JP2003322367A - Air-conditioning system - Google Patents

Air-conditioning system

Info

Publication number
JP2003322367A
JP2003322367A JP2002123529A JP2002123529A JP2003322367A JP 2003322367 A JP2003322367 A JP 2003322367A JP 2002123529 A JP2002123529 A JP 2002123529A JP 2002123529 A JP2002123529 A JP 2002123529A JP 2003322367 A JP2003322367 A JP 2003322367A
Authority
JP
Japan
Prior art keywords
heat
heat exchange
exchange medium
circulation path
medium flowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002123529A
Other languages
Japanese (ja)
Inventor
Masaharu Mizukami
正春 水上
Yoshiaki Higuchi
祥明 樋口
Mikio Takahashi
幹雄 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2002123529A priority Critical patent/JP2003322367A/en
Publication of JP2003322367A publication Critical patent/JP2003322367A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air-conditioning system preventing temperature changes from a heat source from propagating to indoor temperature. <P>SOLUTION: A heat exchanger 14 is filled with a latent heat storage material M and laminated with a heat storage panel layer 19 accommodating part of a secondary conduit 56 and a cooling panel layer 15 to which primary conduits 50 and 52 are connected. Upon cooling the latent heat storage material M undergoes a phase change and is held at a constant temperature, so that changes in the temperature of the cold water fed from heat source equipment 12 will not translate into indoor temperature changes as they are absorbed by the latent heat storage material M. A control means is provided which bypasses a water tank 18 during start to increase follow-up properties during start. Further, a heat accumulator 24 accumulates the heat of air returning from a clean room 98 or the exhaust heat of a fan 22 and heats the flow of cold water in a circuit with the accumulated heat when temperature within the clean room 98 drops to or below a predetermined value, thereby quickening a reaction that causes a rise of indoor temperature. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は空調装置に係り、精
密温度制御を行う恒温室の室内温度の変動を抑制する空
調装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner, and more particularly to an air conditioner which controls the temperature of a room of a temperature-controlled room for precise temperature control.

【0002】[0002]

【従来の技術】近年の半導体ウエハーの工場や基板転写
用フィルムの装置などは、チップの大容量化とともに高
精密化の傾向にあり、その加工制御範囲も1ミクロン単
位の精度が要求されてきている。そのような工場におい
て、生産ラインの周囲の温度が1℃変化することによ
り、金属の線膨張率(10μm/(m・℃))というこ
とから推定すると、10μm近く誤差が出ることにな
る。即ち、ミクロン単位の加工制御が必要な場合、0.
1℃単位の温度制御が必要となり、最近の半導体回路の
最小間隔が0.1μm単位であることから考えると、0.
01℃単位の温度制御が必要となる。現在、そのような
加工装置にはある程度の温度制御がなされているが、室
温の変動が無いという条件での制御がなされているの
で、室内の恒温性は不可欠である。恒温室の条件を作る
ために、様々な方法が考案されてきた。
2. Description of the Related Art In recent years, semiconductor wafer factories, substrate transfer film devices, and the like have tended to have higher precision as well as larger chip capacities, and their processing control range is required to have accuracy of 1 micron unit. There is. In such a factory, when the temperature around the production line changes by 1 ° C., it is estimated from the linear expansion coefficient of metal (10 μm / (m · ° C.)) that an error of nearly 10 μm will occur. That is, if processing control in micron units is required,
It is necessary to control the temperature in units of 1 ° C., and considering that the minimum interval of recent semiconductor circuits is 0.1 μm unit,
Temperature control in units of 01 ° C is required. At present, such a processing apparatus is controlled to some extent, but since it is controlled under the condition that the room temperature does not fluctuate, it is indispensable to keep the temperature inside the room. Various methods have been devised to create the conditions of a temperature-controlled room.

【0003】その中で最も多い方法は、図7に示すよう
に、空調機100によって、過冷却を行い、室内の負荷
に応じて再熱ヒーター102により吹出し温度の微調整
を図るシステムである。
The most common method among them is, as shown in FIG. 7, a system in which the air conditioner 100 performs supercooling and the reheat heater 102 finely adjusts the blowout temperature according to the load in the room.

【0004】しかし、このような方法では超精密な制御
は可能であるが、一度過冷却を行い再加熱する方法を取
るので省エネルギーの点から見ると、非常に無駄の多い
システムとなる問題点があった。
However, although such a method enables ultra-precision control, it involves a method of supercooling and then reheating, so that from the viewpoint of energy saving, there is a problem that the system becomes very wasteful. there were.

【0005】この問題点を改善するために、再熱ヒータ
ーを使用するのではなく、図8、9に示すような空調機
200により、熱交換する冷水の量を制御することによ
り冷水の温度変動分を調整し、冷水のみで超精密制御を
可能とするシステム(特開平10−281532)が知
られている。再熱ヒーターを使用しない分エネルギーの
消費が少なく、またヒーターの為のサイリスタ制御など
によるノイズが影響することが無いので、非常に有用で
あった。
In order to solve this problem, instead of using a reheat heater, an air conditioner 200 as shown in FIGS. 8 and 9 controls the amount of cold water to be heat-exchanged, thereby changing the temperature of the cold water. There is known a system (Japanese Patent Laid-Open No. 10-281532) that adjusts the amount of time and enables ultra-precision control with only cold water. It was very useful because it consumes less energy because it does not use a reheat heater, and does not affect noise due to thyristor control for the heater.

【0006】しかし、このシステムは、熱源機器202
側の温度変動成分が吹出し温度まで伝搬するという問題
点があった。そこで、図10に示すような空調機300
により、熱源機器302側からの温度変動成分を緩和す
るため、熱源機器302側からの冷水循環回路の中間に
バッファとしての水槽304、306を設置し、保有水
量を上げるシステム(特開平7−133992)も知ら
れている。
However, this system is not compatible with the heat source device 202.
There is a problem that the temperature fluctuation component on the side propagates to the blowout temperature. Therefore, the air conditioner 300 as shown in FIG.
Thus, in order to reduce the temperature fluctuation component from the heat source device 302 side, water tanks 304 and 306 as buffers are installed in the middle of the cold water circulation circuit from the heat source device 302 side to increase the amount of water retained (JP-A-7-133992). ) Is also known.

【0007】このシステムでは、熱源機器302側の温
度変動成分の伝搬を防止するための手段として、効果は
あったが、完全ではなく、また、水槽304、306が
あるため、立ち上がり時の温度精密制御性が低く、恒温
レベルに安定するまでに時間を要するという問題点があ
った。また、冷水のみで制御を行うシステムは、温度を
下げる側へは敏速に反応するが、上げる側への反応は鈍
いという問題点があった。
This system was effective as a means for preventing the propagation of the temperature fluctuation component on the heat source device 302 side, but it was not perfect, and since the water tanks 304 and 306 were provided, the temperature precision at the start-up was high. There was a problem that controllability was low and it took time to stabilize at a constant temperature level. In addition, a system that controls only by cold water has a problem that it quickly reacts to the side that lowers the temperature, but the reaction to the side that raises the temperature is slow.

【0008】[0008]

【発明が解決しようとする課題】本発明は上記事実を考
慮してなされたものであり、熱源側の温度変動伝搬を防
ぎ、立ち上がり時に短時間で、制御温度を恒温レベルに
安定させ、制御温度を上げる時には、素早く制御温度を
恒温レベルまで上昇させると共にエネルギーの消費を低
減することを可能とする空調装置を提供することを目的
とする。
SUMMARY OF THE INVENTION The present invention has been made in consideration of the above facts, prevents temperature fluctuation propagation on the heat source side, stabilizes the control temperature at a constant temperature level in a short time at startup, and An object of the present invention is to provide an air conditioner capable of quickly raising the control temperature to a constant temperature level and reducing energy consumption when raising the temperature.

【0009】[0009]

【課題を解決するための手段】請求項1に係る空調装置
は、熱交換媒体を1次側循環路へ供給する熱源部と、前
記1次側循環路を流れる熱交換媒体と2次側循環路を流
れる熱交換媒体とを熱交換する熱交換器と、前記2次側
循環路を流れる熱交換媒体と送風手段で室内へ送られる
空気とを熱交換するコイルと、を有する空調装置におい
て、前記熱交換器は、前記1次側循環路を流れる熱交換
媒体で冷却され、相変化して、温度が一定となる潜熱蓄
熱材で前記2次側循環路を流れる熱交換媒体を熱交換す
ることを特徴とする。
An air conditioner according to a first aspect of the present invention is a heat source unit for supplying a heat exchange medium to a primary circulation passage, a heat exchange medium flowing through the primary circulation passage, and a secondary circulation passage. An air conditioner comprising: a heat exchanger for exchanging heat with a heat exchange medium flowing through the passage; and a coil for exchanging heat between the heat exchange medium flowing through the secondary side circulation passage and the air sent to the room by the air blowing means. The heat exchanger cools the heat exchange medium flowing in the primary side circulation path and exchanges heat with the latent heat storage material that changes its phase and has a constant temperature to exchange the heat exchange medium flowing in the secondary side circulation path. It is characterized by

【0010】請求項1に係る空調装置の作用を以下に説
明する。
The operation of the air conditioner according to claim 1 will be described below.

【0011】1次側循環路を流れる熱交換媒体で冷却さ
れ、相変化して温度が一定となる潜熱蓄熱材で、2次側
循環路を流れる熱交換媒体を熱交換(冷却)すること
で、熱交換器において、1次側循環路を流れる熱交換媒
体と2次側循環路を流れる熱交換媒体とは、熱交換され
る。
The latent heat storage material, which is cooled by the heat exchange medium flowing through the primary side circulation path and changes its phase to have a constant temperature, heat-exchanges (cools) the heat exchange medium flowing through the secondary side circulation path. In the heat exchanger, the heat exchange medium flowing through the primary side circulation path and the heat exchange medium flowing through the secondary side circulation path are heat exchanged.

【0012】即ち、この潜熱蓄熱材は、1次側循環路を
流れる熱交換媒体の温度成分が変動しても、常に一定の
温度帯に保たれるので、2次側循環路を流れる熱交換媒
体には、常に一定の温度成分が伝えられる。
That is, since the latent heat storage material is always kept in a constant temperature zone even if the temperature component of the heat exchange medium flowing through the primary side circulation path fluctuates, the heat exchange through the secondary side circulation path is performed. A constant temperature component is always transmitted to the medium.

【0013】そして、送風手段で室内へ送られる空気
と、熱交換器で熱交換されて2次側循環路を流れる熱交
換媒体とは、コイルで熱交換されるが、熱源側の温度変
動成分は、潜熱蓄熱材に吸収され、空調される室内の温
度へは、伝搬されない。これにより室内の恒温性が維持
される。
The air sent to the room by the air blowing means and the heat exchange medium that is heat-exchanged by the heat exchanger and flows through the secondary side circulation path are heat-exchanged by the coil, but the temperature fluctuation component on the heat source side. Is absorbed by the latent heat storage material and is not propagated to the temperature inside the air-conditioned room. As a result, the constant temperature of the room is maintained.

【0014】請求項2に係る空調装置は、請求項1に記
載の空調装置において、前記熱交換器は、前記潜熱蓄熱
材で構成されて2次側循環路を流れる熱交換媒体を放熱
する潜熱蓄熱材層と、前記潜熱蓄熱層と面接して設けら
れ、1次側循環路を流れる熱交換媒体で潜熱蓄熱層を冷
却する冷却層と、で構成されたことを特徴とする。
An air conditioner according to a second aspect is the air conditioner according to the first aspect, wherein the heat exchanger radiates heat from a heat exchange medium that is formed of the latent heat storage material and flows through a secondary circulation path. It is characterized by comprising a heat storage material layer and a cooling layer which is provided in face contact with the latent heat storage layer and cools the latent heat storage layer with a heat exchange medium flowing through the primary circulation path.

【0015】請求項2に係る空調装置の作用を以下に説
明する。
The operation of the air conditioner according to claim 2 will be described below.

【0016】潜熱蓄熱材層は、1次側循環路の熱交換媒
体が流れる冷却層と接した面で冷却され、2次側循環路
を流れる熱交換媒体を放熱することで、熱交換器は、1
次側循環路を流れる熱交換媒体と2次側循環路を流れる
熱交換媒体とを熱交換する。このように、潜熱蓄熱材層
の面全体が冷却層の面全体と接しており、面全体で熱交
換が行われるため、熱交換の効率は高くなっている。
The latent heat storage material layer is cooled on the surface of the primary side circulation path in contact with the cooling layer through which the heat exchange medium flows, and the heat exchange medium flowing through the secondary side circulation path is radiated, whereby the heat exchanger 1
The heat exchange medium flowing through the secondary circulation passage and the heat exchange medium flowing through the secondary circulation passage are exchanged with each other. In this way, the entire surface of the latent heat storage material layer is in contact with the entire surface of the cooling layer, and heat is exchanged over the entire surface, so the efficiency of heat exchange is high.

【0017】請求項3に係る空調装置は、請求項2に記
載の空調装置において、前記潜熱蓄熱層と前記冷却層と
が交互に積層され、外側が断熱パネルで覆われたことを
特徴とする。
An air conditioner according to a third aspect of the present invention is the air conditioner according to the second aspect, wherein the latent heat storage layers and the cooling layers are alternately laminated and the outside is covered with a heat insulating panel. .

【0018】請求項3に係る空調装置の作用を以下に説
明する。
The operation of the air conditioner according to claim 3 will be described below.

【0019】潜熱蓄熱材層と冷却層とは、交互に積層さ
れているため、潜熱蓄熱材層は、冷却層から効率よく冷
却される。また、外側は、断熱パネルで覆われているた
め、潜熱蓄熱材層に蓄熱された熱は、ほとんど熱交換に
使われ、熱交換器の外側の熱の影響を受けない。従っ
て、熱交換の効率は高くなっている。
Since the latent heat storage material layer and the cooling layer are alternately laminated, the latent heat storage material layer is efficiently cooled from the cooling layer. Further, since the outer side is covered with the heat insulating panel, the heat stored in the latent heat storage material layer is mostly used for heat exchange and is not affected by the heat on the outer side of the heat exchanger. Therefore, the efficiency of heat exchange is high.

【0020】請求項4に係る空調装置は、請求項1乃至
3の何れかに記載の空調装置において、前記2次側循環
路を前記熱交換器側の循環路と前記コイル側の循環路と
に分割し、前記熱交換器側の循環路を流れる熱交換媒体
と前記コイル側の循環路を流れる熱交換媒体とを熱交換
する中間熱交換器を有することを特徴とする。
An air conditioner according to a fourth aspect is the air conditioner according to any one of the first to third aspects, wherein the secondary circulation path is a circulation path on the heat exchanger side and a circulation path on the coil side. And an intermediate heat exchanger for exchanging heat between the heat exchange medium flowing in the circulation path on the heat exchanger side and the heat exchange medium flowing in the circulation path on the coil side.

【0021】請求項4に係る空調装置の作用を以下に説
明する。
The operation of the air conditioner according to claim 4 will be described below.

