流を生ずる。
Each of the ultraviolet detectors 1, 2, 3 is, for example, as shown in FIG.
It is driven by the drive circuit shown in. This drive circuit
As described above, the ultraviolet detectors 1, 2 and 3 having the cathode 12 made of different materials are sequentially driven to the ON state. Each of the detectors is brought into a discharge state by receiving ultraviolet rays in the ON state, and a pulse current from the anode 11 to the cathode 12 is generated.

【0024】図2の回路は、変圧器20の二次側に接続
したコンデンサ21とダイオード22、及び抵抗23と
コンデンサ24との並列回路を含む電圧回路の出力側
に、上記紫外線検出器1,2,3を並列に、そして各々
のカソード12側に設けたスイッチ回路25を介して、
抵抗23とコンデンサ24との並列回路を接続して構成
されている。
In the circuit of FIG. 2, the ultraviolet detector 1 and the ultraviolet detector 1 are connected to the secondary side of the transformer 20 on the output side of a voltage circuit including a parallel circuit of a capacitor 21 and a diode 22 and a resistor 23 and a capacitor 24. 2, 3 in parallel, and via the switch circuit 25 provided on each cathode 12 side,
It is configured by connecting a parallel circuit of a resistor 23 and a capacitor 24.

【0025】スイッチ回路25は、後述のように、紫外
線検出器1,2,3の順番に所定の電圧を、或いは状況
により電圧を変えて(例えば、火炎からの紫外線の量が
多いときは電圧を下げて)、所定時間(例えば、数十マ
イクロ秒〜数十ミリ秒)ずつ周期的に(交流又は矩形の
波形で)印加するため、例えば、各紫外線検出器1,
2,3のカソード側の端子に所定時間間隔で順次接続す
るように切り替えられる可動接点28を有する機械的な
切替手段でもよい。
As will be described later, the switch circuit 25 changes the predetermined voltage in the order of the ultraviolet detectors 1, 2 and 3 or changes the voltage depending on the situation (for example, when the amount of ultraviolet rays from the flame is large, the voltage is changed. (For example, several tens of microseconds to several tens of milliseconds) are applied periodically (in alternating current or rectangular waveform) for a predetermined time (for example, several tens of microseconds to several tens of milliseconds).
It may be a mechanical switching means having a movable contact 28 that is switched so as to be sequentially connected to the cathode side terminals of the second and third terminals at predetermined time intervals.

【0026】図2の回路において、変圧器20の二次巻
線の下側端子が+であるとき、電流は、この下側端子か
ら抵抗23及びダイオード22を経て、コンデンサ21
を図示の極性に充電するように流れる。変圧器20の二
次側電圧は、交流の次の半サイクルにおいて、コンデン
サ21の電圧に加えられ、スイッチ回路25の可動接点
28と接続した紫外線検出器のアノード11に正電圧を
印加する。
In the circuit of FIG. 2, when the lower terminal of the secondary winding of the transformer 20 is +, the current flows from this lower terminal through the resistor 23 and the diode 22 to the capacitor 21.
Flow to charge to the polarity shown. The secondary voltage of the transformer 20 is added to the voltage of the capacitor 21 in the next half cycle of the alternating current to apply a positive voltage to the anode 11 of the UV detector connected to the movable contact 28 of the switch circuit 25.

【0027】図示の例では、二次電圧は136V、コンデ
ンサ21は 4μF、抵抗23は5100Ω、コンデンサ24
は10μFに、それぞれ設定され、コンデンサ21の電圧
は110Vである。
In the illustrated example, the secondary voltage is 136 V, the capacitor 21 is 4 μF, the resistor 23 is 5100Ω, and the capacitor 24 is
Are set to 10 μF, and the voltage of the capacitor 21 is 110V.

【0028】変圧器20へ交流電圧が印加された状態
で、紫外線が存在しなければ、スイッチ回路25の可動
接点28が接続した検出器1,2又は3のインピーダン
スは極めて高くなり、最初ダイオード22を経て電流が
流れ、初めの半サイクル中、コンデンサ21を充電す
る。次の半サイクルにおいては、この回路には殆ど或い
は全く電流が流れない。再び電圧が反転すると、ダイオ
ード22には単に漏洩電流だけが流れ、コンデンサ21
を充電状態に維持する。この漏洩電流は、出力電流を生
ずるには不充分である。
If no ultraviolet light is present in the state where the AC voltage is applied to the transformer 20, the impedance of the detector 1, 2, or 3 connected to the movable contact 28 of the switch circuit 25 becomes extremely high, and the diode 22 is initially connected. A current flows through and charges the capacitor 21 during the first half cycle. During the next half cycle, little or no current will flow through this circuit. When the voltage is reversed again, only leakage current flows through the diode 22 and the capacitor 21
To keep the battery charged. This leakage current is insufficient to produce the output current.

【0029】紫外線が存在すると、上記検出器は、変圧
器20に加えられた交流の半サイクルの間導電し、コン
デンサ21はその検出器、及び抵抗26とコンデンサ2
7の並列回路を経て放電する。変圧器20に極性が反転
した次の半サイクルが現れると、コンデンサ21はダイ
オード22を経て再充電される。
In the presence of ultraviolet light, the detector conducts for half a cycle of the alternating current applied to the transformer 20, the capacitor 21 being the detector, and the resistor 26 and the capacitor 2.
It discharges through the parallel circuit of 7. When the next half cycle with reversed polarity appears in the transformer 20, the capacitor 21 is recharged via the diode 22.

【0030】上記検出器が導通状態を持続しているなら
ば、コンデンサ21は充電と放電を交互に行い、1つお
きの半サイクル毎にダイオード22を通る電流が生ず
る。そのため、これに直列に持続された抵抗23に電圧
降下を生じ、この電圧降下がコンデンサ24を充電し、
その両端に電圧を生ずる。この時間中、コンデンサ27
の両端の電圧は極めて小である。検出器に短絡が起これ
ば、そのインピーダンスが極めて小となるので、コンデ
ンサ21は、これと並列に接続したダイオード29を経
て、比較的高い電圧まで充電されることになる。即ち、
コンデンサ21の極めて高い充電電圧が、1つおきの半
サイクル毎にダイオード22に逆バイアスを与えてその
導通度を低下させる。従って、抵抗23を流れる電流は
極めて少なくなるか或いはゼロになるので、コンデンサ
24の電荷量が低下し或いは無電荷になる。コンデンサ
24が無電荷状態になれば、その両端電圧はゼロにな
る。
If the detector remains conductive, the capacitor 21 will alternate between charging and discharging, resulting in a current through the diode 22 every other half cycle. Therefore, a voltage drop occurs in the resistor 23 that is connected in series with this, and this voltage drop charges the capacitor 24,
A voltage develops across it. During this time, the capacitor 27
The voltage across is very small. If a short circuit occurs in the detector, its impedance becomes extremely small, so that the capacitor 21 is charged to a relatively high voltage via the diode 29 connected in parallel with the short circuit. That is,
The extremely high charging voltage of capacitor 21 reverse biases diode 22 every other half cycle, reducing its conductivity. Therefore, the current flowing through the resistor 23 becomes extremely small or becomes zero, so that the charge amount of the capacitor 24 decreases or becomes no charge. When the capacitor 24 becomes uncharged, the voltage across it becomes zero.

【0031】紫外線が入射される限り、半サイクルにお
いて検出器はオフ状態になってコンデンサ21が充電さ
れ、次の半サイクルにおいては検出器がオン状態となっ
てコンデンサ21から電荷が放電される。
As long as ultraviolet rays are incident, the detector is turned off and the capacitor 21 is charged in the half cycle, and the detector is turned on and the capacitor 21 is discharged in the next half cycle.

【0032】なお、抵抗26とコンデンサ27との並列
回路及びダイオード29により、短絡保護手段が構成さ
れている。
The parallel circuit of the resistor 26 and the capacitor 27 and the diode 29 constitute short-circuit protection means.

【0033】図2のスイッチ回路25により、例えば、
カソード12がW、Cu、Agで作られている紫外線検
出器1,2,3の順番に、各放電管内の1対の電極に所
定の電圧を一定時間ずつ印加することにより、図3に示
すように、各紫外線検出器1,2,3は順次ON(動
作)状態となり、それぞれ検出可能な波長領域の紫外線
を検出することができる。具体的には、各紫外線検出器
1,2,3のアノードとカソードにそれぞれ接続した1
対の端子に、図3に示したような交流電圧を印加した状
態で、紫外線がカソードに当ると、当該交流電圧の略半
サイクル毎に放電が行われる。この放電により、図示の
ような信号電流が得られる。このとき、端子電圧は破線
で示すようになる。
With the switch circuit 25 of FIG. 2, for example,
As shown in FIG. 3, the cathode 12 is made of W, Cu, and Ag, and the ultraviolet detectors 1, 2, and 3 are sequentially applied with a predetermined voltage to a pair of electrodes in each discharge tube for a certain period of time. As described above, the ultraviolet ray detectors 1, 2, and 3 are sequentially turned on (operated), and it is possible to detect the ultraviolet rays in the detectable wavelength region. Specifically, 1 connected to the anode and cathode of each ultraviolet detector 1, 2, 3 respectively
When ultraviolet rays hit the cathode in a state where the AC voltage as shown in FIG. 3 is applied to the pair of terminals, discharge is performed approximately every half cycle of the AC voltage. A signal current as shown in the figure is obtained by this discharge. At this time, the terminal voltage becomes as shown by the broken line.

【0034】なお、カソードの材質が異なる複数の紫外
線検出器に供給する電圧の印加時間(ON状態)は、図
3のように、紫外線検出器同士で互いに重ならず、か
つ、1つの検出器のONの後どの検出器もONでない
(OFF)状態をとってから別の検出器をON状態にす
ることが好ましい。
As shown in FIG. 3, the ultraviolet light detectors do not overlap each other in the application time (ON state) of the voltage supplied to the plural ultraviolet light detectors having different cathode materials, and one ultraviolet light detector is not detected. It is preferable to take a state in which none of the detectors is turned on (OFF) after turning on the other one and then turn on another detector.

【0035】図4は、本発明の検出対象である火炎中の
NO,OH,CH等の成分が表れる波長領域の発光スペ
クトル(波長特性)を示す。これは、バーナー上のアセ
チレン−酸化二窒素(NO)火炎の例である。図示の
ように、波長が凡そ260(nm)以下の領域ではNO、
凡そ260〜310(nm)の領域ではOH、凡そ310〜400
(nm)の領域ではCH及びCN等の成分が、それぞれ
強く表れる。
FIG. 4 shows an emission spectrum (wavelength characteristic) in a wavelength region in which components such as NO, OH and CH in a flame which is a detection target of the present invention appears. This acetylene on the burner - which is an example of a nitrous oxide (N 2 O) flame. As shown in the figure, when the wavelength is about 260 (nm) or less, NO,
OH in the region of approximately 260 to 310 (nm), approximately 310 to 400
In the region of (nm), components such as CH and CN strongly appear.

【0036】一方、上記のような放電管型検出器の電極
の種類(材料)に応じて、仕事関数(Φ)と波長は次の
ように分類される。
On the other hand, the work function (Φ) and the wavelength are classified as follows according to the kind (material) of the electrodes of the discharge tube type detector as described above.

【0037】Φ1 = 4.52eV(W),4.61〜5.24eV
(Ni),4.2eV(Mo) 波長= 270 ,270〜236 ,294(nm) Φ2 = 3.85〜4.38eV(Cu),4.04〜4.77eV(F
e),4.0〜4.58eV(Au),4.07〜4.19eV(T
a),4.39eV(C) 波長= 320〜280 ,306〜260 ,309〜270 ,303〜295
,281(nm) Φ3 = 3.08〜3.56eV(Ag),2.98〜4.43eV(A
l),2.24eV(Ca) 波長= 400〜347 ,414〜279 , 551(nm) 従って、図4の発光スペクトルにおいて、 火炎中のNOに関しては、200〜250nmの波長領域で検
出するため、仕事関数Φ1の電極で、出力は F1=f1
(Φ1). 火炎中のOHに関しては、260〜310nmの波長領域で検
出するため、仕事関数Φ2の電極で、出力は F2=f2
(Φ2)−k1・F1.[k1は補正係数] 火炎中のCHに関しては、314〜390nmの波長領域で検
出するため、仕事関数Φ3の電極で、出力は F3=f3
(Φ3)−k2・F2−k3・F1.[k2,k3は補正係数] 以上から、電極材料に応じた仕事関数Φ1は主にNO基
を捉え、仕事関数Φ2はOHとNOを捉え、仕事関数Φ3
はNO、OH、CH、CN、Cなどを捉えるものといえ
る。
Φ 1 = 4.52 eV (W), 4.61 to 5.24 eV
(Ni), 4.2 eV (Mo) Wavelength = 270, 270 to 236, 294 (nm) Φ2 = 3.85 to 4.38 eV (Cu), 4.04 to 4.77 eV (F
e), 4.0 to 4.58 eV (Au), 4.07 to 4.19 eV (T
a), 4.39 eV (C) Wavelength = 320 to 280, 306 to 260, 309 to 270, 303 to 295
, 281 (nm) Φ3 = 3.08 to 3.56 eV (Ag), 2.98 to 4.43 eV (A
l), 2.24 eV (Ca) wavelength = 400 to 347, 414 to 279, 551 (nm) Therefore, in the emission spectrum of FIG. 4, NO in the flame is detected in the wavelength range of 200 to 250 nm, so work The output of the function Φ1 is F1 = f1
(Φ1). Since OH in the flame is detected in the wavelength range of 260 to 310 nm, the output is F2 = f2 at the electrode with work function Φ2.
(Φ2) -k1 · F1. [K1 is a correction coefficient] CH in the flame is detected in the wavelength region of 314 to 390 nm, so the output is F3 = f3 at the electrode of work function Φ3.
(Φ3) −k2 · F2−k3 · F1. [K2 and k3 are correction factors] From the above, the work function Φ1 according to the electrode material mainly captures the NO group, the work function Φ2 captures OH and NO, and the work function Φ3
Can be said to capture NO, OH, CH, CN, C, etc.

【0038】従って、上記実施例のように、各々のカソ
ードが異なる材料(例えば、W、Cu、Ag)で作られ
た複数の紫外線検出器で紫外線を検出することにより、
それらの材料に応じた波長領域の発光スペクトルを得
て、火炎中のNOやCH等の成分の量(それらの強度
比)を算出できる。
Therefore, as in the above-mentioned embodiment, by detecting the ultraviolet rays by a plurality of ultraviolet ray detectors, each cathode being made of a different material (for example, W, Cu, Ag),
By obtaining an emission spectrum in the wavelength region corresponding to those materials, the amount of components such as NO and CH in the flame (the intensity ratio thereof) can be calculated.

【0039】一方、燃焼による発光強度と空気比は、図
5に示すような一定の関係を有する。これは、例えば天
然ガスを燃料として、空気を供給し燃焼させたときに発
生するCH(メタン)と空気の混合気体におけるN
O、OH及びCH基のスペクトル強度(比)と当量比
(空気比の逆数)との関係を表わしている。ここで、空
気比とは、燃料を完全燃焼させるのに最低限必要な空気
(つまり酸素)の量(これを1とする)であり、理論上
はこれが必要な空気量であるが、実際には燃料に対して
空気が充分混合しないことがあり、また前述のように、
より高温で燃焼させるため、空気が多めに供給される。
すなわち、目標値とする空気比は1より高く設定され
る。そして、燃焼時には、空気比が目標値をとるように
空気又は燃料の供給量を制御するため、実際の空気比を
検知することが必要である。
On the other hand, the emission intensity due to combustion and the air ratio have a fixed relationship as shown in FIG. This is, for example, N in a mixed gas of CH 4 (methane) and air generated when air is supplied and burned using natural gas as a fuel.
It shows the relationship between the spectral intensity (ratio) of O, OH and CH groups and the equivalence ratio (reciprocal of the air ratio). Here, the air ratio is the minimum amount of air (that is, oxygen) required to completely burn the fuel (that is, 1), and theoretically, this is the required amount of air, but The air may not mix well with the fuel, and as mentioned above,
Since it burns at a higher temperature, a large amount of air is supplied.
That is, the target air ratio is set higher than 1. Then, at the time of combustion, since the supply amount of air or fuel is controlled so that the air ratio takes a target value, it is necessary to detect the actual air ratio.

【0040】従って、本発明の紫外線検出装置により、
上記のように火炎中のNOやCHの発光強度比が算出さ
れるので、その算出結果から上記の関係に基づいて空気
比が得られる。
Therefore, according to the ultraviolet detector of the present invention,
Since the emission intensity ratio of NO and CH in the flame is calculated as described above, the air ratio is obtained from the calculation result based on the above relationship.

【0041】次に、他の実施例について説明する。Next, another embodiment will be described.

【0042】図6は、図1に示した複数の紫外線検出器
で構成される検出装置において、カソード12がCu,
Agで作られた紫外線検出器2,3の入光部(図1の各
放電管10の上端面)の前に、所定の波長から長い方の
紫外線のみを通すローパスフィルタ又はバンドパスフィ
ルタ(以下では「ローパスフィルタ」を用いた場合で説
明する)15を設けたものを示す。
FIG. 6 is a schematic diagram of the detection apparatus including the plurality of ultraviolet ray detectors shown in FIG.
A low-pass filter or a band-pass filter (hereinafter, referred to as a band-pass filter) that passes only ultraviolet rays longer than a predetermined wavelength in front of the light entrance portions (upper end surfaces of the discharge tubes 10 in FIG. 1) of the ultraviolet detectors 2 and 3 made of Ag Will be described in the case of using a "low-pass filter").

【0043】この構成によれば、図7に示すように、紫
外線検出器2,3で検出される波長領域は、それぞれ所
定の波長(例えば、Cuの場合は250nm、Agの場合
は280nm)以下の部分がカットされる。これにより、
短波長側の紫外線領域では、カソード12がWで作られ
た紫外線検出器1のみが検出すると共に、それより大き
い波長領域では、ローパスフィルタ15を設けた紫外線
検出器2,3が検出するというように、各検出器の特性
に応じて区分された紫外線領域での検出が可能となる。
一方、NO、OH、CH等の成分のスペクトルは、上記
のように区分された領域毎に分かれて表れるので、それ
らの成分を各領域に対応した検出器で確実に検出でき
る。すなわち、このような分光によって、紫外線検出装
置の検出ないし分析の精度が向上するという効果が得ら
れる。
According to this structure, as shown in FIG. 7, the wavelength regions detected by the ultraviolet detectors 2 and 3 are each within a predetermined wavelength (for example, 250 nm for Cu and 280 nm for Ag). Is cut. This allows
In the ultraviolet region on the short wavelength side, only the ultraviolet detector 1 whose cathode 12 is made of W detects, and in the wavelength region larger than that, the ultraviolet detectors 2 and 3 provided with the low-pass filter 15 detect. In addition, it is possible to detect in the ultraviolet region divided according to the characteristics of each detector.
On the other hand, the spectra of the components such as NO, OH, and CH appear separately for each of the regions divided as described above, so that those components can be reliably detected by the detector corresponding to each region. That is, the effect of improving the detection or analysis accuracy of the ultraviolet detection device is obtained by such spectroscopy.

【0044】図8は、本発明の第2実施例の紫外線検出
装置を示す。この検出装置は、紫外線透過ガラスで作ら
れた放電管30の中にイオン化可能なガス(ペニングガ
ス)を充填している点は第1実施例と共通であるが、放
電管30の内部に設置された網目状の金属材料から成る
1つの陽極(アノード)31と対向するように複数(こ
の場合も3個)の異なる材料から成る陰極(カソード)
32を配置して1つの放電管型検出器を形成している点
が、第1実施例と異なる。
FIG. 8 shows an ultraviolet ray detector according to the second embodiment of the present invention. This detection device is common to the first embodiment in that the ionization gas (Penning gas) is filled in the discharge tube 30 made of ultraviolet-transparent glass, but it is installed inside the discharge tube 30. One anode (anode) 31 made of a mesh-shaped metal material, and a plurality of cathodes (three in this case) made of different materials so as to face each other.
The difference from the first embodiment is that 32 are arranged to form one discharge tube type detector.

【0045】3個の陰極32はW、Cu、Agで作られ
ており、電極部を構成する1つの共通陽極31と各陰極
32との間には、例えば図2の駆動回路で構成される電
圧供給回路(図示省略)によって、隣接する陰極32同
士は同時でなく時間をずらして電圧が印加される。
The three cathodes 32 are made of W, Cu, and Ag, and the one common anode 31 constituting the electrode portion and each cathode 32 are constituted by, for example, the drive circuit shown in FIG. By the voltage supply circuit (not shown), adjacent cathodes 32 are applied with voltage not at the same time but at different times.

【0046】また、図6に示したものと同様の目的で、
放電管30の上端面には、その内部のCu,Agで作ら
れたカソード32と対応する位置にそれぞれ所定の波長
から長い方の紫外線のみを通すローパスフィルタ15が
配置されている。
For the same purpose as shown in FIG. 6,
On the upper end surface of the discharge tube 30, a low-pass filter 15 that passes only ultraviolet rays longer than a predetermined wavelength is arranged at a position corresponding to the cathode 32 made of Cu and Ag therein.

【0047】上記実施例の紫外線検出装置は、燃焼炉内
の火炎に限らず、火を使う調理場や炊事場での炎の異常
検知、自動車のエンジンにおける点火の炎の状態検出、
或いは火災を未然に防ぐための火炎検知等にも、好適に
用いることができる。
The ultraviolet ray detecting device of the above embodiment is not limited to the flame in the combustion furnace, but also detects an abnormality in the flame in a cooking or cooking area where a fire is used, detects the state of ignition flame in an automobile engine,
Alternatively, it can be preferably used for flame detection for preventing a fire.

【0048】例えば、火災防止用としては、赤外線スト
ーブを使用し或いは溶接を行うような作業場において
は、ストーブや溶接個所から相当量の光が出るので、通
常の光検出器では誤検出が生じるが、上記の紫外線検出
装置によれば、それらの光ではなく、火災に発展し得る
火焔から出る紫外線を検出するので、火災の原因となる
火炎の発生を早期に発見することができる。
For example, in order to prevent fires, in a work place where an infrared stove is used or welding is performed, a considerable amount of light is emitted from the stove or the welding point, so that a normal photodetector may cause erroneous detection. The above-mentioned ultraviolet ray detection device detects not the light but the ultraviolet rays emitted from the flame that can develop into a fire, so that the occurrence of a flame that causes a fire can be detected at an early stage.

【0049】図9は、火災の予防に上記実施例の紫外線
検出装置を用いた場合の火炎検知方法の例を示すフロー
チャートである。この方法は、上記第1実施例又は第2
実施例において紫外線が入射されたときに放電する3種
類のカソード(W、Cu、Agで作られている)によっ
て生ずる信号電流をコンピュータその他の処理装置で処
理することによって実施される。
FIG. 9 is a flow chart showing an example of a flame detecting method when the ultraviolet ray detecting device of the above embodiment is used for preventing fire. This method is the same as the first embodiment or the second embodiment.
In the embodiment, it is carried out by processing a signal current generated by three kinds of cathodes (made of W, Cu and Ag) which are discharged when ultraviolet rays are incident, by a computer or other processing device.

【0050】具体的には、図9において、初めに、W、
Cu、Agのいずれかで作られたカソードを持つ検出器
が紫外線を検出したかどうかによって火炎か火炎でない
かを判定する。すなわち、ST1においてW製のカソー
ドで検出したかどうかをチェックし、“Yes”であれ
ば、その信号量(紫外線の量)を計測し(ST2)、次
のST3においてCu製のカソードで検出したかどうか
をチェックし、これも“Yes”であれば、その信号量
(紫外線の量)を計測し(ST4)、次のST5におい
てAg製のカソードで検出したかどうかをチェックし、
これも“Yes”であれば、その信号量(紫外線の量)
を計測する(ST6)。以上の場合は、いずれの検出器
でも紫外線を検出したのであるから、火炎と判定する
(ST7)。そして、各検出器で検出し計測した信号量
に基づいて、前述の「空気比」を算出する演算を行い
(ST8)、得られた空気比が設定値内にあるか否かを
判定し(ST9)、“Yes”であれば適正な火炎と判
断して初めの待機状態に戻る。一方、得られた空気比が
設定値内にないときは、異常と判断して警報を出す(S
T10)。また、上記検出器のいずれにおいても紫外線
を検出しなければ、火炎でないと判定して(ST1
1)、初めの待機状態に戻る。
Specifically, in FIG. 9, first, W,
Whether the detector is a flame or a flame is determined by whether or not a detector having a cathode made of Cu or Ag detects ultraviolet rays. That is, it is checked in ST1 whether or not it is detected by the W cathode, and if “Yes”, the signal amount (amount of ultraviolet ray) is measured (ST2), and in the next ST3, it is detected by the Cu cathode. If it is also “Yes”, the signal amount (ultraviolet amount) is measured (ST4), and in the next ST5, it is checked whether or not it is detected by the Ag cathode.
If this is also “Yes”, the signal amount (amount of ultraviolet rays)
Is measured (ST6). In the above cases, since ultraviolet rays have been detected by all the detectors, it is determined that the flame is a flame (ST7). Then, based on the signal amount detected and measured by each detector, the above-mentioned "air ratio" is calculated (ST8), and it is determined whether or not the obtained air ratio is within the set value ( ST9) If "Yes", the flame is judged to be proper and the initial standby state is returned. On the other hand, when the obtained air ratio is not within the set value, it is judged to be abnormal and an alarm is issued (S
T10). If none of the above detectors detect ultraviolet rays, it is determined that the flame is not present (ST1
1) Return to the initial standby state.

【0051】以上、実施例について説明したが、本発明
はこれに限らず、電極の材料によって検出可能な領域が
異なる放電管型検出器を用いて任意の構成をとることが
できる。
Although the embodiment has been described above, the present invention is not limited to this, and an arbitrary configuration can be adopted by using a discharge tube type detector having a different detectable region depending on the material of the electrode.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例の紫外線検出装置を示す
図。
FIG. 1 is a diagram showing an ultraviolet detection device according to a first embodiment of the present invention.

【図2】図1の実施例において3つの紫外線検出器に対
して所定の電圧を印加することで紫外線を検出するため
の駆動回路の一例を示す図。
2 is a diagram showing an example of a drive circuit for detecting ultraviolet rays by applying a predetermined voltage to three ultraviolet ray detectors in the embodiment of FIG.

【図3】図1の3個の紫外線検出器が順次ON状態にな
ることで紫外線を検出する動作を示す図。
FIG. 3 is a diagram showing an operation of detecting ultraviolet rays when the three ultraviolet ray detectors of FIG. 1 are sequentially turned on.

【図4】検出対象の火炎中のNO,OH,CH等の成分
が表れる波長領域の発光スペクトルを示す図。
FIG. 4 is a diagram showing an emission spectrum in a wavelength region in which components such as NO, OH, and CH appear in a flame to be detected.

【図5】燃焼によって発生する成分の発光強度と空気比
との相関関係を示すグラフ。
FIG. 5 is a graph showing the correlation between the emission intensity of components generated by combustion and the air ratio.

【図6】図1に示した3個の紫外線検出器のうちカソー
ドがCu,Agで作られた検出器の入光部の前にローパ
スフィルタを設けた場合の構成を示す図。
FIG. 6 is a diagram showing a configuration in which a low-pass filter is provided in front of a light entrance portion of a detector whose cathode is made of Cu or Ag among the three ultraviolet detectors shown in FIG. 1;

【図7】図6のローパスフィルタを設けた検出器によっ
て検出される紫外線の波長領域の変化を示す図。
7 is a diagram showing changes in the wavelength region of ultraviolet rays detected by a detector provided with the low-pass filter shown in FIG.

【図8】本発明の第2実施例の紫外線検出装置を示す
図。
FIG. 8 is a diagram showing an ultraviolet ray detection device according to a second embodiment of the present invention.

【図9】実施例の紫外線検出装置を用いた火炎検出処理
の手順を示すフローチャート。
FIG. 9 is a flowchart showing a procedure of flame detection processing using the ultraviolet ray detection device according to the embodiment.

【符号の説明】[Explanation of symbols]

1,2,3…紫外線検出器、10…放電管、11…陽
極、12…陰極、13,14…電極支持部材、15…ロ
ーパスフィルタ、30…放電管、31…陽極、32…陰
極。
1, 2, 3 ... Ultraviolet detector, 10 ... Discharge tube, 11 ... Anode, 12 ... Cathode, 13, 14 ... Electrode support member, 15 ... Low-pass filter, 30 ... Discharge tube, 31 ... Anode, 32 ... Cathode.

フロントページの続き (72)発明者 西野 義一 東京都渋谷区渋谷2丁目12番19 株式会社 山武内 (72)発明者 田中 健治郎 東京都渋谷区渋谷2丁目12番19 株式会社 山武内 (72)発明者 山田 哲也 東京都渋谷区渋谷2丁目12番19 株式会社 山武内 (72)発明者 住吉 啓介 東京都渋谷区渋谷2丁目12番19 株式会社 山武内 Fターム(参考) 2G065 AB05 BA16 BB27 BC02 BC14 BC22 BC35 BD06 CA01 CA12 DA06 Continued front page    (72) Inventor Yoshikazu Nishino             2-12-19 Shibuya, Shibuya-ku, Tokyo Co., Ltd.             Yamatake (72) Inventor Kenjiro Tanaka             2-12-19 Shibuya, Shibuya-ku, Tokyo Co., Ltd.             Yamatake (72) Inventor Tetsuya Yamada             2-12-19 Shibuya, Shibuya-ku, Tokyo Co., Ltd.             Yamatake (72) Inventor Keisuke Sumiyoshi             2-12-19 Shibuya, Shibuya-ku, Tokyo Co., Ltd.             Yamatake F term (reference) 2G065 AB05 BA16 BB27 BC02 BC14                       BC22 BC35 BD06 CA01 CA12                       DA06

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】紫外線が透過し得る放電管の中に陽極及び
陰極を設置すると共に該放電管内にイオン化可能なガス
を充填して構成した紫外線検出器であって前記陰極の材
質が互いに異なる複数の紫外線検出器を、紫外線の入射
側に配置し、各紫外線検出器の電極に所定の電圧を供給
するとき、隣接する紫外線検出器には同時にならないよ
うに時間をずらして当該電圧を印加することを特徴とす
る紫外線検出装置。
1. An ultraviolet detector comprising an anode and a cathode provided in a discharge tube capable of transmitting ultraviolet rays, and a discharge tube filled with an ionizable gas, wherein the cathodes are made of different materials. The UV detectors are placed on the incident side of UV rays, and when supplying a predetermined voltage to the electrodes of each UV detector, apply the voltage to the adjacent UV detectors with staggered times so that they do not occur simultaneously. Ultraviolet ray detection device characterized by.
【請求項2】請求項1記載の紫外線検出装置において、
前記複数の紫外線検出器の電極には前記電圧を順番に印
加することを特徴とする紫外線検出装置。
2. The ultraviolet detector according to claim 1,
An ultraviolet ray detection device, wherein the voltage is sequentially applied to electrodes of the plurality of ultraviolet ray detectors.
【請求項3】紫外線が透過し得る放電管と、該放電管の
中に封入されたイオン化可能ガスと、該放電管の内部に
設置された1つの陽極及びこれに対向するように配置さ
れた複数の異なる材料から成る陰極で構成した電極部
と、該電極部に所定の電圧を印加する電圧供給回路とを
備え、 該電圧供給回路は、前記複数の陰極のうち少なくとも隣
接する陰極同士では同時でなく時間をずらして前記電圧
を印加することを特徴とする紫外線検出装置。
3. A discharge tube capable of transmitting ultraviolet rays, an ionizable gas sealed in the discharge tube, one anode installed inside the discharge tube, and an anode disposed opposite to the anode. An electrode section composed of a plurality of cathodes made of different materials and a voltage supply circuit for applying a predetermined voltage to the electrode section are provided, and the voltage supply circuit is provided for at least adjacent cathodes of the plurality of cathodes at the same time. Instead of the above, the ultraviolet detection device is characterized in that the voltage is applied at a different time.
JP2002131691A 2002-05-07 2002-05-07 UV detector Expired - Lifetime JP4521153B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002131691A JP4521153B2 (en) 2002-05-07 2002-05-07 UV detector
CNB03810220XA CN100414271C (en) 2002-05-07 2003-05-06 Ultraviolet detector
AU2003235842A AU2003235842A1 (en) 2002-05-07 2003-05-06 Ultraviolet detector
PCT/JP2003/005653 WO2003095958A1 (en) 2002-05-07 2003-05-06 Ultraviolet detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002131691A JP4521153B2 (en) 2002-05-07 2002-05-07 UV detector

Publications (2)

Publication Number Publication Date
JP2003322562A true JP2003322562A (en) 2003-11-14
JP4521153B2 JP4521153B2 (en) 2010-08-11

Family

ID=29416617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002131691A Expired - Lifetime JP4521153B2 (en) 2002-05-07 2002-05-07 UV detector

Country Status (4)

Country Link
JP (1) JP4521153B2 (en)
CN (1) CN100414271C (en)
AU (1) AU2003235842A1 (en)
WO (1) WO2003095958A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010122102A (en) * 2008-11-20 2010-06-03 East Japan Railway Co Ultraviolet ray detection device and pantograph bounce detection recorder
JP2013029453A (en) * 2011-07-29 2013-02-07 Azbil Corp Flame sensor
JP2013210284A (en) * 2012-03-30 2013-10-10 Azbil Corp Flame detector
JP2016504552A (en) * 2013-09-25 2016-02-12 韓国生産技術研究院Korea Institute Of Industrial Technology Air-fuel ratio measurement system including optical sensor
JP2019020222A (en) * 2017-07-14 2019-02-07 アズビル株式会社 Cathode electrode selection assisting method and device
JP2020035638A (en) * 2018-08-30 2020-03-05 アズビル株式会社 Ultraviolet sensor
KR20200114411A (en) * 2019-03-28 2020-10-07 한국표준과학연구원 The fire detection sensor capable of simultaneous measurement of ultraviolet and infrared rays
JP6948678B1 (en) * 2020-11-16 2021-10-13 東京瓦斯株式会社 Air ratio adjustment method, air ratio adjustment system and program
JP6948679B1 (en) * 2020-11-16 2021-10-13 東京瓦斯株式会社 Air ratio estimation system, air ratio estimation method and program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2439451T3 (en) * 2010-10-08 2014-03-10 Bfi Automation Gmbh An apparatus for recognizing the presence of a flame

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5222934Y2 (en) * 1972-04-03 1977-05-25
US5487266A (en) * 1992-05-05 1996-01-30 General Electric Company Combustion control for producing low NOx emissions through use of flame spectroscopy
JP2651352B2 (en) * 1993-06-02 1997-09-10 浜松ホトニクス株式会社 Photocathode, phototube and photodetector
JPH0750249A (en) * 1993-08-06 1995-02-21 Toshiba Corp Electron beam lithography device
AU4665696A (en) * 1995-02-14 1996-09-04 Gta Ingenieurburo Fur Geoinformatik Device for determining the strength and dose of ultraviolet radiation using sensors sensitive to ultraviolet radiation
JP2001196023A (en) * 2000-01-06 2001-07-19 Hamamatsu Photonics Kk Photomultiplier
JP2001329862A (en) * 2000-05-19 2001-11-30 Mitsubishi Heavy Ind Ltd Flame detecting device for gas turbine
JP2001343280A (en) * 2000-06-02 2001-12-14 Yamatake Corp Flame detecting device
JP4399963B2 (en) * 2000-07-14 2010-01-20 三菱電機株式会社 Ionization chamber detector

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010122102A (en) * 2008-11-20 2010-06-03 East Japan Railway Co Ultraviolet ray detection device and pantograph bounce detection recorder
JP2013029453A (en) * 2011-07-29 2013-02-07 Azbil Corp Flame sensor
JP2013210284A (en) * 2012-03-30 2013-10-10 Azbil Corp Flame detector
JP2016504552A (en) * 2013-09-25 2016-02-12 韓国生産技術研究院Korea Institute Of Industrial Technology Air-fuel ratio measurement system including optical sensor
JP2019020222A (en) * 2017-07-14 2019-02-07 アズビル株式会社 Cathode electrode selection assisting method and device
JP7139198B2 (en) 2018-08-30 2022-09-20 アズビル株式会社 UV sensor
JP2020035638A (en) * 2018-08-30 2020-03-05 アズビル株式会社 Ultraviolet sensor
KR20200114411A (en) * 2019-03-28 2020-10-07 한국표준과학연구원 The fire detection sensor capable of simultaneous measurement of ultraviolet and infrared rays
KR102195375B1 (en) * 2019-03-28 2020-12-24 한국표준과학연구원 The fire detection sensor capable of simultaneous measurement of ultraviolet and infrared rays
JP6948678B1 (en) * 2020-11-16 2021-10-13 東京瓦斯株式会社 Air ratio adjustment method, air ratio adjustment system and program
JP6948679B1 (en) * 2020-11-16 2021-10-13 東京瓦斯株式会社 Air ratio estimation system, air ratio estimation method and program
JP2022079171A (en) * 2020-11-16 2022-05-26 東京瓦斯株式会社 Air ratio estimation system, air ratio estimation method and program
JP2022079168A (en) * 2020-11-16 2022-05-26 東京瓦斯株式会社 Air ratio adjustment method, air ratio adjustment system and program

Also Published As

Publication number Publication date
AU2003235842A1 (en) 2003-11-11
CN100414271C (en) 2008-08-27
CN1653318A (en) 2005-08-10
JP4521153B2 (en) 2010-08-11
WO2003095958A1 (en) 2003-11-20

Similar Documents

Publication Publication Date Title
US7382140B2 (en) Method and device for flame monitoring
JP4521153B2 (en) UV detector
US10415829B2 (en) Flame detecting system
EP0180780B1 (en) Noncontact dynamic tester for integrated circuits
US6034768A (en) Induced breakdown spectroscopy detector system with controllable delay time
WO2013144679A2 (en) Corona ionization device and method
US11428575B2 (en) Flame detection system and received light quantity measuring method
US6842008B2 (en) Gas detector with modular detection and discharge source calibration
Li et al. Effects of optical pulse parameters on a pulsed UV-illuminated switch and their adjusting methods
Chapman et al. An improved plasma jet system for spectrochemical analysis
Yen et al. Measurements of phosphor properties
US3483430A (en) Control circuit with voltage sensitive photoelectric gaseous discharge tube
US4177404A (en) Arc detector for glow discharges
FI83460B (en) ELECTRIC PARTICULATE DETECTOR FOER BRAND DETECTORING.
Omenetto Pulsed sources for atomic fluorescence
US20050199793A1 (en) Radiation detector including means for indicating satisfactory operation
Turk et al. Laser-induced ionization of atoms in a power-modulated inductively coupled plasma
Matusik et al. X-Ray radiography measurements of the thermal energy in spark ignition plasma at variable ambient conditions
Chan Fundamental mechanisms and diagnostic tools for interference effects in inductively coupled plasma-atomic emission spectrometry
JP2612750B2 (en) Light-emitting sensitivity tester for photoelectric smoke detector
EP0567920A1 (en) Atomic absorption spectrophotometer
JP3950220B2 (en) Gas turbine ignition detection device
Li et al. Circuit design of AC-powered glow discharge terahertz wave detector
RU2197031C2 (en) Electron source
Beach Design and Control of an Atmospheric Pressure Theta-Pinch Imploding Thin-Film Plasma Source

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090212

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090327

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100524

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4521153

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 4

EXPY Cancellation because of completion of term