JP2003320251A - Alicyclic compound dehydrogenation catalyst - Google Patents

Alicyclic compound dehydrogenation catalyst

Info

Publication number
JP2003320251A
JP2003320251A JP2003042036A JP2003042036A JP2003320251A JP 2003320251 A JP2003320251 A JP 2003320251A JP 2003042036 A JP2003042036 A JP 2003042036A JP 2003042036 A JP2003042036 A JP 2003042036A JP 2003320251 A JP2003320251 A JP 2003320251A
Authority
JP
Japan
Prior art keywords
activated carbon
fibrous activated
dehydrogenation catalyst
alicyclic compound
dehydrogenation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003042036A
Other languages
Japanese (ja)
Inventor
Hisaji Matsui
久次 松井
Chiharu Yamaguchi
千春 山口
Masakatsu Nomura
正勝 野村
Masahiro Miura
雅博 三浦
Tetsuya Sato
哲也 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2003042036A priority Critical patent/JP2003320251A/en
Publication of JP2003320251A publication Critical patent/JP2003320251A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst with a high activity capable of promoting dehydrogenation reaction of an alicyclic compound in a low temperature range. <P>SOLUTION: The alicyclic compound dehydrogenation catalyst contains a fibrous activated carbon and at least one kind metal selected from a group consisting of platinum, palladium, rhodium, iridium, ruthenium, nickel, cobalt, iron, copper, silver, and gold. The fibrous activated carbon to be used here has a specific surface area of at least 600 m<SP>2</SP>/g, an entire fine pore volume of at least 0.2 cm<SP>3</SP>/g, and an average fine pore diameter of 10-70 Å. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、脱水素触媒、特
に、脂環式化合物の脱水素触媒に関する。
TECHNICAL FIELD The present invention relates to a dehydrogenation catalyst, and more particularly to an alicyclic compound dehydrogenation catalyst.

【0002】[0002]

【従来の技術とその課題】自動車の動力源や家庭用の分
散電源として注目を集めている燃料電池は、水素を燃料
とする電池であり、水素の効率的な供給が求められるた
め、その実用化においては、効率的な水素の輸送および
貯蔵を可能とする水素吸蔵物質の開発が不可欠である。
燃料電池に用いられる水素吸蔵物質としては、これま
で、主に、水素吸蔵合金等の無機金属材料を中心に開発
が進められている。しかし、無機金属材料は、容積当た
りの水素吸蔵量が大きいのに対し、重量当たりの水素吸
蔵量が満足できるものではない。
2. Description of the Related Art Fuel cells, which have been attracting attention as power sources for automobiles and distributed power sources for home use, are fuel cells that use hydrogen as a fuel. In this regard, the development of hydrogen storage materials that enable efficient transport and storage of hydrogen is essential.
As a hydrogen storage material used in a fuel cell, development has been mainly conducted so far mainly on an inorganic metal material such as a hydrogen storage alloy. However, while the inorganic metal material has a large hydrogen storage capacity per volume, the hydrogen storage capacity per weight is not satisfactory.

【0003】このため、最近は、無機金属材料に代わる
水素吸蔵物質として、脂環式化合物が注目されている。
例えば、脂環式化合物の一つであるテトラリンは、下記
の反応式で示すように、脱水素(すなわち、水素の放
出)によりナフタリンになり、また、ナフタリンは、水
素添加(すなわち、水素の吸蔵)によりテトラリンに戻
る。
For this reason, recently, alicyclic compounds have been attracting attention as hydrogen-absorbing substances to replace inorganic metal materials.
For example, tetralin, which is one of alicyclic compounds, becomes naphthalene by dehydrogenation (that is, release of hydrogen) as shown in the following reaction formula, and naphthalene is hydrogenated (that is, hydrogen absorption). ) To return to tetralin.

【0004】[0004]

【化1】 [Chemical 1]

【0005】脂環式化合物は、無機金属材料に比べて容
積当たりおよび重量当たりの水素吸蔵量が大きく、しか
も安全性やハンドリング性においても有利であるが、脱
水素反応におけるエネルギー効率に問題がある。すなわ
ち、脂環式化合物の脱水素反応は、高温領域において円
滑に進行するが、燃料電池での実用化に必要な200℃
付近の低温領域では進行しにくい。このため、脂環式化
合物を水素吸蔵物質として活用するためには、脂環式化
合物の脱水素反応を低温領域で促進させることができる
高活性の触媒が求められる。
The alicyclic compound has a larger hydrogen storage amount per volume and weight than the inorganic metal material and is advantageous in safety and handling property, but has a problem in energy efficiency in dehydrogenation reaction. . That is, the dehydrogenation reaction of an alicyclic compound proceeds smoothly in a high temperature range, but the dehydrogenation reaction at 200 ° C. required for practical use in a fuel cell
It is difficult to proceed in the low temperature region nearby. Therefore, in order to utilize the alicyclic compound as a hydrogen storage substance, a highly active catalyst that can accelerate the dehydrogenation reaction of the alicyclic compound in a low temperature region is required.

【0006】本発明の目的は、脂環式化合物の脱水素反
応を低温領域で促進させることができる高活性の触媒を
実現することにある。
An object of the present invention is to realize a highly active catalyst which can accelerate the dehydrogenation reaction of an alicyclic compound in a low temperature region.

【0007】[0007]

【課題を解決するための手段】本発明に係る脂環式化合
物の脱水素触媒は、繊維状活性炭と、当該繊維状活性炭
に担持された、白金、パラジウム、ロジウム、イリジウ
ム、ルテニウム、ニッケル、コバルト、鉄、銅、銀およ
び金からなる群から選ばれた少なくとも1種の金属とを
含んでいる。ここで用いられる繊維状活性炭は、例え
ば、比表面積が少なくとも600m2/g、全細孔容積
が少なくとも0.2cm3/gおよび平均細孔直径が1
0〜70オングストロームのものである。また、この脱
水素触媒では、通常、繊維状活性炭100g当たりに上
記金属が0.5〜10g担持されている。
The alicyclic compound dehydrogenation catalyst according to the present invention comprises a fibrous activated carbon and platinum, palladium, rhodium, iridium, ruthenium, nickel, cobalt supported on the fibrous activated carbon. , At least one metal selected from the group consisting of iron, copper, silver and gold. The fibrous activated carbon used here has, for example, a specific surface area of at least 600 m 2 / g, a total pore volume of at least 0.2 cm 3 / g and an average pore diameter of 1
It is from 0 to 70 angstroms. Further, in this dehydrogenation catalyst, usually, 0.5 to 10 g of the above metal is supported per 100 g of fibrous activated carbon.

【0008】また、本発明の他の見地に係る脂環式化合
物の脱水素触媒は、比表面積が少なくとも600m2
g、全細孔容積が少なくとも0.2cm3/gおよび平
均細孔直径が10〜70オングストロームの担体と、当
該担体に担持された、白金、パラジウム、ロジウム、イ
リジウム、ルテニウム、ニッケル、コバルト、鉄、銅、
銀および金からなる群から選ばれた少なくとも1種の金
属とを含んでいる。
Further, the alicyclic compound dehydrogenation catalyst according to another aspect of the present invention has a specific surface area of at least 600 m 2 /
g, a total pore volume of at least 0.2 cm 3 / g and an average pore diameter of 10 to 70 angstrom, and platinum, palladium, rhodium, iridium, ruthenium, nickel, cobalt, iron supported on the carrier. ,copper,
And at least one metal selected from the group consisting of silver and gold.

【0009】[0009]

【発明の実施の形態】本発明に係る脂環式化合物の脱水
素触媒は、担体上に触媒成分として機能する金属を分散
状態で担持させたものである。ここで用いられる担体
は、比表面積が大きく、金属を高分散状態で担持するこ
とができ、しかも、細孔直径が脂環式化合物を吸着可能
な大きさに設定されたものである。
BEST MODE FOR CARRYING OUT THE INVENTION The alicyclic compound dehydrogenation catalyst according to the present invention comprises a carrier on which a metal functioning as a catalyst component is supported in a dispersed state. The carrier used here has a large specific surface area, can support a metal in a highly dispersed state, and has a pore diameter set to a size capable of adsorbing an alicyclic compound.

【0010】このような担体としては、通常、繊維状活
性炭を用いるのが好ましい。利用可能な繊維状活性炭
は、例えば、ピッチ系繊維状活性炭、ポリアクリロニト
リル系繊維状活性炭、レーヨン系繊維状活性炭、セルロ
ース系繊維状活性炭、フェノール系繊維状活性炭および
リグニン−ポバール系繊維状活性炭等の、炭素材料を溶
融紡糸して得られた繊維材料に対して不融化処理および
賦活化処理を施して細孔を形成したものである。すなわ
ち、ここで利用可能な繊維状活性炭は、反応物である脂
環式化合物が後述する金属の担持部分に容易に到達若し
くは脱着できるミクロポア構造またはメソポア構造を表
面に有するものである。なお、上述の繊維状活性炭のう
ち好ましいものは、後述する各種物性を達成しやすく安
価であることから、ピッチ系繊維状活性炭である。ま
た、上述の繊維状活性炭は、2種以上のものが併用され
てもよい。
As such a carrier, it is usually preferable to use fibrous activated carbon. Available fibrous activated carbons include, for example, pitch-based fibrous activated carbon, polyacrylonitrile-based fibrous activated carbon, rayon-based fibrous activated carbon, cellulose-based fibrous activated carbon, phenol-based fibrous activated carbon and lignin-poval-based fibrous activated carbon. A fiber material obtained by melt spinning a carbon material is subjected to infusibilization treatment and activation treatment to form pores. That is, the fibrous activated carbon that can be used here has a micropore structure or mesopore structure on the surface that allows the alicyclic compound that is a reaction product to easily reach or desorb the metal-supporting portion described below. Among the above-mentioned fibrous activated carbons, the pitch-based fibrous activated carbon is preferable because it is easy to achieve various physical properties described later and is inexpensive. Further, two or more kinds of the above fibrous activated carbon may be used in combination.

【0011】繊維状活性炭の比表面積は、少なくとも6
00m2/g(すなわち、600m2/g以上)が好まし
い。比表面積が600m2/g未満の場合は、繊維状活
性炭の金属の担持量が少なくなり、結果的に高活性の脱
水素触媒を実現するのが困難になる可能性がある。因み
に、ここでの比表面積は、窒素の吸着等温線に基づくB
ET法に従って求めた値である。なお、比表面積は、通
常、600〜2,100m2/gの範囲が最も好まし
い。2,100m2/gを超える場合は、繊維状活性炭
の強度が低下するおそれがある。
The specific surface area of the fibrous activated carbon is at least 6
00 m 2 / g (that is, 600 m 2 / g or more) is preferable. When the specific surface area is less than 600 m 2 / g, the amount of metal supported on the fibrous activated carbon becomes small, and as a result, it may be difficult to realize a highly active dehydrogenation catalyst. Incidentally, the specific surface area here is B based on the adsorption isotherm of nitrogen.
It is a value obtained according to the ET method. The specific surface area is usually most preferably in the range of 600 to 2,100 m 2 / g. If it exceeds 2,100 m 2 / g, the strength of the fibrous activated carbon may decrease.

【0012】また、繊維状活性炭の全細孔容積は、少な
くとも0.2cm3/g(すなわち、0.2cm3/g以
上)が好ましい。全細孔容積が0.2cm3/g未満の
場合は、細孔内での脂環式化合物の効果的な吸着、脱離
が起こりにくくなり、その結果、本発明の脱水素触媒
は、使用量を抑制しながら脂環式化合物の脱水素反応を
促進するのが困難になる可能性がある。因みに、ここで
の全細孔容積は、低温窒素吸着法に従って求めた値であ
る。
The total pore volume of the fibrous activated carbon is preferably at least 0.2 cm 3 / g (that is, 0.2 cm 3 / g or more). When the total pore volume is less than 0.2 cm 3 / g, effective adsorption and desorption of the alicyclic compound in the pores are less likely to occur, and as a result, the dehydrogenation catalyst of the present invention is used. It may be difficult to accelerate the dehydrogenation reaction of the alicyclic compound while suppressing the amount. Incidentally, the total pore volume here is a value obtained by the low temperature nitrogen adsorption method.

【0013】さらに、繊維状活性炭の平均細孔直径は、
脂環式化合物の大きさ(例えば、シクロヘキサン分子の
最大幅は横方向が5.6Å、縦方向が4.9Å;デカリ
ン分子の最大幅は7.4Å、横方向が6.6Å、縦方向
が5.6Å;テトラリン分子の最大幅は7.8Å、横方
向が7.4Å、縦方向が5.6Å)に適した大きさであ
ることが好ましく、通常、10〜70オングストローム
が好ましい。因みに、ここでの平均細孔直径は、低温窒
素吸着法に従って求めた値である。
Further, the average pore diameter of the fibrous activated carbon is
Size of alicyclic compound (for example, the maximum width of cyclohexane molecule is 5.6Å in the horizontal direction, 4.9Å in the vertical direction; the maximum width of decalin molecule is 7.4Å, 6.6Å in the horizontal direction, and the vertical direction is in the vertical direction). 5.6Å; the maximum width of the tetralin molecule is preferably 7.8Å, the transverse direction is 7.4Å, and the longitudinal direction is 5.6Å), and the size is preferably 10 to 70 angstroms. Incidentally, the average pore diameter here is a value obtained by the low temperature nitrogen adsorption method.

【0014】繊維状活性炭における上述のような比表面
積、全細孔容積および平均細孔直径の各物性は、通常、
上述の繊維状活性炭を製造するために用いる繊維材料に
対する不融化処理条件や賦活化処理条件を適宜調整する
と達成することができる。
Physical properties such as the specific surface area, the total pore volume and the average pore diameter as described above in the fibrous activated carbon are usually
This can be achieved by appropriately adjusting the infusibilizing treatment condition and the activating treatment condition for the fiber material used for producing the above-mentioned fibrous activated carbon.

【0015】因みに、繊維状活性炭は、例えば、フエル
ト状やハニカム状に設定されていてもよい。フエルト状
やハニカム状に形成されている繊維状活性炭は、脂環式
化合物との接触効率を高めることができるため、そのよ
うな繊維状活性炭を担体として用いた本発明の脱水素触
媒は、脂環式化合物の脱水素反応をより効果的に促進す
ることができる。
Incidentally, the fibrous activated carbon may be set in, for example, a felt shape or a honeycomb shape. Since the fibrous activated carbon formed in a felt shape or a honeycomb shape can enhance the contact efficiency with the alicyclic compound, the dehydrogenation catalyst of the present invention using such fibrous activated carbon as a carrier is The dehydrogenation reaction of the cyclic compound can be promoted more effectively.

【0016】繊維状活性炭をフエルト状に設定する場合
は、グラスファイバーなどの材料からなる平面状のネッ
トに対し、例えばニードルパンチ法により上述の繊維状
活性炭を絡ませる。一方、繊維状活性炭をハニカム状に
設定する場合は、繊維状活性炭とアクリル共重合体水性
エマルジョン等のバインダーとの混合物を調製し、この
混合物をシート状に抄紙する。そして、これにより得ら
れたシート状物を、例えばダンボール成形等の方法によ
り、ハニカム状に成形する。
When the fibrous activated carbon is set in a felt shape, the above-mentioned fibrous activated carbon is entangled with a plane net made of a material such as glass fiber by, for example, the needle punch method. On the other hand, when the fibrous activated carbon is set in a honeycomb shape, a mixture of the fibrous activated carbon and a binder such as an acrylic copolymer aqueous emulsion is prepared, and the mixture is formed into a sheet. Then, the sheet-like material thus obtained is formed into a honeycomb shape by a method such as cardboard forming.

【0017】なお、本発明で用いられる担体は、後述す
る金属を高分散状態で担持可能な物性を有するもの、例
えば、上述のような比表面積、全細孔容積および平均細
孔直径を有するものであれば、繊維状活性炭以外のも
の、特に繊維状のものであってもよい。
The carrier used in the present invention has a physical property capable of supporting a metal described below in a highly dispersed state, for example, one having the above-described specific surface area, total pore volume and average pore diameter. As long as it is other than fibrous activated carbon, fibrous activated carbon may be used.

【0018】一方、本発明の脱水素触媒を構成する金属
は、触媒成分として機能するものであり、白金、パラジ
ウム、ロジウム、イリジウム、ルテニウム、ニッケル、
コバルト、鉄、銅、銀および金からなる金属元素群から
選ばれた元素の単体である。これらの金属は、2種以上
のものが併用されてもよい。但し、2種以上の金属を使
用する場合、白金、パラジウム、ロジウム、イリジウ
ム、ルテニウムおよびニッケルからなる第1群の金属の
うちの少なくとも1つを使用するのが好ましい。すなわ
ち、コバルト、鉄、銅、銀および金からなる第2群の金
属は、単独で用いるよりも、第1群から選ばれた金属と
組合せて用いるのが好ましい。第1群に含まれる金属を
使用しない場合、本発明の脱水素触媒は、活性が不十分
になる可能性がある。なお、第1群の金属の組合せとし
て特に好ましいものは、高い活性を示すことから、パラ
ジウムとロジウムとの組合せである。
On the other hand, the metal constituting the dehydrogenation catalyst of the present invention functions as a catalyst component, and includes platinum, palladium, rhodium, iridium, ruthenium, nickel,
It is a simple substance of an element selected from the group of metallic elements consisting of cobalt, iron, copper, silver and gold. Two or more kinds of these metals may be used in combination. However, when using two or more kinds of metals, it is preferable to use at least one of the metals of the first group consisting of platinum, palladium, rhodium, iridium, ruthenium and nickel. That is, the metals of the second group consisting of cobalt, iron, copper, silver and gold are preferably used in combination with the metal selected from the first group, rather than used alone. When the metal included in the first group is not used, the dehydrogenation catalyst of the present invention may have insufficient activity. Note that a particularly preferable combination of the metals of the first group is a combination of palladium and rhodium because it exhibits high activity.

【0019】上述の金属は、通常、担体上に微粒子状で
分散して担持されているのが好ましい。また、上述の金
属は、担体100g当たりに0.5〜10g担持されて
いるのが好ましく、1〜3g担持されているのがより好
ましい。金属の担持量が0.5g未満の場合、本発明の
触媒の活性が極端に低下するおそれがある。逆に、10
gを超える場合は、触媒のコストが高くなり経済的でな
い。また、担体から金属が脱落しやすくなるおそれがあ
る。
It is generally preferable that the above-mentioned metal is supported by being dispersed in the form of fine particles on a carrier. The above-mentioned metal is preferably carried in an amount of 0.5 to 10 g per 100 g of the carrier, more preferably 1 to 3 g. If the amount of metal supported is less than 0.5 g, the activity of the catalyst of the present invention may be extremely reduced. Conversely, 10
If it exceeds g, the cost of the catalyst increases and it is not economical. In addition, the metal may easily fall off the carrier.

【0020】本発明の脱水素触媒は、上述の担体に上述
の金属を担持させると製造することができる。担体上に
金属を担持させるための方法としては、公知の各種の方
法、例えば、担体の水分散液中に上述の金属を用いた有
機金属錯体を分散させる方法、含浸法、沈殿法、イオン
交換法などを採用することができる。但し、担体上に上
述のような微粒子状の金属を高分散状態で担持するため
には、一般に、含浸法を採用するのが好ましい。
The dehydrogenation catalyst of the present invention can be produced by supporting the above metal on the above carrier. As a method for supporting the metal on the carrier, various known methods, for example, a method of dispersing an organometallic complex using the above metal in an aqueous dispersion of the carrier, an impregnation method, a precipitation method, ion exchange The law etc. can be adopted. However, in order to support the above-mentioned fine-particle metal in a highly dispersed state on the carrier, it is generally preferable to adopt the impregnation method.

【0021】本発明の脱水素触媒は、脂環式化合物の脱
水素反応を促進するために用いられる。本発明の脱水素
触媒を適用可能な脂環式化合物は、特に限定されるもの
ではなく、例えば、シクロヘキサンおよびそのメチル化
合物のような単環式炭化水素、テトラリン、デカリンお
よびこれらのメチル化合物等の縮合2環式炭化水素並び
にペルヒドロアントラセンなどの縮合3環式炭化水素を
挙げることができる。なお、この脱水素触媒を燃料電池
の水素供給源において用いる場合、3環式以上の縮合多
環式炭化水素は融点が高く、取り扱いが容易でないこと
から、脂環式化合物として単環式炭化水素、縮合2環式
炭化水素またはこれらの混合物を用いるのが好ましい。
The dehydrogenation catalyst of the present invention is used to accelerate the dehydrogenation reaction of an alicyclic compound. The alicyclic compound to which the dehydrogenation catalyst of the present invention can be applied is not particularly limited, and examples thereof include monocyclic hydrocarbons such as cyclohexane and its methyl compound, tetralin, decalin and their methyl compounds. Mention may be made of fused bicyclic hydrocarbons as well as fused tricyclic hydrocarbons such as perhydroanthracene. When this dehydrogenation catalyst is used in a hydrogen supply source of a fuel cell, a fused polycyclic hydrocarbon having 3 or more rings has a high melting point and is not easy to handle. Therefore, the alicyclic compound is a monocyclic hydrocarbon. It is preferred to use condensed bicyclic hydrocarbons or mixtures thereof.

【0022】本発明の脱水素触媒を用いて脂環式化合物
の脱水素反応を実施する場合は、脱水素触媒の存在下に
おいて、脂環式化合物を加熱する。この際、脂環式化合
物は、脱水素触媒の担体上に分散状態で担持された金属
の作用を受け、速やかにかつ効率的に脱水素される。特
に、この脱水素触媒を用いると、白金やパラジウムなど
の金属をそのまま脱水素触媒として用いる場合に比べ、
200℃程度の低温領域において、脂環式化合物の脱水
素反応を顕著に促進することができる。
When the dehydrogenation reaction of the alicyclic compound is carried out using the dehydrogenation catalyst of the present invention, the alicyclic compound is heated in the presence of the dehydrogenation catalyst. At this time, the alicyclic compound is rapidly and efficiently dehydrogenated by the action of the metal supported in a dispersed state on the carrier of the dehydrogenation catalyst. In particular, when this dehydrogenation catalyst is used, compared to the case where a metal such as platinum or palladium is directly used as the dehydrogenation catalyst,
The dehydrogenation reaction of an alicyclic compound can be remarkably promoted in a low temperature range of about 200 ° C.

【0023】[0023]

【実施例】実施例1〜4(パラジウム担持繊維状活性炭
の製造) 200mlのナス形フラスコに0.1規定の塩酸水溶液
15mlとPdCl250mg(Pd金属換算で30m
g)とを加え、80℃で30分間攪拌して均一な溶液を
調製した。これに、0.1規定の塩酸水溶液25ml
と、表1に示す性状の繊維状活性炭970mgとを加え
て3時間攪拌し、繊維状活性炭上にPdCl2を吸着さ
せた。そして、この溶液に37%のホルマリン溶液を
0.12ml加えて30分間還元処理し、さらに室温ま
で冷却した後、水酸化ナトリウム水溶液を加えて中和し
た。これにより得られたパラジウム担持繊維状活性炭
(脱水素触媒)を吸引ろ過により分離し、脱イオン水を
用いて数回洗浄した。得られた脱水素触媒は、1mmH
gの減圧下において100℃で3時間乾燥した。脱水素
触媒に含まれるパラジウム量を表1に示す。このパラジ
ウム量は、重量法により求めた値である。
Examples Examples 1 to 4 (palladium-supporting fibrous activated carbon)
Production of) In a 200 ml eggplant-shaped flask, 15 ml of 0.1N hydrochloric acid aqueous solution and 50 mg of PdCl 2 (30 m in terms of Pd metal)
g) was added and stirred at 80 ° C. for 30 minutes to prepare a uniform solution. 25 ml of 0.1N hydrochloric acid solution
And 970 mg of fibrous activated carbon having the properties shown in Table 1 were added and stirred for 3 hours to adsorb PdCl 2 on the fibrous activated carbon. Then, to this solution, 0.12 ml of 37% formalin solution was added and subjected to a reduction treatment for 30 minutes, further cooled to room temperature, and an aqueous sodium hydroxide solution was added for neutralization. The palladium-supported fibrous activated carbon (dehydrogenation catalyst) thus obtained was separated by suction filtration and washed several times with deionized water. The dehydrogenation catalyst obtained was 1 mmH.
It was dried at 100 ° C. for 3 hours under a reduced pressure of g. Table 1 shows the amount of palladium contained in the dehydrogenation catalyst. This amount of palladium is a value obtained by a gravimetric method.

【0024】比較例1(パラジウム担持粒状活性炭の製
造) 繊維状活性炭に代えて表1に示す性状の粒状活性炭を用
いた点を除いて実施例1〜4の場合と同様に操作し、パ
ラジウム担持粒状活性炭(脱水素触媒)を製造した。脱
水素触媒に含まれるパラジウム量を表1に示す。このパ
ラジウム量は、実施例1〜4と同様にして求めた値であ
る。
Comparative Example 1 (Production of Palladium-Supported Granular Activated Carbon
Concrete) Proceeding as in the case of, except for using the granular activated carbon of Examples 1 to 4 having properties shown in Table 1 in place of the fibrous activated carbon to produce a palladium granular activated carbon (dehydrogenation catalyst). Table 1 shows the amount of palladium contained in the dehydrogenation catalyst. This amount of palladium is a value obtained in the same manner as in Examples 1 to 4.

【0025】評価1 テトラリン8mlに実施例1〜4および比較例1で得ら
れた脱水素触媒を個別に添加し、マントルヒーターで2
20℃に加熱した。なお、脱水素触媒の添加量は、パラ
ジウム換算で0.007〜0.015ミリモルに設定し
た。
Evaluation 1 The dehydrogenation catalysts obtained in Examples 1 to 4 and Comparative Example 1 were individually added to 8 ml of tetralin and the mixture was heated to 2 with a mantle heater.
Heated to 20 ° C. The addition amount of the dehydrogenation catalyst was set to 0.007 to 0.015 mmol in terms of palladium.

【0026】加熱中におけるTON値(ターンオーバー
数)の積算値の変化を調べた結果を図1に示す。なお、
TON値は、水素生成量(ミリモル)を脱水素触媒中の
金属量(ここではパラジウム量)(ミリモル)で割った
値であり、数値が大きい程脱水素反応が促進されている
ことを示している。図1によると、繊維状活性炭を担体
に用いた実施例1〜4の脱水素触媒は、粒状活性炭を担
体に用いた比較例1の脱水素触媒に比べ、テトラリンに
対する高い脱水素活性を示すことがわかる。また、実施
例1〜4の結果を比較すると、担体に使用する繊維状活
性炭の比表面積が大きくなるに従って活性の高まること
がわかる。因みに、繊維状活性炭の比表面積が接近して
いる実施例2と実施例3とを比較すると、初期活性は実
施例2の方が幾分高いが、加熱開始後2時間が経過する
と実施例3の方が高い活性を示すことがわかる。これ
は、実施例2と実施例3とは繊維状活性炭の全細孔容積
および平均細孔直径が大きく異なり、繊維状活性炭の細
孔分布状況が異なるため、繊維状活性炭上におけるパラ
ジウム微粒子の分散状態が異なることによるものと考え
られる。
FIG. 1 shows the results of examining changes in the integrated value of the TON value (turnover number) during heating. In addition,
The TON value is a value obtained by dividing the amount of hydrogen produced (mmol) by the amount of metal in the dehydrogenation catalyst (here, the amount of palladium) (mmol). The larger the value, the more the dehydrogenation reaction is promoted. There is. According to FIG. 1, the dehydrogenation catalysts of Examples 1 to 4 in which fibrous activated carbon was used as a carrier showed higher dehydrogenation activity for tetralin than the dehydrogenation catalyst of Comparative Example 1 in which granular activated carbon was used as a carrier. I understand. Further, comparing the results of Examples 1 to 4, it can be seen that the activity increases as the specific surface area of the fibrous activated carbon used as the carrier increases. By the way, when comparing Example 2 and Example 3 in which the specific surface areas of the fibrous activated carbons are close to each other, the initial activity is somewhat higher in Example 2, but Example 2 after 2 hours has elapsed after the start of heating. It can be seen that is more active. This is because the total pore volume and the average pore diameter of the fibrous activated carbon are greatly different between Example 2 and Example 3, and the pore distribution state of the fibrous activated carbon is different, so that the dispersion of the palladium fine particles on the fibrous activated carbon is performed. This is probably because the states are different.

【0027】実施例5〜7(白金担持繊維状活性炭の製
造) 100mlの三つ口フラスコに脱イオン水50ml、表
1に示す性状の繊維状活性炭970mgおよびH2Pt
Cl6・6H2O80mg(Pt金属換算で30mg)を
入れ、80℃で2時間撹拌した。これを室温まで冷却し
た後、Na2CO3163mgを加えて中和した。そし
て、フラスコ内を一旦窒素雰囲気とした後に水素雰囲気
に設定し、室温で16時間撹拌して還元処理を実施し
た。これにより得られた白金担持繊維状活性炭(脱水素
触媒)を吸引ろ過により分離し、脱イオン水を用いて数
回洗浄した。得られた脱水素触媒は、1mmHgの減圧
下において100℃で3時間乾燥した。脱水素触媒に含
まれる白金量を表1に示す。この白金量は、原子吸光法
により調べたものである。
Examples 5 to 7 (Production of platinum-supported fibrous activated carbon
Manufacturing) 50 ml of deionized water in a 100 ml three-necked flask, 970 mg of fibrous activated carbon having the properties shown in Table 1 and H 2 Pt
80 mg of Cl 6 .6H 2 O (30 mg in terms of Pt metal) was added, and the mixture was stirred at 80 ° C. for 2 hours. After cooling this to room temperature, 163 mg of Na 2 CO 3 was added for neutralization. Then, the inside of the flask was once set to a nitrogen atmosphere, then set to a hydrogen atmosphere, and stirred at room temperature for 16 hours to carry out a reduction treatment. The platinum-supported fibrous activated carbon (dehydrogenation catalyst) thus obtained was separated by suction filtration and washed several times with deionized water. The obtained dehydrogenation catalyst was dried at 100 ° C. for 3 hours under a reduced pressure of 1 mmHg. Table 1 shows the amount of platinum contained in the dehydrogenation catalyst. The amount of platinum is determined by the atomic absorption method.

【0028】実施例8(白金担持繊維状活性炭の製造) 100mlの三つ口フラスコに脱イオン水50ml、表
1に示す性状の繊維状活性炭970mgおよびH2Pt
Cl6・6H2O80mg(Pt金属換算で30mg)を
入れ、80℃で2時間撹拌した。これを室温まで冷却し
た後、Na2CO3163mgを加えて中和し、ヒドラジ
ン一水和物77mgをさらに加えて50℃で2時間撹拌
した。フラスコの内容物を室温まで冷却した後、得られ
た白金担持繊維状活性炭(脱水素触媒)を吸引ろ過によ
り分離し、脱イオン水を用いて数回洗浄した。得られた
脱水素触媒は、1mmHgの減圧下において100℃で
3時間乾燥した。脱水素触媒に含まれる白金量を表1に
示す。この白金量は、実施例5〜7と同様にして調べた
ものである。
Example 8 (Production of platinum-supporting fibrous activated carbon) In a 100 ml three-necked flask, 50 ml of deionized water, 970 mg of fibrous activated carbon having the properties shown in Table 1 and H 2 Pt.
80 mg of Cl 6 .6H 2 O (30 mg in terms of Pt metal) was added, and the mixture was stirred at 80 ° C. for 2 hours. After cooling this to room temperature, 163 mg of Na 2 CO 3 was added for neutralization, 77 mg of hydrazine monohydrate was further added, and the mixture was stirred at 50 ° C. for 2 hours. After cooling the contents of the flask to room temperature, the obtained platinum-supported fibrous activated carbon (dehydrogenation catalyst) was separated by suction filtration and washed several times with deionized water. The obtained dehydrogenation catalyst was dried at 100 ° C. for 3 hours under a reduced pressure of 1 mmHg. Table 1 shows the amount of platinum contained in the dehydrogenation catalyst. This platinum amount was examined in the same manner as in Examples 5-7.

【0029】評価2 テトラリン8mlに実施例5〜8で得られた脱水素触媒
を個別に添加し、マントルヒーターで220℃に加熱し
た。なお、脱水素触媒の添加量は、白金換算で0.00
7〜0.015ミリモルに設定した。
Evaluation 2 The dehydrogenation catalysts obtained in Examples 5 to 8 were individually added to 8 ml of tetralin and heated to 220 ° C. with a mantle heater. The amount of dehydrogenation catalyst added was 0.00 in terms of platinum.
It was set to 7 to 0.015 mmol.

【0030】加熱中におけるTON値(ターンオーバー
数)の積算値の変化を調べた結果を図2に示す。図2に
おいて、同じ性状の繊維状活性炭を用いた実施例7と実
施例8とを比較すると、実施例7に比べて実施例8のT
ON値が低下していることがわかる。これより、本発明
の脱水素触媒の製造工程では、ヒドラジンを用いた還元
活性方法(実施例8)よりも、水素雰囲気下での還元活
性方法(実施例7)を採用する方が、より活性の高い脱
水素触媒を製造できることがわかる。
FIG. 2 shows the result of examining the change in the integrated value of the TON value (turnover number) during heating. In FIG. 2, comparing Example 7 and Example 8 using the fibrous activated carbon having the same properties, the T of Example 8 is higher than that of Example 7.
It can be seen that the ON value is decreasing. From this, in the production process of the dehydrogenation catalyst of the present invention, the reduction activation method under hydrogen atmosphere (Example 7) is more active than the reduction activation method using hydrazine (Example 8). It can be seen that a high dehydrogenation catalyst can be produced.

【0031】実施例9 表1に示す性状の繊維状活性炭を用い、実施例1〜4の
場合と同じ方法でパラジウム担持繊維状活性炭(脱水素
触媒)を得た。この脱水素触媒に含まれるパラジウム量
を表1に示す。このパラジウム量は、実施例1〜4と同
様にして求めたものである。
Example 9 Using the fibrous activated carbon having the properties shown in Table 1, a palladium-supported fibrous activated carbon (dehydrogenation catalyst) was obtained in the same manner as in Examples 1 to 4. Table 1 shows the amount of palladium contained in this dehydrogenation catalyst. The amount of palladium is obtained in the same manner as in Examples 1 to 4.

【0032】評価3 図3に示すような流通式反応装置を作製した。図におい
て、流通式反応装置1は、内径が9.5mmのガラスチ
ューブ製流通式固定床反応器2を備えている。この流通
式固定床反応器2は、実施例9で得られた脱水素触媒が
パラジウム換算で0.004ミリモル充填されており、
一端にガス流量制御器3を備えたガス供給路4の一端が
接続されている。ガス供給路4の他端には、窒素ガスボ
ンベなどの窒素ガス供給装置5が接続されている。ま
た、流通式固定床反応器2の同じ一端には、定量ポンプ
6を備えた試料供給路7の一端が接続されている。この
試料供給路7は、脱水素処理するテトラリンを流通式固
定床反応器2に対して供給するためのものである。流通
式固定床反応器2の他端からは、FIDを検出器として
備えたガスクロマトグラフィー8に接続された分析試料
供給路9が延びている。分析試料供給路9は、冷却トラ
ップ10を備えており、また、この冷却トラップ10は
ガスメーター11を有している。
Evaluation 3 A flow reactor as shown in FIG. 3 was produced. In the figure, a flow reactor 1 comprises a glass tube flow fixed bed reactor 2 having an inner diameter of 9.5 mm. This flow type fixed bed reactor 2 is filled with 0.004 mmol of the dehydrogenation catalyst obtained in Example 9 in terms of palladium,
One end of a gas supply path 4 having a gas flow rate controller 3 is connected to one end. A nitrogen gas supply device 5 such as a nitrogen gas cylinder is connected to the other end of the gas supply path 4. Further, one end of a sample supply path 7 equipped with a metering pump 6 is connected to the same end of the flow type fixed bed reactor 2. The sample supply path 7 is for supplying tetralin to be dehydrogenated to the flow type fixed bed reactor 2. From the other end of the flow type fixed bed reactor 2 is extended an analytical sample supply passage 9 connected to a gas chromatography 8 equipped with an FID as a detector. The analytical sample supply path 9 is provided with a cooling trap 10, and the cooling trap 10 has a gas meter 11.

【0033】上述の流通式反応装置1を用い、テトラリ
ンの脱水素処理を実施した。ここでは、テトラリンを
2.0ml/時間の割合で流通式固定床反応器2に供給
し、また、流通式固定床反応器2には窒素ガス供給装置
5から10ml/分の割合で窒素ガスをキャリアーガス
として供給した。流通式固定床反応器2での脱水素反応
条件は、常圧、300℃に設定した。また、冷却トラッ
プ10において冷却された、流通式固定床反応器2から
のテトラリンおよびナフタリンを含む分析試料を分析試
料供給路9を通じてガスクロマトグラフィー8に供給し
て定量分析し、また、ガスメーター11により、窒素ガ
スおよび水素ガスの流量を測定した。そして、これらの
結果に基づいて、反応時間とTON値(ターンオーバー
数)の積算値との関係を調べた。
Dehydrogenation treatment of tetralin was carried out using the flow reactor 1 described above. Here, tetralin is supplied to the flow type fixed bed reactor 2 at a rate of 2.0 ml / hour, and nitrogen gas is supplied to the flow type fixed bed reactor 2 from the nitrogen gas supply device 5 at a rate of 10 ml / min. It was supplied as a carrier gas. The dehydrogenation reaction conditions in the flow type fixed bed reactor 2 were set to normal pressure and 300 ° C. Further, the analysis sample containing tetralin and naphthalene from the flow type fixed bed reactor 2 cooled in the cooling trap 10 is supplied to the gas chromatography 8 through the analysis sample supply passage 9 for quantitative analysis, and by the gas meter 11. The flow rates of nitrogen gas and hydrogen gas were measured. Then, based on these results, the relationship between the reaction time and the integrated value of the TON value (turnover number) was examined.

【0034】また、フラスコを用いた回分式反応器と実
施例9で得られた脱水素触媒とを用い、テトラリンの脱
水素処理を実施した。ここでは、回分式反応器にテトラ
リン8mlと脱水素触媒(パラジウム換算で0.004
ミリモル)とを添加し、マントルヒーターを用いて30
0℃に加熱した。そして、加熱時間(反応時間)とTO
N値(ターンオーバー数)の積算値との関係を調べた。
Further, the batch reactor using the flask and the dehydrogenation catalyst obtained in Example 9 were used to dehydrogenate tetralin. Here, 8 ml of tetralin and a dehydrogenation catalyst (0.004 in terms of palladium) were added to the batch reactor.
And 30) using a mantle heater.
Heated to 0 ° C. And heating time (reaction time) and TO
The relationship between the N value (turnover number) and the integrated value was examined.

【0035】以上の結果を表2および図4に示す。この
結果より、回分式反応器を用いた場合よりも、流通式固
定床反応器を用いた場合の方が高いTON値を得られる
ことがわかる。これより、実施例9の脱水素触媒を用い
た脱水素反応は、回分式反応器を用いるよりも流通式固
定床反応器を用いた方が進行しやすいことがわかる。流
通式固定床反応器では、脱水素された反応物の脱水素触
媒からの脱離が促進されるためである。
The above results are shown in Table 2 and FIG. From this result, it can be seen that a higher TON value can be obtained when the flow type fixed bed reactor is used than when the batch type reactor is used. From this, it can be seen that the dehydrogenation reaction using the dehydrogenation catalyst of Example 9 is more likely to proceed using the flow type fixed bed reactor than using the batch type reactor. This is because desorption of the dehydrogenated reaction product from the dehydrogenation catalyst is promoted in the flow type fixed bed reactor.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【表2】 [Table 2]

【0038】[0038]

【発明の効果】本発明の脱水素触媒は、繊維状活性炭上
に特定の金属を担持させたものであるため、脂環式化合
物の脱水素反応を低温領域で促進させることができる。
Since the dehydrogenation catalyst of the present invention has a specific metal supported on fibrous activated carbon, it can accelerate the dehydrogenation reaction of an alicyclic compound in a low temperature range.

【0039】また、本発明の他の観点に係る脱水素触媒
は、比表面積、全細孔容積および平均細孔直径が所定の
範囲に設定された担体上に特定の金属を担持させたもの
であるため、脂環式化合物の脱水素反応を低温領域で促
進させることができる。
Further, a dehydrogenation catalyst according to another aspect of the present invention is one in which a specific metal is supported on a carrier whose specific surface area, total pore volume and average pore diameter are set within predetermined ranges. Therefore, the dehydrogenation reaction of the alicyclic compound can be promoted in the low temperature region.

【0040】特に、流通式固定床反応器を用いた場合
は、本発明に係る脱水素触媒から脱水素された反応物が
容易に脱離されるため、反応が促進される。
In particular, when a flow type fixed bed reactor is used, the dehydrogenated catalyst according to the present invention easily desorbs the dehydrogenated reaction product, so that the reaction is promoted.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例における評価1の結果を示すグラフ。FIG. 1 is a graph showing a result of evaluation 1 in an example.

【図2】実施例における評価2の結果を示すグラフ。FIG. 2 is a graph showing the results of evaluation 2 in the examples.

【図3】実施例の評価3において用いた流通式反応装置
の概略図。
FIG. 3 is a schematic diagram of a flow reactor used in Evaluation 3 of Example.

【図4】実施例における評価3の結果を示すグラフ。FIG. 4 is a graph showing the results of evaluation 3 in the example.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C07C 5/387 C07C 5/387 15/24 15/24 (72)発明者 野村 正勝 兵庫県川西市花屋敷1−21−18 (72)発明者 三浦 雅博 大阪府高槻市真上町六丁目8−1−418 (72)発明者 佐藤 哲也 大阪府吹田市山田東四丁目37−29 Fターム(参考) 4G069 BA08A BA08B BB02A BB02B BC31A BC32A BC33A BC66A BC67A BC68A BC70A BC71A BC72A BC72B BC74A BC75A BC75B CB07 CB66 DA06 EA03X EA03Y EC04X EC04Y EC05X EC05Y EC06X EC06Y EC07X EC07Y EC08X EC08Y EC13X EC13Y EC14X EC14Y FC08 4H006 AA02 AC12 BA05 BA19 BA20 BA21 BA22 BA23 BA24 BA25 BA26 BA55 4H039 CA41 CC10 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 identification code FI theme code (reference) C07C 5/387 C07C 5/387 15/24 15/24 (72) Inventor Masakatsu Nomura Kawanishi, Hyogo Prefecture Hanayashiki 1-21-18 (72) Inventor Masahiro Miura 8-chome, Makami-cho, Takatsuki-shi, Osaka 8-1-418 (72) Inventor Tetsuya Sato 37-29 Yamadahigashi, 4-chome, Suita-shi, Osaka F-Term (reference) 4G069 BA08A BA08B BB02A BB02B BC31A BC32A BC33A BC66A BC67A BC68A BC70A BC71A BC72A BC72B BC74A BC75A BC75B CB07 CB66 BA06 BA06 BA05 BA05 BA25 AC25X EC05Y EC08H CA41 CC10

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】繊維状活性炭と、 前記繊維状活性炭に担持された、白金、パラジウム、ロ
ジウム、イリジウム、ルテニウム、ニッケル、コバル
ト、鉄、銅、銀および金からなる群から選ばれた少なく
とも1種の金属と、を含む脂環式化合物の脱水素触媒。
1. A fibrous activated carbon and at least one selected from the group consisting of platinum, palladium, rhodium, iridium, ruthenium, nickel, cobalt, iron, copper, silver and gold supported on the fibrous activated carbon. An alicyclic dehydrogenation catalyst containing the metal of
【請求項2】前記繊維状活性炭は、比表面積が少なくと
も600m2/g、全細孔容積が少なくとも0.2cm3
/gおよび平均細孔直径が10〜70オングストローム
のものである、請求項1に記載の脂環式化合物の脱水素
触媒。
2. The fibrous activated carbon has a specific surface area of at least 600 m 2 / g and a total pore volume of at least 0.2 cm 3.
The catalyst for dehydrogenation of alicyclic compounds according to claim 1, wherein the dehydrogenation catalyst has an average pore diameter of / g and an average pore diameter of 10 to 70 angstroms.
【請求項3】前記繊維状活性炭100g当たりに前記金
属が0.5〜10g担持されている、請求項1または2
に記載の脂環式化合物の脱水素触媒。
3. The metal of 0.5 to 10 g is supported per 100 g of the fibrous activated carbon.
An alicyclic compound dehydrogenation catalyst according to item 1.
【請求項4】比表面積が少なくとも600m2/g、全
細孔容積が少なくとも0.2cm3/gおよび平均細孔
直径が10〜70オングストロームの担体と、 前記担体に担持された、白金、パラジウム、ロジウム、
イリジウム、ルテニウム、ニッケル、コバルト、鉄、
銅、銀および金からなる群から選ばれた少なくとも1種
の金属と、を含む脂環式化合物の脱水素触媒。
4. A carrier having a specific surface area of at least 600 m 2 / g, a total pore volume of at least 0.2 cm 3 / g and an average pore diameter of 10 to 70 Å, and platinum and palladium supported on the carrier. ,rhodium,
Iridium, ruthenium, nickel, cobalt, iron,
An alicyclic compound dehydrogenation catalyst containing at least one metal selected from the group consisting of copper, silver and gold.
JP2003042036A 2002-02-28 2003-02-20 Alicyclic compound dehydrogenation catalyst Pending JP2003320251A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003042036A JP2003320251A (en) 2002-02-28 2003-02-20 Alicyclic compound dehydrogenation catalyst

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002-54735 2002-02-28
JP2002054735 2002-02-28
JP2003042036A JP2003320251A (en) 2002-02-28 2003-02-20 Alicyclic compound dehydrogenation catalyst

Publications (1)

Publication Number Publication Date
JP2003320251A true JP2003320251A (en) 2003-11-11

Family

ID=29552163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003042036A Pending JP2003320251A (en) 2002-02-28 2003-02-20 Alicyclic compound dehydrogenation catalyst

Country Status (1)

Country Link
JP (1) JP2003320251A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006102632A (en) * 2004-10-05 2006-04-20 Japan Energy Corp Catalyst for manufacturing hydrogen, and hydrogen manufacturing method
JP2006130375A (en) * 2004-11-02 2006-05-25 Bridgestone Corp Catalyst structure for storing and generating hydrogen and storage and generation method for hydrogen using it
JP2006272324A (en) * 2005-03-03 2006-10-12 Japan Energy Corp Catalyst for producing hydrogen and method for producing hydrogen
JP2007326056A (en) * 2006-06-08 2007-12-20 Japan Energy Corp Catalyst and method for producing hydrogen
JP2010235359A (en) * 2009-03-30 2010-10-21 Hitachi Ltd Hydrogen supply method and hydrogen supply apparatus
JP2011083693A (en) * 2009-10-15 2011-04-28 Toyobo Co Ltd Material for adsorbing/decomposing volatile organic compound
JP2012509876A (en) * 2008-11-25 2012-04-26 アルベマール・コーポレーシヨン Process for preparing triphenylene

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006102632A (en) * 2004-10-05 2006-04-20 Japan Energy Corp Catalyst for manufacturing hydrogen, and hydrogen manufacturing method
JP2006130375A (en) * 2004-11-02 2006-05-25 Bridgestone Corp Catalyst structure for storing and generating hydrogen and storage and generation method for hydrogen using it
JP2006272324A (en) * 2005-03-03 2006-10-12 Japan Energy Corp Catalyst for producing hydrogen and method for producing hydrogen
JP4743521B2 (en) * 2005-03-03 2011-08-10 Jx日鉱日石エネルギー株式会社 Catalyst for producing hydrogen and method for producing hydrogen
JP2007326056A (en) * 2006-06-08 2007-12-20 Japan Energy Corp Catalyst and method for producing hydrogen
JP2012509876A (en) * 2008-11-25 2012-04-26 アルベマール・コーポレーシヨン Process for preparing triphenylene
JP2010235359A (en) * 2009-03-30 2010-10-21 Hitachi Ltd Hydrogen supply method and hydrogen supply apparatus
JP2011083693A (en) * 2009-10-15 2011-04-28 Toyobo Co Ltd Material for adsorbing/decomposing volatile organic compound

Similar Documents

Publication Publication Date Title
Hao et al. Synergistic effect of segregated Pd and Au nanoparticles on semiconducting SiC for efficient photocatalytic hydrogenation of nitroarenes
She et al. High catalytic performance of a CeO2-supported Ni catalyst for hydrogenation of nitroarenes, fabricated via coordination-assisted strategy
Yao et al. Synergetic catalysis of non-noble bimetallic Cu–Co nanoparticles embedded in SiO2 nanospheres in hydrolytic dehydrogenation of ammonia borane
Saha et al. Hydrogen adsorption on ordered mesoporous carbons doped with Pd, Pt, Ni, and Ru
Serp et al. Catalysis in carbon nanotubes
Domínguez-Domínguez et al. Semihydrogenation of phenylacetylene catalyzed by palladium nanoparticles supported on carbon materials
Lin et al. Efficient room-temperature aqueous-phase hydrogenation of phenol to cyclohexanone catalyzed by Pd nanoparticles supported on mesoporous MMT-1 silica with unevenly distributed functionalities
Sun et al. Ultrafine Pd particles embedded in nitrogen-enriched mesoporous carbon for efficient H2 production from formic acid decomposition
US7632773B2 (en) Methods for manufacturing supported catalyst from a porous support and a nanocatalyst solution
Marco et al. Bromate catalytic reduction in continuous mode using metal catalysts supported on monoliths coated with carbon nanofibers
JP2006507938A (en) Application of conductive adsorbents, activated carbon granules and carbon fibers as catalytic reaction substrates
Lu et al. Carbon nanotube supported Pt–Ni catalysts for preferential oxidation of CO in hydrogen-rich gases
CN109894154A (en) A kind of copper-based MOF is carbonized derivative catalysis material and its preparation method and application
Li et al. Selective hydrogenation on a highly active single-atom catalyst of palladium dispersed on ceria nanorods by defect engineering
JP2005314223A (en) Porous carbon material and method for producing the same
Zhu et al. Carbon nanofibers grown on anatase washcoated cordierite monolith and its supported palladium catalyst for cinnamaldehyde hydrogenation
Liao et al. One-step growth of CuO/ZnO/CeO2/ZrO2 nanoflowers catalyst by hydrothermal method on Al2O3 support for methanol steam reforming in a microreactor
Zhu et al. Effect of structural properties on catalytic performance in citral selective hydrogenation over carbon–titania composite supported Pd catalyst
Wang et al. Size-dependent catalytic cyclohexane dehydrogenation with platinum nanoparticles on nitrogen-doped carbon
KR100682103B1 (en) nano fiber cataltst and method and apparatus for prepering a nano fiber cataltst
Yu et al. Immobilization of polymer-stabilized metal colloids by a modified coordination capture: preparation of supported metal colloids with singular catalytic properties
Jin et al. Highly active CuOx/SiO2 dot core/rod shell catalysts with enhanced stability for the reverse water gas shift reaction
JP2003320251A (en) Alicyclic compound dehydrogenation catalyst
Mohammadian et al. Catalytic performance and kinetics study of various carbonaceous supported nickel nanoparticles for atmospheric pressure competitive hydrogenation of benzene
Gryglewicz et al. Performance of carbon nanofiber and activated carbon supported nickel catalysts for liquid-phase hydrogenation of cinnamaldehyde into hydrocinnamaldehyde

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090217