【0022】熱交換器で熱交換されて熱交換器側の循環
路を流れる熱交換媒体とコイルで熱交換されてコイル側
の循環路を流れる熱交換媒体とは、中間熱交換器で熱交
換される。中間熱交換器を設けることで、熱交換器に備
えられた潜熱蓄熱材への負担は低減される。また、温度
成分が伝搬されない。
The heat exchange medium that is heat-exchanged in the heat exchanger and flows in the circulation path on the heat exchanger side and the heat exchange medium that is heat-exchanged in the coil and flows in the circulation path on the coil side are heat-exchanged by the intermediate heat exchanger. To be done. By providing the intermediate heat exchanger, the load on the latent heat storage material provided in the heat exchanger is reduced. Moreover, the temperature component is not propagated.

【0023】請求項5に係る空調装置は、熱交換媒体を
1次側循環路へ供給する熱源部と、前記1次側循環路を
流れる熱交換媒体と2次側循環路を流れる熱交換媒体と
を熱交換する熱交換器と、前記2次側循環路を流れる熱
交換媒体と送風手段で室内へ送られる空気とを熱交換す
るコイルと、を有する空調装置において、前記2次側循
環路を流れる熱交換媒体を滞留させながら循環させる水
槽と、前記水槽をバイパスして2次側循環路と接続され
るバイパス流路と、安定時は前記水槽に熱交換媒体を流
入させ、立ち上げ時には前記バイパス流路に熱交換媒体
を流入させる第1制御手段と、を有することを特徴とす
る。
An air conditioner according to a fifth aspect of the present invention is a heat source part for supplying a heat exchange medium to the primary side circulation path, a heat exchange medium flowing through the primary side circulation path and a heat exchange medium flowing through the secondary side circulation path. An air conditioner having a heat exchanger for exchanging heat between the secondary side circulation path and a coil for exchanging heat between the heat exchange medium flowing through the secondary side circulation path and the air sent to the room by the blowing means. A water tank that circulates the heat exchange medium flowing through the tank while staying, a bypass flow path that bypasses the water tank and is connected to the secondary side circulation path, and a heat exchange medium that flows into the water tank when stable and starts up. A first control means for causing a heat exchange medium to flow into the bypass flow path.

【0024】請求項5に係る空調装置の作用を以下に説
明する。
The operation of the air conditioner according to claim 5 will be described below.

【0025】第1制御手段は、安定時は、2次側循環路
を流れる熱交換媒体を水槽に滞留させながら循環させ
る。これにより、2次側循環路の保有する熱交換媒体の
熱容量が増え、熱交換媒体の温度変動が緩和され、潜熱
蓄熱材への負担が軽減される。
When stable, the first control means circulates the heat exchange medium flowing through the secondary circulation path while retaining it in the water tank. As a result, the heat capacity of the heat exchange medium held in the secondary side circulation path increases, the temperature fluctuations of the heat exchange medium are alleviated, and the load on the latent heat storage material is reduced.

【0026】また、第1制御手段は、立ち上げ時等のよ
うに即応性を要する時は、2次側循環路を流れる熱交換
媒体を水槽をバイパスするバイパス流路に流入させる。
これにより、2次側循環路を流れる熱交換媒体の流量が
減り、熱交換媒体が短時間で冷却されるため、短時間
で、空調する室内が恒温レベルに安定する。
The first control means causes the heat exchange medium flowing through the secondary side circulation passage to flow into the bypass passage bypassing the water tank when quick response is required such as when starting up.
As a result, the flow rate of the heat exchange medium flowing through the secondary circulation path is reduced and the heat exchange medium is cooled in a short time, so that the air-conditioned room is stabilized at a constant temperature level in a short time.

【0027】請求項6に係る空調装置は、熱交換媒体を
1次側循環路へ供給する熱源部と、前記1次側循環路を
流れる熱交換媒体と2次側循環路を流れる熱交換媒体と
を熱交換する熱交換器と、前記2次側循環路を流れる熱
交換媒体と送風手段で室内へ送られる空気とを熱交換す
るコイルと、を有する空調装置において、前記室内から
の還気熱或いは送風手段の排熱を蓄熱する蓄熱手段と、
前記コイルで冷却された空気で空調された室内の温度が
所定値以下になると前記蓄熱手段に蓄熱された熱で前記
2次側循環路を流れる熱交換媒体を加熱させる第2制御
手段と、を有することを特徴とする。
An air conditioner according to a sixth aspect of the present invention is a heat source part for supplying a heat exchange medium to the primary side circulation path, a heat exchange medium flowing through the primary side circulation path and a heat exchange medium flowing through the secondary side circulation path. An air conditioner having a heat exchanger for exchanging heat with the heat exchanger, and a coil for exchanging heat with the heat exchange medium flowing through the secondary circulation path and the air sent to the room by the blowing means. A heat storage means for storing heat or the exhaust heat of the blower means,
Second control means for heating the heat exchange medium flowing through the secondary side circulation path by the heat stored in the heat storage means when the temperature of the room conditioned by the air cooled by the coil becomes equal to or lower than a predetermined value. It is characterized by having.

【0028】請求項6に係る空調装置の作用を以下に説
明する。
The operation of the air conditioner according to claim 6 will be described below.

【0029】第2制御手段は、コイルで冷却された空気
で空調された室内の温度が所定値以下になると、2次側
循環路を流れる熱交換媒体を、室内からの還気熱或いは
送風手段の排熱を蓄熱する蓄熱手段へ循環させ、蓄熱手
段の蓄熱で加熱させる。蓄熱手段で加熱された熱交換媒
体は、送風手段で室内へ送られる空気の温度を上昇させ
る。
The second control means, when the temperature in the room conditioned by the air cooled by the coil becomes a predetermined value or less, returns the heat exchange medium flowing through the secondary side circulation path from the room to the return air heat or the blowing means. The exhaust heat is circulated to the heat storage means for storing heat and is heated by the heat storage of the heat storage means. The heat exchange medium heated by the heat storage means raises the temperature of the air sent into the room by the air blowing means.

【0030】この構成により、空調される室内温度を下
げるレスポンスと同程度に、室内温度を上昇させること
ができる。また、還気熱或いは送風手段の排熱を利用す
るため、再熱ヒーターで再熱する場合と比して、エネル
ギーの消費も低減される。
With this configuration, it is possible to raise the room temperature to the same extent as the response for lowering the temperature of the air-conditioned room. Further, since the return air heat or the exhaust heat of the blowing means is used, energy consumption is reduced as compared with the case of reheating with a reheat heater.

【0031】請求項7に係る空調装置は、請求項6に記
載の空調装置において、前記排熱に替えて熱交換媒体で
前記蓄熱手段を冷却し、前記蓄熱手段の蓄熱により、前
記送風手段でコイルへ送られる空気を冷却する第3制御
手段を備えることを特徴とする。
An air conditioner according to a seventh aspect is the air conditioner according to the sixth aspect, wherein the heat storage means is cooled by a heat exchange medium in place of the exhaust heat, and the air is blown by the heat storage means. It is characterized by comprising a third control means for cooling the air sent to the coil.

【0032】請求項7に係る空調装置の作用を以下に説
明する。
The operation of the air conditioner according to claim 7 will be described below.

【0033】第3制御手段は、蓄熱手段を熱交換媒体で
冷却し、送風手段でコイルへ送られる空気を蓄熱手段の
蓄熱で冷却する。従って、送風手段でコイルへ送られる
空気は、コイルで冷却される前に、蓄熱手段の蓄熱で冷
却され温度が低下するため、コイルで行われる熱交換量
は低減され、エネルギーの消費も低減される。
The third control means cools the heat storage means with the heat exchange medium, and cools the air sent to the coil by the air blowing means with the heat storage of the heat storage means. Therefore, the air sent to the coil by the air blowing means is cooled by the heat storage of the heat storage means and its temperature is lowered before being cooled by the coil, so that the amount of heat exchange performed by the coil is reduced and the energy consumption is also reduced. It

【0034】[0034]

【発明の実施の形態】以下に図面を参照しながら本発明
の一実施の形態を詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described in detail below with reference to the drawings.

【0035】図1及び図2に示すように、恒温性が要求
されるクリーンルーム98を空調する空調装置10は、
熱交換媒体として冷水を供給する熱源機器12を備え
る。熱源機器12の内部に配設された配管の両端部に
は、管路50、52の一端側が、接続されている。
As shown in FIGS. 1 and 2, the air conditioner 10 for air conditioning the clean room 98, which requires constant temperature,
A heat source device 12 that supplies cold water as a heat exchange medium is provided. One end sides of the pipe lines 50 and 52 are connected to both ends of the pipe arranged inside the heat source device 12.

【0036】管路50と管路52とは、熱交換器14を
構成する冷却パネル層15を介して連通しており、冷水
が熱源機器12、管路50、冷却パネル層15、管路5
2の間を循環する。なお、管路50には、循環ポンプ2
6が、配設されており、循環ポンプ26で冷水を循環さ
せている。
The pipeline 50 and the pipeline 52 are communicated with each other through the cooling panel layer 15 which constitutes the heat exchanger 14, and the cold water is the heat source device 12, the pipeline 50, the cooling panel layer 15, and the pipeline 5.
Cycle between the two. In addition, the circulation pump 2 is provided in the pipeline 50.
6 is provided, and cold water is circulated by the circulation pump 26.

【0037】また、管路50と管路52で構成される1
次側循環路には、バイパス管54が設けられている。そ
して、管路52とバイパス管54とは、流量制御弁28
を介して連通されており、流量制御弁28の開度を調整
して、バイパス管路54へ冷水を流すことで、熱交換器
14へ流れる冷水の流量を制御している。
In addition, 1 which is composed of the conduit 50 and the conduit 52
A bypass pipe 54 is provided in the secondary circulation path. The pipe 52 and the bypass pipe 54 are connected to each other by the flow control valve 28.
The flow rate of the cold water flowing to the heat exchanger 14 is controlled by adjusting the opening of the flow rate control valve 28 and flowing the cold water to the bypass pipe 54.

【0038】一方、熱交換器14は、ゲル状の潜熱蓄熱
材Mが充填された蓄熱パネル層19と冷却パネル層15
とが、積層された構成であり、外側は断熱パネル17で
覆われている。
On the other hand, in the heat exchanger 14, the heat storage panel layer 19 and the cooling panel layer 15 filled with the gel-like latent heat storage material M.
Are laminated, and the outside is covered with a heat insulating panel 17.

【0039】なお、図中の断熱パネル17は、両側にし
か図示されていないが、全体を覆う構成である。
Although the heat insulating panel 17 in the drawing is shown only on both sides, it has a structure for covering the whole.

【0040】冷却パネル層15は、矩形状の槽構造とな
っており、管路50から流入し、管路52から流出する
冷水が、同じく槽構造となった蓄熱パネル層19の壁面
全体に触れるようになっている。また、蓄熱パネル層1
9の中には、2次側循環路を構成する流入側の管路58
と流出側の管路56とが、コイル状となって、収納され
ている。なお、管路50から流入した冷水を冷却パネル
層15の中に流したが、この構成に限らず、管路50を
コイル状にして冷却パネル層15の内部に配設し、蓄熱
パネル層19を冷やすようにしてもよい。
The cooling panel layer 15 has a rectangular tank structure, and cold water that flows in from the pipe line 50 and flows out from the pipe line 52 touches the entire wall surface of the heat storage panel layer 19 that also has a tank structure. It is like this. Also, the heat storage panel layer 1
9 includes a conduit 58 on the inflow side that constitutes the secondary side circulation path.
The outflow side conduit 56 is coiled and housed. Although the cold water that has flowed in from the pipe line 50 has flowed into the cooling panel layer 15, the pipe line 50 is not limited to this configuration, and the pipe line 50 is arranged inside the cooling panel layer 15 to form the heat storage panel layer 19. May be cooled.

【0041】上述したように、潜熱蓄熱材Mは、1次側
循環路を流れる冷水に冷却され、相変化するような材料
が選定されている。従って、1次側循環路を流れる冷水
と2次側循環路を流れる冷水とが、熱交換される時、潜
熱蓄熱材Mは、熱源機器12側の冷水温度の変動に影響
されず一定の温度帯が保たれるので、2次側循環路を循
環する冷水の温度変動が小さくなる。
As described above, the latent heat storage material M is selected such that it is cooled by the cold water flowing through the primary circulation path and undergoes a phase change. Therefore, when the cold water flowing through the primary side circulation path and the cold water flowing through the secondary side circulation path undergo heat exchange, the latent heat storage material M has a constant temperature without being affected by fluctuations in the cold water temperature on the heat source device 12 side. Since the band is maintained, the temperature fluctuation of the cold water circulating in the secondary circulation path is reduced.

【0042】即ち、一定温度の潜熱蓄熱材Mで、2次側
循環路を流れる冷水が放熱されるため、1次側循環路を
流れる冷水の温度が変動しても、潜熱蓄熱材Mによっ
て、その変動成分は吸収され、2次側循環路へ伝搬され
ない。また、潜熱蓄熱材Mの材料選定によって、2次側
循環路へ伝わる温度成分を設定することが可能であり、
蓄熱パネル層19を増減させることで、熱交換量の調整
が可能となる。
That is, since the cold water flowing through the secondary circulation path radiates heat by the latent heat storage material M having a constant temperature, even if the temperature of the cold water flowing through the primary circulation path fluctuates, The fluctuation component is absorbed and is not propagated to the secondary side circulation path. Further, by selecting the material of the latent heat storage material M, it is possible to set the temperature component transmitted to the secondary side circulation path,
The heat exchange amount can be adjusted by increasing or decreasing the heat storage panel layer 19.

【0043】また、管路56には、循環ポンプ30が配
設されており、この循環ポンプ30で、管路56、中間
熱交換器16、管路58に渡って、冷水を循環させてい
る。また、管路56、58で構成される2次側循環路の
熱交換器14側には、バイパス管60が設けられ、中間
熱交換器16側にバイパス管62が設けられている。
A circulation pump 30 is arranged in the pipe 56, and the circulation pump 30 circulates the cold water across the pipe 56, the intermediate heat exchanger 16 and the pipe 58. . Further, a bypass pipe 60 is provided on the heat exchanger 14 side of the secondary side circulation path constituted by the pipe lines 56 and 58, and a bypass pipe 62 is provided on the intermediate heat exchanger 16 side.

【0044】バイパス管60と管路58とは、流量制御
弁32を介して連通されており、また、バイパス管62
の途中には、開閉弁34が配設されている。そして、流
量制御弁32、開閉弁34を調整して、バイパス管6
0、62へ冷水を流すことで、中間熱交換器16の1次
側へ流れる冷水の量を制御している。これにより、中間
熱交換器16の熱交換量が制御される。
The bypass pipe 60 and the pipe 58 are communicated with each other through the flow control valve 32, and the bypass pipe 62 is also connected.
An on-off valve 34 is provided in the middle of the. Then, the flow control valve 32 and the opening / closing valve 34 are adjusted to adjust the bypass pipe 6
The amount of cold water flowing to the primary side of the intermediate heat exchanger 16 is controlled by causing cold water to flow to 0 and 62. Thereby, the heat exchange amount of the intermediate heat exchanger 16 is controlled.

