JP7420321B1 - Machine structural parts and their manufacturing method - Google Patents

Machine structural parts and their manufacturing method Download PDF

Info

Publication number
JP7420321B1
JP7420321B1 JP2023542018A JP2023542018A JP7420321B1 JP 7420321 B1 JP7420321 B1 JP 7420321B1 JP 2023542018 A JP2023542018 A JP 2023542018A JP 2023542018 A JP2023542018 A JP 2023542018A JP 7420321 B1 JP7420321 B1 JP 7420321B1
Authority
JP
Japan
Prior art keywords
less
heat treatment
hardened layer
grains
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023542018A
Other languages
Japanese (ja)
Other versions
JPWO2023190409A1 (en
Inventor
智樹 大塚
祐太 今浪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JPWO2023190409A1 publication Critical patent/JPWO2023190409A1/ja
Application granted granted Critical
Publication of JP7420321B1 publication Critical patent/JP7420321B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/28Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for plain shafts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

高周波熱処理後のひずみを確実に低減させることによって、特に軸形状部を有する縦横比の大きい部品における偏心の問題を解消した機械構造部品について提供する。C:0.45~0.51%、Si:0.15~0.35%、Mn:0.60~0.90%、P:0.030%以下、S:0.025%以下、Al:0.040~0.059%、Cr:0.10~0.50%およびN:0.0060~0.0100%を含み、残部はFe及び不純物の成分組成を有し、高周波焼入れ・焼戻し処理による硬化層を有する部品において、前記硬化層における旧オーステナイト粒の径が80μm以下の結晶粒の面積率が80%以上、かつ前記硬化層における粒径最頻値の2倍以上の粒径を有する粒の数割合が5%以下、とする。The present invention provides a mechanical structural component that eliminates the problem of eccentricity, especially in components with a large aspect ratio having a shaft-shaped portion, by reliably reducing distortion after high-frequency heat treatment. C: 0.45-0.51%, Si: 0.15-0.35%, Mn: 0.60-0.90%, P: 0.030% or less, S: 0.025% or less, Al: 0.040-0.059%, Cr: 0.10-0.50% and N: 0.0060 ~0.0100%, and the remainder has a composition of Fe and impurities, and in a part that has a hardened layer formed by induction hardening and tempering, the area ratio of crystal grains in which the diameter of prior austenite grains is 80 μm or less in the hardened layer is 80% or more, and the number ratio of grains having a grain size that is twice or more the mode of grain size in the hardened layer is 5% or less.

Description

本発明は、建築産業機械や自動車の分野で用いられる、高周波焼入れ・焼戻し処理による硬化層を有する機械構造部品、中でも軸形状部を有する機械構造部品およびその製造方法に関する。 The present invention relates to a mechanical structural component having a hardened layer formed by induction hardening and tempering, which is used in the fields of construction industry machinery and automobiles, and particularly to a mechanical structural component having a shaft-shaped portion, and a method for manufacturing the same.

自動車や建機などに用いられる、例えばドライブシャフトやアクスルシャフト等の動力伝達部品には、JIS規格のSCr420やSCM420をはじめとする機械構造用合金鋼が用いられる。この種の部品の製造方法の概略は以下の通りである。すなわち、機械構造用合金鋼を素材とする棒鋼や線材を、熱間鍛造および/または冷間鍛造することにより部品形状に粗成形し、切削加工により精細な成形を行う。続いて高周波焼入れ・焼戻し処理(高周波熱処理)や浸炭焼入れ・焼戻し処理(浸炭熱処理)などの表面硬化処理を施し製品とする。高周波熱処理および浸炭熱処理は、900℃以上に加熱・保持後冷却することによって、鋼組織の変態を利用して対象部材を硬化させる。そのため加熱時に鋼組織の変態に起因した熱処理ひずみを生じる。特に、シャフトなどの軸形状部を有するような、縦横比の大きい部品においては、ひずみによる部品の偏心が無視できず、その程度に応じた矯正工程が必要となり、コスト増加につながっていた。 Machine structural alloy steels such as JIS standard SCr420 and SCM420 are used for power transmission parts such as drive shafts and axle shafts used in automobiles and construction machinery. The outline of the manufacturing method for this type of component is as follows. That is, a steel bar or wire rod made of alloy steel for machine structures is roughly formed into a part shape by hot forging and/or cold forging, and then finely formed by cutting. The product is then subjected to surface hardening treatments such as induction hardening and tempering (induction heat treatment) and carburizing and tempering (carburizing heat treatment). In induction heat treatment and carburizing heat treatment, the target member is hardened using transformation of the steel structure by heating and holding at 900°C or higher and then cooling. Therefore, during heating, heat treatment distortion occurs due to transformation of the steel structure. Particularly in parts with a large aspect ratio, such as shafts, etc., eccentricity of the part due to distortion cannot be ignored, and a correction process is required depending on the degree of eccentricity, leading to increased costs.

このような課題に対し、例えば、特許文献1~5に記載の技術が提案されている。すなわち、特許文献1には、AlNを析出させることによりオーステナイト粒の粗大化を抑制し、浸炭熱処理時の熱処理ひずみを低下させた鋼の製造方法が提案されている。 To address these issues, techniques described in Patent Documents 1 to 5, for example, have been proposed. That is, Patent Document 1 proposes a method for manufacturing steel in which coarsening of austenite grains is suppressed by precipitating AlN and heat treatment strain during carburizing heat treatment is reduced.

特許文献2には、熱間加工後の規定温度域における冷却速度を制御することでAlNのサイズと析出密度を制御し、浸炭熱処理時の熱処理ひずみを低下させることが提案されている。 Patent Document 2 proposes controlling the size and precipitation density of AlN by controlling the cooling rate in a specified temperature range after hot working, and reducing the heat treatment strain during carburizing heat treatment.

特許文献3には、鋳造後の加熱および熱間圧延温度を制御することで脱炭を低減させ、浸炭熱処理時の粗大粒発生ならびに熱処理ひずみを低下させた鋼およびその製造方法が提案されている。 Patent Document 3 proposes a steel that reduces decarburization by controlling the heating and hot rolling temperature after casting, and reduces the generation of coarse grains and heat treatment strain during carburizing heat treatment, and a method for manufacturing the same. .

特許文献4には、Ti添加によるTiNの析出ならびに熱間圧延の仕上温度を制御することで浸炭熱処理時の粗大粒発生ならびに熱処理ひずみを低下させた鋼およびその製造方法が提案されている。 Patent Document 4 proposes a steel and a method for producing the same in which generation of coarse grains during carburizing heat treatment and heat treatment strain are reduced by controlling the precipitation of TiN by adding Ti and the finishing temperature of hot rolling.

特許文献5には、棒鋼における長手垂直断面内におけるマルテンサイト変態点のバラつきを制御することで不均一なマルテンサイト変態の発生を抑制し、浸炭焼入れもしくは浸炭窒化焼入れに際して生じる熱処理ひずみを低下させることが提案されている。 Patent Document 5 discloses that by controlling variations in the martensitic transformation point within a longitudinal vertical cross section of a steel bar, the occurrence of uneven martensitic transformation is suppressed, and the heat treatment strain that occurs during carburizing and quenching or carbonitriding and quenching is reduced. is proposed.

特開昭61-261427号公報Japanese Unexamined Patent Publication No. 61-261427 特開平8-199316号公報Japanese Unexamined Patent Publication No. 8-199316 特開2004-204263号公報Japanese Patent Application Publication No. 2004-204263 特開2006-265703号公報Japanese Patent Application Publication No. 2006-265703 特開2013-151719号公報Japanese Patent Application Publication No. 2013-151719

ここで、浸炭熱処理と高周波熱処理とを比較すると、浸炭熱処理の方が熱処理後に生じるひずみが大きい。そこで、従来は、浸炭熱処理後のひずみを低減させることに重点が置かれていた。そのために、特許文献1~5に示された技術は、浸炭熱処理にて生じるひずみを低減させることには有効であるものの、高周波熱処理にて生じる、より小さなひずみを低減させるには不十分であった。 Here, when carburizing heat treatment and high frequency heat treatment are compared, carburizing heat treatment causes greater strain after heat treatment. Therefore, conventionally, emphasis has been placed on reducing the strain after carburizing heat treatment. Therefore, although the techniques shown in Patent Documents 1 to 5 are effective in reducing the strain caused by carburizing heat treatment, they are insufficient to reduce the smaller strain caused by high frequency heat treatment. Ta.

本発明は、上記実状に鑑みて開発されたものであり、高周波熱処理後のひずみを低減させることによって、特に軸形状部を有する縦横比の大きい部品における偏心の問題を解消した機械構造部品およびその製造方法について提供することを目的とする。 The present invention has been developed in view of the above-mentioned circumstances, and provides mechanical structural parts and machine structural parts that solve the problem of eccentricity, especially in parts with a large aspect ratio having shaft-shaped parts, by reducing distortion after high-frequency heat treatment. The purpose is to provide information on manufacturing methods.

本発明者らは、高周波熱処理後の部材におけるひずみの低減を実現するために、高周波熱処理後のひずみに及ぼす鋼材成分ならびに鋼材製造条件の影響を調査した。その結果、高周波熱処理後のひずみ低減には、次の(a)および(b)が重要であることを知見するに到った。
(a)高周波熱処理後の硬化層における旧オーステナイト粒径のばらつきを小さくする。(b)高周波熱処理後の硬化層において、粒径の小さい旧オーステナイト粒が多くの面積を占めるようにする。
The present inventors investigated the effects of steel components and steel manufacturing conditions on strain after high-frequency heat treatment in order to reduce strain in members after high-frequency heat treatment. As a result, we have found that the following (a) and (b) are important for reducing strain after high-frequency heat treatment.
(a) Reduce the variation in prior austenite grain size in the hardened layer after high-frequency heat treatment. (b) In the hardened layer after high-frequency heat treatment, prior austenite grains with a small grain size occupy a large area.

本発明は、上記の知見に基づいたものであり、その要旨構成は次のとおりである。
1.質量%で
C:0.45~0.51%、
Si:0.15~0.35%、
Mn:0.60~0.90%、
P:0.030%以下、
S:0.025%以下、
Al:0.040~0.059%、
Cr:0.10~0.50%および
N:0.0060~0.0100%
を含み、残部はFe及び不純物の成分組成を有し、高周波焼入れ・焼戻し処理による硬化層を有する部品であって、前記硬化層における旧オーステナイト粒の径が80μm以下の結晶粒の面積率が80%以上であり、かつ前記硬化層における粒径最頻値の2倍以上の粒径を有する粒の数割合が5%以下である機械構造部品。
The present invention is based on the above findings, and the gist and structure thereof are as follows.
1. In mass% C: 0.45-0.51%,
Si: 0.15-0.35%,
Mn: 0.60-0.90%,
P: 0.030% or less,
S: 0.025% or less,
Al: 0.040-0.059%,
Cr: 0.10~0.50% and N: 0.0060~0.0100%
, the remainder has a composition of Fe and impurities, and has a hardened layer formed by induction hardening and tempering, and the area ratio of crystal grains in which the diameter of prior austenite grains in the hardened layer is 80 μm or less is 80 μm. % or more, and the number ratio of grains having a grain size that is twice or more the mode grain size in the hardened layer is 5% or less.

2.前記部品が軸形状部を有する部品である、前記1に記載の機械構造部品。 2. 2. The mechanical structural component according to item 1, wherein the component has a shaft-shaped portion.

3.質量%で
C:0.45~0.51%、
Si:0.15~0.35%、
Mn:0.60~0.90%、
P:0.030%以下、
S:0.025%以下、
Al:0.040~0.059%、
Cr:0.10~0.50%および
N:0.0060~0.0100%
を含み、残部はFe及び不純物の成分組成からなる鋼素材に、下記式(1)を満足する圧延速度VSLにて熱間圧延を施して棒鋼または線材とし、該棒鋼または線材を鍛造成形した後に900~1150℃にて高周波焼入れを施して焼戻しを行う、機械構造部品の製造方法。

VSL≦100/DL (m/s)・・・(1)
ただし、VSLは圧延最終段通過直前の圧延速度(m/s)、DLは圧延完了後の圧延材直径(mm)。
3. In mass% C: 0.45-0.51%,
Si: 0.15-0.35%,
Mn: 0.60-0.90%,
P: 0.030% or less,
S: 0.025% or less,
Al: 0.040-0.059%,
Cr: 0.10~0.50% and N: 0.0060~0.0100%
, the remainder being Fe and impurities, hot-rolled at a rolling speed VSL that satisfies the following formula (1) to form a steel bar or wire rod, and after forging the steel bar or wire rod. A manufacturing method for mechanical structural parts that involves induction hardening and tempering at 900 to 1150°C.
Note VSL≦100/DL (m/s)...(1)
However, VSL is the rolling speed (m/s) just before passing through the final rolling stage, and DL is the diameter of the rolled material (mm) after rolling is completed.

本発明によれば、残留ひずみの低い機械構造部品を提供することができる。中でも、軸形状部を有する機械構造部品においてひずみの低減が実現するため、この種の機械構造部品の偏心を抑制するという効果を奏するものである。 According to the present invention, a mechanical structural component with low residual strain can be provided. In particular, since strain reduction is realized in mechanical structural parts having shaft-shaped parts, it is effective in suppressing eccentricity of this type of mechanical structural parts.

硬化層における粒径80μm以下の旧オーステナイト粒の面積率と芯振れ(偏心)との相関を示すグラフである。It is a graph showing the correlation between the area ratio of prior austenite grains with a grain size of 80 μm or less in a hardened layer and core runout (eccentricity).

以下では本発明を実施するための一形態について、本発明の機械構造部品に適用する鋼の成分組成から順に詳しく説明する。なお、各元素における含有量を示す「%」は、特に断らない限り「質量%」を示している。
C:0.45~0.51%
Cは、高周波熱処理を施した際の部品の硬化層強度を確保するために必須となる元素である。C含有量が0.45%未満の場合は、部品としての強度が不十分となる。一方でC含有量が0.51%を超えると、高周波熱処理後のひずみ量が増加する。以上の理由により、C含有量は0.45~0.51%の範囲と定める。強度とひずみ量とをバランスさせる観点からは、C含有量を0.47%以上とすることが望ましい。同様に、0.49%以下とすることが望ましい。
Hereinafter, one embodiment of the present invention will be explained in detail in order from the composition of steel applied to the mechanical structural parts of the present invention. Note that "%" indicating the content of each element indicates "mass%" unless otherwise specified.
C: 0.45-0.51%
C is an essential element in order to ensure the strength of the hardened layer of the component when subjected to high frequency heat treatment. If the C content is less than 0.45%, the strength of the part will be insufficient. On the other hand, when the C content exceeds 0.51%, the amount of strain after high-frequency heat treatment increases. For the above reasons, the C content is determined to be in the range of 0.45 to 0.51%. From the viewpoint of balancing strength and strain, it is desirable that the C content be 0.47% or more. Similarly, it is desirable that the content be 0.49% or less.

Si:0.15~0.35%
Siは、鋼の脱酸作用による酸素系介在物の低減と焼戻し熱処理における硬さ低下抑制の作用を有する。すなわち、製品としての機械的特性を向上させる効果を有する。一方で過剰に添加すると、素材が硬化することにより冷間加工性が低下してしまう。以上の理由により、Si含有量は0.15~0.35%の範囲と定める。より望ましい範囲としては、0.20%以上である。より望ましい範囲としては、0.30%以下である。
Si: 0.15-0.35%
Si has the effect of reducing oxygen-based inclusions by deoxidizing the steel and suppressing the decrease in hardness during tempering heat treatment. That is, it has the effect of improving the mechanical properties of the product. On the other hand, if it is added in excess, the material will harden and cold workability will decrease. For the above reasons, the Si content is determined to be in the range of 0.15 to 0.35%. A more desirable range is 0.20% or more. A more desirable range is 0.30% or less.

Mn:0.60~0.90%
Mnは、焼入れ性を大きく向上させる作用があり、そのためには0.60%以上の添加が必要である。一方で添加量が増加するに伴い素材硬さの増加ならびに冷間加工性の低下が生じるが、0.90%までは許容される。以上の理由によりMn含有量は0.60~0.90%の範囲と定める。なお、より望ましい範囲としては0.70%以上である。より望ましい範囲としては、0.80%以下である。
Mn: 0.60-0.90%
Mn has the effect of greatly improving hardenability, and for this purpose it is necessary to add 0.60% or more. On the other hand, as the amount added increases, the material hardness increases and cold workability decreases, but up to 0.90% is acceptable. For the above reasons, the Mn content is set in the range of 0.60 to 0.90%. Note that a more desirable range is 0.70% or more. A more desirable range is 0.80% or less.

P:0.030%以下(0%を含む)
Pは、高周波焼入れ後の旧オーステナイト粒界に偏析し、硬化層の疲労特性を低下させる作用を有する。そのためP含有量は可能な限り少量に抑えることが好ましい。以上の理由によりP含有量を0.030%以下の範囲と定める。なお、より好ましくは0.012%以下に抑制するのが良い。0%であっても良いのは、勿論である。
P: 0.030% or less (including 0%)
P segregates at prior austenite grain boundaries after induction hardening and has the effect of reducing the fatigue properties of the hardened layer. Therefore, it is preferable to keep the P content as low as possible. For the above reasons, the P content is set at 0.030% or less. Note that it is more preferably suppressed to 0.012% or less. Of course, it may be 0%.

S:0.025%以下(0%を含む)
Sは、硫黄系介在物として存在し、被削性の向上に有効な元素であるが、0.025%を超える添加は鋳造時の製造性に悪影響を及ぼすため、上限量は0.025%とする。なお、被削性の向上が必要な場合は0.010%以上添加してもよく、0.010~0.015%の範囲が好適である。なお、被削性を考慮する必要がない場合は、0%であっても良い。
S: 0.025% or less (including 0%)
S exists as a sulfur-based inclusion and is an effective element for improving machinability, but addition of more than 0.025% has a negative effect on manufacturability during casting, so the upper limit is set to 0.025%. Note that if it is necessary to improve machinability, it may be added in an amount of 0.010% or more, and a range of 0.010 to 0.015% is preferable. Note that if there is no need to take machinability into consideration, it may be 0%.

Al:0.040~0.059%
Alは、Nと結合してAlNを形成するため、棒鋼・線材の圧延時ならびに高周波焼入れ時のオーステナイト粒の粗大化を抑制する作用を持つ。棒鋼・線材の圧延および高周波焼入れ時のオーステナイト粒径制御がひずみ抑制において効果的であるため、本発明において重要な元素である。Al含有量が少ない場合には、上記効果が見込まれない。一方でAl含有量が過剰である場合は、介在物の増加を招いて疲労破壊の起点を増やし、疲労強度低下の原因となる。以上の理由により、Al含有量を0.040~0.059%の範囲と定めた。好ましくは、0.045%以上である。好ましくは、0.055%以下である。
Al: 0.040-0.059%
Since Al combines with N to form AlN, it has the effect of suppressing coarsening of austenite grains during rolling of steel bars and wire rods and during induction hardening. Since austenite grain size control during rolling and induction hardening of steel bars and wire rods is effective in suppressing strain, it is an important element in the present invention. If the Al content is low, the above effects cannot be expected. On the other hand, if the Al content is excessive, inclusions will increase and the number of starting points for fatigue fracture will increase, causing a decrease in fatigue strength. For the above reasons, the Al content was determined to be in the range of 0.040 to 0.059%. Preferably it is 0.045% or more. Preferably it is 0.055% or less.

Cr:0.10~0.50%
Crは、焼入れ性の向上や鋼の強度改善に有効に作用する。一方でCr含有量が多くなると、硬さ増加による加工性の低下が避けられない。以上の理由により、Cr含有量を0.10~0.50%の範囲と定めた。好ましくは、0.10%以上である。好ましくは、0.20%以下である。
Cr: 0.10~0.50%
Cr effectively acts to improve hardenability and strength of steel. On the other hand, when the Cr content increases, a decrease in workability due to increased hardness is inevitable. For the above reasons, the Cr content was determined to be in the range of 0.10 to 0.50%. Preferably it is 0.10% or more. Preferably it is 0.20% or less.

N:0.0060~0.0100%
Nは、Alと結合してAlNを形成するため、Alと同様、本発明において重要な元素である。Nを0.0060%以上含有させることが、棒線・線材圧延および高周波焼入れ時のオーステナイト粒径制御に必要である。一方でN含有量が多くなると、凝固時に割れが発生し、その後の工程においても疵として残存することになる。この疵が残ったままでは、疵が開いて割れが著しく発生しやすくなるため、製品として使用できなくなる。以上の理由により、N含有量を0.0060~0.0100%の範囲と定めた。好ましくは、0.0060%以上である。好ましくは、0.0080%以下である。
N: 0.0060-0.0100%
Like Al, N is an important element in the present invention because it combines with Al to form AlN. Containing N at 0.0060% or more is necessary to control the austenite grain size during rod/wire rod rolling and induction hardening. On the other hand, if the N content increases, cracks will occur during solidification and will remain as flaws in subsequent steps. If these flaws remain, the flaws will open and cracks will occur significantly, making it impossible to use the product as a product. For the above reasons, the N content was determined to be in the range of 0.0060 to 0.0100%. Preferably, it is 0.0060% or more. Preferably it is 0.0080% or less.

本発明の機械構造部品では、成分組成の残部はFe及び不純物を有する。不純物とは、鋼材を工業的に製造する際に、原料としての鉱石、スクラップ、または製造環境などから混入されるものであって、本実施形態の特性に悪影響を与えない範囲で許容される。 In the mechanical structural component of the present invention, the balance of the component composition includes Fe and impurities. Impurities are those that are mixed in from ores used as raw materials, scrap, or the manufacturing environment when steel materials are manufactured industrially, and are allowed within a range that does not adversely affect the characteristics of the present embodiment.

次に、本発明における、高周波熱処理による硬化層の旧オーステナイト粒径に関する規定について説明する。
本発明の機械構造部品は、上述した成分組成の鋼を用いて、例えば軸部を有する形状などの部品形状に成形され、その後に高周波焼入れ・焼戻しの高周波熱処理が施される。この高周波熱処理により形成される硬化層において、旧オーステナイト粒の径が80μm以下の結晶粒の面積率が80%以上であり、かつ粒径最頻値の2倍以上の粒径を有する粒の数割合が5%以下である必要がある。
Next, the regulations regarding the prior austenite grain size of the hardened layer by high-frequency heat treatment in the present invention will be explained.
The mechanical structural component of the present invention is formed into a component shape, such as a shape having a shaft, using steel having the above-mentioned composition, and then subjected to high-frequency heat treatment such as induction hardening and tempering. In the hardened layer formed by this high-frequency heat treatment, the area ratio of crystal grains in which the diameter of prior austenite grains is 80 μm or less is 80% or more, and the number of grains having a grain size that is at least twice the mode grain size. The ratio must be 5% or less.

[硬化層]
本発明の機械構造部品では、部品形状となった成形体に高周波焼入れ・焼戻しの高周波熱処理を施して表層に硬化層を形成する。この硬化層は、高周波熱処理によって硬化した部分である。具体的には、高周波熱処理後の部品表面から中心に向かう硬さ(例えばビッカース硬さ)分布測定を行って、得られた硬さ分布において所定の硬さ(例えばHV450)が維持されている深さ位置までを有効硬化層深さ(ECD)として、この有効硬化層深さの領域を硬化層とする。
[Hardened layer]
In the mechanical structural component of the present invention, a molded body shaped into a component is subjected to high-frequency heat treatment such as induction hardening and tempering to form a hardened layer on the surface layer. This hardened layer is a portion hardened by high frequency heat treatment. Specifically, we measure the hardness distribution (e.g. Vickers hardness) from the surface of the part toward the center after high-frequency heat treatment, and determine the depth at which a predetermined hardness (e.g. HV450) is maintained in the obtained hardness distribution. The effective hardened layer depth (ECD) is defined as the effective hardened layer depth (ECD), and the area of this effective hardened layer depth is defined as the hardened layer.

[旧オーステナイト粒の径が80μm以下の結晶粒の面積率が80%以上]
この旧オーステナイト粒径の規定は、高周波熱処理後のひずみを抑制可能な旧オーステナイト粒の性状を示す指標である。ここで、後述の実施例における、粒径80μm以下の旧オーステナイト粒の面積率と芯振れ(0.25%以下であれば、部品におけるひずみの抑制が実現)との関係を図1に示すように、旧オーステナイト粒の径が80μm以下の結晶粒の面積率が80%以上を満足するとき、芯振れを効果的に抑制、すなわち部品におけるひずみを抑制することができる。なお、旧オーステナイト粒の径が80μm以下の結晶粒を規制対象とするのは、粒径80μmよりも大きい旧オーステナイト粒は、芯振れ抑制に与える影響が大きく、80μm超の結晶粒を規制することによって、所望の芯振れ抑制能が得られるからである。そのため、旧オーステナイト粒の径が80μm超の結晶粒の面積率は20%未満とすること、言い換えると、旧オーステナイト粒の径が80μm以下の結晶粒の面積率を80%以上とする。
[The area ratio of crystal grains with a prior austenite grain diameter of 80 μm or less is 80% or more]
This specification of the prior austenite grain size is an index indicating the properties of the prior austenite grains that can suppress strain after high-frequency heat treatment. Here, in the examples described later, the relationship between the area ratio of prior austenite grains with a grain size of 80 μm or less and core runout (if it is 0.25% or less, distortion in the part can be suppressed) is shown in Figure 1. When the area ratio of crystal grains with prior austenite grains having a diameter of 80 μm or less satisfies 80% or more, core runout can be effectively suppressed, that is, strain in the part can be suppressed. Furthermore, prior austenite grains with a diameter of 80 μm or less are subject to regulation because prior austenite grains with a grain size larger than 80 μm have a large effect on suppressing core runout, and crystal grains with a diameter exceeding 80 μm are regulated. This is because the desired center runout suppressing ability can be obtained. Therefore, the area ratio of crystal grains with a diameter of prior austenite grains exceeding 80 μm is set to be less than 20%, in other words, the area ratio of crystal grains with a diameter of prior austenite grains of 80 μm or less is set to 80% or more.

ここで、旧オーステナイト粒径は、高周波熱処理後の部品を適切に腐食し観察することで得ることができる。例えば、部品表層に形成された硬化層をピクリン酸溶液にて腐食し旧オーステナイト粒界を顕現させた後、旧オーステナイト粒組織を撮影し、画像処理ソフトウェアによって処理し、各旧オーステナイト粒における円相当径を得るとともに、80μm以下の結晶粒の面積率を求めることができる。 Here, the prior austenite grain size can be obtained by appropriately corroding and observing the parts after high-frequency heat treatment. For example, after corroding the hardened layer formed on the surface layer of the part with a picric acid solution to reveal the prior austenite grain boundaries, the prior austenite grain structure is photographed, processed by image processing software, and the circle equivalent of each prior austenite grain is In addition to obtaining the diameter, the area ratio of crystal grains of 80 μm or less can be determined.

[粒径最頻値の2倍以上の粒径を有する粒の数割合が5%以下]
硬化層において、粒径最頻値の2倍以上の粒径を有する粒の数割合を5%以下にすることによって、高周波焼入れ後の部品のひずみ並びに偏心を抑制することができる。前項の旧オーステナイト粒の面積率を満足する場合においても、一定少数の旧オーステナイト粒が他の粒よりも著しく粗大化(具体的には粒径最頻値の2倍以上)すると、偏心の抑制が所望の程度まで達しない。かように、偏心の抑制の基準として、上記条件が適切であることを知見した。
[The percentage of particles with a particle size that is twice or more the mode particle size is 5% or less]
In the hardened layer, by controlling the percentage of grains having a grain size twice or more the mode grain size to 5% or less, distortion and eccentricity of the part after induction hardening can be suppressed. Even when the area ratio of prior austenite grains described in the previous section is satisfied, if a certain number of prior austenite grains become significantly coarser than other grains (specifically, more than twice the grain size mode), eccentricity may be suppressed. does not reach the desired degree. Thus, it was found that the above conditions are appropriate as standards for suppressing eccentricity.

ここで、粒径最頻値は、高周波熱処理後の部品を適切に腐食し観察することで得ることができる。例えば、部品表層に形成された硬化層をピクリン酸溶液にて腐食し旧オーステナイト粒界を顕現させた後、旧オーステナイト粒組織を撮影し、画像処理ソフトウェアによって処理して得られた粒径のヒストグラムにて求めることができる。さらに、そのヒストグラムによって当該粒径を有する粒の数割合を求めることができる。 Here, the particle size mode can be obtained by appropriately corroding and observing the parts after high-frequency heat treatment. For example, after corroding the hardened layer formed on the surface layer of a part with a picric acid solution to reveal the prior austenite grain boundaries, the prior austenite grain structure is photographed and processed using image processing software to obtain a grain size histogram. It can be found at Furthermore, the number ratio of grains having the particle size can be determined from the histogram.

次に、本発明の機械構造部品の製造方法について説明する。
すなわち、上記した成分組成を有する鋼素材に、下記式(1)を満足する圧延速度にて熱間圧延を施して棒鋼又は線材とし、該棒鋼または線材を部品形状に鍛造成形した後に900~1150℃にて高周波焼入れを施して、機械構造部品を製造する。なお、鋼素材としては、例えばビレットを典型例とする鋳片やスラブ等、特に限定されない。
Next, a method of manufacturing a mechanical structural component according to the present invention will be explained.
That is, a steel material having the above-mentioned composition is hot-rolled at a rolling speed that satisfies the following formula (1) to form a steel bar or wire rod, and after the steel bar or wire rod is forged into a part shape, Machine structural parts are manufactured by induction hardening at ℃. Note that the steel material is not particularly limited, and may include, for example, billet as a typical example, or a slab.

ここで、上述した硬化層での旧オーステナイト粒径に関する規定を満足させるためには、上述の成分組成の調整に加えて、鋼素材、例えば鋳片に下記式(1)を満足する圧延速度にて熱間圧延を施し、棒鋼または線材とする必要がある。

VSL≦100/DL (m/s)・・・(1)
ただし、VSLは圧延最終段通過直前の圧延速度(m/s)、DLは圧延完了後の圧延材直径(mm)。
Here, in order to satisfy the above-mentioned regulation regarding the prior austenite grain size in the hardened layer, in addition to adjusting the above-mentioned composition, the steel material, for example, the slab, must be rolled at a rolling speed that satisfies the following formula (1). It is necessary to hot-roll the steel and make it into steel bars or wire rods.
Note VSL≦100/DL (m/s)...(1)
However, VSL is the rolling speed (m/s) just before passing through the final rolling stage, and DL is the diameter of the rolled material (mm) after rolling is completed.

上掲式(1)は、鋳片を、機械構造部品とするための鍛造素材となる棒鋼または線材へと熱間圧延を施す際の、圧延速度を示す指標である。棒鋼または線材の径に応じて適切な圧延速度とすることにより、圧延材内部の温度勾配を低減し、圧延材の組織を制御することができる。この式を満足する圧延速度とすることによって圧延材内部の冷却に必要な時間を担保することができ、圧延材の表層と内部の温度差が抑制される結果、均質な圧延後組織を得ることができる。従って、圧延速度と圧延材直径が上掲式(1)を満足しない場合、後述の高周波熱処理の際の熱処理条件を満足したとしても、最終部品における旧オーステナイト粒径が上述の条件を満たすことができない。 The above formula (1) is an index showing the rolling speed when hot rolling a cast slab into a steel bar or wire rod that becomes a forging material for making a machine structural part. By setting an appropriate rolling speed according to the diameter of the steel bar or wire rod, the temperature gradient inside the rolled material can be reduced and the structure of the rolled material can be controlled. By setting a rolling speed that satisfies this formula, it is possible to secure the time necessary for cooling the inside of the rolled material, and as a result, the temperature difference between the surface layer and the inside of the rolled material is suppressed, resulting in a homogeneous structure after rolling. I can do it. Therefore, if the rolling speed and diameter of the rolled material do not satisfy the above formula (1), the prior austenite grain size in the final part may not satisfy the above conditions even if the heat treatment conditions for the induction heat treatment described below are satisfied. Can not.

さらに、(1)式の右辺における定数を100から90として規定する、圧延速度とすることが、ひずみ抑制の観点から好ましい。すなわち、次式(2)を満足する圧延速度にて熱間圧延を施すことが、ひずみを抑制するのに好適である。

VSL≦90/DL (m/s)・・・(2)
ただし、VSLは圧延最終段通過直前の圧延速度(m/s)、DLは圧延完了後の圧延材直径(mm)。
Further, from the viewpoint of strain suppression, it is preferable to set the rolling speed to a constant on the right side of equation (1) between 100 and 90. That is, hot rolling at a rolling speed that satisfies the following formula (2) is suitable for suppressing strain.
Note VSL≦90/DL (m/s)...(2)
However, VSL is the rolling speed (m/s) just before passing through the final rolling stage, and DL is the diameter of the rolled material (mm) after rolling is completed.

ちなみに、本来であれば、圧延速度を示す指標としては圧延最終段直前の圧延材直径を用いるのが適切であるが、棒鋼または線材の圧延最終段は、通常、寸法を整えるための軽微な圧下であり、径の変化が微小であるため、圧延完了後の直径を用いることができる。 Incidentally, originally it would be appropriate to use the diameter of the rolled material immediately before the final stage of rolling as an indicator of rolling speed, but the final stage of rolling steel bars or wire rods usually involves a slight reduction to adjust the dimensions. Since the change in diameter is minute, the diameter after rolling can be used.

以上のようにして製造された棒鋼あるいは線材に対して、熱間鍛造および/または冷間鍛造、切削などの加工が施されて部品形状に仕上げられ、その後高周波熱処理が施されて部品となる。高周波熱処理後の硬化層の旧オーステナイト粒が上述の粒径条件を満たすためには、高周波焼入れの温度が900~1150℃である必要がある。 The steel bar or wire rod produced as described above is processed into a part shape by hot forging and/or cold forging, cutting, etc., and then subjected to high frequency heat treatment to become a part. In order for the prior austenite grains in the hardened layer after induction heat treatment to satisfy the above-mentioned grain size conditions, the induction hardening temperature needs to be 900 to 1150°C.

上記の温度範囲は、本発明の成分組成の範囲において、加熱時に完全にオーステナイト変態する、かつ加熱時に著しいオーステナイト粒成長が生じない、ことを基に規定されたものである。なお、高周波焼入れ後の焼戻し熱処理については公知の条件で差し支えない。 The above temperature range is defined based on the fact that complete austenite transformation occurs during heating within the range of the component composition of the present invention, and that significant austenite grain growth does not occur during heating. Note that the tempering heat treatment after induction hardening may be performed under known conditions.

以下、実施例に従って、本発明の構成および作用効果を具体的に説明する。しかし、本発明は下記の実施例によって制限を受けるものではなく、本発明の要旨に適合し得る範囲内にて適宜変更することも可能であり、これらはいずれも本発明の技術的範囲に含まれる。 Hereinafter, the configuration and effects of the present invention will be specifically explained according to Examples. However, the present invention is not limited by the following examples, and can be modified as appropriate within the scope that fits the gist of the present invention, and all of these are within the technical scope of the present invention. It will be done.

表1に示す成分組成の鋼を溶製し連続鋳造によって作製した鋳片を、ビレットに加工した後、種々の直径の丸棒に熱間圧延した。熱間圧延条件は、圧延完了後の圧延材直径DL=30 mm、圧延最終段通過直前の圧延速度VSL =3.0 m/sである。得られた丸棒について、機械構造用鋼に求められる特性を調査した。機械構造用鋼に求められる特性、すなわち鋼自体の特性として熱間圧延後の丸棒の硬さを測定し、さらに焼入れ性の評価として、丸棒を後述の高周波熱処理した後の硬さ分布測定を行った。 Slabs produced by continuously casting steel having the composition shown in Table 1 were processed into billets, and then hot-rolled into round bars of various diameters. The hot rolling conditions were as follows: diameter of the rolled material DL = 30 mm after completion of rolling, and rolling speed VSL = 3.0 m/s immediately before passing through the final rolling stage. The properties required for mechanical structural steel were investigated for the obtained round bar. The hardness of the round bar after hot rolling is measured as a property required of steel for machine structural use, that is, the property of the steel itself, and the hardness distribution is measured after the round bar is subjected to induction heat treatment as described below to evaluate hardenability. I did it.

Figure 0007420321000001
Figure 0007420321000001

硬さ測定は、丸棒の周面から該丸棒の直径の1/4の深さ位置において、300gfにてビッカース硬さを測定した。任意の10点において計測し、その平均値を算出し評価した。ここでのビッカース硬さとしては、冷間加工性の観点からHV195以下であることが望ましい。 The hardness was measured by measuring the Vickers hardness at 300 gf at a depth of 1/4 of the diameter of the round bar from the circumferential surface of the round bar. It was measured at 10 arbitrary points, and the average value was calculated and evaluated. The Vickers hardness here is desirably HV195 or less from the viewpoint of cold workability.

高周波熱処理後の硬さ分布測定は、丸棒を高周波熱処理し実施した。高周波熱処理は、周波数8.5kHz、最高加熱温度1000℃、移動焼入れにて実施した。焼戻しは加熱炉を用いて180℃にて30分の条件で実施した。その後、丸棒の軸垂直断面にて表面から中心まで300gfにてビッカース硬さ測定を実施した。すなわち、丸棒の表面から半径方向内側へ1mmの深さ位置を1点目とし、以後半径方向内側へ1mmピッチで測定し、半径方向の硬さ分布を評価した。その結果を基に、表面からHV450以上となる位置までの層を有効硬化層深さ(ECD)として評価した。この有効硬化層深さ域が本発明の硬化層である。部品の強度確保のためには、ECDが丸棒の直径の10%以上であることが望ましい。
これらの測定結果を表2に示す。
The hardness distribution measurement after high frequency heat treatment was carried out by high frequency heat treating a round bar. The induction heat treatment was performed at a frequency of 8.5 kHz, a maximum heating temperature of 1000°C, and moving hardening. Tempering was carried out using a heating furnace at 180°C for 30 minutes. Thereafter, the Vickers hardness was measured at 300gf from the surface to the center on a cross section perpendicular to the axis of the round bar. That is, the first point was a depth position of 1 mm radially inward from the surface of the round bar, and thereafter measurements were made radially inward at 1 mm pitches to evaluate the radial hardness distribution. Based on the results, the layer from the surface to the position where HV450 or higher was evaluated as the effective hardened layer depth (ECD). This effective hardened layer depth region is the hardened layer of the present invention. In order to ensure the strength of the parts, it is desirable that the ECD is 10% or more of the diameter of the round bar.
The results of these measurements are shown in Table 2.

Figure 0007420321000002
Figure 0007420321000002

さらに、上記した硬さ測定および硬さ分布測定に供したものと同じ鋳片を用いて、各鋳片から作製したビレットを、表3に示す部品製造条件にて熱間圧延および高周波焼入れ熱処理を施して軸部品を作製した。なお、部品形状は、熱間圧延後の棒鋼から減面率20%の押出加工を加えた丸棒であり、高周波熱処理はECD(すなわち硬化層の厚さ)が軸直径の10%程度となるように条件を調整の上、それぞれ実施した。 Furthermore, using the same slabs as those used for the hardness measurement and hardness distribution measurement described above, billets made from each slab were hot rolled and induction hardened under the component manufacturing conditions shown in Table 3. A shaft part was fabricated using the following methods. The shape of the part is a round bar that has been extruded from a hot-rolled steel bar with an area reduction rate of 20%, and the ECD (i.e., the thickness of the hardened layer) is approximately 10% of the shaft diameter due to induction heat treatment. Each experiment was carried out after adjusting the conditions as follows.

得られた部品の硬化層における、粒径最頻値の2倍以上の粒径を有する粒の数割合および旧オーステナイト粒の径が80μm以下の結晶粒の面積率について調査した。 In the hardened layer of the obtained parts, the number ratio of grains having a grain size twice or more than the mode grain size and the area ratio of crystal grains with a prior austenite grain size of 80 μm or less were investigated.

[粒径最頻値の2倍以上の粒径を有する粒の数割合]
部品の硬化層における旧オーステナイト粒の観察は、上記軸部品の軸垂直断面を観察面とするサンプルを切り出し実施した。切り出したサンプルを3%ピクリン酸水溶液にて腐食し、光学顕微鏡を用いてECDの半分の位置において旧オーステナイト粒組織を200倍にて10視野撮影した。その撮影写真を基に、旧オーステナイト粒界をトレースし、トレース像を画像処理ソフトウェアのImageJにより処理し、各旧オーステナイト粒における直径を円相当径として整数となるように四捨五入し算出した。得られた粒径データから、最も粒の数が多い粒径を最頻値として定義し、その2倍よりも大きい粒の全粒数に対する個数割合を算出した。なお、最頻値の候補が複数ある場合は、その中で最小のものを最頻値として取り扱った。
[Number ratio of grains having a grain size that is twice or more than the mode grain size]
Observation of prior austenite grains in the hardened layer of the component was carried out by cutting out a sample whose observation surface was a cross section perpendicular to the axis of the shaft component. The cut sample was corroded with a 3% picric acid aqueous solution, and the prior austenite grain structure was photographed in 10 fields at 200x magnification using an optical microscope at a position halfway across the ECD. Based on the photographed photograph, the prior austenite grain boundaries were traced, the trace image was processed by image processing software ImageJ, and the diameter of each prior austenite grain was rounded to an integer as a circle equivalent diameter. From the obtained particle size data, the particle size with the largest number of particles was defined as the mode, and the ratio of particles larger than twice that number to the total number of particles was calculated. Note that when there are multiple candidates for the mode, the smallest one among them was treated as the mode.

[旧オーステナイト粒の径が80μm以下の結晶粒の面積率]
上記と同様に得た、トレース像を画像解析することによって、粒径80μm以下の旧オーステナイト粒の面積率を算出した。
[Area ratio of crystal grains with prior austenite grain diameter of 80 μm or less]
By image analysis of the trace image obtained in the same manner as above, the area ratio of prior austenite grains with a grain size of 80 μm or less was calculated.

さらに、得られた部品について、ねじり疲労寿命および部品芯振れを評価した。
[ねじり疲労寿命]
ねじり疲労寿命は、電気サーボ式ねじり疲労試験機を用いて実施した。負荷は2Hzにて、最大せん断応力が300MPaとなるように実施し、破壊までの繰返し数を測定した。本試験において15,000回以上の破壊寿命を示す場合、十分な疲労強度を有しているといえる。
Furthermore, the obtained parts were evaluated for torsional fatigue life and part center runout.
[Torsional fatigue life]
Torsional fatigue life was measured using an electric servo type torsional fatigue testing machine. Loading was carried out at 2 Hz so that the maximum shear stress was 300 MPa, and the number of repetitions until failure was measured. If it shows a fracture life of 15,000 cycles or more in this test, it can be said that it has sufficient fatigue strength.

[部品芯振れ]
部品のひずみを、偏心検査機によって測定した。すなわち、高周波熱処理前に両端部中心にあけた穴を支持することにより部品を一周させたときの変位の変化幅(変位最大値と変位最小値の差)を測定部分の直径で除することにより芯振れ(%)を算出した。今回の試験においては芯振れが0.25%以下であれば、部品としてのひずみが十分抑制されているといえる。
[Component runout]
The strain of the parts was measured by an eccentricity tester. In other words, by dividing the range of change in displacement (the difference between the maximum displacement value and the minimum displacement value) by the diameter of the measurement part when the part is made to go around the part by supporting the hole drilled in the center of both ends before high-frequency heat treatment, Center runout (%) was calculated. In this test, if the core runout is 0.25% or less, it can be said that the distortion of the part is sufficiently suppressed.

得られた評価結果を表3に併せて示す。また、図1に、粒径80μm以下の旧オーステナイト粒の面積率と芯振れとの関係を整理して示す。なお、図中には疲労寿命が好適範囲である例のみを示した。 The obtained evaluation results are also shown in Table 3. Furthermore, FIG. 1 summarizes the relationship between the area ratio of prior austenite grains with a grain size of 80 μm or less and core runout. Note that the figure shows only examples whose fatigue life is within the preferred range.

Figure 0007420321000003
Figure 0007420321000003

Claims (3)

質量%で
C:0.45~0.51%、
Si:0.15~0.35%、
Mn:0.60~0.90%、
P:0.030%以下、
S:0.025%以下、
Al:0.040~0.059%、
Cr:0.10~0.50%および
N:0.0060~0.0100%
を含み、残部はFe及び不純物の成分組成を有し、高周波焼入れ・焼戻し処理による硬化層を有する部品であって、前記硬化層における旧オーステナイト粒の径が80μm以下の結晶粒の面積率が80%以上であり、かつ前記硬化層における旧オーステナイト粒の粒径最頻値の2倍以上の粒径を有する粒の数割合が5%以下である機械構造部品。
In mass% C: 0.45-0.51%,
Si: 0.15-0.35%,
Mn: 0.60-0.90%,
P: 0.030% or less,
S: 0.025% or less,
Al: 0.040-0.059%,
Cr: 0.10~0.50% and N: 0.0060~0.0100%
, the remainder has a composition of Fe and impurities, and has a hardened layer formed by induction hardening and tempering, and the area ratio of crystal grains in which the diameter of prior austenite grains in the hardened layer is 80 μm or less is 80 μm. % or more, and the number ratio of grains having a grain size that is twice or more the mode of grain size of prior austenite grains in the hardened layer is 5% or less.
前記部品が軸形状部を有する部品である、請求項1に記載の機械構造部品。 The mechanical structural component according to claim 1, wherein the component is a component having a shaft-shaped portion. 質量%で
C:0.45~0.51%、
Si:0.15~0.35%、
Mn:0.60~0.90%、
P:0.030%以下、
S:0.025%以下、
Al:0.040~0.059%、
Cr:0.10~0.50%および
N:0.0060~0.0100%
を含み、残部はFe及び不純物の成分組成からなる鋼素材に、下記式(1)を満足する圧延速度VSLにて熱間圧延を施して棒鋼または線材とし、該棒鋼または線材を鍛造成形した後に900~1150℃にて高周波焼入れを施して焼戻しを行う、請求項1または2に記載の機械構造部品の製造方法。

VSL≦100/DL (m/s)・・・(1)
ただし、VSLは圧延最終段通過直前の圧延速度(m/s)、DLは圧延完了後の圧延材直径(mm)。
In mass% C: 0.45-0.51%,
Si: 0.15-0.35%,
Mn: 0.60-0.90%,
P: 0.030% or less,
S: 0.025% or less,
Al: 0.040-0.059%,
Cr: 0.10~0.50% and N: 0.0060~0.0100%
, the remainder being Fe and impurities, hot-rolled at a rolling speed VSL that satisfies the following formula (1) to form a steel bar or wire rod, and after forging the steel bar or wire rod. The method for manufacturing a mechanical structural part according to claim 1 or 2 , wherein the tempering is performed by induction hardening at 900 to 1150°C.
Note VSL≦100/DL (m/s)...(1)
However, VSL is the rolling speed (m/s) just before passing through the final rolling stage, and DL is the diameter of the rolled material (mm) after rolling is completed.
JP2023542018A 2022-03-31 2023-03-27 Machine structural parts and their manufacturing method Active JP7420321B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2022061367 2022-03-31
JP2022061367 2022-03-31
PCT/JP2023/012333 WO2023190409A1 (en) 2022-03-31 2023-03-27 Mechanical structural part and method for manufacturing same

Publications (2)

Publication Number Publication Date
JPWO2023190409A1 JPWO2023190409A1 (en) 2023-10-05
JP7420321B1 true JP7420321B1 (en) 2024-01-23

Family

ID=88202385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023542018A Active JP7420321B1 (en) 2022-03-31 2023-03-27 Machine structural parts and their manufacturing method

Country Status (2)

Country Link
JP (1) JP7420321B1 (en)
WO (1) WO2023190409A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008133530A (en) 2006-10-31 2008-06-12 Jfe Steel Kk Bearing steel component and its production method, and bearing
JP2010236062A (en) 2009-03-31 2010-10-21 Jfe Steel Corp Method for manufacturing component for machine structure
WO2011049006A1 (en) 2009-10-22 2011-04-28 新日本製鐵株式会社 Steel for induction hardening, induction-hardened steel parts, and process for production of same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3738004B2 (en) 2002-12-24 2006-01-25 新日本製鐵株式会社 Case-hardening steel with excellent cold workability and prevention of coarse grains during carburizing, and its manufacturing method
JP2006265703A (en) 2005-03-25 2006-10-05 Kobe Steel Ltd Steel for case hardening having excellent crystal grain coarsening resistance and cold workability and method for producing the same
JP5790517B2 (en) 2012-01-25 2015-10-07 新日鐵住金株式会社 Rolled steel bar or wire rod for hot forging

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008133530A (en) 2006-10-31 2008-06-12 Jfe Steel Kk Bearing steel component and its production method, and bearing
JP2010236062A (en) 2009-03-31 2010-10-21 Jfe Steel Corp Method for manufacturing component for machine structure
WO2011049006A1 (en) 2009-10-22 2011-04-28 新日本製鐵株式会社 Steel for induction hardening, induction-hardened steel parts, and process for production of same

Also Published As

Publication number Publication date
JPWO2023190409A1 (en) 2023-10-05
WO2023190409A1 (en) 2023-10-05

Similar Documents

Publication Publication Date Title
JP4632931B2 (en) Induction hardening steel excellent in cold workability and its manufacturing method
JP4980496B2 (en) Heat-treated steel wire for high-strength springs and pre-drawn steel wire for high-strength springs
JP2013147728A (en) Steel for mechanical structure for cold working, and method for manufacturing the same
JP2001240940A (en) Bar wire rod for cold forging and its production method
JP6109729B2 (en) Case-hardened steel with excellent grain coarsening prevention characteristics during carburizing
JP2007270331A (en) Steel sheet superior in fine blanking workability, and manufacturing method therefor
JP2002226939A (en) Non-refining steel for soft-nitriding
WO2013031587A1 (en) Rolled steel bar or wire for hot forging
JP2000265240A (en) Carbon steel sheet excellent in fine blankability
JP4347999B2 (en) Induction hardening steel and induction hardening parts with excellent torsional fatigue properties
JP4983099B2 (en) Steel shaft parts with excellent impact and fatigue properties and manufacturing method thereof
WO2016158343A1 (en) Steel wire for use in bolts that has excellent cold headability and resistance to delayed fracture after quenching and tempering, and bolt
JP5194454B2 (en) Steel plate excellent in fine blanking workability and manufacturing method thereof
JP5941439B2 (en) Coil spring and manufacturing method thereof
JP5990428B2 (en) Steel for bearings with excellent rolling fatigue characteristics and method for producing the same
JP6969683B2 (en) Manufacturing method of induction material for induction hardened crankshaft and induction hardened crankshaft
JP7420321B1 (en) Machine structural parts and their manufacturing method
JP2017020065A (en) Gear component and manufacturing method of gear component
JP5365477B2 (en) Steel for surface hardening treatment
WO2017033773A1 (en) Mechanical structure steel for cold-working and manufacturing method therefor
JP7149179B2 (en) Mechanical parts for automobiles made of induction hardened steel with excellent static torsional strength and torsional fatigue strength
JP7149131B2 (en) Machine structural steel with excellent cold workability and resistance to grain coarsening
KR20240152368A (en) Machine structural parts and their manufacturing method
JP2002146480A (en) Wire rod/steel bar having excellent cold workability, and manufacturing method
JP7140274B2 (en) steel shaft parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230711

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231225

R150 Certificate of patent or registration of utility model

Ref document number: 7420321

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150