JP2003320439A - Method for manufacturing carburization steel slab having small heat treatment strain variation, and cast slab - Google Patents

Method for manufacturing carburization steel slab having small heat treatment strain variation, and cast slab

Info

Publication number
JP2003320439A
JP2003320439A JP2002129849A JP2002129849A JP2003320439A JP 2003320439 A JP2003320439 A JP 2003320439A JP 2002129849 A JP2002129849 A JP 2002129849A JP 2002129849 A JP2002129849 A JP 2002129849A JP 2003320439 A JP2003320439 A JP 2003320439A
Authority
JP
Japan
Prior art keywords
slab
continuous casting
steel
heat treatment
hollow shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002129849A
Other languages
Japanese (ja)
Other versions
JP4301389B2 (en
Inventor
Takayuki Kasai
貴之 笠井
Ichiro Takasu
一郎 高須
Yasukazu Uniki
泰和 雲丹亀
Shinichi Kitade
真一 北出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2002129849A priority Critical patent/JP4301389B2/en
Publication of JP2003320439A publication Critical patent/JP2003320439A/en
Application granted granted Critical
Publication of JP4301389B2 publication Critical patent/JP4301389B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a continuous casting method for a constant strain carburization steel slab for a machining component in which variation in a dimensional change by heat treatment of the carburization steel for hollow shaft components for an automobile or the like is suppressed, dimensional accuracy is excellent and shape correcting by way of cutting or polishing after the heat treatment can be omitted, and to provide a constant strain carburization steel slab. <P>SOLUTION: In the slab manufacturing method for continuous casting of the carburization steel containing the carbon content of less than 0.5 mass % to be used for the hollow shaft components which are subjected to plastic work accompanied by plastic fluidity to the axial direction, then an axis insertion part is punched from the center part into a predetermined shape, the magnetic flux density of the M-EMS strength during the continuous casting is controlled to 30 to 100 μT to set the average molten steel flow rate in a mold to 2 cm/s to 15 cm/s, and the area ratio of the slab center segregation zone to be used for the hollow shaft components is lessened to continuously cast the constant strain carburization steel slab. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はギア、等速ジョイン
トにおけるインナーレース等の軸対称形状または周期的
対称形状の熱処理して用いられる中空軸部品に対し、好
適なひずみバラツキの小さい加工部品の製造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hollow shaft component used for heat treatment of an axially symmetric shape or a cyclically symmetric shape such as a gear and an inner race in a constant velocity joint, which is suitable for manufacturing a machined component having a small strain variation. Regarding

【0002】[0002]

【従来の技術】従来、浸炭焼入れ等の熱処理は部品の最
終加工段階で行なわれることが一般的であることから、
発生した熱処理ひずみから外径真円度や端面平坦度の悪
化が起こる。熱処理に伴う寸法変化(以下、「熱処理ひ
ずみ」という。)は、物理的に避けて通ることができな
いため、製造各社とも熱処理ひずみの低減、またはその
バラツキの低減に注力している。
2. Description of the Related Art Conventionally, since heat treatment such as carburizing and quenching is generally performed at the final processing stage of parts,
The generated heat treatment strain causes deterioration of the outer diameter roundness and end face flatness. Since dimensional changes (hereinafter referred to as “heat treatment strain”) due to heat treatment cannot be physically avoided, each manufacturing company is focusing on reducing heat treatment strain or variation.

【0003】鍛造等の塑性加工により製造した部品を熱
処理する場合、要求される寸法精度に対し、熱処理時に
発生する寸法変化から塑性加工による形状を定めること
ができる。つまり要求され得る寸法精度を実現するため
には、熱処理ひずみ量の大小という問題は、塑性加工変
形形状の設定、鍛造用金型形状の設計により補うことが
できる。しかし、その熱処理ひずみにバラツキが大きい
場合、各方向への寸法変化が不均一となり外径真円度悪
化や、ねじれや、曲がりが生じる場合もあり、塑性加工
工程で熱処理による寸法変化を考慮した設計が不可能と
なる。したがって、熱処理ひずみのバラツキを低減する
ことが大きな課題である。
When heat-treating a part manufactured by plastic working such as forging, the shape by plastic working can be determined for the required dimensional accuracy from the dimensional change occurring during heat treatment. In other words, in order to realize the required dimensional accuracy, the problem of the amount of heat treatment strain can be compensated by setting the plastic deformation shape and designing the forging die shape. However, if there is a large variation in the heat treatment strain, the dimensional changes in each direction may become non-uniform and the outer diameter roundness may deteriorate, and twisting and bending may occur. Design becomes impossible. Therefore, it is a major issue to reduce the variation in heat treatment strain.

【0004】近年、環境への影響やコストダウンの観点
から自動車用精密部品の熱処理後の研磨レス化への要望
が高まっており、熱処理ひずみ自体が小さい低熱処理ひ
ずみ材あるいは熱処理ひずみのバラツキが小さい定熱処
理ひずみ材の需要拡大が見込まれる。
In recent years, from the viewpoints of environmental impact and cost reduction, there is an increasing demand for polishing-free after-heat treatment of precision parts for automobiles, and a low heat treatment strain itself or a small variation of heat treatment strain is small. Demand for constant heat treated strain material is expected to grow.

【0005】ところで本明細書における定ひずみとは、
熱処理ひずみのバラツキが小さく、略一定であることを
指している。そこで上記の定ひずみ材とは熱処理による
ひずみのバラツキの小さい材料を指している。
By the way, the constant strain in this specification means
It means that the variation in heat treatment strain is small and is almost constant. Therefore, the above-mentioned constant strain material refers to a material with a small variation in strain due to heat treatment.

【0006】等軸晶形状の等方化 ところで、連続鋳造鋳型を円形とすることで、ほぼ円形
の鋳片凝固組織パターンを有する材料を得ることができ
る。これによりボルト等のファスナー部品、トーション
バー、ギア、シャフト、等速ジョイントにおけるインナ
ーレース等の熱処理に用いられる部品について好適な定
ひずみ加工部品が製造できると、特開平11−1311
84号公報に開示されている。また、正方形鋳型により
正方形の凝固パターンを得ることにより、矩形鋳型製品
よりも熱処理ひずみのバラツキが低くなるとの知見があ
る。なお、連続鋳造における鋳型形状は矩形が一般的で
ある。
By making the continuous casting mold circular when the isotropic crystal isotropic, it is possible to obtain a material having a substantially circular slab solidification structure pattern. This makes it possible to manufacture fastener parts such as bolts, torsion bars, gears, shafts, parts for heat treatment such as inner races in constant velocity joints, which are suitable for constant strain processing.
No. 84 publication. Further, it is known that by obtaining a square solidification pattern with a square mold, variations in heat treatment strain are lower than with a rectangular mold product. The mold shape in continuous casting is generally rectangular.

【0007】以上のように、製造各社では、鋳型形状を
等方形状化、すなわち等軸晶形状を等方化、することに
より、熱処理ひずみのバラツキ低減の対策としている。
これはほとんどの自動車用精密部品は軸対称形状に近い
ためである。
As described above, each manufacturing company makes the mold shape isotropic, that is, the equiaxed crystal shape is isotropic, to reduce the variation in heat treatment strain.
This is because most automotive precision parts have an axisymmetric shape.

【0008】本出願人では、現在380×490mmの
大断面矩形鋳型にて連続鋳造を実施しており、したがっ
て凝固パターンは矩形となり、上記の円形鋳型および正
方形鋳型と比較し、熱処理ひずみのバラツキが大きいと
いう問題点があった。
The applicant of the present invention is currently performing continuous casting in a large-section rectangular mold having a size of 380 × 490 mm. Therefore, the solidification pattern is rectangular, and variations in heat treatment strain are greater than those of the circular mold and square mold described above. There was a big problem.

【0009】等軸晶率の縮小化 さらに、連続鋳造片の中心部偏析帯である等軸晶が主体
である領域では、等軸晶の面積率、すなわち連続鋳造に
よりブルームの横断面における断面積に対する中心部偏
析帯の面積の比率が浸炭焼入れ時の熱処理ひずみに及ぼ
す影響を調査した結果、小さくなるほど焼入ひずみ量が
少なくなるとの知見を得て、等軸晶の面積率、形状を定
め等軸晶率の縮小化を図った発明が特開平11−131
184号公報に開示されている。
Reduction of equiaxed crystal ratio Further, in a region mainly composed of equiaxed crystals which is a central segregation zone of a continuous cast piece, an area ratio of equiaxed crystals, that is, a cross-sectional area of a bloom in a transverse section by continuous casting. As a result of investigating the effect of the ratio of the area of the central segregation zone to the heat treatment strain during carburizing and quenching, we obtained the knowledge that the smaller the quenching strain amount, the smaller the area ratio of equiaxed crystals, the shape, etc. The invention for reducing the axial crystal ratio is disclosed in JP-A-11-131.
No. 184 gazette.

【0010】ところで、熱処理ひずみのバラツキの発生
原因について説明すると、熱処理で発生する体積変化は
鋼材のC濃度と相関があることが過去の文献等で明らか
であり、したがって材料断面内のC濃度のバラツキが熱
処理ひずみのバラツキに大きな影響を及ぼしていると考
えられる。
[0010] By the way, to explain the cause of the variation in heat treatment strain, it is clear in past literatures that the volume change caused by heat treatment correlates with the C concentration of the steel material. It is considered that the variation greatly affects the variation in heat treatment strain.

【0011】また、実施例を含む多くの実験データに基
づいて凝固組織とC濃度との関係について調査を行った
結果、等軸晶領域と柱状晶領域でC濃度が異なることが
明らかとなった。
Further, as a result of investigating the relationship between the solidification structure and the C concentration based on many experimental data including the examples, it was revealed that the C concentration differs between the equiaxed crystal region and the columnar crystal region. .

【0012】ところで、凝固組織の形状は、連続鋳造鋳
型形状に大きく影響を受ける。その結果、矩形鋳型によ
る連鋳材は、矩形断面の鋳片2のブルームであるので、
図1の(b)に示すように、外側の柱状晶6の中心部の
等軸晶5は矩形となる。そのため場所により製品の丸鋼
材4の凝固組織のC濃度に差異が生じることから熱処理
時に発生する寸法変化が周方向で不均一となり、これが
熱処理ひずみのバラツキに及ぼす大きな要因の一つとな
っていると考えられる。
By the way, the shape of the solidified structure is greatly influenced by the shape of the continuous casting mold. As a result, since the continuous cast material by the rectangular mold is the bloom of the slab 2 having a rectangular cross section,
As shown in FIG. 1B, the equiaxed crystal 5 at the center of the outer columnar crystal 6 has a rectangular shape. Therefore, since the C concentration of the solidified structure of the round steel material 4 of the product varies depending on the location, the dimensional change occurring during heat treatment becomes non-uniform in the circumferential direction, which is one of the major factors affecting the variation in heat treatment strain. Conceivable.

【0013】すなわち、図1の(a)に示すように、円
形鋳型による円形連鋳片1は断面円形であるため、外側
の柱状晶6の中心部の等軸晶5も断面円形であり、圧延
後の円形製品の丸鋼材3においても、その等軸晶5も同
心円状の円形となる。従って、周方向での熱処理ひずみ
の差が小さく、熱処理後の等軸晶5もほぼ真円となる。
That is, as shown in FIG. 1A, since the circular continuous cast piece 1 formed by the circular mold has a circular cross section, the equiaxed crystal 5 at the center of the outer columnar crystal 6 also has a circular cross section. In the round steel material 3 which is a circular product after rolling, the equiaxed crystal 5 also has a concentric circular shape. Therefore, the difference in heat treatment strain in the circumferential direction is small, and the equiaxed crystal 5 after heat treatment is also a substantially perfect circle.

【0014】一方、上記のように、図1の(b)に示す
ように、矩形鋳型による連鋳片2は矩形断面のブルーム
を圧延にて断面円形の製品の丸鋼材4を製造しているた
め、ブルームの凝固組織の影響で断面矩形の等軸晶5が
圧延後の円形製品の丸鋼材4においても現れることとな
る。周方向での熱処理ひずみの差が生じ、熱処理後の等
軸晶の真円度が悪化する問題がある。
On the other hand, as described above, as shown in FIG. 1B, the continuous cast piece 2 by the rectangular mold is manufactured by rolling the bloom of the rectangular cross section to produce the round steel material 4 having the circular cross section. Therefore, due to the solidification structure of the bloom, the equiaxed crystal 5 having a rectangular cross section also appears in the round steel product 4 of the circular product after rolling. There is a problem that a difference in heat treatment strain occurs in the circumferential direction and the roundness of the equiaxed crystal after heat treatment deteriorates.

【0015】[0015]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、自動車用精密部品、特にCVJインナーレ
ースおよびギア等の中空軸部品に用いられるC含有量が
0.5質量%未満の浸炭鋼材の熱処理において、熱処理
寸法変化、すなわち熱処理ひずみのバラツキが抑制さ
れ、寸法精度が良好であり、場合によっては熱処理後の
切削工程または研磨工程等の形状修正工程を省略するこ
とのできる加工部品を得るための製造方法およびこの中
空軸部品用の定ひずみ浸炭用鋼鋳片を提供することであ
る。
The problem to be solved by the present invention is to carburize precision parts for automobiles, particularly CVJ inner races and hollow shaft parts such as gears, having a C content of less than 0.5% by mass. In the heat treatment of steel materials, it is possible to suppress the heat treatment dimensional change, that is, the variation of heat treatment strain, the dimensional accuracy is good, and in some cases, the processed parts that can omit the shape correction process such as the cutting process or the polishing process after the heat treatment. The object of the present invention is to provide a manufacturing method for obtaining the same and a steel slab for constant strain carburization for this hollow shaft part.

【0016】なお、C含有量が0.5質量%の浸炭鋼材
では、鋼材中のC濃度のバラツキの絶対値が大きくな
り、熱処理ひずみのバラツキを軽減しても、熱処理後の
切削工程または研磨工程等の形状修正工程を省略するこ
とは困難である。
In a carburized steel material having a C content of 0.5% by mass, the absolute value of the variation in the C concentration in the steel material becomes large, and even if the variation in the heat treatment strain is reduced, the cutting step or polishing after the heat treatment is performed. It is difficult to omit a shape correction process such as a process.

【0017】[0017]

【課題を解決するための手段】上記の課題を解決する本
発明の手段および原理について以下に説明する。先ず、
等軸晶5の形状の等方化を図る手段について検討する。
上述したように等軸晶5の形状が熱処理ひずみのバラツ
キに大きく影響を及ぼしていると考え、等軸晶5の形状
の等方化、すなわち正方形化を行なったが、この方法で
は熱処理ひずみのバラツキにはあまり良好ではなかっ
た。
Means and principles of the present invention for solving the above problems will be described below. First,
A means for making the shape of the equiaxed crystal 5 isotropic will be examined.
As described above, it was considered that the shape of the equiaxed crystal 5 had a great influence on the variation in the heat treatment strain, and thus the shape of the equiaxed crystal 5 was made isotropic, that is, squared. The variation was not very good.

【0018】次いで、等軸晶率およびC濃度バラツキの
縮小化、すなわち鋳型内電磁撹拌(以下、「M−EM
S」という。)強度の最適化を図る手段について検討す
る。
Next, the equiaxed crystal ratio and the C concentration variation are reduced, that is, electromagnetic stirring in the mold (hereinafter referred to as "M-EM").
"S". ) Consider means for optimizing strength.

【0019】等軸晶5の形状改善の効果は上記のとおり
薄いことが判ったが、検討を進めた結果、等軸晶5の形
状よりも等軸晶5の面積の方が熱処理ひずみのバラツキ
の低減に重要であることが判った。これは、等軸晶5と
柱状晶6との間にC濃度差があることが大きな原因であ
る。
It was found that the effect of improving the shape of the equiaxed crystal 5 was thin as described above, but as a result of further study, the area of the equiaxed crystal 5 is more uneven than the shape of the equiaxed crystal 5 in the heat treatment strain. It was found to be important for the reduction of This is largely due to the difference in C concentration between the equiaxed crystal 5 and the columnar crystal 6.

【0020】ところで、自動車用精密部品の多くは中空
軸形状であり、冷鍛部品7に鍛造成形後に冷鍛部品7の
軸中心部をポンチカスの打ち抜き片8として打ち抜く。
実機検討およびCAE解析から、この打ち抜き後の冷鍛
部品7に等軸晶5がどの程度残存するかが、熱処理ひず
みバラツキに大きく影響を及ぼしていることが判明し
た。
Most precision parts for automobiles have a hollow shaft shape, and after the cold forged part 7 is forged, the axial center part of the cold forged part 7 is punched out as a punched punch piece 8.
From the actual machine examination and the CAE analysis, it was found that how much the equiaxed crystal 5 remains in the cold forged part 7 after punching greatly affects the heat treatment strain variation.

【0021】図2に示すように、矩形鋳型による場合、
打ち抜き後の冷鍛部品7に残存する等軸晶5は、同図の
(d)に見られるように、等軸晶5に膨張率小部9と膨
張率大部10が生じて等軸晶5の部分は軸対称形状では
ない。この冷鍛部品7を熱処理して熱処理部品12する
と、等軸晶5と柱状晶6とのC濃度差に対応して、熱処
理ひずみの差が生じる。その結果、熱処理後の熱処理部
品12は縦軸長さ13と横軸長さ14に差異が生じて等
軸晶5の真円度が悪化する。
As shown in FIG. 2, when using a rectangular mold,
The equiaxed crystal 5 remaining in the cold-forged part 7 after punching is formed by forming a small expansion coefficient portion 9 and a large expansion coefficient portion 10 in the equiaxed crystal 5, as shown in FIG. The portion 5 is not axisymmetric. When the cold forged part 7 is heat-treated and the heat-treated part 12 is applied, a difference in the heat treatment strain is generated corresponding to the difference in C concentration between the equiaxed crystal 5 and the columnar crystal 6. As a result, the heat-treated part 12 after heat treatment has a difference in the vertical axis length 13 and the horizontal axis length 14, and the circularity of the equiaxed crystal 5 deteriorates.

【0022】以上のことから、熱処理ひずみのバラツキ
を低減する手段として、連続鋳造時のM−EMS強度を
小さくし、等軸晶率を縮小化して冷鍛部品7内に占める
等軸晶5の部分の率を小さくすることにより、熱処理部
品12における熱処理ひずみのバラツキの低減を図るこ
とにした。
From the above, as a means for reducing the variation in heat treatment strain, the M-EMS strength during continuous casting is reduced, the equiaxed crystal ratio is reduced, and the equiaxed crystal 5 occupying in the cold forged part 7 is reduced. By reducing the ratio of the portion, it is intended to reduce the variation in the heat treatment strain in the heat treated component 12.

【0023】ところで、連続鋳造時のM−EMS強度を
下げるにあたり懸念されることとして、品質悪化、具体
的には炭素濃度の中心偏析、中心ポロシティーおよび介
在物増加があげられる。そのため、高品質と熱処理ひず
みバラツキ低減を実現できる最適なM−EMS強度につ
いて策定する必要がある。
By the way, as a concern in reducing the M-EMS strength during continuous casting, deterioration of quality, specifically, center segregation of carbon concentration, center porosity and increase of inclusions can be mentioned. Therefore, it is necessary to formulate the optimum M-EMS strength that can realize high quality and reduction of heat treatment strain variation.

【0024】一般的には、鋳片内部性状向上を目的に高
い等軸晶率を得るためには、特開昭57−75271号
公報、特開昭53−45627号公報、特開2001−
138018号公報に開示のように、M−EMSを実施
するのが主流である。すなわちM−EMS強度を高くし
て鋳型内の溶鋼流動を促進させて柱状晶6の生成を抑制
する、すなわち等軸晶率を大きくすることは、品質につ
いては良い方に作用するが、上記したとおり、熱処理ひ
ずみのバラツキを低減する目的ではあまり得策でない。
Generally, in order to obtain a high equiaxed crystal ratio for the purpose of improving the internal properties of the cast slab, JP-A-57-75271, JP-A-53-45627, and JP-A-2001-2001.
As disclosed in Japanese Patent No. 138018, it is the mainstream to carry out M-EMS. That is, increasing the M-EMS strength to promote the molten steel flow in the mold to suppress the formation of columnar crystals 6, that is, to increase the equiaxed crystal ratio has a better effect on the quality, but is described above. As described above, it is not a good idea to reduce the variation in heat treatment strain.

【0025】そこで、本発明の手段においては、品質及
び熱処理ひずみバラツキの両方にとって最適なM−EM
S強度の設定が重要である。そのため発明者らは、後述
する実施例を含むM−EMS強度を変更した多くの実験
データに基づいて、鋳片における等軸晶率測定および品
質調査、すなわちC濃度の中心偏析、中心ポロシティ
ー、介在物の調査、さらに、この矩形鋳型による連鋳片
から塑性加工により製造し、熱処理した熱処理部品12
の熱処理ひずみバラツキの測定を行なった。その結果、
M−EMS強度を磁束密度30〜100μTとし、鋳型
内平均溶鋼流速を2cm/s〜15cm/sとすること
で、等軸晶5の生成を抑制し、同時に柱状晶6のC濃度
のバラツキを低減でき、その結果、熱処理部品12に好
適な熱処理ひずみのバラツキおよび品質を得ることがで
きることが判った。
Therefore, in the means of the present invention, M-EM which is optimum for both quality and heat treatment strain variation.
Setting the S intensity is important. Therefore, the inventors of the present invention have measured equiaxed crystal ratio and quality in a cast piece, that is, center segregation of C concentration, center porosity, based on a lot of experimental data in which M-EMS strength is changed, including examples described later. Investigation of inclusions, and further, heat-treated part 12 manufactured by plastic working from continuous cast pieces by this rectangular mold and heat-treated
The heat treatment strain variation was measured. as a result,
The M-EMS strength is set to a magnetic flux density of 30 to 100 μT, and the average molten steel flow rate in the mold is set to 2 cm / s to 15 cm / s to suppress the formation of equiaxed crystals 5 and, at the same time, cause variations in the C concentration of the columnar crystals 6. It has been found that the heat treatment strain can be reduced, and as a result, the heat treatment strain variation and quality suitable for the heat treatment component 12 can be obtained.

【0026】さらに、重要な知見として、上記製造条件
では柱状晶6の領域でのC濃度のバラツキを大幅に低減
できることが判った。上述したように、中空軸部品では
冷鍛部品7の等軸晶5の領域を打ち抜いて製造するた
め、冷鍛部品7中の多くは柱状晶6で構成される。実際
には柱状晶6の内部でのC濃度のバラツキも熱処理ひず
みにおよぼす影響を無視できない。矩形断面のブルーム
を圧延して円形断面の鋳片のC濃度を図3の(a)に示
す測定位置で測定し、その結果を(b)のグラフで示
す。この図3の(b)に示すように、M−EMS強度を
磁束密度250μTの現状に比し、100μT以下とす
るとき柱状晶6の領域におけるC偏析を大幅に低減でき
ることがわかる。従って、M−EMS強度を磁束密度3
0〜100μTとして鋳型内平均溶鋼流速を2cm/s
〜15cm/sとすることで、柱状晶6の領域における
C偏析を大幅に低減でき、その結果、該冷鍛部品7の熱
処理後の熱処理部品12の熱処理ひずみのバラツキ低減
に効果が大きいことが判った。
Further, as an important finding, it has been found that the variation of the C concentration in the region of the columnar crystals 6 can be significantly reduced under the above manufacturing conditions. As described above, since the hollow shaft part is manufactured by punching out the region of the equiaxed crystal 5 of the cold forged part 7, most of the cold forged part 7 is composed of columnar crystals 6. Actually, the influence of the C concentration variation in the columnar crystals 6 on the heat treatment strain cannot be ignored. Bloom of a rectangular cross section is rolled to measure the C concentration of a slab with a circular cross section at the measurement position shown in (a) of FIG. 3, and the result is shown in the graph of (b). As shown in FIG. 3B, it can be seen that the C-segregation in the region of the columnar crystals 6 can be significantly reduced when the M-EMS intensity is set to 100 μT or less compared to the current state of the magnetic flux density of 250 μT. Therefore, the M-EMS intensity is set to the magnetic flux density 3
The average molten steel flow velocity in the mold is set to 0 to 100 μT and 2 cm / s.
By setting it to be 15 cm / s, the C segregation in the region of the columnar crystals 6 can be greatly reduced, and as a result, it is effective in reducing the variation in the heat treatment strain of the heat treated part 12 after the heat treatment of the cold forged part 7. understood.

【0027】すなわち、上記の課題を達成するための本
発明の手段は、請求項1の発明では、軸方向に塑性流動
を伴う塑性加工を施し、しかる後に中心部分から軸芯挿
入部を打ち抜く所定形状の加工により製造する中空軸部
品に用いる炭素含有量が0.5質量%未満の浸炭用鋼の
連続鋳造による鋳片製造方法において、連続鋳造時の鋳
型内平均溶鋼流速を2cm/s〜15cm/s(望まし
くは、5cm/s〜15cm/s)とすることを特徴と
する定ひずみ浸炭用鋼の鋳片製造方法である。
That is, the means of the present invention for achieving the above object is, in the invention of claim 1, performing a plastic working accompanied by a plastic flow in the axial direction, and thereafter punching out a shaft core insertion portion from a central portion. In the method for producing a slab by continuous casting of carburizing steel having a carbon content of less than 0.5% by mass, which is used for a hollow shaft part produced by shape processing, the average molten steel flow velocity in the mold during continuous casting is 2 cm / s to 15 cm. / S (desirably 5 cm / s to 15 cm / s) is a method for producing a cast slab for constant strain carburizing steel.

【0028】請求項2の発明では、軸方向に塑性流動を
伴う塑性加工を施し、しかる後に中心部分から軸芯挿入
部を打ち抜く所定形状の加工により製造する中空軸部品
に用いる炭素含有量が0.5質量%未満の浸炭用鋼の連
続鋳造による鋳片製造方法において、連続鋳造時の鋳型
内平均溶鋼流速を2cm/s〜15cm/s(望ましく
は、5cm/s〜15cm/s)とし、前記中空軸部品
に用いる鋳片中心部偏析帯の面積率を軽減することを特
徴とする定ひずみ浸炭用鋼の連続鋳造による鋳片製造方
法である。
According to the second aspect of the present invention, the carbon content used in the hollow shaft part manufactured by performing the plastic working accompanied by the plastic flow in the axial direction and then punching the shaft core insertion portion from the central portion is 0. In the slab manufacturing method by continuous casting of steel for carburizing less than 0.5 mass%, the average molten steel flow velocity in the mold during continuous casting is set to 2 cm / s to 15 cm / s (desirably 5 cm / s to 15 cm / s), A slab production method by continuous casting of steel for carburizing constant strain, characterized in that the area ratio of the segregation zone of the slab used in the hollow shaft part is reduced.

【0029】請求項3の発明では、軸方向に塑性流動を
伴う塑性加工を施し、しかる後に中心部分から軸芯挿入
部を打ち抜く所定形状の加工により製造する中空軸部品
に用いる炭素含有量が0.5質量%未満の浸炭用鋼の連
続鋳造による鋳片製造方法において、連続鋳造時のM−
EMS(鋳型内電磁攪拌)強度を磁束密度30〜100
μTに制御して鋳型内平均溶鋼流速を2cm/s〜15
cm/s(望ましくは、5cm/s〜15cm/s)と
することを特徴とする定ひずみ浸炭用鋼の連続鋳造によ
る鋳片製造方法である。
According to the third aspect of the invention, the carbon content used in the hollow shaft component manufactured by performing the plastic working accompanied by the plastic flow in the axial direction and then punching the shaft core insertion portion from the central portion is 0. In the method for producing a slab by continuous casting of steel for carburizing less than 0.5 mass%, M- at the time of continuous casting
EMS (electromagnetic stirring in the mold) strength of magnetic flux density 30-100
The average molten steel flow velocity in the mold is controlled to be μT and the average molten steel flow velocity is 2 cm / s to 15 cm.
cm / s (desirably 5 cm / s to 15 cm / s) is a method for producing a slab by continuous casting of steel for constant strain carburizing.

【0030】請求項4の発明では、軸方向に塑性流動を
伴う塑性加工を施し、しかる後に中心部分から軸芯挿入
部を打ち抜く所定形状の加工により製造する中空軸部品
に用いる炭素含有量が0.5質量%未満の浸炭用鋼の連
続鋳造による鋳片製造方法において、連続鋳造時のM−
EMS(鋳型内電磁攪拌)強度を磁束密度30〜100
μTに制御して鋳型内平均溶鋼流速を2cm/s〜15
cm/s(望ましくは、5cm/s〜15cm/s)と
し、前記中空軸部品に用いる鋳片中心部偏析帯の面積率
を軽減することを特徴とする定ひずみ浸炭用鋼の連続鋳
造による鋳片製造方法である。
According to the fourth aspect of the present invention, the carbon content used in the hollow shaft part manufactured by performing the plastic working accompanied by the plastic flow in the axial direction and then punching the shaft core insertion portion from the central portion is 0. In the method for producing a slab by continuous casting of steel for carburizing less than 0.5 mass%, M- at the time of continuous casting
EMS (electromagnetic stirring in the mold) strength of magnetic flux density 30-100
The average molten steel flow velocity in the mold is controlled to be μT and the average molten steel flow velocity is 2 cm / s to 15 cm.
cm / s (desirably 5 cm / s to 15 cm / s), and reducing the area ratio of the segregation zone at the center of the slab used for the hollow shaft component by continuous casting of constant strain carburizing steel. It is a piece manufacturing method.

【0031】請求項5の発明では、軸方向に塑性流動を
伴う塑性加工を施した後に中心部分から軸芯挿入部を打
ち抜き所定形状とした中空軸部品用の炭素含有量が0.
5質量%未満の浸炭用鋼において中心部偏析帯の面積率
を小さくしたことを特徴とする請求項1〜4のいずれか
1項の手段により製造の定ひずみ浸炭用鋼の鋳片であ
る。
According to the fifth aspect of the present invention, after the plastic working accompanied by the plastic flow in the axial direction is performed, the shaft core insertion portion is punched out from the central portion, and the carbon content for the hollow shaft part having a predetermined shape is 0.
The steel product for constant strain carburizing steel produced by the means according to any one of claims 1 to 4, wherein the area ratio of the central segregation zone in the carburizing steel of less than 5% by mass is reduced.

【0032】[0032]

【発明の実施の形態】本発明の実施の形態を以下により
説明する。表1に示す化学組成を有する鋼材を溶製し、
連続鋳造により矩形鋳型により矩形断面のブルームに鋳
造した。連続鋳造時の鋳片の中心部偏析帯すなわち等軸
晶の鋳片断面に占める割合の等軸晶率およびC%バラツ
キを変化させるために、M−EMS強度(μT)を、表
2に示すとおり変化させた。各M−EMS強度(μT)
での鋳型内平均溶鋼流速は、それぞれ0cm/s、8.
3cm/s、16.5cm/s、25cm/s、33c
m/s、42cm/sであった。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. The steel material having the chemical composition shown in Table 1 is melted,
By continuous casting, a rectangular mold was used to cast a bloom having a rectangular cross section. Table 2 shows the M-EMS strength (μT) in order to change the central segregation zone of the slab during continuous casting, that is, the equiaxed crystal ratio of the ratio of the equiaxed crystal to the cross section of the slab and the C% variation. It changed as follows. Each M-EMS intensity (μT)
The average molten steel flow velocity in the mold at 0.
3 cm / s, 16.5 cm / s, 25 cm / s, 33c
It was m / s and 42 cm / s.

【0033】[0033]

【表1】 [Table 1]

【0034】その後、それぞれを断面円形に圧延し、こ
れらの圧延材の横断面にてマクロ試験を行い、圧延材横
断面中の等軸晶の占める割合を面積率で等軸晶率として
示した。等軸晶領域の測定は、JIS G 0553に
規定された鋼のマクロ組織試験方法に準じて、約20%
HCI液中で約30〜40秒間腐蝕し、等軸晶域の面積
率を測定した。さらに、圧延材の直径からダライコを採
取し、各場所でのC濃度を調査し、柱状晶領域でのC%
バラツキ(σ)を求めた。以上の測定結果を表2に示
す。
Thereafter, each was rolled into a circular cross section, and a macro test was carried out on the cross sections of these rolled materials, and the proportion of equiaxed crystals in the cross section of the rolled material was shown as the equiaxed crystal ratio by the area ratio. . The measurement of the equiaxed crystal region is about 20% according to the method for testing the macrostructure of steel specified in JIS G 0553.
It was corroded in the HCI solution for about 30 to 40 seconds, and the area ratio of equiaxed crystal regions was measured. Furthermore, a Daliko was taken from the diameter of the rolled material, the C concentration at each place was investigated, and the C% in the columnar crystal region was measured.
The variation (σ) was calculated. Table 2 shows the above measurement results.

【0035】[0035]

【表2】 [Table 2]

【0036】これらの鋼材を45mmの長さに切断した
後、図4に示すような工程にて冷間鍛造にて図に示すよ
うな高さ30mmの形状の冷鍛部品7に成形し、中心部
の等軸晶5の部分のφ25mmをポンチカスの打ち抜き
片8として打ち抜いた。その後、浸炭焼入れ処理を施し
た。
After cutting these steel materials to a length of 45 mm, they are cold forged in a process as shown in FIG. 4 to form a cold forged component 7 having a height of 30 mm as shown in the drawing, and Φ25 mm of the equiaxed crystal part 5 was punched out as a punching punched piece 8. Then, carburizing and quenching treatment was performed.

【0037】その後、図5に示すように、1つの部品で
(a)の高さLの各L/4ずつ高さ方向にイ、ロ、ハの
3箇所、(b)の周方向に均等に区分してa、b、c、
dの4箇所の計12箇所において外径真円度を測定し
た。その結果も表2に合わせて示している。
After that, as shown in FIG. 5, one component is L / 4 each of the heights L of (a) in the height direction at three positions (a), (b) and (c) and is evenly distributed in the circumferential direction of (b). Divided into a, b, c,
The roundness of the outer diameter was measured at a total of 12 locations of 4 locations of d. The results are also shown in Table 2.

【0038】その結果、M−EMSの強度を磁束密度を
30〜100μT以下とし、鋳型内平均溶鋼流速を2c
m/s〜15cm/sとすることで品質的にも良好でか
つ熱処理による寸法変化、すなわち、浸炭焼入れによる
熱処理後の外径真円度を要求されるレベルに小さくでき
た。
As a result, the strength of M-EMS was set so that the magnetic flux density was 30 to 100 μT or less, and the average molten steel flow velocity in the mold was 2 c.
By setting m / s to 15 cm / s, the quality was good and the dimensional change due to heat treatment, that is, the outer diameter roundness after heat treatment by carburizing and quenching could be reduced to a required level.

【0039】[0039]

【発明の効果】以上に説明したように、本発明の方法
は、矩形断面の連続鋳片の連続鋳造において、鋳造時の
M−EMS強度を適正に設定し、鋳型内の平均溶鋼流速
を適正とすることにより、中心部偏析帯面積率を小さく
でき、かつ柱状晶領域におけるC偏析を抑制でき、この
方法により製造の鋳片を用いて製造した中空軸部品の浸
炭焼入れ後の形状修正を行なわなくても良い浸炭用鋼で
あるなど、本発明は従来にない優れた効果を奏するもの
である。
As described above, in the method of the present invention, in continuous casting of a continuous slab having a rectangular cross section, the M-EMS strength during casting is properly set, and the average molten steel flow velocity in the mold is properly set. By doing so, the central segregation zone area ratio can be reduced, and C segregation in the columnar crystal region can be suppressed. By this method, the hollow shaft component manufactured by using the cast slab can be reshaped after carburizing and quenching. The present invention exerts an excellent effect which has never been obtained, such as the carburizing steel which does not need to be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】連鋳材鋳片を圧延して丸鋼材製品に圧延したと
きの等軸晶の変化を示す図で、(a)は円形鋳型による
ものを示し、(b)は矩形鋳型によるものを示す。
FIG. 1 is a diagram showing changes in equiaxed crystals when a continuous cast slab is rolled into a round steel product, where (a) shows a circular mold and (b) shows a rectangular mold. Indicates.

【図2】矩形鋳型による丸鋼材の結晶構造の模式図と冷
鍛部品軸部の打ち抜きイメージ並びに等軸晶部残存状態
を示す図で、(a)は丸鋼材の結晶構造の模式側面図、
(b)は丸鋼材の結晶構造の模式平面図、(c)は
(a)の丸鋼材を冷鍛した冷鍛部品の軸部の打ち抜きイ
メージを示す側面図、(d)は冷鍛部品の軸部の等軸晶
部残存状態を示す平面図である。
FIG. 2 is a schematic diagram of a crystal structure of a round steel product by a rectangular mold, a punching image of a cold forging part shaft part and a diagram showing a state where an equiaxed crystal part remains, (a) is a schematic side view of a crystal structure of a round steel product,
(B) is a schematic plan view of the crystal structure of the round steel material, (c) is a side view showing the punching image of the shaft part of the cold forged part cold-forged the round steel material of (a), (d) is the cold forged part It is a top view which shows the equiaxed crystal part residual state of a shaft part.

【図3】矩形鋳型によるブルームを圧延した丸鋼材の各
部でのC濃度を示す図で、(a)は測定位置を示す図
で、(b)は測定結果を示すグラフである。
FIG. 3 is a diagram showing the C concentration in each part of a round steel material obtained by rolling a bloom in a rectangular mold, (a) is a diagram showing measurement positions, and (b) is a graph showing measurement results.

【図4】(a)は矩形鋳型によるブルームから圧延した
丸鋼材の側面図、(b)は冷鍛部品の等軸晶部の中心の
打ち抜き前の模式的側面図、(c)はその打ち抜き後の
模式的側面図である。
4A is a side view of a round steel material rolled from a bloom by a rectangular mold, FIG. 4B is a schematic side view of a center of an equiaxed crystal portion of a cold forged part before punching, and FIG. 4C is a punching thereof. It is a typical side view after.

【図5】図4で示す等軸晶部の中心を打ち抜いた冷鍛部
品のひずみ測定箇所を示す図で、(a)は高さ方向、
(b)は周方向を示す図である。
FIG. 5 is a view showing strain measurement points of a cold forged part in which the center of the equiaxed crystal part shown in FIG. 4 is punched, and (a) is a height direction,
(B) is a figure which shows the circumferential direction.

【符号の説明】[Explanation of symbols]

1 円形鋳型による鋳片 2 矩形鋳型による鋳片 3 丸鋼材 4 丸鋼材 5 等軸晶 6 柱状晶 7 冷鍛部品 8 打ち抜き片 9 膨張率小部 10 膨張率大部 11 打ち抜き部 12 熱処理部品 13 縦軸長さ 14 横軸長さ 1 Circular mold slab 2 Slab by rectangular mold 3 round steel 4 round steel 5 equiaxed 6 columnar crystals 7 Cold forging parts 8 punched pieces 9 Expansion coefficient small part 10 Expansion coefficient 11 punching part 12 Heat treated parts 13 Vertical axis length 14 Horizontal axis length

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // C23C 8/22 C23C 8/22 (72)発明者 雲丹亀 泰和 兵庫県姫路市飾磨区中島字一文字3007番地 山陽特殊製鋼株式会社内 (72)発明者 北出 真一 兵庫県姫路市飾磨区中島字一文字3007番地 山陽特殊製鋼株式会社内 Fターム(参考) 4E004 AA09 MB12 NB02 NC04 4E087 AA08 BA02 CA11 CB03 HA01 HA25 HA31 HA82 HB01 4K028 AA01 AB01 AB06 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI theme code (reference) // C23C 8/22 C23C 8/22 (72) Inventor Undangame Taiwa Nakajima, Himeji City, Hyogo Prefecture 3007 Sanyo Special Steel Co., Ltd. (72) Inventor Shinichi Kitade One letter in Nakajima, Shikoma-ku, Himeji City, Hyogo Prefecture 3007 Sanyo Special Steel Co., Ltd. F term (reference) 4E004 AA09 MB12 NB02 NC04 4E087 AA08 BA02 CA11 CB03 HA01 HA25 HA31 HA82 HB01 4K028 AA01 AB01 AB06

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 軸方向に塑性流動を伴う塑性加工を施
し、しかる後に中心部分から軸芯挿入部を打ち抜く所定
形状の加工により製造する中空軸部品に用いる炭素含有
量が0.5質量%未満の浸炭用鋼の連続鋳造による鋳片
製造方法において、連続鋳造時の鋳型内平均溶鋼流速を
2cm/s〜15cm/sとすることを特徴とする定ひ
ずみ浸炭用鋼の鋳片製造方法。
1. A carbon content of less than 0.5% by mass used in a hollow shaft part manufactured by performing a plastic working accompanied by a plastic flow in an axial direction and thereafter punching a shaft core insertion portion from a central portion to produce a predetermined shape. In the slab production method by continuous casting of carburizing steel, the average molten steel flow velocity in the mold during continuous casting is set to 2 cm / s to 15 cm / s.
【請求項2】 軸方向に塑性流動を伴う塑性加工を施
し、しかる後に中心部分から軸芯挿入部を打ち抜く所定
形状の加工により製造する中空軸部品に用いる炭素含有
量が0.5質量%未満の浸炭用鋼の連続鋳造による鋳片
製造方法において、連続鋳造時の鋳型内平均溶鋼流速を
2cm/s〜15cm/sとし、前記中空軸部品に用い
る鋳片中心部偏析帯の面積率を軽減することを特徴とす
る定ひずみ浸炭用鋼の連続鋳造による鋳片製造方法。
2. A carbon content of less than 0.5% by mass used for a hollow shaft part manufactured by performing a plastic working accompanied by a plastic flow in an axial direction and thereafter punching a shaft core insertion portion from a central portion to produce a predetermined shape. In the method for producing a slab by continuous casting of carburizing steel, the average molten steel flow velocity in the mold during continuous casting is set to 2 cm / s to 15 cm / s to reduce the area ratio of the slab center segregation zone used for the hollow shaft part. A method for producing a slab by continuous casting of steel for carburizing constant strain, which comprises:
【請求項3】 軸方向に塑性流動を伴う塑性加工を施
し、しかる後に中心部分から軸芯挿入部を打ち抜く所定
形状の加工により製造する中空軸部品に用いる炭素含有
量が0.5質量%未満の浸炭用鋼の連続鋳造による鋳片
製造方法において、連続鋳造時のM−EMS(鋳型内電
磁攪拌)強度を磁束密度30〜100μTに制御して鋳
型内平均溶鋼流速を2cm/s〜15cm/sとするこ
とを特徴とする定ひずみ浸炭用鋼の連続鋳造による鋳片
製造方法。
3. A carbon content of less than 0.5% by mass used in a hollow shaft component manufactured by performing a plastic working accompanied by plastic flow in an axial direction and thereafter punching a shaft core insertion portion from a central portion to produce a predetermined shape. In the method for producing a slab by continuous casting of carburizing steel, the M-EMS (electromagnetic stirring in the mold) strength during continuous casting is controlled to a magnetic flux density of 30 to 100 μT, and the average molten steel flow velocity in the mold is 2 cm / s to 15 cm / A slab production method by continuous casting of steel for constant strain carburization, characterized in that
【請求項4】 軸方向に塑性流動を伴う塑性加工を施
し、しかる後に中心部分から軸芯挿入部を打ち抜く所定
形状の加工により製造する中空軸部品に用いる炭素含有
量が0.5質量%未満の浸炭用鋼の連続鋳造による鋳片
製造方法において、連続鋳造時のM−EMS(鋳型内電
磁攪拌)強度を磁束密度30〜100μTに制御して鋳
型内平均溶鋼流速を2cm/s〜15cm/sとし、前
記中空軸部品に用いる鋳片中心部偏析帯の面積率を軽減
することを特徴とする定ひずみ浸炭用鋼の連続鋳造によ
る鋳片製造方法。
4. A carbon content of less than 0.5% by mass used in a hollow shaft part manufactured by performing a plastic working accompanied by plastic flow in an axial direction and thereafter punching a shaft core insertion portion from a central portion to produce a predetermined shape. In the method for producing a slab by continuous casting of carburizing steel, the M-EMS (electromagnetic stirring in the mold) strength during continuous casting is controlled to a magnetic flux density of 30 to 100 μT, and the average molten steel flow velocity in the mold is 2 cm / s to 15 cm / s, and reducing the area ratio of the center segregation zone of the slab used for the hollow shaft part, a method for producing a slab by continuous casting of steel for constant strain carburization.
【請求項5】 軸方向に塑性流動を伴う塑性加工を施し
た後に中心部分から軸芯挿入部を打ち抜き所定形状とし
た中空軸部品用の炭素含有量が0.5質量%未満の浸炭
用鋼において中心部偏析帯の面積率を小さくしたことを
特徴とする請求項1〜4のいずれか1項の方法により製
造の定ひずみ浸炭用鋼の鋳片。
5. A carburizing steel having a carbon content of less than 0.5% by mass for a hollow shaft part which is formed into a predetermined shape by punching out a shaft core insertion part from a central part after performing a plastic working accompanied by a plastic flow in an axial direction. 5. The slab of constant strain carburizing steel produced by the method according to any one of claims 1 to 4, wherein the area ratio of the central segregation zone is reduced.
JP2002129849A 2002-05-01 2002-05-01 Method for producing slab of carburizing steel with small variation in heat treatment strain and slab Expired - Fee Related JP4301389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002129849A JP4301389B2 (en) 2002-05-01 2002-05-01 Method for producing slab of carburizing steel with small variation in heat treatment strain and slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002129849A JP4301389B2 (en) 2002-05-01 2002-05-01 Method for producing slab of carburizing steel with small variation in heat treatment strain and slab

Publications (2)

Publication Number Publication Date
JP2003320439A true JP2003320439A (en) 2003-11-11
JP4301389B2 JP4301389B2 (en) 2009-07-22

Family

ID=29543135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002129849A Expired - Fee Related JP4301389B2 (en) 2002-05-01 2002-05-01 Method for producing slab of carburizing steel with small variation in heat treatment strain and slab

Country Status (1)

Country Link
JP (1) JP4301389B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013111407A1 (en) * 2012-01-26 2013-08-01 新日鐵住金株式会社 Case hardening steel material with little heat-treatment strain
CN110722118A (en) * 2019-09-26 2020-01-24 江苏省沙钢钢铁研究院有限公司 Wire rod for deep drawing and method for manufacturing blank thereof
CN113843402A (en) * 2021-09-18 2021-12-28 山东钢铁股份有限公司 Control method for internal solidification structure of gear steel ultra-large section round billet

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013111407A1 (en) * 2012-01-26 2013-08-01 新日鐵住金株式会社 Case hardening steel material with little heat-treatment strain
TWI447234B (en) * 2012-01-26 2014-08-01 Nippon Steel & Sumitomo Metal Corp Case hardening steel having small heat-treatment distortion
CN104053808A (en) * 2012-01-26 2014-09-17 新日铁住金株式会社 Case hardening steel material with little heat-treatment strain
JP5664803B2 (en) * 2012-01-26 2015-02-04 新日鐵住金株式会社 Case-hardened steel with low heat treatment distortion
KR101617985B1 (en) 2012-01-26 2016-05-03 신닛테츠스미킨 카부시키카이샤 Case hardening steel material with little heat-treatment strain
US9422613B2 (en) 2012-01-26 2016-08-23 Nippon Steel & Sumitomo Metal Corporation Case hardened steel having reduced thermal treatment distortion
CN110722118A (en) * 2019-09-26 2020-01-24 江苏省沙钢钢铁研究院有限公司 Wire rod for deep drawing and method for manufacturing blank thereof
CN110722118B (en) * 2019-09-26 2021-07-20 江苏省沙钢钢铁研究院有限公司 Wire rod for deep drawing and method for manufacturing blank thereof
CN113843402A (en) * 2021-09-18 2021-12-28 山东钢铁股份有限公司 Control method for internal solidification structure of gear steel ultra-large section round billet
CN113843402B (en) * 2021-09-18 2023-05-19 山东钢铁股份有限公司 Control method for internal solidification structure of gear steel oversized-section round billet

Also Published As

Publication number Publication date
JP4301389B2 (en) 2009-07-22

Similar Documents

Publication Publication Date Title
JP6528860B2 (en) Steel wire for non-heat treatment machine parts and non-heat treatment machine parts
EP3342892A1 (en) Mechanical structure steel for cold-working and manufacturing method therefor
JP4632931B2 (en) Induction hardening steel excellent in cold workability and its manufacturing method
JP5783014B2 (en) Steel bar for bearing
JP2017048459A (en) Steel wire for machine structure component
JP6614245B2 (en) Steel wire for non-tempered machine parts and non-tempered machine parts
EP1927413B1 (en) Press forging method
JP2008213038A (en) Press forging method
JP2007231416A (en) Steel sheet with excellent suitability for fine blanking and process for producing the same
JP2003320439A (en) Method for manufacturing carburization steel slab having small heat treatment strain variation, and cast slab
JP2007119865A (en) Steel tube for machine structural member, and production method therefor
EP3366800B1 (en) Steel for machine structural use and induction-hardened steel component
WO2018008698A1 (en) Wire rod, steel wire, and part
EP3279361B1 (en) Hot rolled bar or hot rolled wire rod, component, and manufacturing method of hot rolled bar or hot rolled wire rod
WO2017033773A1 (en) Mechanical structure steel for cold-working and manufacturing method therefor
JP2522457B2 (en) Steel pipe for bearing race suitable for cold rolling
WO2017038436A1 (en) Steel wire for mechanical structure parts
JP5020689B2 (en) Machine structure steel pipe with excellent machinability
JP7420321B1 (en) Machine structural parts and their manufacturing method
JP7140274B2 (en) steel shaft parts
JP2010125511A (en) Roll die for cold pilger rolling mill, and method for manufacturing the same
WO2022210124A1 (en) Steel wire for machine structural component and manufacturing method therefor
JPH11342454A (en) Manufacture of constant distortion processed parts
JP2022158882A (en) Steel wire for machine structural component and its manufacturing method
JP2006274315A (en) Steel tube for ring-shaped gear stock

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041004

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20060807

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A02 Decision of refusal

Effective date: 20070508

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20090415

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20120501

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees