JP2003318374A - Solid-state image sensor - Google Patents

Solid-state image sensor

Info

Publication number
JP2003318374A
JP2003318374A JP2002120274A JP2002120274A JP2003318374A JP 2003318374 A JP2003318374 A JP 2003318374A JP 2002120274 A JP2002120274 A JP 2002120274A JP 2002120274 A JP2002120274 A JP 2002120274A JP 2003318374 A JP2003318374 A JP 2003318374A
Authority
JP
Japan
Prior art keywords
intermediate layer
solid
state image
spectral
image sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002120274A
Other languages
Japanese (ja)
Other versions
JP4304915B2 (en
Inventor
Keisuke Ogata
啓介 緒方
Kenzo Fukuyoshi
健蔵 福吉
Tomohito Kitamura
智史 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2002120274A priority Critical patent/JP4304915B2/en
Publication of JP2003318374A publication Critical patent/JP2003318374A/en
Application granted granted Critical
Publication of JP4304915B2 publication Critical patent/JP4304915B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Filters (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid-state image sensor which is free of peeling and has superior spectral characteristics in spite of fine pixels of ≤4 μm and to provide the solid-state image sensor which has low transmissivity and superior spectral characteristics on the side of a wavelength of >650 nm. <P>SOLUTION: A spectral adjusting function is added to a 1st intermediate layer 2 or/and a 2nd intermediate layer 4. Pigment, dye, or photosensitive material for adding the spectral adjusting function is incorporated. The 1st or/and 2nd intermediate layers are decreased in transmissivities to wavelengths 400 to 450 nm. The 1st or/and 2nd intermediate layers are decreased in transmissivities to the side of a wavelength of >650 nm. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、微細なカラーフィ
ルタであっても画素剥がれがなく、かつ650nmより
長波長側に良好な分光特性を持つ固体撮像素子に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state image pickup device which does not peel off pixels even with a fine color filter and has good spectral characteristics on the wavelength side longer than 650 nm.

【0002】[0002]

【従来の技術】デジタルカメラ等に搭載されるCCDや
CMOSなどの固体撮像素子は、近年、高画素化、微細
化が進んでおり、特に微細なものでは3μm×3μmを
下回るレベルの画素サイズとなっている。また、一般に
固体撮像素子には受光素子と一対にカラーフィルタが設
けられ、このカラーフィルタはカラーレジストを用いて
フォトリソグラフィーによりカラーフィルタ画素を形成
するといった手法が執られている。カラーフィルタ画素
形成のフォトリソグラフィーに用いる露光機はステッパ
ー、アライナー、ミラープロジェクションアライナーな
どがあるが、高画素化、微細化の必要な固体撮像素子の
カラーフィルタを形成するにあたっては通常ステッパー
を用いるのが一般的である。
2. Description of the Related Art In recent years, solid-state image pickup devices such as CCDs and CMOSs mounted in digital cameras and the like have been made higher in pixel size and finer in size. Has become. Further, in general, a solid-state image sensor is provided with a color filter paired with a light-receiving element, and this color filter uses a color resist to form color filter pixels by photolithography. Although there are steppers, aligners, mirror projection aligners, and other exposure machines used for photolithography for forming color filter pixels, steppers are usually used to form color filters for solid-state imaging devices that require high pixel count and miniaturization. It is common.

【0003】デジタルカメラ等に搭載された際に、固体
撮像素子のカラーフィルタに求められる分光特性は可視
領域(400nm〜700nm)における分光特性であ
る。一方、カラーフィルタの製造時に、露光波長をg線
(405nm)やh線(435nm)に設定すること
は、赤(R)や黄(Y)の吸収帯に位置するため好まし
いものではない。従って、カラーフィルタの製造時には
単一波長で3色を形成可能な、可視領域(400nm〜
700nm)外のi線(365nm)に設定されたステ
ッパーを用いる場合が多い。
When mounted on a digital camera or the like, the spectral characteristic required for the color filter of the solid-state image pickup element is the spectral characteristic in the visible region (400 nm to 700 nm). On the other hand, it is not preferable to set the exposure wavelength to the g-line (405 nm) or the h-line (435 nm) at the time of manufacturing the color filter because it is located in the red (R) or yellow (Y) absorption band. Therefore, at the time of manufacturing the color filter, it is possible to form three colors with a single wavelength.
In many cases, a stepper set to i-line (365 nm) outside 700 nm) is used.

【0004】近年の固体撮像素子の微細化に伴い、画素
のサイズが4μm以下になってきたため、膜厚1〜1.
5μmで形成されるカラーフィルタ画素のアスペクト比
が大きくなり、現像時に剥がれが生じるようになった。
特に、原色系の青(B)においては、i線透過率が1%
未満と他の色に比較して極端に低く、i線がカラーフィ
ルタの深部まで透過せず露光硬化によって密着しにくい
ため、剥がれが顕著に観られ、歩留まりが悪くなるとい
った不具合が生じていた。また、i線透過率を1%以上
にすると剥がれについては改善されるが、この場合特
に、青(B)に要求される短波長側の分光特性が悪くな
るといった不具合が生じていた。
With the recent miniaturization of solid-state image pickup devices, the pixel size has become 4 μm or less.
The color filter pixel formed with a thickness of 5 μm has a large aspect ratio, and peeling occurs during development.
Especially, in the primary color blue (B), the i-line transmittance is 1%.
Since it is less than the other colors, which is extremely low compared to the other colors, the i-line does not penetrate to the deep part of the color filter and is hard to be adhered by exposure to curing, so that peeling is noticeable and the yield is deteriorated. Further, when the i-line transmittance is set to 1% or more, the peeling is improved, but in this case, in particular, the short wavelength side spectral characteristic required for blue (B) is deteriorated.

【0005】また、長波長側では、従来用いられてきた
原色系の緑(G)、青(B)、補色系のシアン(C)に
おいては、赤色の透過域である波長650nmより長波
長側の透過率が高くなっており、この光量が赤色の光量
から差し引かれるため、相対的に赤色の明るさが暗くな
るという不具合があった。
On the long wavelength side, in the conventionally used primary color systems of green (G) and blue (B) and the complementary color system of cyan (C), the wavelength range of 650 nm, which is the red transmission region, is longer than the wavelength range. Has a high transmittance, and since the amount of light is subtracted from the amount of red light, there is a problem that the brightness of red is relatively dark.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上述の問題
に鑑みてなされたものであって、4μm以下の微細なカ
ラーフィルタであっても、特に、原色系の青(B)にお
いて画素剥がれがなく、かつ優れた分光特性を有する固
体撮像素子を提供することを課題とするものである。ま
た、本発明は、特に、緑(G)、青(B)、補色系のシ
アン(C)において長波650nmより長波長側の透過
率の低い、優れた分光特性を有する固体撮像素子を提供
することを課題とする。更に、4μm以下の微細なカラ
ーフィルタであっても、特に、原色系の青(B)におい
て画素剥がれがなく、かつ優れた分光特性を有し、同時
に、特に、緑(G)、青(B)、補色系のシアン(C)
において長波650nmより長波長側の透過率の低い、
優れた分光特性を有する固体撮像素子を提供することを
課題とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and even with a fine color filter of 4 μm or less, pixel peeling is particularly caused in the primary color blue (B). It is an object of the present invention to provide a solid-state imaging device that does not have the above and has excellent spectral characteristics. Further, the present invention provides a solid-state image sensor having excellent spectral characteristics, in particular, in green (G), blue (B), and complementary color cyan (C), which has a low transmittance on the long wavelength side of a long wave of 650 nm or less. This is an issue. Further, even with a fine color filter of 4 μm or less, there is no pixel peeling in the primary color system blue (B) and it has excellent spectral characteristics. At the same time, in particular, green (G), blue (B) ), Complementary color cyan (C)
Has a lower transmittance on the long wavelength side than the long wave of 650 nm,
An object is to provide a solid-state image sensor having excellent spectral characteristics.

【0007】[0007]

【課題を解決するための手段】本発明は、半導体基板上
に受光部と電荷転送部が形成され、その上に第一中間
層、カラーフィルタ、第二中間層、マイクロレンズが順
次に積層された固体撮像素子において、該第一中間層及
び第二中間層のいずれか一方、もしくは両方に分光調整
機能を付加させたことを特徴とする固体撮像素子であ
る。
According to the present invention, a light receiving portion and a charge transfer portion are formed on a semiconductor substrate, and a first intermediate layer, a color filter, a second intermediate layer, and a microlens are sequentially laminated thereon. In the solid-state image pickup device, a spectral adjustment function is added to either or both of the first intermediate layer and the second intermediate layer.

【0008】また、本発明は、上記発明による固体撮像
素子において、前記第一中間層及び第二中間層のいずれ
か一方もしくは両方が、有機樹脂を主成分とし、分光調
整機能を付加させる顔料、染料、または感光材料を含有
することを特徴とする固体撮像素子である。
In the solid-state image pickup device according to the above invention, one or both of the first intermediate layer and the second intermediate layer contain an organic resin as a main component, and a pigment for adding a spectral adjustment function, A solid-state imaging device characterized by containing a dye or a photosensitive material.

【0009】また、本発明は、上記発明による固体撮像
素子において、前記第一中間層及び第二中間層のいずれ
か一方もしくは両方が、波長400nm〜450nmに
おける透過率を低下させた中間層であることを特徴とす
る固体撮像素子である。
According to the present invention, in the solid-state image pickup device according to the present invention, one or both of the first intermediate layer and the second intermediate layer is an intermediate layer having reduced transmittance at a wavelength of 400 nm to 450 nm. It is a solid-state imaging device characterized by the above.

【0010】また、本発明は、上記発明による固体撮像
素子において、前記第一中間層及び第二中間層のいずれ
か一方もしくは両方が、波長650nmより長波長側に
おける透過率を低下させた中間層であることを特徴とす
る固体撮像素子である。
In the solid-state image pickup device according to the present invention, one or both of the first intermediate layer and the second intermediate layer are intermediate layers in which the transmittance on the longer wavelength side than a wavelength of 650 nm is reduced. Is a solid-state image sensor.

【0011】また、本発明は、上記発明による固体撮像
素子において、前記第一中間層及び第二中間層のいずれ
か一方もしくは両方が、波長400nm〜450nm及
び波長650nmより長波長側における透過率を低下さ
せた中間層であることを特徴とする固体撮像素子であ
る。
According to the present invention, in the solid-state image pickup device according to the above-mentioned invention, one or both of the first intermediate layer and the second intermediate layer have a transmittance on a wavelength side of 400 nm to 450 nm and a wavelength longer than 650 nm. It is a solid-state imaging device characterized by being a lowered intermediate layer.

【0012】[0012]

【発明の実施の形態】以下に、本発明による固体撮像素
子を、その実施形態に基づいて説明する。図1は、本発
明による固体撮像素子の一実施例の断面図である。図1
に示すように、この固体撮像素子は、受光部と電荷転送
部が形成された半導体基板(1)上に第一中間層
(2)、カラーフィルタ(3)、第二中間層(4)、マ
イクロレンズ(5)が順次に積層されたものである。第
一中間層(2)及び第二中間層(4)のいずれか一方、
もしくは両方に分光調整機能を付加している。本来、第
一中間層(2)は受光部と電荷転送部が形成された面を
平坦な面に、また、第二中間層(4)はカラーフィルタ
(3)が形成された面を平坦な面にするものである。
BEST MODE FOR CARRYING OUT THE INVENTION The solid-state image sensor according to the present invention will be described below based on its embodiments. FIG. 1 is a sectional view of an embodiment of a solid-state image sensor according to the present invention. Figure 1
As shown in FIG. 1, this solid-state image sensor has a first intermediate layer (2), a color filter (3), a second intermediate layer (4), on a semiconductor substrate (1) on which a light receiving section and a charge transfer section are formed. The microlenses (5) are sequentially laminated. One of the first intermediate layer (2) and the second intermediate layer (4),
Alternatively, a spectral adjustment function is added to both. Essentially, the first intermediate layer (2) has a flat surface on which the light receiving portion and the charge transfer portion are formed, and the second intermediate layer (4) has a flat surface on which the color filter (3) is formed. It is a face.

【0013】カラーフィルタ画素の形成に用いるカラー
レジストは、画素形成時のフォトリソグラフィ特性や、
画素形成後の顔料濃度(分光特性)などの各特性を満た
したものでなければならない。各特性を満たし、且つ別
な機能を新たに付加させること、例えば、青(B)にお
いて、材料としてのフォトレジストにはi線透過率を高
くすることを、且つ形成されたカラーフィルタには短波
長側の分光特性を良好にすることをカラーフィルタのみ
に、すなわち、カラーレジストのみに負わせるのは困難
である。本発明は、新たに付加させる別な機能をカラー
フィルタ以外の他の層、すなわち、第一中間層(2)及
び第二中間層(4)のいずれか一方、もしくは両方に負
わせたものである。
The color resist used for forming the color filter pixel has a photolithography characteristic at the time of forming the pixel,
It must satisfy various characteristics such as pigment density (spectral characteristics) after pixel formation. It is necessary to satisfy each characteristic and to add another function, for example, in blue (B), to increase the i-line transmittance for the photoresist as a material and to shorten the formed color filter. It is difficult to make only the color filter, that is, only the color resist, have good spectral characteristics on the wavelength side. In the present invention, another function to be newly added is provided to a layer other than the color filter, that is, one or both of the first intermediate layer (2) and the second intermediate layer (4). is there.

【0014】本発明は、第一中間層及び第二中間層のい
ずれか一方もしくは両方に分光調整機能を付加させる材
料として、例えば、顔料、染料、または感光材料を用い
たものである。用いる顔料としては、例えば、アゾ系、
フタロシアニン系、インジゴ系、アントラキノン系、ジ
オキサジン系、キナクリドン系、イソインドリノン系、
フタロン系、メチン系、アゾメチン系、金属錯体系もし
くは縮合多環系等の、カラーインデックスに記載された
C.I.Pigment Colour等の有機顔料や
ミロリブルー、酸化鉄、コバルト紫、マンガン紫、群
青、紺青、コバルトブルー、セルリアンブルー、ピリア
ジン、エメラルドグリーン、コバルトグリーンなどの無
機顔料が挙げられる。
The present invention uses, for example, a pigment, a dye, or a photosensitive material as a material for adding a spectral adjustment function to one or both of the first intermediate layer and the second intermediate layer. Examples of pigments used include azo-based pigments,
Phthalocyanine, indigo, anthraquinone, dioxazine, quinacridone, isoindolinone,
Phthalone-based, methine-based, azomethine-based, metal complex-based, condensed polycyclic, etc. C.I. I. Pigment Color and the like, and inorganic pigments such as milori blue, iron oxide, cobalt violet, manganese violet, ultramarine blue, navy blue, cobalt blue, cerulean blue, pyriadine, emerald green and cobalt green.

【0015】また、染料としては、例えば、アゾ染料、
アゾ金属錯塩染料、アントラキノン染料、インジゴ染
料、チオインジゴ染料、フタロシアニン染料、ジフェニ
ルメタン染料、トリフェニルメタン染料、キサンテン染
料、チアジン染料、カチオン染料、シアニン染料、ニト
ロ染料、キノリン染料、ナフトキノン染料、オキサジン
染料などが挙げられる。
As the dye, for example, an azo dye,
Azo metal complex dye, anthraquinone dye, indigo dye, thioindigo dye, phthalocyanine dye, diphenylmethane dye, triphenylmethane dye, xanthene dye, thiazine dye, cationic dye, cyanine dye, nitro dye, quinoline dye, naphthoquinone dye, oxazine dye, etc. Can be mentioned.

【0016】また、感光材料としては、例えば、光重合
性モノマーと光重合開始剤とで構成されるものである。
光重合性モノマーとしては、例えば、1,6−ヘキサジ
オールジアクリレート、エチレングリコールジアクリレ
ート、ネオペンチルグリコールジアクリレート、トリエ
チレングリコールジアクリレートなどの2官能モノマ
ー、トリメチロールプロハスントリアクリレート、ペン
タエリスリトールトリアクリレート、トリス(2−ヒド
ロキシエチル)イソシアネートなどの3官能モノマー、
ジトリメチロールプロパンテトラアクリレート、ジペン
タエリスリトールペンタおよびヘキサアクリレートなど
の多官能モノマーなどが挙げられる。
The photosensitive material is composed of, for example, a photopolymerizable monomer and a photopolymerization initiator.
Examples of the photopolymerizable monomer include bifunctional monomers such as 1,6-hexadiol diacrylate, ethylene glycol diacrylate, neopentyl glycol diacrylate, and triethylene glycol diacrylate, trimethylol prohasone triacrylate, and pentaerythritol triacrylate. Trifunctional monomers such as acrylate and tris (2-hydroxyethyl) isocyanate,
Examples thereof include polyfunctional monomers such as ditrimethylolpropane tetraacrylate, dipentaerythritol penta, and hexaacrylate.

【0017】また、光重合開始剤としては、例えば、ハ
ロメチル化トリアジン誘導体、ハロメチル化オキサジア
ゾール誘導体、イミダゾール誘導体、ベンゾインアルキ
ルエーテル類、アントラキノン誘導体、ベンズアンスロ
ン誘導体、ベンゾフェノン誘導体、アセトフェノン誘導
体、チオキサントン誘導体、安息香酸エステル誘導体、
アクリジン誘導体、フェナジン誘導体、チタニウム誘導
体などが挙げられる。このような顔料、染料、感光材料
を1種、もしくは複数種用い濃度を調整し、第一中間層
及び第二中間層のいずれか一方あるいは両方に含有させ
分光調整機能を付加させる。
Examples of the photopolymerization initiator include halomethylated triazine derivatives, halomethylated oxadiazole derivatives, imidazole derivatives, benzoin alkyl ethers, anthraquinone derivatives, benzanthrone derivatives, benzophenone derivatives, acetophenone derivatives, thioxanthone derivatives, Benzoic acid ester derivative,
Examples include acridine derivatives, phenazine derivatives, titanium derivatives and the like. The concentration of these pigments, dyes, and light-sensitive materials is adjusted using one or more kinds, and the concentration is adjusted to be contained in either or both of the first intermediate layer and the second intermediate layer to add a spectral adjustment function.

【0018】カラーフィルタは主に365nmのi線を
用いて硬化、密着させているが、青(B)においては上
述のようにi線透過率が1%未満と他のカラーフィルタ
と比較して極端に低いため、i線が深部まで透過せず露
光硬化による密着が不十分で現像時に剥がれが生じてい
た。密着させるためにはi線透過率の高いカラーレジス
ト、つまり顔料濃度が20wt%〜30wt%と低いレ
ジストを用いてカラーフィルタを形成する必要がある
が、i線透過率の高いカラーレジストを用いると目的と
する分光特性を得ることが極めて困難であった。このた
め、第一中間層及び第二中間層のいずれか一方、もしく
は両方に分光調整機能を付加し目的とする分光特性を得
るものとした。
The color filter is mainly hardened and adhered by using 365 nm i-line, but in the blue (B), the i-line transmittance is less than 1% as described above, as compared with other color filters. Since it was extremely low, the i-line did not penetrate to a deep portion, the adhesion by exposure curing was insufficient, and peeling occurred during development. In order to bring them into close contact with each other, it is necessary to form a color filter using a color resist having a high i-line transmittance, that is, a resist having a low pigment concentration of 20 wt% to 30 wt%. It was extremely difficult to obtain the desired spectral characteristics. Therefore, the spectral adjustment function is added to either or both of the first intermediate layer and the second intermediate layer to obtain the desired spectral characteristics.

【0019】また、長波長側においては、緑(G)、青
(B)、シアン(C)などは赤色の透過域である650
nmより長波長側の透過率が高くなっている。この分の
光量が赤色の光量から差し引かれるため、相対的に赤色
の明るさが暗くなる。しかし、緑(G)、青(B)、シ
アン(C)において400nm〜650nmの分光特性
を変化させることなく650nmより長波長側の透過率
を落とすことは困難である。これを解決する手段として
本発明においては、第一中間層及び第二中間層のいずれ
か一方もしくは両方を分光調整のために使用し、緑
(G)、青(B)、シアン(C)の650nmより長波
長側の透過率を低下させた。
On the longer wavelength side, green (G), blue (B), cyan (C), etc. are red transmission regions 650.
The transmittance on the longer wavelength side than nm is higher. Since this amount of light is subtracted from the amount of red light, the brightness of red becomes relatively dark. However, it is difficult to reduce the transmittance on the longer wavelength side than 650 nm without changing the spectral characteristics of 400 nm to 650 nm in green (G), blue (B), and cyan (C). As a means for solving this, in the present invention, either or both of the first intermediate layer and the second intermediate layer are used for spectral adjustment, and green (G), blue (B), and cyan (C) are used. The transmittance on the longer wavelength side than 650 nm was reduced.

【0020】[0020]

【実施例】以下、本発明の実施例について説明する。 <実施例1>半導体基板上に東京応化(株)製の感光性
樹脂(TMR−P3)をスピンコートにより900rp
mで塗布し、その後ホットプレートにより180℃で1
20秒のプレベークを実施し第一中間層とした。ここで
用いた東京応化(株)製の感光性樹脂、TMR−P3は
フェノールノボラック樹脂を主成分としており、分光調
整のための感光材料としてナフトキノンジアジドスルホ
ン酸エステルを含有している。第一中間層の分光特性を
図2に分光1として示した。
EXAMPLES Examples of the present invention will be described below. <Example 1> A photosensitive resin (TMR-P3) manufactured by Tokyo Ohka Co., Ltd. was spin-coated on a semiconductor substrate at 900 rp.
m, then hot plate at 180 ° C for 1
Prebaking was performed for 20 seconds to form a first intermediate layer. The photosensitive resin TMR-P3 manufactured by Tokyo Ohka Co., Ltd. used here contains phenol novolac resin as a main component, and contains naphthoquinone diazide sulfonate as a photosensitive material for spectral adjustment. The spectral characteristic of the first intermediate layer is shown as spectrum 1 in FIG.

【0021】続いて、第一中間層上に顔料レジストを用
いてフォトリソグラフィーにより赤(R)、緑(G)、
青(B)のカラーフィルタを順次形成した。このときの
赤(R)、緑(G)、青(B)それぞれに用いた顔料レ
ジストの顔料は、R:C.I.PR177、C.I.P
Y139、G:C.I.PG36、C.I.PY13
9、C.I.PB15:6、B:C.I.PB15:
6、C.I.PV23であり、それぞれの顔料濃度は
R:40wt%、G:35wt%、B:30wt%であ
る。また、カラーフィルタの膜厚は1.2μmである。
青(B)単層の分光特性を図2に分光2として示した。
Then, red (R), green (G), and
Blue (B) color filters were sequentially formed. The pigment of the pigment resist used for each of red (R), green (G), and blue (B) at this time is R: C. I. PR177, C.I. I. P
Y139, G: C.I. I. PG36, C.I. I. PY13
9, C.I. I. PB15: 6, B: C. I. PB15:
6, C.I. I. PV23, and the respective pigment concentrations are R: 40 wt%, G: 35 wt%, and B: 30 wt%. The thickness of the color filter is 1.2 μm.
The spectral characteristic of the blue (B) single layer is shown as spectrum 2 in FIG.

【0022】さらに、カラーフィルタ上に富士薬品
(株)製の樹脂(TOC−1)をスピンコートにより塗
布回転数1000rpmで塗布し、ホットプレートにて
200℃で10分の熱処理を施して樹脂を硬化し第二中
間層を形成した。最後に第二中間層上に周知の技術であ
る熱フロー法によりマイクロレンズを形成して固体撮像
素子を作製した。この固体撮像素子の分光特性を図2に
示した。
Further, a resin (TOC-1) manufactured by Fuji Yakuhin Co., Ltd. was applied onto the color filter by spin coating at a rotation speed of 1000 rpm, and heat treatment was performed at 200 ° C. for 10 minutes on the hot plate to apply the resin. It was cured to form a second intermediate layer. Finally, a microlens was formed on the second intermediate layer by the well-known heat flow method to manufacture a solid-state image sensor. The spectral characteristics of this solid-state image sensor are shown in FIG.

【0023】目的とする分光特性をカラーフィルタのみ
で得るためには、顔料濃度35wt%の顔料レジストを
用いなければならないが、i線透過率が1%未満と低い
ため密着させることが困難である。顔料濃度30wt%
のカラーフィルタと35wt%のカラーフィルタのi線
透過率を表1に示す。青(B)の分光特性に着目する
と、目的とする分光特性である分光3を単層で得るため
のカラーフィルタでは、i線透過率が0.5%しかな
く、十分に光硬化しないため剥がれが生じている。しか
しながら、青(B)の分光特性を分光2とすることで、
青(B)のカラーフィルタ単層のi線透過率は1.8%
となり剥がれが生じず、かつ分光1の第一中間層を用い
ることで第一中間層とカラーフィルタの積算分光は目的
とする分光特性である、分光3となる。
In order to obtain the desired spectral characteristics with only the color filter, it is necessary to use a pigment resist having a pigment concentration of 35 wt%, but it is difficult to bring them into close contact because the i-ray transmittance is low at less than 1%. . Pigment concentration 30 wt%
Table 1 shows the i-line transmittances of the color filter of No. 1 and the color filter of 35 wt%. Focusing on the spectral characteristic of blue (B), the color filter for obtaining the spectral characteristic 3 which is the target spectral characteristic in a single layer has an i-line transmittance of only 0.5% and is not sufficiently photo-cured to be peeled off. Is occurring. However, by setting the spectral characteristic of blue (B) to spectrum 2,
The i-line transmittance of the blue (B) color filter single layer is 1.8%.
Therefore, peeling does not occur, and by using the first intermediate layer of the spectrum 1, the integrated spectrum of the first intermediate layer and the color filter becomes the spectrum 3 that is the target spectral characteristic.

【0024】[0024]

【表1】 [Table 1]

【0025】本実施例1においては第一中間層の主成分
をフェノールノボラック系の樹脂を用いたが、特にフェ
ノールノボラック系樹脂にこだわることなく、アクリル
系、エポキシ系、ポリイミド系などの他の樹脂を一つも
しくは複数含んだ樹脂を用いても構わない。また、分光
調整のための感光材料としてナフトキノンジアジドスル
ホン酸エステルを用いたが、400nm〜450nmに
吸収をもつ顔料や染料、他の感光材料などを一つもしく
は複数用いても構わない。また、第一中間層だけではな
く、第二中間層あるいは第一中間層、第二中間層の両方
を分光調整機能を付与させても構わない。
In Example 1, a phenol novolac resin was used as the main component of the first intermediate layer. However, other resins such as acrylic resin, epoxy resin, polyimide resin, etc. were used without particular attention to phenol novolac resin. You may use the resin containing one or more. Although naphthoquinone diazide sulfonic acid ester is used as the light-sensitive material for spectral adjustment, one or more pigments or dyes having absorption in the range of 400 nm to 450 nm, other light-sensitive materials, or the like may be used. Further, not only the first intermediate layer but also the second intermediate layer or both the first intermediate layer and the second intermediate layer may be provided with the spectral adjustment function.

【0026】<実施例2>半導体基板上にアクリル系感
光性樹脂を主成分とし、分光調整のための感光材料とし
て山本化成製のシアニン系赤外吸収剤を1%含有した塗
布液をスピンコートにより900rpmで塗布し、その
後ホットプレートにより180℃で2分のプレベークを
実施し第一中間層とした。第一中間層の分光特性を図3
に分光4として示した。続いて、第一中間層上に顔料レ
ジストを用いてフォトリソグラフィーにより赤(R)、
緑(G)、青(B)のカラーフィルタを順次形成した。
カラーフィルタの膜厚は1.2μmである。緑(G)及
び青(B)単層の分光特性を図3に分光5、分光6とし
て示した。
Example 2 A semiconductor substrate was spin-coated with a coating liquid containing acrylic photosensitive resin as a main component and 1% of a cyanine infrared absorber manufactured by Yamamoto Kasei as a photosensitive material for spectral adjustment. Was applied at 900 rpm and then prebaked at 180 ° C. for 2 minutes with a hot plate to form a first intermediate layer. Figure 3 shows the spectral characteristics of the first intermediate layer.
Is shown as spectrum 4. Subsequently, red (R) is formed on the first intermediate layer by photolithography using a pigment resist,
Green (G) and blue (B) color filters were sequentially formed.
The film thickness of the color filter is 1.2 μm. The spectral characteristics of the green (G) and blue (B) single layers are shown as spectrum 5 and spectrum 6 in FIG.

【0027】さらにカラーフィルタに富士薬品(株)製
の樹脂(TOC−1)をスピンコートにより塗布回転数
1000rpmで塗布し、ホットプレートにて200℃
で10分の熱処理を施して樹脂を硬化し第二中間層を形
成した。最後に第二中間層上に周知の技術である熱フロ
ー法によりマイクロレンズを形成して固体撮像素子を作
製した。この固体撮像素子の分光特性を図3に示す。緑
(G)及び青(B)の分光特性に着目すると、緑(G)
及び青(B)のカラーフィルタ単層の分光では650n
m〜700nmまでのボトムが浮いているが、第一中間
層に分光調整機能を付与した場合、緑(G)及び青
(B)の分光特性は分光7、分光8となり、650nm
〜700nmまでのボトムの透過率が下がりフラットに
なることが分かる。
Further, a resin (TOC-1) manufactured by Fuji Yakuhin Co., Ltd. was applied to the color filter by spin coating at a coating speed of 1000 rpm, and the temperature was 200 ° C. on a hot plate.
Was heat-treated for 10 minutes to cure the resin and form a second intermediate layer. Finally, a microlens was formed on the second intermediate layer by the well-known heat flow method to manufacture a solid-state image sensor. The spectral characteristics of this solid-state image sensor are shown in FIG. Focusing on the spectral characteristics of green (G) and blue (B), green (G)
And 650n in the spectrum of the blue (B) color filter single layer
Although the bottom from m to 700 nm is floating, when the spectral adjustment function is added to the first intermediate layer, the spectral characteristics of green (G) and blue (B) are spectrum 7 and spectrum 8 at 650 nm.
It can be seen that the bottom transmittance decreases to ˜700 nm and becomes flat.

【0028】本実施例2においては第一中間層の主成分
をアクリル系の樹脂を用いたが、特にアクリル系樹脂に
こだわることなく、エポキシ系、ポリイミド系などの他
の樹脂を一つあるいは複数含んだ樹脂でも構わない。ま
た、分光調整のための感光材料としてシアニン系赤外吸
収剤を用いたが、他の650nm〜700nmに吸収を
もつ顔料や染料、他の感光材料などを一つあるいは複数
用いても構わない。また、第一中間層だけではなく、第
二中間層あるいは第一中間層、第二中間層の両方に分光
調整機能を付加させても構わない。
Although the acrylic resin is used as the main component of the first intermediate layer in the second embodiment, one or a plurality of other resins such as epoxy resin and polyimide resin may be used without particular attention to the acrylic resin. A resin containing it may be used. Although the cyanine-based infrared absorber is used as the light-sensitive material for spectral adjustment, one or more other pigments or dyes having absorption at 650 nm to 700 nm, other light-sensitive materials, or the like may be used. Further, not only the first intermediate layer but also the second intermediate layer or both the first intermediate layer and the second intermediate layer may have the spectral adjustment function.

【0029】実施例1、実施例2の用途以外において
も、ある限定的な波長領域の透過率を下げて分光特性を
調整するために第一中間層及び第二中間層のいずれか一
方もしくは両方に分光調整機能を付加させることは可能
である。
In addition to the applications of Examples 1 and 2, either one or both of the first intermediate layer and the second intermediate layer are used to adjust the spectral characteristics by lowering the transmittance in a certain limited wavelength region. It is possible to add a spectral adjustment function to.

【0030】[0030]

【発明の効果】本発明は、第一中間層及び第二中間層の
いずれか一方、もしくは両方に、例えば、顔料を含有さ
せて波長400nm〜450nmにおける透過率を低下
させる分光調整機能を付加させたので、4μm以下の微
細なカラーフィルタであっても、特に、原色系の青
(B)において画素剥がれがなく、かつ優れた分光特性
を有する固体撮像素子となる。
INDUSTRIAL APPLICABILITY According to the present invention, one or both of the first intermediate layer and the second intermediate layer are made to have a spectral adjustment function of, for example, containing a pigment to reduce the transmittance at a wavelength of 400 nm to 450 nm. Therefore, even with a fine color filter having a size of 4 μm or less, the solid-state image pickup element does not have pixel peeling in the primary color blue (B) and has excellent spectral characteristics.

【0031】また、本発明は、第一中間層及び第二中間
層のいずれか一方、もしくは両方に、例えば、顔料を含
有させて波長650nmより長波長側における透過率を
低下させる分光調整機能を付加させたので、特に、緑
(G)、青(B)、補色系のシアン(C)において波長
650nmより長波長側の透過率の低い、優れた分光特
性を有する固体撮像素子となる。さらには、ノイズを低
減させるための赤外カットフィルタの機能、すなわち、
近赤外域の光を吸収する機能を持たせることにより、よ
り高付加価値の固体撮像素子となる。
Further, the present invention has a spectral adjustment function of reducing the transmittance at a wavelength longer than 650 nm by including, for example, a pigment in one or both of the first intermediate layer and the second intermediate layer. Since it is added, the solid-state image sensor having excellent spectral characteristics, in particular, in green (G), blue (B), and complementary color cyan (C), has a low transmittance on the longer wavelength side than the wavelength of 650 nm. Furthermore, the function of the infrared cut filter to reduce noise, namely,
By providing a function of absorbing light in the near-infrared region, a solid-state image sensor with higher added value can be obtained.

【0032】また、本発明は、第一中間層及び第二中間
層のいずれか一方、もしくは両方に、例えば、顔料を含
有させて波長400nm〜450nm、及び波長650
nmより長波長側における透過率を低下させる分光調整
機能を付加させたので、4μm以下の微細なカラーフィ
ルタであっても、特に、原色系の青(B)において画素
剥がれがなく、かつ優れた分光特性を有し、同時に特
に、緑(G)、青(B)、補色系のシアン(C)におい
て波長650nmより長波長側の透過率の低い、優れた
分光特性を有する固体撮像素子となる。
In the present invention, one or both of the first intermediate layer and the second intermediate layer contain a pigment, for example, and have a wavelength of 400 nm to 450 nm and a wavelength of 650.
Since a spectral adjustment function for lowering the transmittance on the wavelength side longer than nm is added, even with a fine color filter of 4 μm or less, there is no pixel peeling especially in the primary color blue (B), and it is excellent. A solid-state image sensor having spectral characteristics and, at the same time, excellent spectral characteristics with a low transmittance on the longer wavelength side than a wavelength of 650 nm in green (G), blue (B), and complementary color cyan (C). .

【0033】さらに、本発明によれば、カラーフィルタ
の分光特性が目的とする分光特性から若干のズレを持っ
ている場合、第一中間層あるいは第二中間層への分光調
整のための、例えば、顔料の種類や量を調整して用いる
ことで目的とする分光特性への補正を行うことが出来
る。従って、また、同一のカラーレジストを用いて幾通
りもの要求される分光特性を廉価に得ることができる。
Further, according to the present invention, when the spectral characteristic of the color filter has a slight deviation from the desired spectral characteristic, for spectral adjustment to the first intermediate layer or the second intermediate layer, for example, By adjusting the type and amount of the pigment, it is possible to correct the target spectral characteristics. Therefore, it is possible to inexpensively obtain various required spectral characteristics by using the same color resist.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による固体撮像素子の一実施例の断面図
である。
FIG. 1 is a sectional view of an embodiment of a solid-state image sensor according to the present invention.

【図2】実施例1における分光特性の説明図である。FIG. 2 is an explanatory diagram of spectral characteristics in the first embodiment.

【図3】実施例2における分光特性の説明図である。FIG. 3 is an explanatory diagram of spectral characteristics in the second embodiment.

【符号の説明】[Explanation of symbols]

1・・・半導体基板 2・・・第一中間層 3・・・カラーフィルタ 4・・・第二中間層 5・・・マイクロレンズ 分光1・・・実施例1における第一中間層の分光特性 分光2・・・実施例1における青(B)単層の分光特性 分光3・・・実施例1における第一中間層と青(B)単
層の積算分光特性 分光4・・・実施例2における第一中間層の分光特性 分光5・・・実施例2における緑(B)単層の分光特性 分光6・・・実施例2における青(B)単層の分光特性 分光7・・・実施例2における第一中間層と緑(B)単
層の積算分光特性 分光8・・・実施例2における第一中間層と青(B)単
層の積算分光特性
DESCRIPTION OF SYMBOLS 1 ... Semiconductor substrate 2 ... 1st intermediate | middle layer 3 ... Color filter 4 ... 2nd intermediate | middle layer 5 ... Micro lens spectroscopy 1 ... Spectral characteristic of the 1st intermediate | middle layer in Example 1 Spectral spectrum 2 ... Spectral characteristic spectrum of blue (B) single layer in Example 1 ... Integrated spectral characteristic spectrum 4 of first intermediate layer and blue (B) single layer in Example 1 ... Example 2 Spectral characteristic spectrum 5 of the first intermediate layer in Example 2 ... spectral characteristic spectrum of the green (B) single layer in Example 2 ... spectral characteristic spectrum 7 of the blue (B) single layer in Example 2 Integral spectral characteristics of the first intermediate layer and the green (B) single layer in Example 2 Spectroscopy 8 ... Integral spectral characteristics of the first intermediate layer and the blue (B) single layer in Example 2

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2H048 BA45 BA47 BA48 BB04 BB47 4M118 AA01 AA10 AB01 BA10 BA14 GC08 GC11 GC14 GC17 GD04 GD07    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 2H048 BA45 BA47 BA48 BB04 BB47                 4M118 AA01 AA10 AB01 BA10 BA14                       GC08 GC11 GC14 GC17 GD04                       GD07

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】半導体基板上に受光部と電荷転送部が形成
され、その上に第一中間層、カラーフィルタ、第二中間
層、マイクロレンズが順次に積層された固体撮像素子に
おいて、該第一中間層及び第二中間層のいずれか一方、
もしくは両方に分光調整機能を付加させたことを特徴と
する固体撮像素子。
1. A solid-state imaging device comprising a semiconductor substrate on which a light receiving portion and a charge transfer portion are formed, and on which a first intermediate layer, a color filter, a second intermediate layer, and a microlens are sequentially laminated. One of the one intermediate layer and the second intermediate layer,
Alternatively, a solid-state image pickup device characterized by adding a spectral adjustment function to both.
【請求項2】前記第一中間層及び第二中間層のいずれか
一方もしくは両方が、有機樹脂を主成分とし、分光調整
機能を付加させる顔料、染料、または感光材料を含有す
ることを特徴とする請求項1記載の固体撮像素子。
2. One or both of the first intermediate layer and the second intermediate layer contains an organic resin as a main component and contains a pigment, a dye, or a light-sensitive material that adds a spectral adjustment function. The solid-state image sensor according to claim 1.
【請求項3】前記第一中間層及び第二中間層のいずれか
一方もしくは両方が、波長400nm〜450nmにお
ける透過率を低下させた中間層であることを特徴とする
請求項1、又は請求項2記載の固体撮像素子。
3. The method according to claim 1, wherein one or both of the first intermediate layer and the second intermediate layer is an intermediate layer having a reduced transmittance at a wavelength of 400 nm to 450 nm. 2. The solid-state image sensor according to 2.
【請求項4】前記第一中間層及び第二中間層のいずれか
一方もしくは両方が、波長650nmより長波長側にお
ける透過率を低下させた中間層であることを特徴とする
請求項1、又は請求項2記載の固体撮像素子。
4. The one or both of the first intermediate layer and the second intermediate layer are intermediate layers having reduced transmittance on the longer wavelength side than a wavelength of 650 nm, or The solid-state image sensor according to claim 2.
【請求項5】前記第一中間層及び第二中間層のいずれか
一方もしくは両方が、波長400nm〜450nm及び
波長650nmより長波長側における透過率を低下させ
た中間層であることを特徴とする請求項1、又は請求項
2記載の固体撮像素子。
5. One or both of the first intermediate layer and the second intermediate layer are intermediate layers having a reduced transmittance on the longer wavelength side than wavelengths of 400 nm to 450 nm and 650 nm. The solid-state imaging device according to claim 1 or 2.
JP2002120274A 2002-04-23 2002-04-23 Solid-state image sensor Expired - Fee Related JP4304915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002120274A JP4304915B2 (en) 2002-04-23 2002-04-23 Solid-state image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002120274A JP4304915B2 (en) 2002-04-23 2002-04-23 Solid-state image sensor

Publications (2)

Publication Number Publication Date
JP2003318374A true JP2003318374A (en) 2003-11-07
JP4304915B2 JP4304915B2 (en) 2009-07-29

Family

ID=29536547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002120274A Expired - Fee Related JP4304915B2 (en) 2002-04-23 2002-04-23 Solid-state image sensor

Country Status (1)

Country Link
JP (1) JP4304915B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7297570B2 (en) * 2004-07-15 2007-11-20 Dongbu Electronics Co., Ltd. Complementary metal oxide semiconductor image sensor and method for fabricating the same
JP2014029452A (en) * 2012-07-02 2014-02-13 Toyo Ink Sc Holdings Co Ltd Blue coloring composition for image sensors and color filter for image sensors
JP2016162946A (en) * 2015-03-04 2016-09-05 Jsr株式会社 Solid state image sensor
WO2017200007A1 (en) * 2016-05-19 2017-11-23 三菱電機株式会社 Solid-state imaging device and image sensor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7297570B2 (en) * 2004-07-15 2007-11-20 Dongbu Electronics Co., Ltd. Complementary metal oxide semiconductor image sensor and method for fabricating the same
JP2014029452A (en) * 2012-07-02 2014-02-13 Toyo Ink Sc Holdings Co Ltd Blue coloring composition for image sensors and color filter for image sensors
JP2016162946A (en) * 2015-03-04 2016-09-05 Jsr株式会社 Solid state image sensor
WO2017200007A1 (en) * 2016-05-19 2017-11-23 三菱電機株式会社 Solid-state imaging device and image sensor
JPWO2017200007A1 (en) * 2016-05-19 2018-06-07 三菱電機株式会社 Solid-state imaging device and image sensor
US10991737B2 (en) 2016-05-19 2021-04-27 Mitsubishi Electric Corporation Solid-state imaging device and image sensor for suppressing or preventing leaking of light into adjoining pixels

Also Published As

Publication number Publication date
JP4304915B2 (en) 2009-07-29

Similar Documents

Publication Publication Date Title
TWI316636B (en) Solid-state image pick-up device
CN100533749C (en) Solid state image pickup device and manufacturing method thereof
JP6721578B2 (en) Infrared absorbing composition, infrared cut filter, laminated body, pattern forming method, and solid-state imaging device
KR101344786B1 (en) Photosensitive resin composition for color filter comprising the same and color filter using the same
JP2009111225A (en) Solid-state image sensor and method of manufacturing the same
WO2007116887A1 (en) Color image sensor and method for fabricating color image sensor
KR20130062510A (en) Photosensitive resin composition for color filter and color filter using the same
JPH0925360A (en) Ultraviolet-absorber precursor compound, photosensitive resin composition containing the same, and image formation method
TW201926730A (en) Solid-state image capture element and method of manufacturing same
JP7516491B2 (en) Structure, solid-state imaging device and image display device
JP2006301101A (en) Light-shielding/antireflection multilayer film, method for forming the same, solid-state imaging element having the same, and manufacturing method therefor
JP5030375B2 (en) Photocurable composition for color filter, solid-state imaging device and cyan color filter
KR101700205B1 (en) Method for producing color filter, color filter and solid-state imaging element
US20190154891A1 (en) Dry etching composition, kit, pattern formation method, and method of manufacturing optical filter
TW202007697A (en) Composition, film, infrared-transmitting filter, structural body, photosensor, and image display device
JP5306009B2 (en) Polymerizable composition for color filter, color filter, and solid-state imaging device
JP4304915B2 (en) Solid-state image sensor
JP2009065178A (en) Solid-state image pickup element
JP7195407B2 (en) COMPOSITION, MEMBRANE, OPTICAL FILTER AND MANUFACTURING METHOD THEREOF, SOLID-STATE IMAGE SENSOR, INFRARED SENSOR, AND CAMERA MODULE
TW202202576A (en) Pigment composition for color filters, coloring composition, color filter, liquid crystal display device and solid-state imaging element
JP2007134968A (en) Image pickup element and image pickup device
JP2009152315A (en) Image sensor and its manufacturing method
KR101333701B1 (en) Photosensitive resin composition for color filter and color filter using same
JP7417819B1 (en) Solid-state image sensor, solid-state image sensor manufacturing method, and electronic equipment
JP7190508B2 (en) Structure Manufacturing Method, Color Filter Manufacturing Method, Solid-State Imaging Device Manufacturing Method, and Image Display Device Manufacturing Method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090420

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4304915

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140515

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees