JP2003318161A - Device and method for plasma treatment - Google Patents

Device and method for plasma treatment

Info

Publication number
JP2003318161A
JP2003318161A JP2003157934A JP2003157934A JP2003318161A JP 2003318161 A JP2003318161 A JP 2003318161A JP 2003157934 A JP2003157934 A JP 2003157934A JP 2003157934 A JP2003157934 A JP 2003157934A JP 2003318161 A JP2003318161 A JP 2003318161A
Authority
JP
Japan
Prior art keywords
silicon wafer
semiconductor substrate
mounting surface
lower electrode
electrostatic attraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003157934A
Other languages
Japanese (ja)
Other versions
JP3901128B2 (en
Inventor
Kiyoshi Arita
潔 有田
Tetsuhiro Iwai
哲博 岩井
Junichi Terayama
純一 寺山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003157934A priority Critical patent/JP3901128B2/en
Publication of JP2003318161A publication Critical patent/JP2003318161A/en
Application granted granted Critical
Publication of JP3901128B2 publication Critical patent/JP3901128B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device and method for plasma treatment by which the occurrence of failures can be prevented by holding a semiconductor substrate with sufficient electrostatic holding power. <P>SOLUTION: In the plasma treatment device which performs plasma treatment on a silicon wafer 6 while a protective tape 6a is stuck to the circuit forming surface of the wafer 6, the wafer 6 is placed on a placing surface 3d on the upper surface of a lower electrode 3 made of a conductive metal, with the protective tape 6a on the placing surface 3d side. When the wafer 6 is held by the lower electrode 3 by electrostatic attraction by impressing a DC voltage upon the electrode 3 from a DC power source section 18 for electrostatic attraction at the time of performing the plasma treatment, the protective tape 6a is utilized as a dielectric for electrostatic attraction. Consequently, the silicon wafer 6 can be held with sufficient electrostatic holding power, because the thickness of the can be reduced to the utmost. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、シリコンウェハな
どの半導体基板のプラズマ処理を行うプラズマ処理装置
及びプラズマ処理方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma processing apparatus and a plasma processing method for plasma processing a semiconductor substrate such as a silicon wafer.

【0002】[0002]

【従来の技術】半導体装置に用いられるシリコンウェハ
の製造工程では、半導体装置の薄型化にともない基板の
厚さを薄くするための薄化加工が行われる。この薄化加
工は、シリコン基板の表面に回路パターンを形成した後
に、回路形成面の裏面を機械研磨することによって行わ
れ、研磨加工後には機械研磨によってシリコン基板の研
磨面に生成されたダメージ層をエッチングにより除去す
ることを目的として、プラズマ処理が行われる。
2. Description of the Related Art In a manufacturing process of a silicon wafer used for a semiconductor device, a thinning process is performed to reduce the thickness of a substrate as the semiconductor device is made thinner. This thinning process is performed by mechanically polishing the back surface of the circuit formation surface after forming a circuit pattern on the surface of the silicon substrate, and after the polishing process, a damage layer generated on the polished surface of the silicon substrate by mechanical polishing. A plasma treatment is performed for the purpose of removing by etching.

【0003】このプラズマ処理に際しては、シリコンウ
ェハは処理対象面(裏面)を上向きにした姿勢で保持す
る必要があるため、シリコンウェハは回路形成面側を基
板載置部の載置面に向けた姿勢で保持される。このと
き、回路形成面には回路が直接載置面に接触してダメー
ジを受けるのを防止する目的で保護テープが貼着され
る。
In this plasma processing, since it is necessary to hold the silicon wafer with the surface to be processed (rear surface) facing upward, the circuit formation surface side of the silicon wafer faces the mounting surface of the substrate mounting portion. Hold in a posture. At this time, a protective tape is attached to the circuit forming surface in order to prevent the circuit from directly contacting the mounting surface and being damaged.

【0004】[0004]

【発明が解決しようとする課題】このようなシリコンウ
ェハを保持する方法として、静電吸着による方法が知ら
れている。この方法は、導電体の表面が薄い絶縁層で覆
われた基板載置部にシリコンウェハを載置し、導電体に
直流電圧を印加して基板載置部の表面を静電吸着面と
し、シリコンウェハと絶縁層の下の導電体との間にクー
ロン力を作用させることによってシリコンウェハを基板
載置部に保持するものである。
As a method of holding such a silicon wafer, a method by electrostatic attraction is known. In this method, a silicon wafer is placed on a substrate mounting portion whose surface of a conductor is covered with a thin insulating layer, and a DC voltage is applied to the conductor to make the surface of the substrate mounting portion an electrostatic attraction surface. The Coulomb force is applied between the silicon wafer and the conductor below the insulating layer to hold the silicon wafer on the substrate mounting portion.

【0005】ところが、前述の保護テープが貼着された
状態のシリコンウェハを静電吸着によって保持する場合
には、クーロン力は絶縁層に加えて絶縁性の保護テープ
を介在させた状態で作用するため、保護テープを介さず
に直接シリコンウェハを静電吸着面に密着させた場合と
比較して静電吸着力が低く十分な保持力が得られない場
合があった。この他にも、シリコンウェハの表面に封止
用や配線用等の目的で樹脂層が形成され、この樹脂層側
を静電吸着面に密着させて静電吸着するような場合にお
いても同様な問題が発生する。
However, when the silicon wafer to which the above-mentioned protective tape is adhered is held by electrostatic attraction, the Coulomb force acts in a state in which an insulating protective tape is interposed in addition to the insulating layer. Therefore, compared with the case where the silicon wafer is directly adhered to the electrostatic attraction surface without using the protective tape, the electrostatic attraction force may be low and sufficient holding force may not be obtained. In addition to this, when a resin layer is formed on the surface of the silicon wafer for the purpose of sealing, wiring, etc. The problem occurs.

【0006】そこで本発明は、半導体基板を十分な静電
保持力で保持して不具合を防止することができるプラズ
マ処理装置及びプラズマ処理方法を提供することを目的
とする。
Therefore, an object of the present invention is to provide a plasma processing apparatus and a plasma processing method capable of holding a semiconductor substrate with a sufficient electrostatic holding force to prevent defects.

【0007】[0007]

【課題を解決するための手段】請求項1記載のプラズマ
処理装置は、表面に貼り付けられた樹脂テープにより形
成された絶縁層を有する半導体基板のプラズマ処理を行
うプラズマ処理装置であって、少なくとも一部に導電体
が露呈した載置面が設けられ前記半導体基板が絶縁層側
をこの載置面に向けて載置される基板載置部と、前記半
導体基板を前記載置面に静電吸着によって保持する静電
吸着手段と、前記載置面に載置された半導体基板を処理
するためにプラズマを発生するプラズマ発生手段とを備
え、前記半導体基板の絶縁層を静電吸着手段の誘電体と
して利用する。
A plasma processing apparatus according to claim 1 is a plasma processing apparatus for performing a plasma processing on a semiconductor substrate having an insulating layer formed of a resin tape attached to the surface thereof. A substrate mounting portion is provided on a part of which a conductive surface is exposed, and the semiconductor substrate is mounted with the insulating layer side facing this mounting surface, and the semiconductor substrate is electrostatically mounted on the mounting surface. An electrostatic chucking means for holding the semiconductor substrate mounted on the mounting surface is provided, and a plasma generating means for generating a plasma to process the semiconductor substrate mounted on the mounting surface. Use as a body.

【0008】請求項2記載のプラズマ処理方法は、表面
に貼り付けられた樹脂テープにより形成された絶縁層を
有する半導体基板を基板載置部の載置面に静電吸着によ
って保持した状態でプラズマ処理を行うプラズマ処理方
法であって、前記載置面の少なくとも一部を導電体と
し、前記半導体基板の絶縁層側を前記基板載置部の載置
面に向けて載置し前記絶縁層を静電吸着手段の誘電体と
して利用することにより半導体基板を前記載置面に静電
吸着する。
According to a second aspect of the present invention, there is provided a plasma processing method in which a semiconductor substrate having an insulating layer formed of a resin tape attached to a surface thereof is held by electrostatic attraction on a mounting surface of a substrate mounting portion. A plasma processing method for performing a treatment, wherein at least a part of the mounting surface is a conductor, and the insulating layer is mounted with the insulating layer side of the semiconductor substrate facing the mounting surface of the substrate mounting portion. The semiconductor substrate is electrostatically adsorbed on the mounting surface by being used as the dielectric of the electrostatic adsorption means.

【0009】本発明によれば、基板載置部の載置面を導
電体とし、半導体基板の絶縁層側をこの載置面に向けて
載置して半導体基板の絶縁層を静電吸着手段の誘電体と
して利用して半導体基板を載置面に静電吸着することに
より、半導体基板を十分な静電保持力で保持することが
できる。
According to the present invention, the mounting surface of the substrate mounting portion is made of a conductor, and the insulating layer side of the semiconductor substrate is mounted with the mounting surface facing the mounting surface to electrostatically attract the insulating layer of the semiconductor substrate. The semiconductor substrate can be held with a sufficient electrostatic holding force by electrostatically adsorbing the semiconductor substrate to the mounting surface by using it as a dielectric of the above.

【0010】[0010]

【発明の実施の形態】次に本発明の実施の形態を図面を
参照して説明する。図1は本発明の一実施の形態のプラ
ズマ処理装置の断面図、図2は本発明の一実施の形態の
プラズマ処理装置の基板載置部の断面図、図3は本発明
の一実施の形態のプラズマ処理装置の断面図、図4は本
発明の一実施の形態のプラズマ処理装置における静電吸
着力を示すグラフ、図5は本発明の一実施の形態のプラ
ズマ処理方法のフロー図、図6,図7は本発明の一実施
の形態のプラズマ処理方法の工程説明図、図8は本発明
の一実施の形態のプラズマ処理装置の基板載置部を示す
図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the drawings. 1 is a sectional view of a plasma processing apparatus according to an embodiment of the present invention, FIG. 2 is a sectional view of a substrate mounting portion of the plasma processing apparatus according to an embodiment of the present invention, and FIG. 3 is an embodiment of the present invention. FIG. 4 is a cross-sectional view of a plasma processing apparatus according to an embodiment of the present invention, FIG. 4 is a graph showing electrostatic attraction force in the plasma processing apparatus according to one embodiment of the present invention, and FIG. 6 and 7 are process explanatory diagrams of the plasma processing method according to the embodiment of the present invention, and FIG. 8 is a diagram showing the substrate mounting portion of the plasma processing apparatus according to the embodiment of the present invention.

【0011】まず図1、図2を参照してプラズマ処理装
置について説明する。図1において、真空チャンバ1の
内部はプラズマ処理を行う処理室2となっており、処理
室2内部には、下部電極3および上部電極4が上下に対
向して配設されている。下部電極3は下方に延出した支
持部3aによって真空チャンバ1に電気的に絶縁された
状態で装着され、また上部電極4は上方に延出した支持
部4aによって真空チャンバ1と導通した状態で装着さ
れている。上部電極4の下面には、プラズマ発生用ガス
を吹き出すガス吹出部(図示省略)が形成されており、
ガス吹き出し部はフッ素系ガスまたはフッ素系ガスを主
体とするプラズマ発生用ガスを供給するプラズマ発生用
ガス供給部(図示省略)に接続されている。
First, the plasma processing apparatus will be described with reference to FIGS. In FIG. 1, the inside of a vacuum chamber 1 is a processing chamber 2 for performing plasma processing, and inside the processing chamber 2, a lower electrode 3 and an upper electrode 4 are vertically opposed to each other. The lower electrode 3 is attached to the vacuum chamber 1 in an electrically insulated state by a support portion 3a extending downward, and the upper electrode 4 is electrically connected to the vacuum chamber 1 by a support portion 4a extending upward. It is installed. On the lower surface of the upper electrode 4, a gas blowout portion (not shown) that blows out a gas for plasma generation is formed.
The gas blowing part is connected to a plasma generating gas supply part (not shown) for supplying a fluorine generating gas or a plasma generating gas mainly containing a fluorine containing gas.

【0012】下部電極3は導電金属によって製作されて
おり、下部電極3の上面は処理対象物の半導体基板であ
るシリコンウェハ6(図2)の平面形状と略同一形状で
あり、半導体基板を載置する載置面3dとなっている。
したがって下部電極3は、導電体が露呈した載置面が設
けられ半導体基板が載置される基板載置部となってい
る。ここでシリコンウェハ6は、回路形成面の裏側を機
械研磨によって研磨された直後の状態であり、図2に示
すようにシリコンウェハ6の回路形成面に貼着された保
護テープ6aを下部電極3の載置面3dに向け、機械研
磨面を上向きにした状態で載置される。そして機械研磨
面をプラズマ処理することにより、研磨加工によって生
成したダメージ層が除去される。
The lower electrode 3 is made of a conductive metal, and the upper surface of the lower electrode 3 is substantially the same as the planar shape of the silicon wafer 6 (FIG. 2), which is the semiconductor substrate of the object to be processed, and the semiconductor substrate is mounted thereon. It is a mounting surface 3d on which to place.
Therefore, the lower electrode 3 is a substrate mounting portion on which a mounting surface on which the conductor is exposed is provided and on which the semiconductor substrate is mounted. Here, the silicon wafer 6 is in a state immediately after the back side of the circuit forming surface is polished by mechanical polishing. As shown in FIG. 2, the protective tape 6a attached to the circuit forming surface of the silicon wafer 6 is attached to the lower electrode 3. It is placed with the mechanical polishing surface facing upwards toward the placement surface 3d. Then, the mechanically polished surface is plasma-treated to remove the damaged layer generated by the polishing process.

【0013】保護テープ6aは、ポリオレフィン、ポリ
イミド、ポリエチレンテレフタレートなどの絶縁体の樹
脂を100μm程度の厚みの膜に形成した樹脂テープで
あり、粘着材によりシリコンウェハ6の回路形成面に貼
着される。シリコンウェハ6に貼着された保護テープ6
aは、回路形成面(表面)に形成された絶縁層となって
おり、後述するようにこの絶縁層はシリコンウェハ6を
静電吸着する際の誘電体として機能する。
The protective tape 6a is a resin tape in which an insulating resin such as polyolefin, polyimide or polyethylene terephthalate is formed into a film having a thickness of about 100 μm, and is adhered to the circuit forming surface of the silicon wafer 6 with an adhesive material. . Protective tape 6 attached to silicon wafer 6
Reference numeral a denotes an insulating layer formed on the circuit forming surface (front surface), and this insulating layer functions as a dielectric when the silicon wafer 6 is electrostatically adsorbed, as described later.

【0014】真空チャンバ1の側面には基板搬出入用の
ゲートバルブ1aが設けられておりゲートバルブ1aは
ゲート開閉機構(図示省略)によって開閉する。真空チ
ャンバ1にはバルブ開放機構7を介して排気用ポンプ8
が接続されており、バルブ開放機構7を開放状態にして
排気用ポンプ8を駆動することにより、真空チャンバ1
の処理室2内部が真空排気される。そして大気開放機構
9を開状態にすることにより、処理室2内に大気が導入
されて真空が破壊される。
A gate valve 1a for loading and unloading the substrate is provided on the side surface of the vacuum chamber 1, and the gate valve 1a is opened and closed by a gate opening / closing mechanism (not shown). An exhaust pump 8 is provided in the vacuum chamber 1 via a valve opening mechanism 7.
Are connected to the vacuum chamber 1 by opening the valve opening mechanism 7 and driving the exhaust pump 8.
The inside of the processing chamber 2 is evacuated. Then, by opening the atmosphere opening mechanism 9, the atmosphere is introduced into the processing chamber 2 and the vacuum is broken.

【0015】大気開放機構9は、外気をそのまま真空チ
ャンバ1内に導入するものでもよいが、湿気を多く含ん
だ気体を使用すると湿気が真空チャンバ1の内壁に付着
し、次回の真空排気に長時間を要してしまうおそれがあ
る。従って、好ましくは除湿処理が行われた乾燥空気
や、チッソガス等の湿気が少ない気体を導入するものが
よい。
The atmosphere opening mechanism 9 may be one that introduces the outside air into the vacuum chamber 1 as it is, but when a gas containing a large amount of moisture is used, the moisture adheres to the inner wall of the vacuum chamber 1 and is prone to the next evacuation. It may take time. Therefore, it is preferable to introduce dry air that has been subjected to dehumidification treatment or a gas with a low humidity such as nitrogen gas.

【0016】図2に示すように、下部電極3には上面に
開口する吸着孔3eが多数設けられており、吸着孔3e
は下部電極3の内部に設けられた吸引孔3bに連通して
いる。吸引孔3bはガスライン切り換え開閉機構11を
介して真空吸着ポンプ12に接続されており、ガスライ
ン切り換え開閉機構11は、図1に示すようにNガス
供給部13及びHeガス供給部14に接続されている。
ガスライン切り換え開閉機構11を切り換えることによ
り、吸引孔3bを真空吸着ポンプ12,Nガス供給部
13及びHeガス供給部14に選択的に接続させること
ができる。
As shown in FIG. 2, the lower electrode 3 is provided with a large number of adsorption holes 3e opening on the upper surface thereof.
Communicates with a suction hole 3b provided inside the lower electrode 3. The suction hole 3b is connected to the vacuum adsorption pump 12 via the gas line switching opening / closing mechanism 11, and the gas line switching opening / closing mechanism 11 is connected to the N 2 gas supply unit 13 and the He gas supply unit 14 as shown in FIG. It is connected.
By switching the gas line switching opening / closing mechanism 11, the suction hole 3b can be selectively connected to the vacuum adsorption pump 12, the N 2 gas supply unit 13, and the He gas supply unit 14.

【0017】吸引孔3bが真空吸着ポンプ12と連通し
た状態で真空吸着ポンプ12を駆動することにより、吸
着孔3eから真空吸引し載置面3dに載置されたシリコ
ンウェハ6を真空吸着して保持する。したがって吸着孔
3e、吸引孔3b、真空吸着ポンプ12は載置面3dに
開口した吸着孔3eから真空吸引することにより板状基
板を真空吸着して載置面3dに保持する真空保持手段と
なっている。
By driving the vacuum suction pump 12 with the suction hole 3b communicating with the vacuum suction pump 12, the silicon wafer 6 mounted on the mounting surface 3d is vacuum-sucked by vacuum suction from the suction hole 3e. Hold. Therefore, the suction holes 3e, the suction holes 3b, and the vacuum suction pump 12 serve as a vacuum holding unit that vacuum-sucks the plate-shaped substrate and holds it on the mounting surface 3d by vacuum suction from the suction holes 3e opened on the mounting surface 3d. ing.

【0018】また、吸引孔3bをNガス供給部13ま
たはHeガス供給部14に接続させることにより、吸着
孔3eからシリコンウェハ6の下面に対してチッソガス
またはヘリウムガスを噴出させることができるようにな
っている。後述するように、チッソガスはシリコンウェ
ハ6を載置面3dから強制的に離脱させる目的のブロー
用ガスであり、ヘリウムガスはプラズマ処理時にシリコ
ンウェハの冷却を促進する目的で用いられる熱伝達用の
ガスである。
Further, by connecting the suction hole 3b to the N 2 gas supply unit 13 or the He gas supply unit 14, it is possible to eject nitrogen gas or helium gas from the adsorption hole 3e to the lower surface of the silicon wafer 6. It has become. As will be described later, the nitrogen gas is a blowing gas for the purpose of forcibly separating the silicon wafer 6 from the mounting surface 3d, and the helium gas is a heat transfer gas used for promoting the cooling of the silicon wafer during plasma processing. It is gas.

【0019】また下部電極3には冷却用の冷媒流路3c
が設けられており、冷媒流路3cは冷却機構10と接続
されている。冷却機構10を駆動することにより、冷媒
流路3c内を冷却水などの冷媒が循環し、これによりプ
ラズマ処理時に発生した熱によって昇温した下部電極3
や下部電極3上の保護テープ6aが冷却される。冷媒流
路3cおよび冷却機構10は、基板載置部である下部電
極3を冷却する冷却手段となっている。
The lower electrode 3 has a coolant flow path 3c for cooling.
Is provided, and the coolant channel 3c is connected to the cooling mechanism 10. By driving the cooling mechanism 10, a coolant such as cooling water circulates in the coolant channel 3c, and thereby the lower electrode 3 is heated by the heat generated during plasma processing.
The protective tape 6a on the lower electrode 3 is cooled. The coolant channel 3c and the cooling mechanism 10 serve as a cooling unit that cools the lower electrode 3 that is the substrate mounting portion.

【0020】下部電極3は、マッチング回路16を介し
て高周波電源部17に電気的に接続されている。高周波
電源部17を駆動することにより、接地部19に接地さ
れた真空チャンバ1と導通した上部電極4と下部電極3
の間には高周波電圧が印加され、これにより処理室2内
部でプラズマ放電が発生する。マッチング回路16は、
処理室2内でプラズマを発生させるプラズマ放電回路と
高周波電源部17のインピーダンスを整合させる。下部
電極3,上部電極4および高周波電源部17は、載置面
に載置されたシリコンウェハ6をプラズマ処理するため
のプラズマを発生するプラズマ発生手段となっている。
The lower electrode 3 is electrically connected to a high frequency power source section 17 via a matching circuit 16. By driving the high frequency power supply unit 17, the upper electrode 4 and the lower electrode 3 which are electrically connected to the vacuum chamber 1 grounded to the grounding unit 19 are connected.
A high-frequency voltage is applied during this period, which causes plasma discharge in the processing chamber 2. The matching circuit 16 is
The impedance of the plasma discharge circuit for generating plasma in the processing chamber 2 and the impedance of the high frequency power supply unit 17 are matched. The lower electrode 3, the upper electrode 4, and the high-frequency power supply unit 17 are plasma generating means for generating plasma for plasma-processing the silicon wafer 6 mounted on the mounting surface.

【0021】なお、ここではプラズマ発生手段として、
対向した平行平板電極(下部電極3および上部電極4)
間に高周波電圧を印加する方式例を示しているが、これ
以外の方式、例えば処理室2の上部にプラズマ発生装置
を設け、ダウンフロー方式で処理室2内にプラズマを送
り込むような方式でもよい。
Here, as the plasma generating means,
Opposed parallel plate electrodes (lower electrode 3 and upper electrode 4)
Although an example of a method of applying a high-frequency voltage is shown in between, a method other than this, for example, a method of providing a plasma generator in the upper part of the processing chamber 2 and sending plasma into the processing chamber 2 by a downflow method may be used. .

【0022】また下部電極3には、RFフィルタ15を
介して静電吸着用DC電源部18が接続されている。静
電吸着用DC電源部18を駆動することにより、図3
(a)に示すように下部電極3の表面には、負電荷が蓄
積される。そしてこの状態で図3(b)に示すように高
周波電源部17を駆動して処理室2内にプラズマを発生
させることにより(図中付点部20参照)、載置面3d
に載置されたシリコンウェハ6と接地部19とを接続す
る直流印加回路21が処理室2内のプラズマを介して形
成され、これにより、下部電極3,RFフィルタ15,
静電吸着用DC電源部18,接地部19,プラズマ、シ
リコンウェハ6を順次結ぶ閉じた回路が形成され、シリ
コンウェハ6には正電荷が蓄積される。
A DC power supply 18 for electrostatic attraction is connected to the lower electrode 3 via an RF filter 15. By driving the DC power supply unit 18 for electrostatic attraction, as shown in FIG.
As shown in (a), negative charges are accumulated on the surface of the lower electrode 3. Then, in this state, as shown in FIG. 3B, the high-frequency power supply 17 is driven to generate plasma in the processing chamber 2 (see the dotted portion 20 in the drawing), so that the mounting surface 3d
A direct current application circuit 21 that connects the silicon wafer 6 placed on the substrate to the grounding portion 19 is formed via the plasma in the processing chamber 2, whereby the lower electrode 3, the RF filter 15,
A closed circuit that sequentially connects the electrostatic attraction DC power supply unit 18, the ground unit 19, the plasma, and the silicon wafer 6 is formed, and positive charges are accumulated in the silicon wafer 6.

【0023】そして下部電極3に蓄積された負電荷とシ
リコンウェハ6に蓄積された正電荷との間にはクーロン
力が作用し、このクーロン力によってシリコンウェハ6
は誘電体としての保護テープ6aを介して下部電極3に
保持される。このとき、RFフィルタ15は、高周波電
源部17の高周波電圧が静電吸着用DC電源部18に直
接印加されることを防止する。下部電極3,静電吸着用
DC電源部18は、板状基板であるシリコンウェハ6を
載置面3dに静電吸着によって保持する静電吸着手段と
なっている。なお、静電吸着用DC電源部18の極性は
正負逆でもよい。
A Coulomb force acts between the negative charges accumulated in the lower electrode 3 and the positive charges accumulated in the silicon wafer 6, and the Coulomb force causes the silicon wafer 6
Are held by the lower electrode 3 via a protective tape 6a as a dielectric. At this time, the RF filter 15 prevents the high frequency voltage of the high frequency power supply unit 17 from being directly applied to the electrostatic attraction DC power supply unit 18. The lower electrode 3 and the DC power source 18 for electrostatic attraction serve as electrostatic attraction means for holding the silicon wafer 6, which is a plate-shaped substrate, on the mounting surface 3d by electrostatic attraction. The polarity of the electrostatic attraction DC power supply unit 18 may be reversed.

【0024】ここで図4を参照して、静電吸着力につい
て説明する。クーロン力による吸着力Fは、F=1/2
ε(V/d)2 によって与えられる。ここで、εは誘
電体の誘電率、Vは印加される直流電圧、dは誘電体の
厚みである。図4は、樹脂で製作された保護テープ6a
をシリコンウェハ6に貼着し、この保護テープ6aを静
電吸着における誘電体として用いた場合の静電吸着力
を、印加するDC電圧との関係で示している。
Here, the electrostatic attraction force will be described with reference to FIG. Adsorption force F due to Coulomb force is F = 1/2
given by ε (V / d) 2. Here, ε is the dielectric constant of the dielectric, V is the applied DC voltage, and d is the thickness of the dielectric. FIG. 4 shows a protective tape 6a made of resin.
Is attached to a silicon wafer 6, and the electrostatic attraction force when this protective tape 6a is used as a dielectric in electrostatic attraction is shown in relation to the applied DC voltage.

【0025】ここでは、保護テープ6aの樹脂材質とし
てポリオレフィン、ポリイミド、ポリエチレンテレフタ
レートの3種類を用い、それぞれ100μmの厚み寸法
で製作した場合の計算例を曲線a,b,cでそれぞれ示
している。曲線dは、基板載置面にアルミナの絶縁層を
200μmの厚み寸法で形成し、静電吸着の誘電体とし
て用いて保護テープのないシリコンウェハを静電吸着し
た場合の静電吸着力を比較のために示したものである。
In this case, curves a, b and c are shown by curves a, b and c, respectively, when three kinds of resin materials of the protective tape 6a, that is, polyolefin, polyimide and polyethylene terephthalate are used and each is manufactured with a thickness of 100 μm. The curve d is a comparison of the electrostatic attraction force when an alumina insulating layer is formed with a thickness of 200 μm on the substrate mounting surface and is used as a dielectric for electrostatic attraction to electrostatically attract a silicon wafer without a protective tape. Is shown for.

【0026】図4に示すように、ポリオレフィンの例で
は従来のアルミナ絶縁層の場合とほぼ同等の吸着力とな
っており、ポリイミド、ポリエチレンテレフタレートの
2種類の材質を用いた場合には、アルミナ絶縁層を用い
た場合に得られる吸着力よりも大きな吸着力が得られる
ことを示している。
As shown in FIG. 4, the example of polyolefin has almost the same adsorptive force as that of the conventional alumina insulating layer. When two kinds of materials, polyimide and polyethylene terephthalate, are used, the alumina insulating layer is used. It is shown that a larger adsorption force than that obtained when using the layer is obtained.

【0027】すなわち、従来のプラズマ処理装置におい
て静電吸着を行う場合に必要とされた下部電極上に絶縁
層の形成を行うことなく、しかも良好な吸着力を実現す
ることが可能となっている。さらに、熱伝導率のよくな
いアルミナなどの絶縁層を介さずに保護テープを直接下
部電極3の表面に接触させることから、良好な冷却効果
が得られ、保護テープ6aやシリコンウェハ6への熱ダ
メージを軽減できる。
That is, it is possible to realize a good adsorption force without forming an insulating layer on the lower electrode, which is required when performing electrostatic adsorption in the conventional plasma processing apparatus. . Further, since the protective tape is brought into direct contact with the surface of the lower electrode 3 without interposing an insulating layer such as alumina having a poor thermal conductivity, a good cooling effect can be obtained, and the heat applied to the protective tape 6a and the silicon wafer 6 can be prevented. You can reduce the damage.

【0028】このプラズマ処理装置は上記のように構成
されており、以下プラズマ処理方法について図5のフロ
ーに沿って図6,図7を参照しながら説明する。図5に
おいて、先ず処理対象物であるシリコンウェハ6が処理
室2内に搬送され(ST1)、下部電極3の載置面3d
上に載置される(載置工程)。このときシリコンウェハ
6は薄くて撓みやすいことから、図6(a)に示すよう
に反りを生じて載置面3dとの間に隙間を生じた状態で
載置される場合がある。この後ゲートバルブ1aが閉じ
られ(ST2)、真空吸着ポンプ12を駆動することに
より、図6(b)に示すように、吸着孔3e、吸引孔3
bを介して真空吸引し、シリコンウェハ6の真空吸着状
態がONとなる(ST3)。これにより、図6(c)に
示すようにシリコンウェハ6は載置面3dに密着した状
態で真空吸着により保持される(保持工程)。
This plasma processing apparatus is configured as described above, and the plasma processing method will be described below with reference to FIGS. 6 and 7 along the flow of FIG. In FIG. 5, first, the silicon wafer 6, which is the object to be processed, is transferred into the processing chamber 2 (ST1), and the placement surface 3d of the lower electrode 3 is placed.
It is placed on (placement step). At this time, since the silicon wafer 6 is thin and easily bent, there is a case where the silicon wafer 6 is mounted in a state where it is warped to form a gap with the mounting surface 3d as shown in FIG. 6 (a). After that, the gate valve 1a is closed (ST2), and the vacuum suction pump 12 is driven to move the suction holes 3e and the suction holes 3 as shown in FIG. 6 (b).
Vacuum suction is performed via b, and the vacuum suction state of the silicon wafer 6 is turned on (ST3). As a result, as shown in FIG. 6C, the silicon wafer 6 is held by vacuum suction while being in close contact with the mounting surface 3d (holding step).

【0029】次いで排気用ポンプ8を駆動して処理室2
内を真空排気するとともにプラズマ発生用ガスを上部電
極4のガス吹出部より供給する(ST4)。この後静電
吸着用DC電源部18を駆動して、DC電圧の印加をO
Nし(ST5)、高周波電源部17を駆動してプラズマ
放電を開始する(ST6)。これにより、図7(a)に
示すように下部電極3上のシリコンウェハ6と上部電極
4の下面の間の空間にはプラズマが発生し、シリコンウ
ェハ6を対象としたプラズマ処理が行われる(プラズマ
処理工程)。このプラズマ処理においては、下部電極3
とシリコンウェハ6との間には静電吸着力が発生し(図
3(b)参照)、シリコンウェハ6は下部電極3に静電
吸着力により保持される。
Then, the exhaust pump 8 is driven to drive the processing chamber 2
The inside is evacuated and the plasma generating gas is supplied from the gas outlet of the upper electrode 4 (ST4). Thereafter, the DC power source 18 for electrostatic attraction is driven to turn off the application of the DC voltage.
Then, the high frequency power supply unit 17 is driven to start plasma discharge (ST6). As a result, plasma is generated in the space between the silicon wafer 6 on the lower electrode 3 and the lower surface of the upper electrode 4 as shown in FIG. 7A, and plasma processing is performed on the silicon wafer 6 ( Plasma treatment step). In this plasma treatment, the lower electrode 3
An electrostatic attraction force is generated between the silicon wafer 6 and the silicon wafer 6 (see FIG. 3B), and the silicon wafer 6 is held by the lower electrode 3 by the electrostatic attraction force.

【0030】この後、ガスライン切り替え開閉機構11
を駆動して真空吸着をOFFし(ST7)、バックHe
導入が行われる(ST8)。すなわち、真空吸引による
シリコンウェハ6の下部電極3への保持を解除した後
に、Heガス供給部14から伝熱用のヘリウムガスを吸
引孔3bを介して供給し、図7(a)に示すように吸着
孔3eからシリコンウェハ6の下面に対して噴出させ
る。このプラズマ処理においては、下部電極3は冷却機
構10によって冷却されており、プラズマ処理によって
昇温したシリコンウェハ6の熱を伝熱性に富む気体であ
るヘリウムガスを介して下部電極3に伝達することによ
り、シリコンウェハ6の冷却が効率よく行われる。
After this, the gas line switching opening / closing mechanism 11
To turn off the vacuum suction (ST7), and back He
Introduction is performed (ST8). That is, after the holding of the silicon wafer 6 to the lower electrode 3 by vacuum suction is released, helium gas for heat transfer is supplied from the He gas supply unit 14 through the suction holes 3b, and as shown in FIG. Then, it is ejected from the suction holes 3e to the lower surface of the silicon wafer 6. In this plasma treatment, the lower electrode 3 is cooled by the cooling mechanism 10, and the heat of the silicon wafer 6 which has been heated by the plasma treatment is transferred to the lower electrode 3 via the helium gas which is a gas having a high heat conductivity. As a result, the silicon wafer 6 is efficiently cooled.

【0031】そして所定のプラズマ処理時間が経過して
放電を終了したならば(ST9)、バックHeを停止し
(ST1O)、図7(b)に示すように真空吸着を再び
ONする(ST11)。これにより、プラズマ放電が終
了することにより消失した静電吸着力に替えて、真空吸
着力によってシリコンウェハ6が載置面3dに保持され
る。
When the discharge is completed after the lapse of a predetermined plasma processing time (ST9), the back He is stopped (ST10), and the vacuum adsorption is turned on again as shown in FIG. 7B (ST11). . As a result, the silicon wafer 6 is held on the mounting surface 3d by the vacuum attraction force instead of the electrostatic attraction force that disappears when the plasma discharge is completed.

【0032】この後、静電吸着用DC電源部18を停止
してDC電圧をOFFにし(ST12)、大気開放機構
9を駆動して処理室2内の大気開放を行う(ST1
3)。
Thereafter, the electrostatic attraction DC power supply unit 18 is stopped to turn off the DC voltage (ST12), and the atmosphere opening mechanism 9 is driven to open the atmosphere in the processing chamber 2 (ST1).
3).

【0033】この後、再びガスライン切り替え開閉機構
11を駆動して真空吸着をOFFし(ST14)、次い
でウェハブローを行う(ST15)。すなわち図7
(c)に示すようにチッソガスを吸引孔3bを介して供
給して吸着孔3eから噴出させる。これにより、シリコ
ンウェハ6を下部電極3の載置面3dから離脱させる。
そしてゲートバルブ1aを開状態にし(ST16)、シ
リコンウェハ6を処理室2の外部に搬送したならば(S
T17)、ウェハブローをOFFし(ST18)、プラ
ズマ処理の1サイクルを終了する。
After that, the gas line switching opening / closing mechanism 11 is driven again to turn off the vacuum suction (ST14), and then the wafer is blown (ST15). That is, FIG.
As shown in (c), nitrogen gas is supplied through the suction holes 3b and ejected from the adsorption holes 3e. As a result, the silicon wafer 6 is separated from the mounting surface 3d of the lower electrode 3.
If the gate valve 1a is opened (ST16) and the silicon wafer 6 is transferred to the outside of the processing chamber 2 (S16).
T17), the wafer blow is turned off (ST18), and one cycle of plasma processing is completed.

【0034】上記説明したように、本実施の形態に示す
プラズマ処理においては、処理室2内でプラズマが発生
し、静電吸着力が生じるまでの間のシリコンウェハ6の
下部電極3へ保持を真空吸着によって行うようにしたも
のである。これにより、シリコンウェハ6のような薄く
て撓みやすい板状基板を対象とする場合においても、常
にシリコンウェハ6を下部電極3の載置面3dに密着さ
せて適切に保持することができる。したがって、密着性
不良の場合に下部電極3の上面とシリコンウェハ6の下
面の隙間に生じる異常放電や、冷却不良によるシリコン
ウェハ6の過熱を防止することができる。
As described above, in the plasma processing shown in this embodiment, the plasma is generated in the processing chamber 2 and the lower electrode 3 of the silicon wafer 6 is held until the electrostatic attraction force is generated. This is done by vacuum adsorption. As a result, even when a thin and flexible plate-like substrate such as the silicon wafer 6 is targeted, the silicon wafer 6 can be always brought into close contact with the mounting surface 3d of the lower electrode 3 and appropriately held. Therefore, in the case of poor adhesion, it is possible to prevent abnormal discharge that occurs in the gap between the upper surface of the lower electrode 3 and the lower surface of the silicon wafer 6 and overheating of the silicon wafer 6 due to poor cooling.

【0035】なお下部電極として、載置面3dの全範囲
が導電体で形成された下部電極3の代わりに、図8に示
すような下部電極3’を用いてもよい。この例では、図
8(a)に示すように載置面3’dが半導体基板である
シリコンウェハ6よりも大きくシリコンウェハ6のサイ
ズからはみ出す外縁部に所定幅の絶縁部3’fが形成さ
れている。絶縁部3’fは、アルミナなどのセラミック
で形成され、載置面3’dに載置されるシリコンウェハ
の形状に応じて平面形状が決定される。図8(b)、
(c)は、シリコンウェハの方向を示すオリエンタルフ
ラットがない場合、オリエンタルフラットがある場合の
それぞれの場合の絶縁部3’fの形状例を示している。
As the lower electrode, a lower electrode 3'as shown in FIG. 8 may be used instead of the lower electrode 3 whose entire mounting surface 3d is made of a conductor. In this example, as shown in FIG. 8A, the mounting surface 3′d is larger than the silicon wafer 6 which is a semiconductor substrate, and an insulating portion 3′f having a predetermined width is formed at the outer edge portion protruding from the size of the silicon wafer 6. Has been done. The insulating portion 3'f is made of ceramic such as alumina, and its planar shape is determined according to the shape of the silicon wafer mounted on the mounting surface 3'd. FIG. 8 (b),
(C) shows an example of the shape of the insulating portion 3'f in each of the case where there is no oriental flat indicating the direction of the silicon wafer and the case where there is oriental flat.

【0036】このような下部電極3’を用いることによ
り、シリコンウェハを載置した状態で、下部電極3’上
面の導電体が直接プラズマに対して露呈されることがな
く、下部電極3’の載置面上でのプラズマ放電をより均
一に発生させることができるという利点がある。
By using such a lower electrode 3 ', the conductor on the upper surface of the lower electrode 3'is not directly exposed to the plasma while the silicon wafer is placed, and the lower electrode 3' There is an advantage that plasma discharge can be generated more uniformly on the mounting surface.

【0037】なお、上記実施の形態では、シリコンウェ
ハ6に貼着される樹脂の保護テープ6aを絶縁層として
静電吸着の誘電体とする例を示したが、この他にも、シ
リコンウェハの表面に封止用や配線用等の目的で形成さ
れる絶縁樹脂層を静電吸着面に密着させて静電吸着する
ような場合においても、本発明を適用することができ
る。
In the above embodiment, an example in which the resin protective tape 6a adhered to the silicon wafer 6 is used as the insulating layer to serve as an electrostatically attracting dielectric is shown. The present invention can also be applied to a case where an insulating resin layer formed on the surface for the purpose of sealing, wiring, or the like is brought into close contact with the electrostatic attraction surface for electrostatic attraction.

【0038】[0038]

【発明の効果】本発明によれば、基板載置部の載置面を
導電体とし、半導体基板の絶縁層側をこの載置面に向け
て載置して半導体基板の絶縁層を静電吸着手段の誘電体
として利用して半導体基板を載置面に静電吸着すること
により、半導体基板を十分な静電保持力で保持すること
ができる。
According to the present invention, the mounting surface of the substrate mounting portion is made to be a conductor, and the insulating layer side of the semiconductor substrate is mounted with the mounting surface facing toward the mounting surface so that the insulating layer of the semiconductor substrate is electrostatically charged. The semiconductor substrate can be held with a sufficient electrostatic holding force by electrostatically attracting the semiconductor substrate to the mounting surface by using it as a dielectric of the attraction means.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施の形態のプラズマ処理装置の断
面図
FIG. 1 is a sectional view of a plasma processing apparatus according to an embodiment of the present invention.

【図2】本発明の一実施の形態のプラズマ処理装置の基
板載置部の断面図
FIG. 2 is a sectional view of a substrate mounting portion of the plasma processing apparatus according to the embodiment of the present invention.

【図3】本発明の一実施の形態のプラズマ処理装置の断
面図
FIG. 3 is a sectional view of a plasma processing apparatus according to an embodiment of the present invention.

【図4】本発明の一実施の形態のプラズマ処理装置にお
ける静電吸着力を示すグラフ
FIG. 4 is a graph showing electrostatic attraction force in the plasma processing apparatus according to the embodiment of the present invention.

【図5】本発明の一実施の形態のプラズマ処理方法のフ
ロー図
FIG. 5 is a flowchart of a plasma processing method according to an embodiment of the present invention.

【図6】本発明の一実施の形態のプラズマ処理方法の工
程説明図
FIG. 6 is a process explanatory diagram of a plasma processing method according to an embodiment of the present invention.

【図7】本発明の一実施の形態のプラズマ処理方法の工
程説明図
FIG. 7 is a process explanatory diagram of the plasma processing method according to the embodiment of the present invention.

【図8】本発明の一実施の形態のプラズマ処理装置の基
板載置部を示す図
FIG. 8 is a diagram showing a substrate mounting portion of the plasma processing apparatus according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 真空チャンバ 2 処理室 3 下部電極 4 上部電極 6 シリコンウェハ 8 排気用ポンプ 12 真空吸着ポンプ 13 Nガス供給部 14 Heガス供給部 17 高周波電源部 18 静電吸着用DC電源部1 Vacuum Chamber 2 Processing Chamber 3 Lower Electrode 4 Upper Electrode 6 Silicon Wafer 8 Exhaust Pump 12 Vacuum Adsorption Pump 13 N 2 Gas Supply Unit 14 He Gas Supply Unit 17 High Frequency Power Supply Unit 18 Electrostatic Adsorption DC Power Supply Unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 寺山 純一 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5F004 AA16 BA04 BB18 BB22 BB25 DB01 EB08    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Junichi Terayama             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. F-term (reference) 5F004 AA16 BA04 BB18 BB22 BB25                       DB01 EB08

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】表面に貼り付けられた樹脂テープにより形
成された絶縁層を有する半導体基板のプラズマ処理を行
うプラズマ処理装置であって、少なくとも一部に導電体
が露呈した載置面が設けられ前記半導体基板が絶縁層側
をこの載置面に向けて載置される基板載置部と、前記半
導体基板を前記載置面に静電吸着によって保持する静電
吸着手段と、前記載置面に載置された半導体基板を処理
するためにプラズマを発生するプラズマ発生手段とを備
え、前記半導体基板の絶縁層を静電吸着手段の誘電体と
して利用することを特徴とするプラズマ処理装置。
1. A plasma processing apparatus for performing plasma processing on a semiconductor substrate having an insulating layer formed of a resin tape attached to the surface thereof, wherein a mounting surface on which a conductor is exposed is provided at least in part. A substrate mounting portion on which the semiconductor substrate is mounted with the insulating layer side facing this mounting surface, electrostatic attraction means for holding the semiconductor substrate on the mounting surface by electrostatic attraction, and the mounting surface. And a plasma generating means for generating plasma to process the semiconductor substrate placed on the semiconductor substrate, wherein the insulating layer of the semiconductor substrate is used as a dielectric of the electrostatic attraction means.
【請求項2】表面に貼り付けられた樹脂テープにより形
成された絶縁層を有する半導体基板を基板載置部の載置
面に静電吸着によって保持した状態でプラズマ処理を行
うプラズマ処理方法であって、前記載置面の少なくとも
一部を導電体とし、前記半導体基板の絶縁層側を前記基
板載置部の載置面に向けて載置し前記絶縁層を静電吸着
手段の誘電体として利用することにより半導体基板を前
記載置面に静電吸着することを特徴とするプラズマ処理
方法。
2. A plasma processing method in which plasma processing is performed while a semiconductor substrate having an insulating layer formed of a resin tape attached to the surface thereof is held on a mounting surface of a substrate mounting portion by electrostatic attraction. At least a part of the mounting surface is a conductor, the insulating layer side of the semiconductor substrate is mounted toward the mounting surface of the substrate mounting portion, the insulating layer as a dielectric of the electrostatic adsorption means. A plasma processing method characterized in that a semiconductor substrate is electrostatically adsorbed on the mounting surface by utilizing the method.
JP2003157934A 2001-08-27 2003-06-03 Plasma processing apparatus and plasma processing method Expired - Lifetime JP3901128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003157934A JP3901128B2 (en) 2001-08-27 2003-06-03 Plasma processing apparatus and plasma processing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001255700 2001-08-27
JP2001-255700 2001-08-27
JP2003157934A JP3901128B2 (en) 2001-08-27 2003-06-03 Plasma processing apparatus and plasma processing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002198383A Division JP3776061B2 (en) 2001-08-27 2002-07-08 Plasma processing apparatus and plasma processing method

Publications (2)

Publication Number Publication Date
JP2003318161A true JP2003318161A (en) 2003-11-07
JP3901128B2 JP3901128B2 (en) 2007-04-04

Family

ID=29551638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003157934A Expired - Lifetime JP3901128B2 (en) 2001-08-27 2003-06-03 Plasma processing apparatus and plasma processing method

Country Status (1)

Country Link
JP (1) JP3901128B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015225890A (en) * 2014-05-26 2015-12-14 パナソニックIpマネジメント株式会社 Plasma processing apparatus and method
JP2016171291A (en) * 2015-03-16 2016-09-23 株式会社ディスコ Decompression processing apparatus
JP2016171292A (en) * 2015-03-16 2016-09-23 株式会社ディスコ Decompression processing apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015225890A (en) * 2014-05-26 2015-12-14 パナソニックIpマネジメント株式会社 Plasma processing apparatus and method
JP2016171291A (en) * 2015-03-16 2016-09-23 株式会社ディスコ Decompression processing apparatus
JP2016171292A (en) * 2015-03-16 2016-09-23 株式会社ディスコ Decompression processing apparatus

Also Published As

Publication number Publication date
JP3901128B2 (en) 2007-04-04

Similar Documents

Publication Publication Date Title
US20050279459A1 (en) Plasma treating apparatus and plasma treating method
US5539179A (en) Electrostatic chuck having a multilayer structure for attracting an object
JP4186536B2 (en) Plasma processing equipment
JP4013753B2 (en) Semiconductor wafer cutting method
WO2002007212A1 (en) Holding device for treated body
JP2004047511A (en) Method for releasing, method for processing, electrostatic attracting device, and treatment apparatus
JPH05347352A (en) Electrostatic chuck device and manufacture thereof
JPH06326180A (en) Releasing device for electrostatically attracted material
JP3191139B2 (en) Sample holding device
JPH06188305A (en) Apparatus and method for separation of body to be attracted as well as plasma processing apparatus
JP4322484B2 (en) Plasma processing method and plasma processing apparatus
JP3182615B2 (en) Plasma processing method and apparatus
JPH07335732A (en) Electrostatic chuck, plasma treatment equipment using electrostatic chuck and its manufacture
TWI276173B (en) Plasma processing device and plasma processing method
JP4245868B2 (en) Method for reusing substrate mounting member, substrate mounting member and substrate processing apparatus
JP3776061B2 (en) Plasma processing apparatus and plasma processing method
JP3901128B2 (en) Plasma processing apparatus and plasma processing method
JP2003068836A (en) Plasma processing unit and plasma processing method
JP4129152B2 (en) Substrate mounting member and substrate processing apparatus using the same
JP3315197B2 (en) Plasma processing method
JP4066887B2 (en) Plasma processing method
JPH11111830A (en) Electrostatic sucking device and method, and method and device for treatment apparatus using them
JP2002305234A (en) Etching method for rear side of silicon wafer and protecting tape for silicon wafer
JP2002367967A (en) Method and apparatus for treating plasma
JP3027781B2 (en) Plasma processing method

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061225

R151 Written notification of patent or utility model registration

Ref document number: 3901128

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

EXPY Cancellation because of completion of term