【0045】一方、中間熱交換器16の2次側には、管
路64、66で構成される2次側循環路が配置されてお
り、管路66から中間熱交換器16の2次側へ流入した
冷水が、管路56から中間熱交換器16の1次側へ流入
した冷水とで、熱交換されて冷却される。
On the other hand, on the secondary side of the intermediate heat exchanger 16, there is disposed a secondary side circulation path constituted by the pipelines 64 and 66, and from the pipeline 66 to the secondary side of the intermediate heat exchanger 16. The cold water that has flowed in to the cold water that has flowed into the primary side of the intermediate heat exchanger 16 from the pipe 56 is heat-exchanged and cooled.

【0046】なお、中間熱交換器16を設けたことで、
熱交換器14への負担は軽減されるが、中間熱交換器1
6は、必須の要件ではなく、中間熱交換器16を設けず
に、熱交換器14の蓄熱パネル層19を増やして、熱交
換器14の熱交換量を増やしてもよい。
Since the intermediate heat exchanger 16 is provided,
The load on the heat exchanger 14 is reduced, but the intermediate heat exchanger 1
No. 6 is not an indispensable requirement, and the heat storage panel layer 19 of the heat exchanger 14 may be increased without providing the intermediate heat exchanger 16 to increase the heat exchange amount of the heat exchanger 14.

【0047】また、管路58の途中には、水槽18が設
けられている。中間熱交換器16で熱交換された冷水
は、流入側の管路35を通じて水槽18へ流れ、滞留さ
れながら流出側の管路37から管路58へ流出される。
このように、水槽18を設けることによって、熱交換器
14側の循環路内の保有水量が増える(熱容量が増え
る)ため、中間熱交換器16で熱交換された冷水の温度
変動成分は吸収され、熱交換器14への負担を軽減して
いる。
A water tank 18 is provided in the middle of the conduit 58. The cold water that has undergone heat exchange in the intermediate heat exchanger 16 flows into the water tank 18 through the inflow-side pipe 35, and flows out from the outflow-side pipe 37 into the pipe 58 while being retained.
In this way, by providing the water tank 18, the amount of water held in the circulation path on the heat exchanger 14 side increases (the heat capacity increases), so the temperature fluctuation component of the cold water that has been heat-exchanged in the intermediate heat exchanger 16 is absorbed. The load on the heat exchanger 14 is reduced.

【0048】また、管路35と管路37とは、管路68
で繋がっており、管路35に設けられた流量制御弁36
と、バイパス管68に設けられた流量制御弁38を制御
することで、冷水の流路を切り換えることができる。
The conduits 35 and 37 are connected to each other by a conduit 68.
And the flow control valve 36 provided in the pipe 35.
By controlling the flow rate control valve 38 provided in the bypass pipe 68, the flow path of the cold water can be switched.

【0049】即ち、水槽18が配設されていることで、
空調装置10の立ち上がり時には、クリーンルーム98
を恒温レベルに安定させるまでに、長い時間が経過して
しまうという問題を解消するため、図3に示す制御装置
90によって、安定時は、流量制御弁36を開き、流量
制御弁38を閉じて、水槽18へ冷水を流し、立ち上が
り時などの即応性を要する時は、流量制御弁36を閉
じ、流量制御弁38を開いて、冷水をバイパス管68へ
流して、水槽18をバイパスする。
That is, since the water tank 18 is provided,
When the air conditioner 10 starts up, the clean room 98
In order to solve the problem that a long time elapses until the temperature is stabilized at a constant temperature level, the control device 90 shown in FIG. 3 opens the flow rate control valve 36 and closes the flow rate control valve 38 at the time of stabilization. When the cold water is allowed to flow into the water tank 18 and quick response such as rising is required, the flow control valve 36 is closed, the flow control valve 38 is opened, and the cold water is allowed to flow into the bypass pipe 68 to bypass the water tank 18.

【0050】従って、熱交換器14側の循環路内の保有
水量が減るため、熱交換器14側の循環路を流れる冷水
の温度を素早く設定温度に安定させ、短時間でクリーン
ルーム98の室温を恒温レベルに安定させることが可能
である。
Therefore, the amount of water held in the circulation passage on the side of the heat exchanger 14 decreases, so that the temperature of the cold water flowing through the circulation passage on the side of the heat exchanger 14 is quickly stabilized at the set temperature, and the room temperature of the clean room 98 is raised in a short time. It is possible to stabilize at a constant temperature level.

【0051】管路64、66の一部は、コイル20を形
成しており、管路64には、中間熱交換器側に循環ポン
プ40が、コイル20側に循環ポンプ42が配設されて
いる。この循環ポンプ40、42で、冷水を循環させて
いる。
A part of the pipelines 64 and 66 forms the coil 20, and the pipeline 64 is provided with the circulation pump 40 on the side of the intermediate heat exchanger and the circulation pump 42 on the side of the coil 20. There is. Cold water is circulated by the circulation pumps 40 and 42.

【0052】なお、管路64、66で構成される2次側
循環路の中間熱交換器16側には、バイパス管70が設
けられ、コイル20側にはバイパス管72が設けられて
いる。バイパス管70には、流量制御弁44が配設さ
れ、管路64には、流量制御弁46が配設されている。
そして、流量制御弁44、46の開度を調整して、バイ
パス管路70、72に冷水を流すことで、中間熱交換器
16の2次側、コイル20へ流れる冷水の流量を制御し
ている。これにより、中間熱交換器16、コイル20で
の熱交換量が決まる。
A bypass pipe 70 is provided on the side of the intermediate heat exchanger 16 of the secondary side circulation passage constituted by the pipes 64 and 66, and a bypass pipe 72 is provided on the side of the coil 20. The bypass pipe 70 is provided with the flow control valve 44, and the pipe 64 is provided with the flow control valve 46.
Then, by adjusting the opening of the flow control valves 44 and 46 and flowing the cold water to the bypass pipes 70 and 72, the flow rate of the cold water flowing to the secondary side of the intermediate heat exchanger 16 and the coil 20 is controlled. There is. This determines the amount of heat exchange in the intermediate heat exchanger 16 and the coil 20.

【0053】そして、クリーンルーム98の換気ダクト
21の近傍に設けられているファン22でクリーンルー
ム98へ送られる空気は、コイル20を通過する時、コ
イル20を流れる冷水で熱交換されて、クリーンルーム
98を空調する。
The air sent to the clean room 98 by the fan 22 provided in the vicinity of the ventilation duct 21 of the clean room 98 is heat-exchanged with the cold water flowing through the coil 20 when passing through the coil 20, so that the clean room 98 is kept clean. Air condition.

【0054】ここで、管路66には、水槽23が設けら
れている。コイル20で熱交換された冷水は、水槽23
に流入し、滞留されながら循環される。水槽23を設け
ることによって、コイル20側の循環路内の保有水量が
増えるため、コイル20で熱交換された冷水の温度変動
成分は吸収される。
Here, the pipe 66 is provided with the water tank 23. The cold water that has undergone heat exchange in the coil 20 is stored in the water tank 23.
It flows into and is circulated while being retained. By providing the water tank 23, the amount of water held in the circulation path on the coil 20 side increases, so that the temperature fluctuation component of the cold water that has undergone heat exchange in the coil 20 is absorbed.

【0055】また、管路64には、蓄熱器24が設けら
れている。冷水は、流入側の管路74を通じて蓄熱器2
4へ流れ、流出側の管路76へ流される。図4に示すよ
うに、蓄熱器24は、クリーンルーム98からの還気
(RA)を吹付けられ、RAの熱或いはファン22の排
熱を、蓄熱器24に備えられた潜熱蓄熱材mで蓄熱す
る。
Further, the pipe 64 is provided with a heat accumulator 24. The cold water is stored in the heat storage device 2 through the pipe 74 on the inflow side.
4 and then to the conduit 76 on the outflow side. As shown in FIG. 4, the heat storage unit 24 is blown with the return air (RA) from the clean room 98, and the heat of the RA or the exhaust heat of the fan 22 is stored by the latent heat storage material m provided in the heat storage unit 24. To do.

【0056】ここで、潜熱蓄熱材mは、RA或いはファ
ン22の排熱で加熱されて、相変化するような材料が選
定されているため、RA空気或いはファン22の排熱の
温度が変動しても、一定の温度帯が保たれる。従って、
蓄熱器24を流れる冷水は、常に一定温度の潜熱蓄熱材
mで加熱される。また、潜熱蓄熱材mの材料選定によっ
て、蓄熱器24を流れる冷水へ伝わる温度成分を設定す
ることが可能であり、潜熱蓄熱材mの量を増減させるこ
とで、熱交換量の調整が可能となる。
Here, since the latent heat storage material m is selected from materials which are heated by the exhaust heat of the RA or the fan 22 and undergo a phase change, the temperature of the RA air or the exhaust heat of the fan 22 fluctuates. However, a constant temperature range is maintained. Therefore,
The cold water flowing through the heat storage unit 24 is always heated by the latent heat storage material m having a constant temperature. Also, by selecting the material of the latent heat storage material m, it is possible to set the temperature component transmitted to the cold water flowing through the heat storage unit 24, and by increasing or decreasing the amount of the latent heat storage material m, the heat exchange amount can be adjusted. Become.

【0057】そして、管路74に設けられた流量制御弁
48、管路64の一部で管路74と管路76とを繋いだ
部分に設けられた流量制御弁50を制御することで、冷
水の流路を切り換えることができる。
Then, by controlling the flow rate control valve 48 provided in the pipe line 74 and the flow rate control valve 50 provided in the part where the pipe line 74 and the pipe line 76 are connected by a part of the pipe line 64, The flow path of cold water can be switched.

【0058】クリーンルーム98の室温を低下させる時
は、図3に示す制御装置90によって、流量制御弁48
を閉じ、流量制御弁50を開いて、冷水を蓄熱器24へ
流さずに、コイル20へ流入させる。反対に、温度セン
サ92によって、クリーンルーム98の室温が所定値以
下になったことが検出され、室温を上昇させる時は、制
御装置90によって、流量制御弁48を開き、流量制御
弁50を閉じて、冷水を流入側の管路74から蓄熱器2
4へ流し、流出側の管路76から管路64へ流出され
る。
When lowering the room temperature of the clean room 98, the flow rate control valve 48 is controlled by the controller 90 shown in FIG.
Is closed and the flow control valve 50 is opened to allow cold water to flow into the coil 20 without flowing to the heat storage device 24. On the contrary, the temperature sensor 92 detects that the room temperature of the clean room 98 has become equal to or lower than the predetermined value, and when raising the room temperature, the controller 90 opens the flow control valve 48 and closes the flow control valve 50. , Cold water from the pipe 74 on the inflow side to the heat accumulator 2
4 and is discharged from the outflow side pipe line 76 to the pipe line 64.

【0059】そして、ファン22でクリーンルーム98
に送られる空気は、蓄熱器24で加熱された冷水によっ
て、熱交換されるため、クリーンルーム98の室温を上
昇させる時も、室温を下げる時と同等に、素早く恒温レ
ベルに安定させることが可能になる。また、再熱ヒータ
ーの替わりに、ファン22の排熱或いはRAの熱を利用
することで、エネルギーの消費は低減される。
Then, the fan 22 cleans the room 98.
Since the air sent to the is heat-exchanged by the cold water heated in the heat storage unit 24, even when the room temperature of the clean room 98 is raised, it is possible to quickly stabilize the temperature at a constant temperature level, as in the case of lowering the room temperature. Become. Moreover, energy consumption is reduced by using the exhaust heat of the fan 22 or the heat of RA instead of the reheat heater.

【0060】また、蓄熱器24の他の実施例を、図5、
6を参照して説明する。
Another embodiment of the heat storage unit 24 is shown in FIG.
This will be described with reference to FIG.

【0061】図5に示すように、蓄熱器24aには、冷
水が循環されて、図示しない潜熱蓄熱材mは冷却されて
相変化し、温度は一定となっている。そして、その蓄熱
器24aをファン22とコイル20との間に設けて、フ
ァン22からコイル20へ送られる空気を蓄熱器24a
とコイル20とで、二重に冷却する。
As shown in FIG. 5, cold water is circulated in the heat storage unit 24a, the latent heat storage material m (not shown) is cooled, and the phase of the latent heat storage material m is changed. Then, the heat storage unit 24a is provided between the fan 22 and the coil 20, and the air sent from the fan 22 to the coil 20 is stored in the heat storage unit 24a.
And the coil 20 doubly cool.

【0062】この構成により、昼間等に、温度の高い外
気(OA)とRAとが混合された空気をファン22で吸
い込んで、蓄熱機24a及びコイル20で冷却して、ク
リーンルーム98に送る際、クリーンルーム98に送ら
れる空気の温度が安定する。
With this configuration, during the daytime, when the air having a high temperature outside air (OA) and RA is mixed is sucked by the fan 22, cooled by the heat storage unit 24a and the coil 20, and sent to the clean room 98, The temperature of the air sent to the clean room 98 becomes stable.

【0063】また、図6に示すように、蓄熱器24bに
は、RAが吹き付けられ、RAの熱で冷却されて相変化
し、温度は一定となっている。そして、その蓄熱器24
bをファン22とコイル20との間に設けて、ファン2
2からコイル20へ送られる空気を蓄熱器24bとコイ
ル20とで、二重に冷却する。
Further, as shown in FIG. 6, RA is sprayed on the heat storage unit 24b, cooled by the heat of RA, and undergoes a phase change so that the temperature is constant. And the heat storage device 24
b is provided between the fan 22 and the coil 20,
The air sent from 2 to the coil 20 is doubly cooled by the heat storage device 24b and the coil 20.

【0064】夜間等に、温度の低い外気(OA)とRA
とが混合された空気をファン22で吸い込んで、空調装
置10で冷却して、クリーンルーム98に送ってクリー
ンルーム98を冷却するような時は、昼間等と比して、
外気(OA)の温度は低く、冷水で潜熱蓄熱材mを冷却
するまでもないため、冷水を蓄熱器27に循環させずに
RAの熱を利用することで、昼間等と比して、エネルギ
ー消費を低減している。
Outside air (OA) having a low temperature and RA at night
When the air mixed with and is sucked in by the fan 22, cooled by the air conditioner 10 and sent to the clean room 98 to cool the clean room 98, compared with the daytime,
Since the temperature of the outside air (OA) is low and there is no need to cool the latent heat storage material m with cold water, the heat of RA is used without circulating the cold water to the heat storage device 27, so that energy is reduced compared to daytime. It reduces consumption.

【0065】なお、本実施形態では、クリーンルームの
空調に適用した空調装置を説明したが、クリーンルーム
に限られるものではなく、他の室内の空調に適用するこ
とも可能である。また、熱交換媒体を、冷水に特定した
が、他の熱交換媒体の適用も可能である。
In the present embodiment, the air conditioner applied to the air conditioning of the clean room has been described, but the present invention is not limited to the clean room, and can be applied to the air conditioning of other rooms. Further, although the heat exchange medium is specified as cold water, other heat exchange medium can be applied.

【0066】[0066]

【発明の効果】本発明の空調装置によれば、熱源側の温
度変動伝搬を防ぎ、立ち上がり時に短時間で、制御温度
を恒温レベルに安定させ、制御温度を上げる時には、素
早く制御温度を恒温レベルまで上昇させると共にエネル
ギーの消費を低減することを可能とする。
According to the air conditioner of the present invention, propagation of temperature fluctuations on the heat source side is prevented, the control temperature is stabilized at a constant temperature level in a short time at startup, and when the control temperature is raised, the control temperature is quickly changed to a constant temperature level. It is possible to reduce the consumption of energy while increasing the temperature.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施形態に係る空調装置の配管系を示す概略
構成図である。
FIG. 1 is a schematic configuration diagram showing a piping system of an air conditioner according to the present embodiment.

【図2】本実施形態に係る潜熱蓄熱材を備えた熱交換器
を示す斜視図である。
FIG. 2 is a perspective view showing a heat exchanger provided with a latent heat storage material according to the present embodiment.

【図3】流量制御弁を制御する制御システムのブロック
図である。
FIG. 3 is a block diagram of a control system that controls a flow control valve.

【図4】クリーンルームからの還気の熱を潜熱蓄熱材で
蓄熱し、冷水を加熱する方法の概略図である。
FIG. 4 is a schematic view of a method of storing heat of return air from a clean room with a latent heat storage material to heat cold water.

【図5】冷水の熱を潜熱蓄熱材で蓄熱し、ファンで送ら
れる外気を冷却する方法の概略図である。
FIG. 5 is a schematic diagram of a method of storing the heat of cold water with a latent heat storage material and cooling the outside air sent by a fan.

【図6】クリーンルームからの還気の熱を潜熱蓄熱材で
蓄熱し、ファンで送られる外気を冷却する方法の概略図
である。
FIG. 6 is a schematic diagram of a method of storing the heat of return air from a clean room with a latent heat storage material and cooling the outside air sent by a fan.

【図7】従来例に係る空調装置の配管系を示す概略構成
図である。
FIG. 7 is a schematic configuration diagram showing a piping system of an air conditioner according to a conventional example.

【図8】従来例に係る空調装置の配管系を示す概略構成
図である。
FIG. 8 is a schematic configuration diagram showing a piping system of an air conditioner according to a conventional example.

【図9】従来例に係る空調装置の配管系を示す概略構成
図である。
FIG. 9 is a schematic configuration diagram showing a piping system of an air conditioner according to a conventional example.

【図10】従来例に係る空調装置の配管系を示す概略構
成図である。
FIG. 10 is a schematic configuration diagram showing a piping system of an air conditioner according to a conventional example.

【符号の説明】[Explanation of symbols]

10 空調装置 12 熱源機器(熱源部) 14 熱交換器 15 冷却パネル層(冷却層) 16 中間熱交換器 17 断熱パネル 18 水槽 19 蓄熱パネル層(潜熱蓄熱材層) 20 コイル 22 ファン(送風手段) 24 蓄熱器(蓄熱手段) 68 バイパス流路 90 制御装置(制御手段) 98 クリーンルーム M 潜熱蓄熱材 m 潜熱蓄熱材 10 Air conditioner 12 Heat source equipment (heat source section) 14 heat exchanger 15 Cooling panel layer (cooling layer) 16 Intermediate heat exchanger 17 Insulation panel 18 aquarium 19 Heat storage panel layer (latent heat storage material layer) 20 coils 22 Fan (Blower) 24 Heat storage device (heat storage means) 68 Bypass channel 90 Control device (control means) 98 clean room M latent heat storage material m Latent heat storage material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 幹雄 千葉県印西市大塚一丁目5番地1 株式会 社竹中工務店技術研究所内 Fターム(参考) 3L054 BE02 BG10 BH07 3L060 AA06 CC02 EE41    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Mikio Takahashi             Chiba Prefecture Inzai City 1-5 Otsuka 1 Stock Association             Takenaka Corporation Technical Research Institute F-term (reference) 3L054 BE02 BG10 BH07                 3L060 AA06 CC02 EE41

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 熱交換媒体を1次側循環路へ供給する熱
源部と、 前記1次側循環路を流れる熱交換媒体と2次側循環路を
流れる熱交換媒体とを熱交換する熱交換器と、 前記2次側循環路を流れる熱交換媒体と送風手段で室内
へ送られる空気とを熱交換するコイルと、 を有する空調装置において、 前記熱交換器は、前記1次側循環路を流れる熱交換媒体
で冷却され、相変化して、温度が一定となる潜熱蓄熱材
で前記2次側循環路を流れる熱交換媒体を熱交換するこ
とを特徴とする空調装置。
1. A heat source part for supplying a heat exchange medium to a primary side circulation path, and a heat exchange for exchanging heat between the heat exchange medium flowing through the primary side circulation path and the heat exchange medium flowing through the secondary side circulation path. An air conditioner having a heat exchanger for exchanging heat between the heat exchange medium flowing through the secondary circulation passage and the air sent to the room by a blower, the heat exchanger comprising: An air conditioner characterized in that a latent heat storage material, which is cooled by a flowing heat exchange medium, undergoes a phase change and has a constant temperature, exchanges heat with the heat exchange medium flowing through the secondary side circulation path.
【請求項2】 前記熱交換器は、前記潜熱蓄熱材で構成
されて2次側循環路を流れる熱交換媒体を放熱する潜熱
蓄熱材層と、 前記潜熱蓄熱層と面接して設けられ、1次側循環路を流
れる熱交換媒体で潜熱蓄熱層を冷却する冷却層と、 で構成されたことを特徴とする請求項1に記載の空調装
置。
2. The heat exchanger is provided with a latent heat storage material layer configured by the latent heat storage material for radiating a heat exchange medium flowing through a secondary side circulation path, and in contact with the latent heat storage layer. The cooling device configured to cool the latent heat storage layer with the heat exchange medium flowing through the secondary circulation path, and the air conditioner according to claim 1.
【請求項3】 前記潜熱蓄熱層と前記冷却層とが交互に
積層され、外側が断熱パネルで覆われたことを特徴とす
る請求項2に記載の空調装置。
3. The air conditioner according to claim 2, wherein the latent heat storage layers and the cooling layers are alternately laminated and the outside is covered with a heat insulating panel.
【請求項4】 前記2次側循環路を前記熱交換器側の循
環路と前記コイル側の循環路とに分割し、前記熱交換器
側の循環路を流れる熱交換媒体と前記コイル側の循環路
を流れる熱交換媒体とを熱交換する中間熱交換器を有す
ることを特徴とする請求項1乃至3の何れかに記載の空
調装置。
4. The secondary circulation path is divided into a circulation path on the heat exchanger side and a circulation path on the coil side, and a heat exchange medium flowing through the circulation path on the heat exchanger side and the coil side. The air conditioner according to any one of claims 1 to 3, further comprising an intermediate heat exchanger that exchanges heat with a heat exchange medium flowing through the circulation path.
【請求項5】 熱交換媒体を1次側循環路へ供給する熱
源部と、 前記1次側循環路を流れる熱交換媒体と2次側循環路を
流れる熱交換媒体とを熱交換する熱交換器と、 前記2次側循環路を流れる熱交換媒体と送風手段で室内
へ送られる空気とを熱交換するコイルと、 を有する空調装置において、 前記2次側循環路を流れる熱交換媒体を滞留させながら
循環させる水槽と、 前記水槽をバイパスして2次側循環路と接続されるバイ
パス流路と、 安定時は前記水槽に熱交換媒体を流入させ、立ち上げ時
には前記バイパス流路に熱交換媒体を流入させる第1制
御手段と、 を有することを特徴とする空調装置。
5. A heat source for supplying a heat exchange medium to the primary side circulation passage, and a heat exchange for exchanging heat between the heat exchange medium flowing through the primary side circulation passage and the heat exchange medium flowing through the secondary side circulation passage. An air conditioner having a heater and a coil for exchanging heat between the heat exchange medium flowing through the secondary circulation path and the air sent to the room by a blower, and the heat exchange medium flowing through the secondary circulation path is retained. A water tank that circulates while circulating, a bypass flow path that bypasses the water tank and is connected to the secondary circulation path, a heat exchange medium flows into the water tank when stable, and heat exchanges to the bypass flow path when starting up. An air conditioner comprising: a first control unit that causes a medium to flow in.
【請求項6】 熱交換媒体を1次側循環路へ供給する熱
源部と、 前記1次側循環路を流れる熱交換媒体と2次側循環路を
流れる熱交換媒体とを熱交換する熱交換器と、 前記2次側循環路を流れる熱交換媒体と送風手段で室内
へ送られる空気とを熱交換するコイルと、 を有する空調装置において、 前記室内からの還気熱或いは送風手段の排熱を蓄熱する
蓄熱手段と、 前記コイルで冷却された空気で空調された室内の温度が
所定値以下になると前記蓄熱手段に蓄熱された熱で前記
2次側循環路を流れる熱交換媒体を加熱させる第2制御
手段と、 を有することを特徴とする空調装置。
6. A heat source part for supplying a heat exchange medium to the primary side circulation path, and a heat exchange for exchanging heat between the heat exchange medium flowing through the primary side circulation path and the heat exchange medium flowing through the secondary side circulation path. An air conditioner having a heater and a coil for exchanging heat between the heat exchange medium flowing through the secondary side circulation path and the air sent to the room by the air blower, the return air heat from the room or the exhaust heat of the air blower. And a heat storage means for storing heat, and when the temperature of a room conditioned by the air cooled by the coil falls below a predetermined value, the heat stored in the heat storage means heats the heat exchange medium flowing through the secondary side circulation path. An air conditioner comprising: a second control unit.
【請求項7】 前記排熱に替えて熱交換媒体で前記蓄熱
手段を冷却し、前記蓄熱手段の蓄熱により、前記送風手
段でコイルへ送られる空気を冷却する第3制御手段を備
えることを特徴とする請求項6に記載の空調装置。
7. A third control means for cooling the heat storage means with a heat exchange medium instead of the exhaust heat, and cooling the air sent to the coil by the blower means by the heat storage of the heat storage means. The air conditioner according to claim 6.
JP2002123529A 2002-04-25 2002-04-25 Air-conditioning system Pending JP2003322367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002123529A JP2003322367A (en) 2002-04-25 2002-04-25 Air-conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002123529A JP2003322367A (en) 2002-04-25 2002-04-25 Air-conditioning system

Publications (1)

Publication Number Publication Date
JP2003322367A true JP2003322367A (en) 2003-11-14

Family

ID=29538793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002123529A Pending JP2003322367A (en) 2002-04-25 2002-04-25 Air-conditioning system

Country Status (1)

Country Link
JP (1) JP2003322367A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007064616A (en) * 2005-08-05 2007-03-15 Takenaka Komuten Co Ltd Heat storage air-conditioning system
JP2012117790A (en) * 2010-12-03 2012-06-21 Japan Steel Works Ltd:The Exhaust heat recovery heat storage system
CN102914003A (en) * 2011-08-05 2013-02-06 北京中瑞森新能源科技有限公司 Computer room air-conditioning system performing combined operation of phase change thermal energy storage, natural cold source and artificial cold source
WO2013042273A1 (en) * 2011-09-21 2013-03-28 ナサコア株式会社 Air-conditioning device
CN107166601A (en) * 2017-07-11 2017-09-15 天津宅佳蓄能科技发展中心 A kind of water circulation hot and cold dual control all-in-one
JP2020106154A (en) * 2018-12-26 2020-07-09 ダイキン工業株式会社 Air conditioner
CN112228853A (en) * 2020-10-14 2021-01-15 中国科学院上海应用物理研究所 Porous medium heat transfer and storage device, heat transfer and storage power generation system and energy storage power station
CN112228852A (en) * 2020-10-14 2021-01-15 中国科学院上海应用物理研究所 Heat transfer and storage device, heat transfer and storage power generation system and energy storage power station

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007064616A (en) * 2005-08-05 2007-03-15 Takenaka Komuten Co Ltd Heat storage air-conditioning system
JP2012117790A (en) * 2010-12-03 2012-06-21 Japan Steel Works Ltd:The Exhaust heat recovery heat storage system
CN102914003A (en) * 2011-08-05 2013-02-06 北京中瑞森新能源科技有限公司 Computer room air-conditioning system performing combined operation of phase change thermal energy storage, natural cold source and artificial cold source
WO2013042273A1 (en) * 2011-09-21 2013-03-28 ナサコア株式会社 Air-conditioning device
CN107166601A (en) * 2017-07-11 2017-09-15 天津宅佳蓄能科技发展中心 A kind of water circulation hot and cold dual control all-in-one
CN107166601B (en) * 2017-07-11 2023-04-07 天津宅一佳蓄能科技发展中心 Cold and hot two accuse all-in-one of hydrologic cycle
JP2020106154A (en) * 2018-12-26 2020-07-09 ダイキン工業株式会社 Air conditioner
JP7197782B2 (en) 2018-12-26 2022-12-28 ダイキン工業株式会社 air conditioner
CN112228853A (en) * 2020-10-14 2021-01-15 中国科学院上海应用物理研究所 Porous medium heat transfer and storage device, heat transfer and storage power generation system and energy storage power station
CN112228852A (en) * 2020-10-14 2021-01-15 中国科学院上海应用物理研究所 Heat transfer and storage device, heat transfer and storage power generation system and energy storage power station

Similar Documents

Publication Publication Date Title
US7913501B2 (en) Water-cooled air conditioning system using condenser water regeneration for precise air reheat in dehumidifying mode
JP5920251B2 (en) Heating and hot water supply equipment
JP2009300007A (en) Temperature control device
EP3376121A1 (en) Heat exchange device and method for operating a heat exchange device
JP2007132582A (en) Cooling system
EP1830136A1 (en) Cooling unit for air conditioning systems
JP2003322367A (en) Air-conditioning system
JP5102579B2 (en) Air conditioning system
JP4088790B2 (en) Heat pump type water heater and its operating method
US11353234B2 (en) Air conditioning system
JP6545378B2 (en) Air conditioning system and relay unit
JP2010181046A (en) Clean room air-conditioning system
JP2006214627A (en) Air conditioning system and its operation method
JP6460187B1 (en) Snow and ice use air conditioning system, its snow and ice cooling system
JP2006162207A (en) Ground heat utilizing water cooled heat pump air conditioning system
JP3299415B2 (en) Refrigerant circulation type air conditioning system
JP3299414B2 (en) Refrigerant circulation type air conditioning system
JP7383364B1 (en) Air conditioning system and its control method
JP3851847B2 (en) Hot water storage hot water source
CN210772610U (en) Circulating energy-saving constant temperature and humidity machine
JPH0610563B2 (en) Air conditioner
JP2006156781A (en) Cooling device
JP3851868B2 (en) Hot water storage hot water source
JP3236927B2 (en) Refrigerant circulation type air conditioning system
JP4194215B2 (en) Hot water storage hot water source

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070109