JP2003320607A - Oxygen permeable structure and manufacturing method therefor - Google Patents

Oxygen permeable structure and manufacturing method therefor

Info

Publication number
JP2003320607A
JP2003320607A JP2002127143A JP2002127143A JP2003320607A JP 2003320607 A JP2003320607 A JP 2003320607A JP 2002127143 A JP2002127143 A JP 2002127143A JP 2002127143 A JP2002127143 A JP 2002127143A JP 2003320607 A JP2003320607 A JP 2003320607A
Authority
JP
Japan
Prior art keywords
oxygen
thin film
oxygen permeable
permeable thin
cerium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002127143A
Other languages
Japanese (ja)
Other versions
JP3965623B2 (en
Inventor
Hitoshi Takamura
仁 高村
Masuo Okada
益男 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2002127143A priority Critical patent/JP3965623B2/en
Publication of JP2003320607A publication Critical patent/JP2003320607A/en
Application granted granted Critical
Publication of JP3965623B2 publication Critical patent/JP3965623B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oxygen permeable structure having both of high oxygen permeability and strength, and a manufacturing method therefor. <P>SOLUTION: The oxygen permeable structure 1 comprises a porous substrate 2, the cerium oxide 3 laminated on the porous substrate 2, and the oxygen permeable thin film 4 laminated on the cerium oxide. Cerium oxide 3 is represented, for example, by a compositional formula CeO<SB>2</SB>and the film thickness thereof may be 5 nm or more. The oxygen permeable thin film 4 is, for example, an LSGF oxygen permeable thin film with a film thickness of 5 μm or less, that is, the oxygen permeable thin film represented by a compositional formula: La<SB>x</SB>Sr<SB>1-x</SB>Ga<SB>y</SB>Fe<SB>1-y</SB>O (wherein x is 0<x<1 and y is 0<y<1). Further, for example, the oxygen permeable thin film is the LSCF oxygen permeable thin film with a film thickness of 5 μm or less, that is, the oxygen permeable thin film represented by the compositional formula La<SB>x</SB>Sr<SB>1-x</SB>Co<SB>y</SB>Fe<SB>1-y</SB>O (wherein x is 0<x<1 and y is 0<y<1). <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、酸素透過構造体及
びその作製方法に関する。
TECHNICAL FIELD The present invention relates to an oxygen permeable structure and a method for manufacturing the same.

【0002】[0002]

【従来の技術】現在、クリーンなエネルギーシステムと
して燃料電池が注目を浴びている。燃料電池の種類に
は、実用化が進んでいるリン酸型の他に固体高分子型、
溶融炭酸塩型、固体酸化物型などがあるが、この中でも
特に固体高分子型燃料電池(PEFC)は約60〜10
0℃の低温度領域で動作することから、電気自動車(E
V)用の駆動電源や携帯機器用電源への応用が期待され
ている。PEFCでは、燃料には純水素、酸化剤に空気
中の酸素を用いる。
2. Description of the Related Art Currently, fuel cells are drawing attention as a clean energy system. The types of fuel cells include phosphoric acid type, which is being put into practical use, as well as solid polymer type,
There are molten carbonate type, solid oxide type, etc., but among them, the polymer electrolyte fuel cell (PEFC) is about 60 to 10 in particular.
Since it operates in the low temperature range of 0 ° C, electric vehicles (E
V) is expected to be applied to drive power supplies and power supplies for portable devices. In PEFC, pure hydrogen is used as a fuel and oxygen in the air is used as an oxidizer.

【0003】この場合、純水素を供給するか、または天
然ガスなどを改質して燃料とするかの選択がある。安価
な発電で水分解できる場合を除き、現状では天然ガス、
メタノール、ガソリンなどの炭化水素系燃料を改質し
て、水素ガスを得ている。この中でも天然ガスは化石燃
料の中で最も環境への負荷が少ないということで注目を
浴びている。従って、水素の供給源として天然ガス改質
が有望視されており、高性能な改質器の開発が要求され
ている。現在、天然ガスからの水素製造においては、水
蒸気改質法がもっとも広く利用されているが、近年、空
気中の酸素を直接用いた部分酸化法により水素を製造す
るシステムが注目されている。その反応は次式で示され
る。
In this case, there is a choice of supplying pure hydrogen or reforming natural gas or the like into a fuel. Except when water can be decomposed with cheap power generation, natural gas,
Hydrogen gas is obtained by reforming hydrocarbon fuels such as methanol and gasoline. Among them, natural gas has been attracting attention because it has the least environmental load of fossil fuels. Therefore, natural gas reforming is expected as a hydrogen supply source, and development of a high-performance reformer is required. At present, the steam reforming method is most widely used in the production of hydrogen from natural gas, but in recent years, a system for producing hydrogen by a partial oxidation method using oxygen in the air directly has been drawing attention. The reaction is shown by the following equation.

【0004】[0004]

【数1】 図8は、上記(1)式を動作原理とした部分酸化法を説
明する概念図である。空気中の酸素のみを透過する酸素
透過性材料からできたパイプを高温に加熱し、パイプの
一端から、例えばCH4 ガスを導入する。パイプの側壁
を通して空気中の酸素のみがパイプ内に供給され、
(1)式に基づいてCH4 ガスが酸素と反応し、H2
スとCOガスに分解されてパイプの他端から導出され
る。この場合、水素濃度を高めるためには、パイプ中の
CH4 ガスに酸素のみを供給する必要がある。すなわ
ち、空気中のN2 ガスが存在すると得られる水素ガスの
濃度が1/5に減少してしまう。このため、空気から酸
素のみを取り出す酸素透過性材料が要求されるが、現在
その材料として酸素イオン・電子混合導電体が注目され
ている。酸素は酸素イオン・電子混合導電体中をイオン
として透過するが、この混合導電体は酸素イオンと電子
の双方の伝導性を有しているため、外部電圧をかけずに
酸素分圧勾配を駆動力として酸素を透過させる能力があ
る。改質器の性能はいかに高い酸素流束密度を得られる
かにかかっており、現在高性能の酸素イオン・電子混合
導電体材料の開発研究が盛んに行われている。酸素イオ
ン・電子混合導電体の酸素透過流束密度は電子伝導度、
イオン伝導度、温度及び酸素イオン・電子混合導電体の
膜厚に依存し、理論的に次式で表される。
[Equation 1] FIG. 8 is a conceptual diagram for explaining a partial oxidation method using the above equation (1) as an operating principle. A pipe made of an oxygen permeable material that allows only oxygen in the air to permeate is heated to a high temperature and, for example, CH 4 gas is introduced from one end of the pipe. Only oxygen in the air is supplied into the pipe through the side wall of the pipe,
Based on the equation (1), CH 4 gas reacts with oxygen, is decomposed into H 2 gas and CO gas, and is discharged from the other end of the pipe. In this case, it is necessary to supply only oxygen to the CH 4 gas in the pipe in order to increase the hydrogen concentration. That is, if N 2 gas in the air is present, the concentration of the obtained hydrogen gas will be reduced to ⅕. Therefore, an oxygen permeable material that extracts only oxygen from the air is required, and an oxygen ion / electron mixed conductor is currently drawing attention as the material. Oxygen permeates as an ion in the oxygen ion / electron mixed conductor, but since this mixed conductor has both the conductivity of oxygen ions and electrons, it drives the oxygen partial pressure gradient without applying an external voltage. It has the ability to permeate oxygen as a force. The performance of the reformer depends on how high the oxygen flux density can be obtained, and currently, research and development of high performance oxygen ion / electron mixed conductor materials are being actively conducted. Oxygen permeation flux density of oxygen ion / electron mixed conductor is electron conductivity,
It is theoretically expressed by the following equation, depending on the ionic conductivity, the temperature, and the film thickness of the oxygen ion / electron mixed conductor.

【0005】[0005]

【数2】 ただし、j(O2 )は酸素透過流束密度、Rは気体定
数、Tは絶対温度、Fはファラデー定数、dは酸素イオ
ン・電子混合導電体の膜厚、P(O2 1 は酸素供給側
の酸素分圧、P(O2 2 は酸素透過側の酸素分圧、σ
e は電子伝導度、σi はイオン伝導度である。
[Equation 2] Where j (O 2 ) is the oxygen permeation flux density, R is the gas constant, T is the absolute temperature, F is the Faraday constant, d is the film thickness of the oxygen ion / electron mixed conductor, and P (O 2 ) 1 is oxygen. Oxygen partial pressure on the supply side, P (O 2 ) 2 is the oxygen partial pressure on the oxygen permeation side, σ
e is electronic conductivity, and σ i is ionic conductivity.

【0006】上記(2)式から明らかなように、酸素透
過流束密度j(O2 )を大きくするには、電子伝導度σ
e 及びイオン伝導度σi を大きくすること、温度Tを大
きくすること、及び、酸素分圧勾配を大きくすることも
さることながら、酸素イオン・電子混合導電体の膜厚d
を薄くすることが有効であることがわかる。酸素イオン
・電子混合導電体の薄膜化は酸素透過能向上のために非
常に有効な手段であると考えられる。また、薄膜化する
ことによって膜の非晶質化も可能と考えられ、バルクで
は観察されない特性が発現することも期待される。
As is apparent from the above equation ( 2 ), in order to increase the oxygen permeation flux density j (O 2 ), the electron conductivity σ
While increasing e and ionic conductivity σ i , increasing temperature T, and increasing oxygen partial pressure gradient, the film thickness d of the oxygen ion / electron mixed conductor is also increased.
It can be seen that it is effective to make thin. It is considered that thinning the mixed oxygen ion / electron conductor is a very effective means for improving the oxygen permeability. Further, it is considered that the film can be made amorphous by making the film thinner, and it is expected that characteristics not observed in the bulk will be exhibited.

【0007】ちなみに、電子伝導度σe 及びイオン伝導
度σi は、 酸素分圧勾配の関数である。図9は、電子伝
導度σe 及びイオン伝導度σi の酸素分圧勾配依存性を
示す図である。図において、横軸は酸素透過側の酸素分
圧を示し、左側の縦軸は伝導度を示し、右側の縦軸は酸
素透過流束密度を表す。酸素供給側の酸素分圧は大気圧
(0.21atm)一定である。図に示すように、電子
伝導度σe は特定の酸素濃度勾配で極小値を示し、イオ
ン伝導度σi は酸素透過側の酸素分圧P(O22 によ
らずに一定である。一般に、電子伝導度とイオン伝導度
とは材料組成、結晶構造によって制限され、高い酸素透
過流束密度が得られる材料は限られている。
Incidentally, the electronic conductivity σ e and the ionic conductivity σ i are functions of the oxygen partial pressure gradient. FIG. 9 is a diagram showing the oxygen partial pressure gradient dependence of the electronic conductivity σ e and the ionic conductivity σ i . In the figure, the horizontal axis represents oxygen partial pressure on the oxygen permeation side, the left vertical axis represents conductivity, and the right vertical axis represents oxygen permeation flux density. The oxygen partial pressure on the oxygen supply side is constant at atmospheric pressure (0.21 atm). As shown in the figure, the electron conductivity σ e exhibits a minimum value at a specific oxygen concentration gradient, and the ionic conductivity σ i is constant regardless of the oxygen partial pressure P (O 2 ) 2 on the oxygen permeation side. Generally, electron conductivity and ionic conductivity are limited by the material composition and crystal structure, and the materials that can obtain high oxygen permeation flux density are limited.

【0008】一般に、酸素イオン・電子混合導電体にお
ける酸素輸送は2つの過程に律速される。一つは、気相
中の酸素分子が酸素イオンとなって導電体内部に入り込
む過程であり、これは表面交換律速過程と呼ばれてい
る。もう一つは、導電体内部に入った酸素イオンが拡散
する過程であり、これはバルク拡散律速過程と呼ばれて
いる。酸化物や温度、膜厚、酸素分圧により支配的な律
速過程は異なるが、薄膜化は上述のバルク拡散律速の場
合、酸素透過能を向上させるのに有効である。
Generally, oxygen transport in an oxygen ion / electron mixed conductor is rate-controlled in two processes. One is a process in which oxygen molecules in the gas phase become oxygen ions and enter the inside of a conductor, which is called a surface exchange rate-determining process. The other is the process of diffusion of oxygen ions inside the conductor, which is called the bulk diffusion rate controlling process. Although the dominant rate-determining process differs depending on the oxide, temperature, film thickness, and oxygen partial pressure, thinning is effective for improving the oxygen permeability in the case of the bulk diffusion rate-controlling described above.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、従来の
酸素透過薄膜を使用した酸素透過構造体は、酸素透過薄
膜の膜厚を薄くするとクラックが発生し易くなり、ガス
リークや機械的強度の問題から薄くすることができなか
った。
However, in the oxygen permeable structure using the conventional oxygen permeable thin film, if the film thickness of the oxygen permeable thin film is made thin, cracks are likely to occur, and it is thin due to problems of gas leakage and mechanical strength. I couldn't.

【0010】本発明は上記課題に鑑み、高い酸素透過特
性と強度を兼ね備えた酸素透過構造体及びその作製方法
を提供することを目的としている。
In view of the above problems, it is an object of the present invention to provide an oxygen permeable structure having both high oxygen permeable characteristics and strength and a method for producing the same.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
本発明は、酸素透過薄膜と多孔質基板とからなる酸素透
過構造体において、酸素透過薄膜と多孔質基板との間に
セリウム酸化物をバッファ層として挟むことを特徴とす
る。この構成によれば、多孔質基板と酸素透過薄膜との
間でおこる、不可避的な化学反応を、セリウム酸化物を
バッファ層として挟むことにより抑制することができ
る。その結果、熱衝撃を加えても酸素透過薄膜にクラッ
クが発生しにくくなり、従って、高い酸素透過特性と強
度を兼ね備えた酸素透過構造体が実現できる。酸素透過
薄膜は、組成式Lax Sr1-x Gay Fe1-y O(ただ
し、0<x<1、0<y<1)で表される酸素透過薄膜
(この物質自体は既に公開されている。特開2001−
93325参照)であり、多孔質基板は多孔質アルミナ
基板であれば好適である。また、酸素透過薄膜は、組成
式Lax Sr1-x Coy Fe1-y O(ただし、0<x<
1、0<y<1)で表される酸素透過薄膜(この物質自
体は既に公開されている。Chem.Lett.,(1
985)1743−1746参照)であり、多孔質基板
は多孔質アルミナ基板であれば好適である。また、セリ
ウム酸化物は、膜厚が5nm以上であれば上記の不可避
的な化学反応を抑止できる。また、酸素透過薄膜は、非
晶質、または微細な微結晶粒子から成るので、従来より
高温で使用してもクラックが発生せず、高い酸素透過特
性と強度を兼ね備えることができる。
To solve the above problems, the present invention provides an oxygen permeable structure comprising an oxygen permeable thin film and a porous substrate, wherein cerium oxide is provided between the oxygen permeable thin film and the porous substrate. It is characterized in that it is sandwiched as a buffer layer. According to this configuration, the unavoidable chemical reaction that occurs between the porous substrate and the oxygen permeable thin film can be suppressed by sandwiching cerium oxide as the buffer layer. As a result, cracks are less likely to occur in the oxygen permeable thin film even when a thermal shock is applied, and thus an oxygen permeable structure having both high oxygen permeable characteristics and strength can be realized. Oxygen permeability thin film, the composition formula La x Sr 1-x Ga y Fe 1-y O ( provided that, 0 <x <1,0 <y <1) oxygen transmission film (this material itself represented by the already published Japanese Patent Laid-Open No. 2001-2001
93325), and the porous substrate is preferably a porous alumina substrate. The oxygen permeable thin film has a composition formula of La x Sr 1-x Co y Fe 1-y O (where 0 <x <
Oxygen-permeable thin film represented by 1,0 <y <1 (this substance itself has already been published. Chem. Lett., (1
985) 1743-1746), and the porous substrate is preferably a porous alumina substrate. Further, cerium oxide can suppress the above-mentioned unavoidable chemical reaction if the film thickness is 5 nm or more. Further, since the oxygen permeable thin film is composed of amorphous or fine microcrystalline particles, cracks do not occur even when used at a higher temperature than before, and it is possible to have both high oxygen permeable characteristics and strength.

【0012】また、本発明の酸素透過構造体の作製方法
は、多孔質基板上にセリウム酸化物を堆積し、セリウム
酸化物上に酸素透過薄膜の組成を有するターゲットを用
いてパルスレーザ蒸着により酸素透過薄膜を堆積するこ
とを特徴とする。また、多孔質基板はアルミナ多孔質基
板であり、酸素透過薄膜は組成式LaxSr1-x Gay
Fe1-y O(ただし、0<x<1、0<y<1)で表さ
れる酸素透過薄膜、または、組成式Lax Sr1-x Co
y Fe1-y O(ただし、0<x<1、0<y<1)で表
される酸素透過薄膜であることを特徴とする。パルスレ
ーザ蒸着時の基板温度は750℃未満であることを特徴
とする。この方法によれば、セリウム酸化物上に、非晶
質、または微細な結晶粒から成る緻密な酸素透過薄膜が
形成される。非晶質、または微細な結晶粒であるため、
熱衝撃を印加してもクラックが生じない。
Further, the method for producing an oxygen permeable structure of the present invention comprises depositing cerium oxide on a porous substrate, and using a target having the composition of the oxygen permeable thin film on the cerium oxide to produce oxygen by pulse laser deposition. It is characterized in that a transparent thin film is deposited. The porous substrate is alumina porous substrate, the oxygen permeability thin film composition formula La x Sr 1-x Ga y
An oxygen permeable thin film represented by Fe 1-y O (where 0 <x <1, 0 <y <1) or a composition formula La x Sr 1-x Co
It is characterized by being an oxygen permeable thin film represented by y Fe 1 -y O (where 0 <x <1 and 0 <y <1). The substrate temperature during pulsed laser deposition is less than 750 ° C. According to this method, a dense oxygen-permeable thin film composed of amorphous or fine crystal grains is formed on the cerium oxide. Amorphous or fine crystal grains,
No cracks occur even when thermal shock is applied.

【0013】したがって、本発明によれば、高い酸素透
過特性と高い耐熱衝撃強度を兼ね備えた酸素透過構造体
及びその作製方法を提供することができる。
Therefore, according to the present invention, it is possible to provide an oxygen permeable structure having a high oxygen permeable property and a high thermal shock resistance, and a method for producing the same.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態を図面
を用いて詳細に説明する。図1は本発明の酸素透過構造
体の構成を示す模式断面図である。図において、酸素透
過構造体1は、多孔質基板2と、多孔質基板2上に積層
したセリウム酸化物3と、セリウム酸化物3上に積層し
た酸素透過薄膜4とより成る。多孔質基板2は、例え
ば、Al板を陽極化成した多孔質アルミナ基板である。
セリウム酸化物3は、例えば組成式CeO2 で表される
セリウム酸化物であり、膜厚は5nm以上であればよ
い。酸素透過薄膜4は、例えば、膜厚が5μm以下のL
SGF系酸素透過薄膜、すなわち、組成式Lax Sr
1-x Gay Fe1-y O(ただし、0<x<1、0<y<
1)で表される酸素透過薄膜であり、また例えば、膜厚
が5μm以下のLSCF系酸素透過薄膜、すなわち、組
成式Lax Sr1-x Coy Fe1-y O(ただし、0<x
<1、0<y<1)で表される酸素透過薄膜である。こ
れらの酸素透過薄膜4は、非晶質、あるいは、極めて微
細な微結晶粒子から構成されている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing the structure of the oxygen permeable structure of the present invention. In the figure, an oxygen permeable structure 1 is composed of a porous substrate 2, a cerium oxide 3 laminated on the porous substrate 2, and an oxygen permeable thin film 4 laminated on the cerium oxide 3. The porous substrate 2 is, for example, a porous alumina substrate obtained by anodizing an Al plate.
The cerium oxide 3 is, for example, a cerium oxide represented by the composition formula CeO 2 , and the film thickness may be 5 nm or more. The oxygen permeable thin film 4 is, for example, L having a thickness of 5 μm or less.
SGF-based oxygen permeable thin film, that is, the composition formula La x Sr
1-x Ga y Fe 1- y O ( provided that, 0 <x <1,0 <y <
1) which is an oxygen permeable thin film, and has a thickness of 5 μm or less, for example, an LSCF-based oxygen permeable thin film, that is, a composition formula La x Sr 1-x Co y Fe 1-y O (where 0 <x
It is an oxygen-permeable thin film represented by <1, 0 <y <1). These oxygen permeable thin films 4 are composed of amorphous or extremely fine microcrystalline particles.

【0015】この酸素透過構造体1を使用するには、酸
素透過構造体1を700℃程度に加熱し、多孔質基板2
側に1atmの空気を供給し、酸素透過薄膜4側の酸素
分圧を低くして使用する。空気中の酸素のみが酸素透過
構造体1を通過する。
To use the oxygen permeable structure 1, the oxygen permeable structure 1 is heated to about 700 ° C. and the porous substrate 2 is used.
Air of 1 atm is supplied to the side to reduce the oxygen partial pressure on the side of the oxygen permeable thin film 4 for use. Only oxygen in the air passes through the oxygen permeable structure 1.

【0016】本発明の酸素透過構造体1は、セリウム酸
化物3によって多孔質基板2と酸素透過薄膜4との間で
おこる不可避的な化学反応を抑止できるので、また、酸
素透過薄膜4が非晶質、あるいは、極めて微細な微結晶
粒子から構成されるので、クラック等が発生せず、高酸
素透過能、高温使用、かつ長寿命が可能になる。
In the oxygen permeable structure 1 of the present invention, the cerium oxide 3 can suppress an unavoidable chemical reaction between the porous substrate 2 and the oxygen permeable thin film 4. Since it is composed of crystallites or extremely fine microcrystalline particles, cracks and the like do not occur, and high oxygen permeability, high temperature use, and long life are possible.

【0017】次に、実施例に基づいて本発明をさらに詳
しく説明する。初めに、LSGF系酸素透過薄膜を用い
た酸素透過構造体及びその作製方法を説明する。バルク
体において高い酸素透過特性が報告されている、 組成式 La0.7 Sr0.3 Ga0.6 Fe0.4 3-z (た
だし、0≦z<3) で表されるLSGF系酸素透過薄膜を作製した。薄膜作
製に先立ち、ターゲットは固相反応法により作製した。
原料粉末にはLa2 3 (純度99.99%)、SrC
3 (純度99.9%)、Ga2 3 (純度99.9
%)、Fe2 3 (純度99.99%)を用いた。これ
らの原料を前述の各組成比になるように秤量した後、ボ
ールミリングにより混合した。ボールミリングにはステ
ンレス製のポットおよびボールを用い、エチルアルコー
ル中にて1時間混合した。混合粉末はエチルアルコール
を十分に乾燥させた後、ハンドプレスにより62MPa
の加圧を行い20mmφのペレットに圧粉成形した。ペ
レットは300℃/hの昇温速度で1000℃まで加熱
し、2時間保持して仮焼を行った。この仮焼粉をアルミ
ナ乳鉢で粗粉砕、30分手混合した後、焼結助剤として
5mass% PVA(ポリビニールアルコール)水溶
液を粉末重量の5mass%添加し、さらに30分手混
合した。それぞれの仮焼粉を成形圧3tonで20mm
φのペレットに圧粉成形した後、300MPaで冷間静
水圧プレスを行い、1500℃、4時間で本焼成してタ
ーゲットとした。この結果得られたターゲットの密度は
5.6g/cm3 であった。
Next, the present invention will be described in more detail based on examples. First, an oxygen-permeable structure using an LSGF-based oxygen-permeable thin film and a method for manufacturing the same will be described. An LSGF-based oxygen permeable thin film represented by the composition formula La 0.7 Sr 0.3 Ga 0.6 Fe 0.4 O 3-z (where 0 ≦ z <3), which has been reported to have high oxygen permeability in a bulk body, was prepared. Prior to the thin film production, the target was produced by the solid phase reaction method.
Raw material powder is La 2 O 3 (purity 99.99%), SrC
O 3 (purity 99.9%), Ga 2 O 3 ( purity 99.9
%) And Fe 2 O 3 (purity 99.99%) were used. These raw materials were weighed so as to have the respective composition ratios described above, and then mixed by ball milling. For ball milling, a pot and balls made of stainless steel were used and mixed in ethyl alcohol for 1 hour. The mixed powder is 62 MPa by hand pressing after thoroughly drying ethyl alcohol.
Was pressed and pressed into 20 mmφ pellets. The pellets were heated to 1000 ° C. at a heating rate of 300 ° C./h, held for 2 hours, and calcined. The calcined powder was coarsely pulverized in an alumina mortar and hand-mixed for 30 minutes, and then a 5 mass% PVA (polyvinyl alcohol) aqueous solution was added as a sintering aid at 5 mass% of the powder weight, and the mixture was further hand-mixed for 30 minutes. 20 mm for each calcined powder at a molding pressure of 3 ton
After powder compaction into φ pellets, cold isostatic pressing was performed at 300 MPa, and main firing was performed at 1500 ° C. for 4 hours to obtain a target. The resulting target had a density of 5.6 g / cm 3 .

【0018】薄膜の作製にはパルスレーザー蒸着装置を
用いた。装置は成膜室とレーザー発生装置から構成され
る。成膜室には真空ポンプ(ロータリーポンプ、ターボ
分子ポンプ)、雰囲気ガス導入部、また、成膜室内には
基板加熱用ランプヒーター、真空系(ピラニ真空計、キ
ャパシタンスマノメータ)、酸素流量コントローラー、
ターゲットおよび基板の自転が可能なホルダー等が装備
されている。また、成膜室外壁にはレーザー導入用の窓
や内部観察用の窓が設けられている。レーザー発生装置
のレーザー光源には波長248nmのKrFエキシマレ
ーザーを用い、いくつかの反射ミラーを用いて成膜室内
のターゲットに照射する。
A pulse laser vapor deposition apparatus was used for producing the thin film. The equipment consists of a film forming chamber and a laser generator. The film forming chamber has a vacuum pump (rotary pump, turbo molecular pump), an atmosphere gas introduction part, and the film forming chamber has a lamp heater for heating a substrate, a vacuum system (Pirani vacuum gauge, capacitance manometer), an oxygen flow controller,
It is equipped with a holder that can rotate the target and substrate. A window for introducing a laser and a window for observing the inside are provided on the outer wall of the film forming chamber. A KrF excimer laser having a wavelength of 248 nm is used as a laser light source of the laser generator, and a target in the film formation chamber is irradiated with some reflection mirrors.

【0019】成膜に際しては、成膜室の真空度が5×1
-5Paに到達後、薄膜作製を開始した。基板には陽極
酸化法により作製された市販の直径13mmの多孔質A
23 (孔サイズ20nm)基板を用いた。ターゲッ
トと基板との間の距離は30〜35mmとし、成膜時の
基板温度はランプヒーターにより室温〜700℃とし
た。酸素雰囲気ガス圧は0〜20Paとした。まず、バ
ッファ層としてCeO2を3分間蒸着後、LSGF薄膜
を成膜した。このとき成膜時間を変化させることでLS
GF酸素透過薄膜の膜厚を変化させた。
When forming a film, the degree of vacuum in the film forming chamber is 5 × 1.
After reaching 0 -5 Pa, thin film production was started. Commercially available porous A with a diameter of 13 mm was prepared on the substrate by the anodic oxidation method.
An l 2 O 3 (pore size 20 nm) substrate was used. The distance between the target and the substrate was 30 to 35 mm, and the substrate temperature during film formation was from room temperature to 700 ° C. with a lamp heater. The oxygen atmosphere gas pressure was 0 to 20 Pa. First, CeO 2 was deposited as a buffer layer for 3 minutes, and then an LSGF thin film was formed. At this time, by changing the film formation time, LS
The film thickness of the GF oxygen-permeable thin film was changed.

【0020】上記の固相焼結法で作製したLSGFター
ゲットとそのターゲットを用いて室温にてレーザーパワ
ー500mJ、酸素圧10PaにてLSGF酸素透過薄
膜を作製した。図2は、ターゲット及びパルスレーザー
蒸着法により成膜したLSGF酸素透過薄膜の粉末X線
回折像を示す図である。図より、ターゲットには主相で
あるLSGFペロブスカイト型相に加えて、第二相とし
てSrLaGa3 7 が存在することが分かった。しか
し、LSGF酸素透過薄膜においては回折ピークは観察
されず、膜厚が5〜200nmの範囲において非晶質状
態であることが確認された。成膜時の基板温度を700
℃としてもこの非晶質状態は維持されていた。
Using the LSGF target produced by the above solid phase sintering method and the target, an LSGF oxygen permeable thin film was produced at room temperature with a laser power of 500 mJ and an oxygen pressure of 10 Pa. FIG. 2 is a diagram showing a powder X-ray diffraction image of a target and an LSGF oxygen-permeable thin film formed by a pulsed laser deposition method. From the figure, it was found that the target has SrLaGa 3 O 7 as the second phase in addition to the LSGF perovskite type phase as the main phase. However, no diffraction peak was observed in the LSGF oxygen-permeable thin film, and it was confirmed that the LSGF oxygen-permeable thin film was in an amorphous state in the film thickness range of 5 to 200 nm. The substrate temperature during film formation is 700
This amorphous state was maintained even at 0 ° C.

【0021】図3は、多孔質基板上に積層したセリウム
酸化物上に、室温で2時間成膜した非晶質状態のLSG
F酸素透過薄膜の断面SEM像を示す図である。この図
より、多孔質基板上に厚さ4μmの緻密な酸素透過薄膜
が堆積していることが確認される。膜には結晶粒や凹凸
が観察されないことからも、上述のX線回折により示さ
れた非晶質状態となっていることが示唆される。
FIG. 3 shows an amorphous LSG film formed on a cerium oxide layered on a porous substrate at room temperature for 2 hours.
It is a figure which shows the cross-sectional SEM image of an F oxygen permeable thin film. From this figure, it is confirmed that a dense oxygen-permeable thin film having a thickness of 4 μm is deposited on the porous substrate. From the fact that no crystal grains or unevenness is observed in the film, it is suggested that the film is in the amorphous state shown by the above-mentioned X-ray diffraction.

【0022】図4は上記のLSGF酸素透過薄膜を80
0℃で熱処理した後の断面SEM像を示す図である。図
からわかるように、結晶粒が確認され、この温度におい
ては結晶化が進行している様子が伺える。熱処理温度を
変化させ、結晶化開始温度を調査したところ、結晶化開
始温度は750℃近傍であることが確認された。また、
この熱処理は、700〜800℃/minという極めて
高い昇温速度で行ったが、本発明のLSGF酸素透過薄
膜は破壊されることが無く、高い耐熱衝撃性を有してい
ることが明らかとなった。このことは、高速起動性が要
求される移動体用燃料電池の改質器として適している。
FIG. 4 shows the LSGF oxygen permeable thin film as described above.
It is a figure which shows the cross-section SEM image after heat-processing at 0 degreeC. As can be seen from the figure, crystal grains are confirmed, and it can be seen that crystallization is progressing at this temperature. When the crystallization start temperature was investigated by changing the heat treatment temperature, it was confirmed that the crystallization start temperature was around 750 ° C. Also,
This heat treatment was performed at an extremely high temperature rising rate of 700 to 800 ° C./min, but it was revealed that the LSGF oxygen-permeable thin film of the present invention was not destroyed and had high thermal shock resistance. It was This is suitable as a reformer of a fuel cell for a mobile body, which requires high-speed startability.

【0023】図5は、酸素透過特性の測定に用いた測定
系の構成を示す図である。透明石英管6の底部にホウ珪
酸ガラスリング7を介して穴を有するセラミクス板8を
密封して固定した透過酸素測定部9と、透明石英管6の
底部に穴を有するセラミクス板8を固定した大気圧印加
部10とを用意し、この両方のセラミクス板8の間に金
リング11を介して試料1を固定する。酸素透過薄膜面
は透過酸素測定部9側に向けて固定した。大気圧印加部
10側から、アルミナ管12を介して高温の空気を送り
込む。アルミナ管12の出口の温度を熱電対13で測定
して試料温度とした。Heガスをアルミナ管14を介し
て導入し、透過酸素測定部9の酸素分圧が一定圧になる
ように流量を制御する。導入したHeガス流量と同じ流
量のHeガスをガスクロマト装置、及び4重極型ガス質
量分析装置に導入し、単位時間当たりの透過酸素分子数
を測定し、酸素透過流速密度j(O2 )を求める。各々
の酸素分圧における酸素透過流速密度j(O2 )を求
め、酸素透過流速密度の酸素分圧勾配依存性を測定す
る。
FIG. 5 is a diagram showing the structure of a measuring system used for measuring the oxygen transmission characteristics. A permeated oxygen measuring section 9 in which a ceramics plate 8 having a hole is hermetically fixed to the bottom of the transparent quartz tube 6 via a borosilicate glass ring 7 and a ceramics plate 8 having a hole in the bottom of the transparent quartz tube 6 are fixed. An atmospheric pressure applying unit 10 is prepared, and the sample 1 is fixed between both ceramic plates 8 via a gold ring 11. The surface of the oxygen-permeable thin film was fixed toward the permeated oxygen measuring unit 9 side. High-temperature air is sent from the atmospheric pressure applying section 10 side through the alumina tube 12. The temperature at the outlet of the alumina tube 12 was measured by the thermocouple 13 and used as the sample temperature. He gas is introduced through the alumina tube 14, and the flow rate is controlled so that the oxygen partial pressure of the permeated oxygen measuring unit 9 becomes constant. The He gas at the same flow rate as the introduced He gas was introduced into the gas chromatograph and the quadrupole gas mass spectrometer, the number of permeated oxygen molecules per unit time was measured, and the oxygen permeation flow velocity density j (O 2 ) Ask for. The oxygen permeation flow velocity density j (O 2 ) at each oxygen partial pressure is obtained, and the oxygen partial pressure gradient dependency of the oxygen permeation flow velocity density is measured.

【0024】図6は、LSGF酸素透過薄膜を用いた本
発明の酸素透過構造体の酸素透過流速密度の酸素分圧勾
配依存性を示す図である。図において、▲(黒三角)、
■(黒四角)、●(黒丸)及び×はそれぞれ、測定時の
酸素透過構造体の温度、750℃、800℃、850
℃、900℃を示す。図7から明らかなように、本発明
のLSGF酸素透過構造体は、750℃以上の高温にお
いて、ほぼ酸素分圧勾配によらずに、高い酸素透過流束
密度を有することがわかる。750℃の測定後におい
て、本発明のLSGF酸素透過薄膜は、上述したよう
に、非晶質状態もしくは微細結晶状態が保持された。8
00℃以上の測定後においては、結晶化が生じていた。
酸素透過流束密度は、750℃において、3.6×10
-7mol・cm-2-1と高い値を示し、薄膜の欠陥(ピ
ンホールやクラック)に起因する空気の洩れによる酸素
透過率は、Heガス流量に対して0.23%程度であっ
た。測定温度を800℃以上とすることによりさらに高
い酸素透過流束密度が得られているものの、結晶化に際
して薄膜に多量のクラックが導入されたため、洩れに起
因する酸素透過は0.31%まで増加した。このことか
ら、薄膜が非晶質状態もしくは微細結晶状態のとき、比
較的高い耐リーク性能と酸素透過流束密度が両立される
ことがわかる。
FIG. 6 is a graph showing the oxygen partial pressure gradient dependency of the oxygen permeation flow velocity density of the oxygen permeation structure of the present invention using the LSGF oxygen permeation thin film. In the figure, ▲ (black triangle),
■ (black square), ● (black circle) and × are the temperature of the oxygen permeable structure at the time of measurement, 750 ° C, 800 ° C and 850, respectively.
Indicates 900 ° C and 900 ° C. As is clear from FIG. 7, the LSGF oxygen permeation structure of the present invention has a high oxygen permeation flux density at a high temperature of 750 ° C. or higher, almost independently of the oxygen partial pressure gradient. After the measurement at 750 ° C., the LSGF oxygen-permeable thin film of the present invention maintained the amorphous state or the fine crystalline state as described above. 8
Crystallization occurred after the measurement at 00 ° C or higher.
Oxygen permeation flux density is 3.6 × 10 at 750 ° C.
It shows a high value of -7 mol · cm -2 s -1, and the oxygen transmission rate due to air leakage due to thin film defects (pinholes and cracks) is about 0.23% with respect to the He gas flow rate. It was Although a higher oxygen permeation flux density was obtained by setting the measurement temperature to 800 ° C or higher, a large number of cracks were introduced into the thin film during crystallization, so oxygen permeation due to leakage increased to 0.31%. did. From this, it is understood that when the thin film is in the amorphous state or the fine crystalline state, the relatively high leak resistance and the oxygen permeation flux density are compatible.

【0025】次に、本発明の他の実施の形態であるLS
CF系酸素透過薄膜を用いた酸素透過構造体及びその作
製方法を説明する。作製方法及び測定方法は、上記LS
GF系酸素透過薄膜を用いた酸素透過構造体の場合と同
等である。図7は、La0.6 Sr0.4 Co1-x Fex
3-z 薄膜を用いた本発明の酸素透過構造体の酸素透過流
束密度の経時変化を示す図である。図において、●はセ
リウム酸化物バッファ層を用いたの酸素透過構造体、□
はセリウム酸化物バッファ層を用いない従来の酸素透過
構造体の結果を示す。図から明らかなように、セリウム
酸化物バッファ層を用いない場合、酸素透過流束密度は
時間とともに単調に減少しているが、セリウム酸化物バ
ッファ層を用いた場合は、その減少の程度は極めて緩や
かであることがわかる。
Next, an LS which is another embodiment of the present invention.
An oxygen permeable structure using a CF type oxygen permeable thin film and a method for manufacturing the same will be described. The manufacturing method and the measuring method are as described above
This is equivalent to the case of the oxygen permeable structure using the GF-based oxygen permeable thin film. 7, La 0.6 Sr 0.4 Co 1- x Fe x O
FIG. 3 is a diagram showing changes over time in the oxygen permeation flux density of the oxygen permeation structure of the present invention using a 3-z thin film. In the figure, ● indicates an oxygen permeable structure using a cerium oxide buffer layer, □
Shows the results of a conventional oxygen permeable structure without a cerium oxide buffer layer. As is clear from the figure, when the cerium oxide buffer layer is not used, the oxygen permeation flux density monotonously decreases with time, but when the cerium oxide buffer layer is used, the degree of decrease is extremely high. It turns out that it is gentle.

【0026】上記の経時変化測定後の試料をX線回折測
定したところ、セリウム酸化物バッファ層を用いていな
い場合、LSCF薄膜中のCoと基板のAl2 3 が化
学反応を起こし、酸素透過を阻害するCoAl2 4
を形成していることが確認された。しかし、セリウム酸
化物をバッファ層として用いた場合にはそのような相の
形成は確認されず、セリウム酸化物バッファ層がLSC
F薄膜とAl2 3 基板との間の化学反応を抑制してい
ることがわかる。
When X-ray diffraction measurement was performed on the sample after the above-described aging measurement, when the cerium oxide buffer layer was not used, Co in the LSCF thin film and Al 2 O 3 of the substrate caused a chemical reaction, resulting in oxygen permeation. It was confirmed that a CoAl 2 O 4 phase that inhibits the above was formed. However, when cerium oxide was used as the buffer layer, formation of such a phase was not confirmed, and the cerium oxide buffer layer was
It can be seen that the chemical reaction between the F thin film and the Al 2 O 3 substrate is suppressed.

【0027】さらに、図示しないが、図に示した試料よ
りもCoの組成比が大きく、よりCoAl2 4 相を形
成しやすい試料においても、また、より高温の条件にお
いても、セリウム酸化物バッファ層を用いた場合には高
い酸素透過能を維持することを確認した。また、セリウ
ム酸化物バッファ層を用いない場合、CoAl2 4
の形成とともに基板が劣化し900℃以上で割れる傾向
を示したが、セリウム酸化物バッファ層の適用により、
900〜1000℃の高温においても基板が十分な機械
的強度を有し、割れないことを確認した。
Although not shown, the cerium oxide buffer was used even in a sample having a larger composition ratio of Co than in the sample shown in the figure, which is more likely to form a CoAl 2 O 4 phase, and under higher temperature conditions. It was confirmed that a high oxygen permeability was maintained when the layer was used. In addition, when the cerium oxide buffer layer was not used, the substrate deteriorated with the formation of the CoAl 2 O 4 phase and showed a tendency to crack at 900 ° C. or higher.
It was confirmed that the substrate had sufficient mechanical strength and did not crack even at a high temperature of 900 to 1000 ° C.

【0028】[0028]

【発明の効果】上記説明から理解されるように、本発明
によれば、セリウム酸化物バッファ層が基板と酸素透過
薄膜との間の不可避的反応を抑止するから、また、セリ
ウム酸化物バッファ層上の酸素透過膜が非晶質、または
微細な結晶粒からなるから、クラック等が発生しにく
く、従って、酸素透過膜を薄くすることができ、その結
果、高い酸素透過特性と強度を兼ね備えた酸素透過構造
体を提供することができることになる。従って、本発明
を燃料電池を使用した移動体等に用いれば、極めて有用
である。
As can be understood from the above description, according to the present invention, the cerium oxide buffer layer suppresses the unavoidable reaction between the substrate and the oxygen permeable thin film, and also the cerium oxide buffer layer. Since the upper oxygen permeable film is composed of amorphous or fine crystal grains, cracks and the like are less likely to occur, and therefore the oxygen permeable film can be made thin, resulting in high oxygen permeable characteristics and high strength. It would be possible to provide an oxygen permeable structure. Therefore, when the present invention is applied to a moving body or the like using a fuel cell, it is extremely useful.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の酸素透過構造体の構成を示す模式断面
図である。
FIG. 1 is a schematic cross-sectional view showing the configuration of an oxygen permeable structure of the present invention.

【図2】ターゲット及びパルスレーザー蒸着法により成
膜したLSGF酸素透過薄膜の粉末X線回折像を示す図
である。
FIG. 2 is a diagram showing a powder X-ray diffraction image of a target and an LSGF oxygen-permeable thin film formed by a pulse laser deposition method.

【図3】多孔質基板上に積層したセリウム酸化物上に、
室温で2時間成膜した非晶質状態のLSGF酸素透過薄
膜の断面SEM像を示す図である。
FIG. 3 shows cerium oxide laminated on a porous substrate,
It is a figure which shows the cross-sectional SEM image of the amorphous LSGF oxygen permeable thin film formed into a film at room temperature for 2 hours.

【図4】LSGF酸素透過薄膜を800℃で熱処理した
後の断面SEM像を示す図である。
FIG. 4 is a diagram showing a cross-sectional SEM image after heat-treating an LSGF oxygen-permeable thin film at 800 ° C.

【図5】酸素透過特性の測定に用いた測定系の構成を示
す図である。
FIG. 5 is a diagram showing a configuration of a measurement system used for measuring oxygen transmission characteristics.

【図6】LSGF酸素透過薄膜を用いた本発明の酸素透
過構造体の酸素透過流速密度の酸素分圧勾配依存性を示
す図である。
FIG. 6 is a diagram showing the oxygen partial pressure gradient dependence of the oxygen permeation flow velocity density of the oxygen permeation structure of the present invention using the LSGF oxygen permeation thin film.

【図7】La0.6 Sr0.4 Co1-x Fex 3-z 薄膜を
用いた本発明の酸素透過構造体の酸素透過流束密度の経
時変化を示す図である。
7 is a diagram showing changes over time of the oxygen permeation flux density of the oxygen-permeable structure of the present invention using the La 0.6 Sr 0.4 Co 1-x Fe x O 3-z film.

【図8】部分酸化法を説明する概念図である。FIG. 8 is a conceptual diagram illustrating a partial oxidation method.

【図9】酸素イオン・電子混合導電体の電子伝導度及び
イオン伝導度の酸素分圧勾配依存性を示す図である。
FIG. 9 is a diagram showing the oxygen partial pressure gradient dependence of the electronic conductivity and ionic conductivity of an oxygen ion / electron mixed conductor.

【符号の説明】 1 酸素透過構造体 2 多孔質基板 3 酸化セリウム 4 酸素透過薄膜 6 透明石英管 7 ホウ珪酸ガラスリング 8 セラミックス板 9 透過酸素測定部 10 大気圧印加部 11 金リング 12 アルミナ管 13 熱電対 14 アルミナ管[Explanation of symbols] 1 Oxygen permeable structure 2 Porous substrate 3 Cerium oxide 4 Oxygen permeable thin film 6 Transparent quartz tube 7 Borosilicate glass ring 8 Ceramics plate 9 Permeation oxygen measurement part 10 Atmospheric pressure application section 11 gold ring 12 Alumina tube 13 thermocouple 14 Alumina tube

フロントページの続き Fターム(参考) 4F100 AA17B AA19C AA23A AA33A BA03 BA07 BA10A BA10C DJ00C EH66A GB90 JA12A JD03A JM02A YY00A YY00B 4K029 BA02 BA09 BA43 BA50 DB05Continued front page    F-term (reference) 4F100 AA17B AA19C AA23A AA33A                       BA03 BA07 BA10A BA10C                       DJ00C EH66A GB90 JA12A                       JD03A JM02A YY00A YY00B                 4K029 BA02 BA09 BA43 BA50 DB05

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 酸素透過薄膜と多孔質基板とからなる酸
素透過構造体において、上記酸素透過薄膜と多孔質基板
との間にセリウム酸化物をバッファ層として挟むことを
特徴とする、酸素透過構造体。
1. An oxygen permeable structure comprising an oxygen permeable thin film and a porous substrate, wherein cerium oxide is sandwiched as a buffer layer between the oxygen permeable thin film and the porous substrate. body.
【請求項2】 前記酸素透過薄膜は、組成式Lax Sr
1-x Gay Fe1-yO(ただし、0<x<1、0<y<
1)で表される膜厚が5μm以下の酸素透過薄膜であ
り、前記多孔質基板は多孔質アルミナ基板であることを
特徴とする、請求項1に記載の酸素透過構造体。
2. The oxygen permeable thin film has a composition formula of La x Sr.
1-x Ga y Fe 1- y O ( provided that, 0 <x <1,0 <y <
The oxygen permeable structure according to claim 1, wherein the oxygen permeable thin film has a thickness of 5 μm or less, which is represented by 1), and the porous substrate is a porous alumina substrate.
【請求項3】 前記酸素透過薄膜は、組成式Lax Sr
1-x Coy Fe1-yO(ただし、0<x<1、0<y<
1)で表される酸素透過薄膜であり、前記多孔質基板は
多孔質アルミナ基板であることを特徴とする、請求項1
に記載の酸素透過構造体。
3. The oxygen permeable thin film has a composition formula of La x Sr.
1-x Co y Fe 1-y O (where 0 <x <1, 0 <y <
The oxygen permeable thin film represented by 1), wherein the porous substrate is a porous alumina substrate.
The oxygen permeation structure according to.
【請求項4】 前記酸素透過薄膜は、非晶質、または、
微細な結晶粒から成り、膜厚が5μm以下であることを
特徴とする、請求項2または3に記載の酸素透過構造
体。
4. The oxygen-permeable thin film is amorphous or
The oxygen permeable structure according to claim 2 or 3, which is made of fine crystal grains and has a film thickness of 5 µm or less.
【請求項5】 前記セリウム酸化物は、膜厚が5nm以
上であることを特徴とする、請求項1〜4のいずれかに
記載の酸素透過構造体。
5. The oxygen permeable structure according to claim 1, wherein the cerium oxide has a film thickness of 5 nm or more.
【請求項6】 多孔質基板上にセリウム酸化物を堆積
し、酸素透過薄膜の組成を有するターゲットを用いてパ
ルスレーザ蒸着により酸素透過薄膜を堆積することを特
徴とする、酸素透過構造体の作製方法。
6. Preparation of an oxygen permeable structure, characterized in that cerium oxide is deposited on a porous substrate and the oxygen permeable thin film is deposited by pulsed laser deposition using a target having the composition of the oxygen permeable thin film. Method.
【請求項7】 前記多孔質基板はアルミナ多孔質基板で
あり、前記酸素透過薄膜は組成式Lax Sr1-x Gay
Fe1-y O(ただし、0<x<1、0<y<1)で表さ
れる酸素透過薄膜、または、組成式Lax Sr1-x Co
y Fe1-y O(ただし、0<x<1、0<y<1)で表
される酸素透過薄膜であることを特徴とする、請求項6
に記載の酸素透過構造体の作製方法。
7. The porous substrate is an alumina porous substrate, and the oxygen permeable thin film has a composition formula of La x Sr 1-x Ga y.
An oxygen permeable thin film represented by Fe 1-y O (where 0 <x <1, 0 <y <1) or a composition formula La x Sr 1-x Co
7. An oxygen-permeable thin film represented by y Fe 1 -y O (where 0 <x <1 and 0 <y <1).
The method for producing an oxygen permeable structure as described in 1.
【請求項8】 前記パルスレーザ蒸着時の基板温度は7
50℃未満であることを特徴とする、請求項6に記載の
酸素透過構造体の作製方法。
8. The substrate temperature during the pulse laser deposition is 7
The method for producing an oxygen permeable structure according to claim 6, wherein the temperature is lower than 50 ° C.
JP2002127143A 2002-04-26 2002-04-26 Oxygen permeable structure and manufacturing method thereof Expired - Fee Related JP3965623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002127143A JP3965623B2 (en) 2002-04-26 2002-04-26 Oxygen permeable structure and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002127143A JP3965623B2 (en) 2002-04-26 2002-04-26 Oxygen permeable structure and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003320607A true JP2003320607A (en) 2003-11-11
JP3965623B2 JP3965623B2 (en) 2007-08-29

Family

ID=29541342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002127143A Expired - Fee Related JP3965623B2 (en) 2002-04-26 2002-04-26 Oxygen permeable structure and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3965623B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110694489A (en) * 2019-10-12 2020-01-17 华南理工大学 Nonmetal anion and cation co-doped perovskite type mixed conductor film and preparation method and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6230359B2 (en) * 2013-10-07 2017-11-15 日本特殊陶業株式会社 Oxygen permeable membrane and reformer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110694489A (en) * 2019-10-12 2020-01-17 华南理工大学 Nonmetal anion and cation co-doped perovskite type mixed conductor film and preparation method and application thereof
CN110694489B (en) * 2019-10-12 2021-10-26 华南理工大学 Nonmetal anion and cation co-doped perovskite type mixed conductor film and preparation method and application thereof

Also Published As

Publication number Publication date
JP3965623B2 (en) 2007-08-29

Similar Documents

Publication Publication Date Title
EP0476808B1 (en) Process for producing a composite body and use in a solid oxide fuel cell
EP2979319B1 (en) Sanbornite-based glass-ceramic seal for high-temperature applications
CN110429288B (en) Cathode material and electrolyte of proton conductor fuel cell with B-site defects and preparation method of cathode material and electrolyte
WO2016111110A1 (en) Oriented apatite-type oxide ion conductor and method for manufacturing same
CN107709603B (en) Substrate/oriented apatite composite oxide film composite and method for producing same
JP2009231075A (en) Perovskite type composite oxide thin film
JP2014510014A (en) Sintering additive for ceramic devices obtained in low pO2 atmosphere
EP0726609B1 (en) Solid electrolyte for a fuel cell and its manufacturing method
Coocia et al. Pulsed laser deposition of novel materials for thin film solid oxide fuel cell applications: Ce0. 9Gd0. 1O1. 95, La0. 7Sr0. 3CoOy and La0. 7Sr0. 3Co0. 2Fe0. 8Oy
US11374248B2 (en) Oriented apatite type oxide ion conductor and method for producing same
JP4783080B2 (en) Proton conductive oxide, oxide proton conductive membrane, hydrogen permeable structure, and fuel cell using the same
JP3965623B2 (en) Oxygen permeable structure and manufacturing method thereof
TW201946321A (en) Air electrode material powder for solid oxide fuel cell
JPH0992302A (en) Unit cell of cylindrical fuel cell and its manufacture
JPH09180731A (en) Solid electrolyte fuel cell
JPH07249414A (en) Solid electrolytic fuel cell
JP2011150949A (en) Membrane electrode assembly, its manufacturing method, and fuel battery cell
JP2000062077A (en) Composite material of thin zirconia film and its production
Hertz et al. Progress towards an all thin film fuel cell for portable power generation
JP7300440B2 (en) Solid electrolyte junction
JP3346668B2 (en) Solid oxide fuel cell
KR100284892B1 (en) Manufacturing method of dense membrane by slurry coating method
JP2527858B2 (en) Solid oxide fuel cell and method of manufacturing the same
JP2004016971A (en) Oxygen permeable body
JP3398213B2 (en) Solid oxide fuel cell

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070517

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees