JP2003317720A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JP2003317720A
JP2003317720A JP2002126816A JP2002126816A JP2003317720A JP 2003317720 A JP2003317720 A JP 2003317720A JP 2002126816 A JP2002126816 A JP 2002126816A JP 2002126816 A JP2002126816 A JP 2002126816A JP 2003317720 A JP2003317720 A JP 2003317720A
Authority
JP
Japan
Prior art keywords
lithium
secondary battery
positive electrode
lithium secondary
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002126816A
Other languages
Japanese (ja)
Other versions
JP3649206B2 (en
Inventor
Yoshihiro Kashihara
良弘 樫原
Tatsuhiko Irie
達彦 入江
Toyoji Sugimoto
豊次 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002126816A priority Critical patent/JP3649206B2/en
Publication of JP2003317720A publication Critical patent/JP2003317720A/en
Application granted granted Critical
Publication of JP3649206B2 publication Critical patent/JP3649206B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium secondary battery using a positive electrode material synthesized by a lithium compound and Co<SB>3</SB>O<SB>4</SB>, wherein discharging rate characteristics are not impaired, gas production under a high temperature environment is suppressed, and no malfunction is caused in a current blocking mechanism. <P>SOLUTION: Co<SB>3</SB>O<SB>4</SB>whereof the half-value width of its 311 face in X-ray diffraction by CuKα rays is 0.366 deg. or less is used, and its particle size distribution is preferably in the range of D(30%)=2.5-6.0 μm, D(50%)=4.0-7.5 μm, and D(90%)=13.0-16.0 μm. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次電池
に関し、特に高温環境下での電流遮断機構の誤動作が無
く、放電レート特性に優れたリチウム二次電池に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery, and more particularly to a lithium secondary battery which is free from malfunction of a current interruption mechanism in a high temperature environment and has excellent discharge rate characteristics.

【0002】[0002]

【従来の技術】近年、高容量の非水電解液二次電池とし
て、リチウムを吸蔵放出するリチウムイオン電池が実用
化されている。正極活物質としては、リチウム含有複合
金属酸化物、負極活物質としては金属リチウム、リチウ
ム合金やカーボンファイバー、グラファイトなどの炭素
材料を用い、4V級の高電圧で高エネルギー密度を持つ
電池として実用化されている。この電池の主用途である
携帯機器の高機能化に伴い消費電力が増える傾向にあ
り、機器の小型化に伴い各構成要素が高密度で実装され
ているために電池は、60℃以上の高温環境下にさらさ
れることがある。
2. Description of the Related Art In recent years, lithium ion batteries which absorb and release lithium have been put to practical use as high capacity non-aqueous electrolyte secondary batteries. A lithium-containing composite metal oxide is used as the positive electrode active material, and metallic lithium, a carbon material such as lithium alloy, carbon fiber, or graphite is used as the negative electrode active material, and it is put into practical use as a battery having a high voltage of 4V class and a high energy density. Has been done. The power consumption tends to increase with the sophistication of mobile devices, which are the main applications of this battery, and the components are mounted in high density as the device becomes smaller. May be exposed to the environment.

【0003】高温環境下に長時間さらされると電池内部
では、正極活物質の結晶構造が不安定となり、酸素ガス
が発生して酸化雰囲気になるために非水電解液が分解し
てさらにガスが発生すると、本来過充電時に作動すべき
電流遮断機構が誤作動に至る場合がある。
When exposed to a high temperature environment for a long time, the crystal structure of the positive electrode active material becomes unstable inside the battery, and oxygen gas is generated to form an oxidizing atmosphere, so that the non-aqueous electrolyte is decomposed and further gas is generated. If it occurs, the current cutoff mechanism, which should normally operate during overcharge, may malfunction.

【0004】そこで、特開平7−134985号公報に
は、正極活物質に対して所定量のニッケル酸化物および
/またはコバルト酸化物を添加することにより、特開2
000−200605号公報には、正極活物質のコバル
ト酸リチウム粒子の表面にチタン粒子および/またはチ
タン化合物を付着させることにより、長期保存や高温保
存でのガス発生を抑えることができると開示されてい
る。
Therefore, Japanese Patent Laid-Open No. 7-134985 discloses a method in which a predetermined amount of nickel oxide and / or cobalt oxide is added to the positive electrode active material.
000-200605 discloses that by adhering titanium particles and / or titanium compounds to the surface of lithium cobalt oxide particles of a positive electrode active material, it is possible to suppress gas generation during long-term storage or high-temperature storage. There is.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、これら
の方法では正極活物質の反応性を低下させる方法を採用
している為に、高温環境下でのガス発生抑制効果はある
が、放電レート特性の低下を招いていた。
However, since these methods employ the method of lowering the reactivity of the positive electrode active material, they have the effect of suppressing gas generation in a high temperature environment, but the discharge rate characteristics It was causing a decline.

【0006】ところで、特開平11−49519号公報
には、CuKα線によるX線回折でCo34の311面
に相当する回折ピークの半値幅が0.31度より大き
く、結晶性の悪いコバルト化合物を用いると固相反応が
良好に進行し、リチウムコバルト複合酸化物を効率良く
製造する方法が開示されているが、高温環境下での安定
性については記載されていない。
By the way, in Japanese Unexamined Patent Publication (Kokai) No. 11-49519, the half-value width of the diffraction peak corresponding to the 311 plane of Co 3 O 4 is larger than 0.31 degree in X-ray diffraction using CuKα rays, and cobalt having poor crystallinity is disclosed. A solid-phase reaction proceeds satisfactorily when a compound is used, and a method for efficiently producing a lithium-cobalt composite oxide is disclosed, but stability in a high temperature environment is not described.

【0007】本発明は、これらの課題に鑑みてなされた
もので、放電レート特性を損なうことなく、かつ高温環
境下でのガス発生を抑制し、電流遮断機構の誤動作のな
いリチウム二次電池を提供することを目的とする。
The present invention has been made in view of these problems, and provides a lithium secondary battery that does not impair discharge rate characteristics, suppresses gas generation in a high temperature environment, and has no malfunction of a current cutoff mechanism. The purpose is to provide.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に本発明は、リチウム化合物とCo34から合成される
正極活物質であって、前記Co34のCuKα線による
X線回折での311面の半値幅が0.366deg.以
下であることを特徴とする。
In order to solve the above-mentioned problems, the present invention provides a positive electrode active material synthesized from a lithium compound and Co 3 O 4 , which is an X-ray diffraction pattern of the above-mentioned Co 3 O 4 by CuKα ray. The full width at half maximum of the 311 surface at 0.366 deg. It is characterized by the following.

【0009】半値幅が0.366deg.以下のCo3
4とリチウム化合物から得られるリチウム含有コバル
ト酸化物は、結晶性の高い骨格を形成することができる
ので、高温環境下でもガス発生が抑制され、放電レート
特性に優れたリチウム二次電池を得ることができる。
The full width at half maximum is 0.366 deg. Co 3 below
Since the lithium-containing cobalt oxide obtained from O 4 and the lithium compound can form a skeleton with high crystallinity, gas generation is suppressed even in a high temperature environment, and a lithium secondary battery having excellent discharge rate characteristics is obtained. be able to.

【0010】そして、前記Co34の粒度分布がD(3
0%)=2.5μm〜6.0μm、D(50%)=4.
0μm〜7.5μm、D(90%)=13.0μm〜1
6.0μmの範囲であるものを用いることにより、高温
環境下でのガス発生抑制効果や放電レート特性がより向
上するので好適である。
The particle size distribution of Co 3 O 4 is D (3
0%) = 2.5 μm to 6.0 μm, D (50%) = 4.
0 μm to 7.5 μm, D (90%) = 13.0 μm to 1
It is preferable to use a material having a thickness in the range of 6.0 μm because the effect of suppressing gas generation in a high temperature environment and the discharge rate characteristic are further improved.

【0011】[0011]

【発明の実施の形態】以下、図面を参照して本発明の一
実施形態について説明し、本発明の理解に供する。尚、
以下に示す実施形態は本発明を具体化した一例であっ
て、本発明の技術的範囲を限定するものではない。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to the drawings to provide an understanding of the present invention. still,
The embodiments described below are examples embodying the present invention and do not limit the technical scope of the present invention.

【0012】図1に円筒形リチウム二次電池の縦断面図
を示す。電池ケース1には、正極板5と負極板6とがセ
パレータ7を介して渦巻状に巻回した極板群4と非水電
解液が収容されており、電池ケース1の底部と負極リ−
ド6aが絶縁板8を介して溶接されている。極板群4の
上部には絶縁板8が挿入され、正極リード5aと封口板
2が溶接されている。封口板2は、絶縁ガスケット3を
介して電池ケース1の上端部を内側に折り曲げてかしめ
ることで電池ケース1の内部が密封口される。
FIG. 1 shows a vertical sectional view of a cylindrical lithium secondary battery. The battery case 1 contains a positive electrode plate 5 and a negative electrode plate 6 which are spirally wound with a separator 7 in between, and a non-aqueous electrolyte solution.
The blade 6a is welded via the insulating plate 8. The insulating plate 8 is inserted in the upper part of the electrode plate group 4, and the positive electrode lead 5a and the sealing plate 2 are welded. The inside of the battery case 1 of the sealing plate 2 is sealed by bending the upper end of the battery case 1 inward through the insulating gasket 3 and caulking.

【0013】正極板5は、アルミニウム製の箔やラス加
工やエッチング処理された厚み10μm〜60μmの箔
からなる集電体の片側または両面に正極活物質と結着
剤、必要に応じて導電剤、増粘剤を溶剤に混練分散させ
たペーストを塗着、乾燥、圧延して活物質層を作製し、
この活物質層に無地部を設け、正極リード5aを溶接し
たものである。
The positive electrode plate 5 is made of an aluminum foil or a lathed or etched foil having a thickness of 10 μm to 60 μm, and a positive electrode active material, a binder and, if necessary, a conductive agent on one or both sides of the current collector. , A paste in which a thickener is kneaded and dispersed in a solvent is applied, dried and rolled to form an active material layer,
The active material layer is provided with a plain portion and the positive electrode lead 5a is welded.

【0014】正極活物質としては、CuKα線によるX
線回折での311面の半値幅が0.366deg.以下
のCo34とリチウム化合物とを混合し、焼成して得ら
れるリチウム含有コバルト酸化物を用いる。
As the positive electrode active material, X by CuKα ray is used.
The full width at half maximum of the 311 plane in the line diffraction is 0.366 deg. A lithium-containing cobalt oxide obtained by mixing the following Co 3 O 4 and a lithium compound and firing is used.

【0015】CuKα線によるX線回折での311面の
半値幅が0.366deg.以下のCo34は、Co
(OH)2を100℃〜120℃で2時間〜15時間予
熱を行なった後、1℃/min.〜4℃/min.の昇
温速度でCo(OH)2の脱水温度である150℃〜1
80℃に昇温させ、2時間〜24時間、好ましくは5時
間〜15時間空気雰囲気中で脱水することによって得る
ことができる。
The half-value width of the 311 plane in X-ray diffraction with CuKα rays is 0.366 deg. The following Co 3 O 4 is Co
(OH) 2 is preheated at 100 ° C. to 120 ° C. for 2 hours to 15 hours and then at 1 ° C./min. ~ 4 ° C / min. Which is the dehydration temperature of Co (OH) 2 at a temperature rising rate of 150 ° C. to 1
It can be obtained by heating to 80 ° C. and dehydrating in an air atmosphere for 2 hours to 24 hours, preferably 5 hours to 15 hours.

【0016】Co34とリチウム化合物のLiとCoの
原子比は、0.97:1〜1:1.05の範囲が、電池
特性の観点から好ましい。
The atomic ratio of Li 3 and Co 3 O 4 to the lithium compound is preferably 0.97: 1 to 1: 1.05 from the viewpoint of battery characteristics.

【0017】半値幅が0.366deg.以下のCo3
4とリチウム化合物から得られるリチウム含有コバル
ト酸化物は、結晶性の高い骨格を形成することができる
ので、高温環境下でもガス発生が抑制され、放電レート
特性に優れたリチウム二次電池を得ることができる。
The full width at half maximum is 0.366 deg. Co 3 below
Since the lithium-containing cobalt oxide obtained from O 4 and the lithium compound can form a skeleton with high crystallinity, gas generation is suppressed even in a high temperature environment, and a lithium secondary battery having excellent discharge rate characteristics is obtained. be able to.

【0018】半値幅が0.366deg.を越える場合
には、Co34の結晶性が低下しているので、得られる
リチウム含有コバルト酸化物の骨格をなす部分の結晶性
が低下するため、高温環境下において不安定になり、非
水電解液と反応してガス発生量が増加し、電流遮断機構
の誤作動を招くので、好ましくない。
The full width at half maximum is 0.366 deg. If it exceeds 1.0, since the crystallinity of Co 3 O 4 is lowered, the crystallinity of the portion forming the skeleton of the obtained lithium-containing cobalt oxide is lowered, so that it becomes unstable in a high temperature environment, and This is not preferable because it reacts with the water electrolyte to increase the amount of gas generated and causes the current cutoff mechanism to malfunction.

【0019】逆に、半値幅が0.350deg.未満に
なると、リチウム化合物との反応性が低下し、生産性が
低下するので好ましくない。
On the contrary, the full width at half maximum is 0.350 deg. If it is less than the above range, the reactivity with the lithium compound is lowered and the productivity is lowered, which is not preferable.

【0020】ところで、Co34の粒度分布がD(30
%)=2.5μm〜6.0μm、D(50%)=4.0
μm〜7.5μm、D(90%)=13.0μm〜1
6.0μmの範囲であるものを用いるのが好適である。
By the way, the particle size distribution of Co 3 O 4 is D (30
%) = 2.5 μm to 6.0 μm, D (50%) = 4.0
μm to 7.5 μm, D (90%) = 13.0 μm to 1
It is preferable to use one having a range of 6.0 μm.

【0021】粒度分布D(30%)が2.5μm未満の
場合、得られるリチウム含有コバルト酸化物の骨格が小
さく、比表面積が大きくなり、非水電解液との反応性が
高くなり、ガス発生の抑制効果が低下するので好ましく
ない。逆に、6.0μmを越える場合、反応性が低下す
るので放電レート特性が低下し好ましくない。
When the particle size distribution D (30%) is less than 2.5 μm, the lithium-containing cobalt oxide obtained has a small skeleton, a large specific surface area, high reactivity with a non-aqueous electrolyte, and gas generation. It is not preferable because the effect of suppressing is reduced. On the other hand, when it exceeds 6.0 μm, the reactivity is lowered and the discharge rate characteristic is lowered, which is not preferable.

【0022】粒度分布D(50%)が4.0μm未満の
場合、得られるリチウム含有コバルト酸化物の骨格が小
さく、比表面積が大きくなり、非水電解液との反応性が
高くなり、ガス発生の抑制効果が低下するので好ましく
ない。逆に、7.5μmを越える場合、反応性が低下す
るので放電レート特性が低下し好ましくない。
When the particle size distribution D (50%) is less than 4.0 μm, the skeleton of the lithium-containing cobalt oxide obtained is small, the specific surface area is large, the reactivity with the non-aqueous electrolyte is high, and gas is generated. It is not preferable because the effect of suppressing is reduced. On the other hand, when it exceeds 7.5 μm, the reactivity is lowered and the discharge rate characteristic is lowered, which is not preferable.

【0023】粒度分布D(90%)が13.0μ未満の
場合、得られるリチウム含有コバルト酸化物の骨格が小
さく、比表面積が大きくなり、非水電解液との反応性が
高くなり、ガス発生の抑制効果が低下するので好ましく
ない。逆に、16.0μmを越える場合、反応性が低下
するので放電レート特性が低下し好ましくない。
When the particle size distribution D (90%) is less than 13.0 μ, the skeleton of the lithium-containing cobalt oxide obtained is small, the specific surface area is large, the reactivity with the non-aqueous electrolyte is high, and gas is generated. It is not preferable because the effect of suppressing is reduced. On the other hand, when it exceeds 16.0 μm, the reactivity is lowered and the discharge rate characteristic is lowered, which is not preferable.

【0024】リチウム化合物としては、特に限定される
ものではないが、LiCO3、LiOH、LiNO3、L
2SO4から選ばれる少なくとも1種を用いることがで
きる。
The lithium compound is not particularly limited, but LiCO 3 , LiOH, LiNO 3 , L
At least one selected from i 2 SO 4 can be used.

【0025】結着剤としては、溶剤に混練分散できるも
のであれば、特に限定されないが、例えば、フッ素系結
着剤やアクリルゴム、変性アクリルゴム、スチレン−ブ
タジエンゴム(SBR)、アクリル系重合体、ビニル系
重合体等を単独、あるいは、二種類以上の混合物または
共重合体として用いることができる。フッ素系結着剤と
しては、例えば、ポリフッ化ビニリデン、フッ化ビニリ
デンと六フッ化プロピレンの共重合体やポリテトラフル
オロエチレン樹脂のディスパージョンが好ましい。
The binder is not particularly limited as long as it can be kneaded and dispersed in a solvent, and examples thereof include a fluorine-based binder, acrylic rubber, modified acrylic rubber, styrene-butadiene rubber (SBR), and acrylic heavy binder. A united material, a vinyl-based polymer or the like can be used alone or as a mixture or copolymer of two or more kinds. As the fluorine-based binder, for example, polyvinylidene fluoride, a copolymer of vinylidene fluoride and propylene hexafluoride, or a dispersion of polytetrafluoroethylene resin is preferable.

【0026】必要に応じて導電剤、増粘剤を加えること
ができ、導電剤としてはアセチレンブラック、グラファ
イト、炭素繊維等を単独、あるいは二種類以上の混合物
で用いることが好ましく、増粘剤としてはエチレン−ビ
ニルアルコール共重合体、カルボキシメチルセルロー
ス、メチルセルロースなどが好ましい。
If desired, a conductive agent and a thickener can be added. As the conductive agent, acetylene black, graphite, carbon fiber or the like is preferably used alone or in a mixture of two or more kinds. Are preferably ethylene-vinyl alcohol copolymer, carboxymethyl cellulose, methyl cellulose and the like.

【0027】溶剤としては、結着剤が溶解可能な溶剤が
適切で、有機系結着剤の場合は、N−メチル−2−ピロ
リドン、N,N−ジメチルホルムアミド、テトラヒドロ
フラン、ジメチルアセトアミド、ジメチルスルホキシ
ド、ヘキサメチルスルホルアミド、テトラメチル尿素、
アセトン、メチルエチルケトン等の有機溶剤を単独また
はこれらを混合した混合溶剤が好ましく、水系結着剤の
場合は水や温水が好ましい。
As the solvent, a solvent in which the binder can be dissolved is suitable, and in the case of an organic binder, N-methyl-2-pyrrolidone, N, N-dimethylformamide, tetrahydrofuran, dimethylacetamide, dimethylsulfoxide. , Hexamethylsulforamide, tetramethylurea,
An organic solvent such as acetone or methyl ethyl ketone is preferably used alone or as a mixed solvent thereof, and in the case of an aqueous binder, water or warm water is preferred.

【0028】また、上記ペースト状合剤の混練分散時
に、各種分散剤、界面活性剤、安定剤等を必要に応じて
添加することも可能である。
It is also possible to add various dispersants, surfactants, stabilizers, and the like, if necessary, at the time of kneading and dispersing the pasty mixture.

【0029】塗着乾燥は、特に限定されるものではな
く、上記のように混練分散させたペースト状合剤を、例
えば、スリットダイコーター、リバースロールコータ
ー、リップコーター、ブレードコーター、ナイフコータ
ー、グラビアコーター、ディップコーター等を用いて、
容易に塗着することができ、自然乾燥に近い乾燥が好ま
しいが、生産性を考慮すると70℃〜200℃で5時間
〜10分間乾燥させることが好ましい。
The coating and drying is not particularly limited, and the paste mixture prepared by kneading and dispersing as described above can be used, for example, in a slit die coater, a reverse roll coater, a lip coater, a blade coater, a knife coater, a gravure. Using a coater, dip coater, etc.
It can be easily applied and is preferably close to natural drying, but in view of productivity, it is preferable to dry at 70 ° C. to 200 ° C. for 5 hours to 10 minutes.

【0030】圧延は、ローラープレス機によって所定の
厚みになるまで、線圧1000kg/cm〜2000k
g/cmで数回圧延を行うが、線圧を変えて圧延するの
が好ましい。
Rolling is carried out by a roller press until a predetermined thickness is reached and a linear pressure of 1000 kg / cm to 2000 k is applied.
The rolling is performed several times at g / cm, but it is preferable to perform the rolling while changing the linear pressure.

【0031】負極板6は、集電体の一面に負極活物質、
結着剤、必要に応じて導電補助剤を有機溶剤に混練分散
させたペースト状の合剤を塗着、乾燥し、集電体の他面
にも塗着、乾燥した後、圧延して作製される。
The negative electrode plate 6 has a negative electrode active material on one surface of the current collector.
Binder, and if necessary, a conductive additive is kneaded and dispersed in an organic solvent to apply a paste-like mixture, which is then dried, and then applied to the other surface of the current collector as well, followed by drying and rolling. To be done.

【0032】負極板6の集電体としては、銅製の箔、ラ
ス加工した箔、またはエッチング加工を施した箔からな
り、厚みは10μm〜50μmの範囲が好ましい。
The collector of the negative electrode plate 6 is made of copper foil, lathed foil, or etched foil, and the thickness is preferably in the range of 10 μm to 50 μm.

【0033】負極活物質としては、特に限定されるもの
ではないが、例えば、有機高分子化合物(フェノール樹
脂、ポリアクリロニトリル、セルロース等)を焼成する
ことにより得られる炭素材料、コークスやピッチを焼成
することにより得られる炭素材料、あるいは人造グラフ
ァイト、天然グラファイト等をその形状としては、球
状、鱗片状、塊状のものを用いることができる。
The negative electrode active material is not particularly limited, but for example, a carbon material obtained by firing an organic polymer compound (phenol resin, polyacrylonitrile, cellulose, etc.), coke or pitch is fired. The shape of the carbon material thus obtained, or artificial graphite, natural graphite, or the like, may be spherical, scaly, or massive.

【0034】結着剤、増粘剤としては、正極板と同様の
ものを用いることができる。
The same binder and thickener as those used for the positive electrode plate can be used.

【0035】セパレータ7としては、厚さ15μm〜3
0μmのポリエチレン樹脂、ポリプロピレン樹脂などの
微多孔性ポリオレフィン樹脂またはそれらの積層体を用
いることができる。
The separator 7 has a thickness of 15 μm to 3 μm.
A 0 μm polyethylene resin, a microporous polyolefin resin such as a polypropylene resin, or a laminated body thereof can be used.

【0036】非水電解液としては、非水溶媒に電解質を
溶解することにより、調製される。前記非水溶媒として
は、エチレンカーボネート、プロピレンカーボネート、
ブチレンカーボネート、ジメチルカーボネート、ジエチ
ルカーボネート、γ−ブチロラクトン、1,2−ジメト
キシエタン、1,2−ジクロロエタン、1,3−ジメト
キシプロパン、4−メチル−2−ペンタノン、1,4−
ジオキサン、アセトニトリル、プロピオニトリル、ブチ
ロニトリル、バレロニトリル、ベンゾニトリル、スルホ
ラン、3−メチル−スルホラン、テトラヒドロフラン、
2−メチルテトラヒドロフラン、ジメチルホルムアミ
ド、ジメチルスルホキシド、ジメチルホルムアミド、リ
ン酸トリメチル、リン酸トリエチル等を単独あるいは二
種類以上の混合溶媒として使用することができる。
The non-aqueous electrolytic solution is prepared by dissolving an electrolyte in a non-aqueous solvent. The non-aqueous solvent, ethylene carbonate, propylene carbonate,
Butylene carbonate, dimethyl carbonate, diethyl carbonate, γ-butyrolactone, 1,2-dimethoxyethane, 1,2-dichloroethane, 1,3-dimethoxypropane, 4-methyl-2-pentanone, 1,4-
Dioxane, acetonitrile, propionitrile, butyronitrile, valeronitrile, benzonitrile, sulfolane, 3-methyl-sulfolane, tetrahydrofuran,
2-Methyltetrahydrofuran, dimethylformamide, dimethylsulfoxide, dimethylformamide, trimethyl phosphate, triethyl phosphate and the like can be used alone or as a mixed solvent of two or more kinds.

【0037】非水溶媒中に添加する電解質としては、電
子吸引性の強いリチウム塩を使用し、LiPF6、Li
BF4、LiClO4、LiAsF6、LiCF3SO3
LiN(SO2CF32、LiN(SO2252、L
iC(SO2CF33等を単独あるいは二種類以上組み
合わせて使用することができる。これらの電解質は、前
記非水溶媒に対して、0.5mol/l〜2.0mol
/lの濃度で溶解させることが好ましい。
As the electrolyte to be added to the non-aqueous solvent, a lithium salt having a strong electron withdrawing property is used, and LiPF 6 , Li
BF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 ,
LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , L
iC (SO 2 CF 3 ) 3 and the like can be used alone or in combination of two or more kinds. The amount of these electrolytes is 0.5 mol / l to 2.0 mol with respect to the non-aqueous solvent.
It is preferable to dissolve at a concentration of / l.

【0038】[0038]

【実施例】以下本発明を、実施例と比較例を用いて詳細
に説明するが、本発明は下記実施例により限定されるも
のではなく、その要旨を変更しない範囲において適宜変
更して実施することが可能である。本実施例では、図1
に示す円筒形リチウム二次電池を作製し、評価を行っ
た。
EXAMPLES The present invention will be described in detail below with reference to examples and comparative examples. However, the present invention is not limited to the following examples, and various modifications may be made without departing from the scope of the invention. It is possible. In this embodiment, FIG.
The cylindrical lithium secondary battery shown in was prepared and evaluated.

【0039】(実施例)まず、正極活物質を次のように
して作製した。
Example First, a positive electrode active material was prepared as follows.

【0040】Co34は、Co(OH)2を100℃で
10時間予熱を行った後、昇温速度3℃/min.でC
o(OH)2の脱水温度である180℃まで昇温させ、
10時間空気雰囲気中で脱水して得た。得られたCo3
4を粉砕、分級することにより、表1に示す種々のC
uKα線によるX線回折での311面の半値幅と粒度分
布を持つCo34、a1〜a7を得た。
Co 3 O 4 is prepared by preheating Co (OH) 2 at 100 ° C. for 10 hours, and then C at a temperature rising rate of 3 ° C./min.
Raise the dehydration temperature of o (OH) 2 to 180 ° C.,
It was obtained by dehydration in an air atmosphere for 10 hours. Co 3 obtained
By crushing and classifying O 4 , various C shown in Table 1
Co 3 O 4 , a1 to a7 having a full width at half maximum of 311 plane and a particle size distribution in X-ray diffraction by uKα ray were obtained.

【0041】[0041]

【表1】 [Table 1]

【0042】次に、表1に示す種々のCo34とLi2
CO3をそれぞれ精秤し、LiとCoの原子比が1:1
になるように混合した後、空気中、900℃で6時間焼
成して、リチウム含有コバルト酸化物LiCoO2を得
た。
Next, various Co 3 O 4 and Li 2 shown in Table 1 were used.
CO 3 is precisely weighed and the atomic ratio of Li and Co is 1: 1.
And mixed to obtain a lithium-containing cobalt oxide LiCoO 2 by firing in air at 900 ° C. for 6 hours.

【0043】このようにして得られたLiCoO210
0重量部に対して、導電剤としてアセチレンブラック3
重量部、結着剤としてポリテトラフルオロエチレン(P
TFE)のディスパージョンを固形分で4重量部、増粘
剤としてカルボキシメチルセルロース水溶液を固形分と
して0.8重量部をミキサー中で混練分散し、正極合剤
ペーストを得た。この正極合剤ペーストを厚さ20μm
のアルミニウム合金箔集電体の両面に連続的に間欠塗布
乾燥した後、ローラープレス機で厚さを180μmに圧
延し、所定の寸法に裁断し、正極板5を作製した。
LiCoO 2 10 thus obtained
0 parts by weight of acetylene black 3 as a conductive agent
Parts by weight, polytetrafluoroethylene (P
4 parts by weight of a dispersion of TFE) and 0.8 parts by weight of an aqueous solution of carboxymethyl cellulose as a thickener were kneaded and dispersed in a mixer to obtain a positive electrode mixture paste. This positive electrode mixture paste has a thickness of 20 μm
The aluminum alloy foil current collector was continuously coated and dried on both sides, and then rolled with a roller press to a thickness of 180 μm and cut into a predetermined size to prepare a positive electrode plate 5.

【0044】負極板6は、負極活物質である人造黒鉛1
00重量部に対して、結着剤としてスチレン−ブタジエ
ンゴム(SBR)の水溶性ディスパージョンを固形分と
して4重量部、増粘剤としてカルボキシメチルセルロー
ス水溶液を固形分として0.8重量部を混練し、負極合
剤ペーストを得た。この負極合剤ペーストを厚さ14μ
mの銅箔集電体の両面に連続的に間欠塗布した後、乾燥
したものをローラープレス機で厚さを195μmに圧延
し、所定の寸法に裁断し、負極板6を作製した。
The negative electrode plate 6 is an artificial graphite 1 which is a negative electrode active material.
4 parts by weight of a water-soluble dispersion of styrene-butadiene rubber (SBR) as a binder as a solid content and 0.8 parts by weight of an aqueous carboxymethyl cellulose solution as a thickener as a solid content were kneaded with 00 parts by weight. A negative electrode material mixture paste was obtained. This negative electrode mixture paste is 14 μm thick
After continuously and intermittently applying the copper foil current collector of m to both surfaces, the dried product was rolled with a roller press to a thickness of 195 μm and cut into a predetermined size to prepare a negative electrode plate 6.

【0045】このようにして得られた正極板5と負極板
6とを厚さ25μmの微孔性ポリエチレンフィルム製の
セパレータ7を介して渦巻き状に巻回して極板群4を作
製した。
The positive electrode plate 5 and the negative electrode plate 6 obtained in this manner were spirally wound with a separator 7 made of a microporous polyethylene film having a thickness of 25 μm interposed therebetween to prepare an electrode plate group 4.

【0046】この極板群4を負極端子を兼ねるステンレ
ス製の有底円筒形電池ケース1に収容し、負極リード6
aを電池ケース1の底部に溶接した。更に、エチレンカ
ーボネート、エチルメチルカーボネートの混合溶媒中に
電解質として1.25mol/lのLiPF6を溶解さ
せた電解液を電池ケース1内に注入した後、正極リード
5aに溶接された封口板2を、絶縁ガスケット3を介し
て電池ケース1と封口板2とを密封口した。さらに電池
電圧を4.1Vまで定電流で充電を行った後、45℃に
保持した恒温槽に1週間保存してエージング処理を行
い、a1〜a7のCo34に対応する直径18mm、高
さ65mm、電池容量2000mAhの電池A1〜A7
を得た。
The electrode plate group 4 was housed in a bottomed cylindrical battery case 1 made of stainless steel which also serves as a negative electrode terminal, and the negative electrode lead 6
a was welded to the bottom of the battery case 1. Further, after injecting into the battery case 1 an electrolyte solution in which 1.25 mol / l LiPF 6 was dissolved as an electrolyte in a mixed solvent of ethylene carbonate and ethyl methyl carbonate, the sealing plate 2 welded to the positive electrode lead 5a was attached. The battery case 1 and the sealing plate 2 were hermetically sealed via the insulating gasket 3. Furthermore, after charging the battery voltage at a constant current up to 4.1 V, it was stored in a constant temperature bath kept at 45 ° C. for 1 week and then subjected to aging treatment, and the diameter corresponding to Co 3 O 4 of a1 to a7 was 18 mm and high. 65 mm in size, batteries A1 to A7 with a battery capacity of 2000 mAh
Got

【0047】(比較例)表1に示す種々のCuKα線に
よるX線回折での311面の半値幅と粒度分布のCo3
4b1〜b5を用いたこと以外は実施例と同様にして
b1〜b5のCo 34に対応する比較例電池B1〜B5
を作製した。
(Comparative Example) Various CuKα rays shown in Table 1
X-ray diffraction analysis of the 311 surface FWHM and grain size distribution of Co3
OFourSame as the example except that b1 to b5 were used.
b1 to b5 of Co 3OFourComparative batteries B1 to B5 corresponding to
Was produced.

【0048】このようにして得られた実施例及び比較例
の電池A1〜A7、B1〜B6各5個を用いて、放電レ
ート特性と高温環境下での保存試験を評価し、その結果
を表2に示す。
The discharge rate characteristics and the storage test under a high temperature environment were evaluated by using each of the five batteries A1 to A7 and B1 to B6 of the examples and comparative examples thus obtained, and the results are shown in a table. 2 shows.

【0049】放電レート特性は、各電池を3.0Vの終
止電圧まで、2000mA(1.0ItA)の定電流で
残存放電した後、電池電圧が4.2Vに達するまでは1
400mA(0.7ItA)の定電流充電を行い、その
後電流値が減衰して100mA(0.05ItA)にな
るまで充電して満充電状態とした。
The discharge rate characteristic is 1 until the battery voltage reaches 4.2V after the residual discharge of each battery at a constant current of 2000mA (1.0ItA) to the final voltage of 3.0V.
A constant current of 400 mA (0.7 ItA) was charged, and then the battery was charged until the current value was attenuated to 100 mA (0.05 ItA), and the battery was fully charged.

【0050】そして、上記満充電状態の電池を20℃に
おいて放電電流400mA(0.2ItA)で終止電圧
3.0Vまで放電した時の電池容量に対する放電電流4
000mA(2.0ItA)で放電した時の電池容量の
比率である放電レート比率=(2.0ItAの放電容
量)/(0.2ItAの放電容量)×100(%)を算
出し、その平均値を求めた。
Then, the fully charged battery was discharged at a discharge current of 400 mA (0.2 ItA) at 20 ° C. to a final voltage of 3.0 V, and the discharge current was 4 with respect to the battery capacity.
Discharge rate ratio = (2.0 ItA discharge capacity) / (0.2 ItA discharge capacity) × 100 (%), which is the ratio of the battery capacity when discharged at 000 mA (2.0 ItA), and calculated the average value. I asked.

【0051】高温環境下での保存試験は、上記の満充電
状態の電池を85℃に保持されている恒温槽に3日間保
存した後、蛍光X線により電流遮断機構の誤動作の有無
を評価した。
In the storage test under a high temperature environment, the above fully charged battery was stored in a constant temperature bath maintained at 85 ° C. for 3 days, and then the presence or absence of malfunction of the current interruption mechanism was evaluated by fluorescent X-ray. .

【0052】[0052]

【表2】 [Table 2]

【0053】表2の結果から明らかなように、CuKα
線によるX線回折での311面の半値幅が0.366d
eg.以下のCo34とリチウム化合物から得られるリ
チウム含有コバルト酸化物を正極活物質に用いた電池A
1〜A7は、結晶性の高い骨格を形成しているので、高
温環境下において安定であり、電流遮断機構の誤動作は
なかったが、比較例電池B1〜B6は電流遮断機構の誤
動作に至るものがあった。
As is clear from the results of Table 2, CuKα
X-ray diffraction by X-rays has a half-value width of 311 plane of 0.366d
eg. Battery A using the following lithium-containing cobalt oxide obtained from Co 3 O 4 and a lithium compound as a positive electrode active material
Nos. 1 to A7 form a skeleton with high crystallinity, so they are stable in a high temperature environment, and there is no malfunction of the current interruption mechanism, but Comparative Examples B1 to B6 cause malfunctions of the current interruption mechanism. was there.

【0054】また、Co34の粒度分布がD(30%)
=2.5〜6.0μm、D(50%)=4.0〜7.5
μm、D(90%)=13.0〜16.0μmの範囲に
ある電池A1〜A4は、電池A5〜A7と比較して、よ
り均一で堅固な結晶性の高い正極活物質が得られるの
で、より放電レート特性に優れていることが明らかにな
った。
The particle size distribution of Co 3 O 4 is D (30%).
= 2.5 to 6.0 μm, D (50%) = 4.0 to 7.5
The batteries A1 to A4 in the range of μm, D (90%) = 13.0 to 16.0 μm can obtain a more uniform and firm positive electrode active material with high crystallinity as compared with the batteries A5 to A7. It was revealed that the discharge rate characteristics were better.

【0055】[0055]

【発明の効果】以上の説明から明らかなように、本発明
のCo34とリチウム化合物から合成される正極活物質
を用いたリチウム二次電池は、放電レート特性を損なう
ことなく、かつ高温環境下でのガス発生を抑制し、電流
遮断機構の誤動作のないリチウム二次電池を得ることが
でき、その工業的価値は極めて高い。
As is apparent from the above description, the lithium secondary battery using the positive electrode active material synthesized from Co 3 O 4 and the lithium compound of the present invention does not impair the discharge rate characteristics and is high in temperature. It is possible to obtain a lithium secondary battery that suppresses gas generation under the environment and has no malfunction of the current interruption mechanism, and its industrial value is extremely high.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態による非水電解液二次電池
の縦断面図
FIG. 1 is a vertical cross-sectional view of a non-aqueous electrolyte secondary battery according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 電池ケース 2 封口板 3 絶縁ガスケット 4 極板群 5 正極板 5a 正極リード 6 負極板 6a 負極リード 7 セパレータ 8 絶縁板 1 battery case 2 Seal plate 3 Insulation gasket 4 electrode group 5 Positive plate 5a Positive lead 6 Negative plate 6a Negative electrode lead 7 separator 8 insulating plates

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成15年3月12日(2003.3.1
2)
[Submission date] March 12, 2003 (2003.3.1)
2)

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0016[Correction target item name] 0016

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0016】Co3O4とリチウム化合物のLiとCoの原
子比は、1:0.97〜1:1.05の範囲が、電池特
性の観点から好ましい。
From the viewpoint of battery characteristics, the atomic ratio of Co 3 O 4 to Li and Co of the lithium compound is preferably in the range of 1: 0.97 to 1: 1.05 .

フロントページの続き (72)発明者 杉本 豊次 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 4G048 AA04 AB06 AC06 AD04 AD06 AE05 5H029 AJ02 AJ12 AK03 AL06 AL07 AM02 AM03 AM04 AM05 AM07 BJ02 BJ14 BJ27 DJ16 EJ04 EJ12 HJ05 HJ13 5H050 AA02 AA15 BA17 CA08 CB07 CB08 EA09 EA28 FA17 HA05 HA13 Continued front page    (72) Inventor Toyoji Sugimoto             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. F-term (reference) 4G048 AA04 AB06 AC06 AD04 AD06                       AE05                 5H029 AJ02 AJ12 AK03 AL06 AL07                       AM02 AM03 AM04 AM05 AM07                       BJ02 BJ14 BJ27 DJ16 EJ04                       EJ12 HJ05 HJ13                 5H050 AA02 AA15 BA17 CA08 CB07                       CB08 EA09 EA28 FA17 HA05                       HA13

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 リチウム化合物とCo34から合成され
る正極活物質を用いたリチウム二次電池であって、前記
Co34のCuKα線によるX線回折での311面の半
値幅が0.366deg.以下であることを特徴とする
リチウム二次電池。
1. A lithium secondary battery using a positive electrode active material synthesized from a lithium compound and Co 3 O 4 , wherein the full width at half maximum of the 311 plane in the X-ray diffraction of Co 3 O 4 by CuKα rays is 0.366 deg. The lithium secondary battery is characterized in that:
【請求項2】 前記Co34の粒度分布がD(30%)
=2.5μm〜6.0μm、D(50%)=4.0μm
〜7.5μm、D(90%)=13.0μm〜16.0
μmの範囲である請求項1に記載のリチウム二次電池。
2. The Co 3 O 4 particle size distribution is D (30%).
= 2.5 μm to 6.0 μm, D (50%) = 4.0 μm
˜7.5 μm, D (90%) = 13.0 μm to 16.0
The lithium secondary battery according to claim 1, which is in the range of μm.
JP2002126816A 2002-04-26 2002-04-26 Lithium secondary battery Expired - Fee Related JP3649206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002126816A JP3649206B2 (en) 2002-04-26 2002-04-26 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002126816A JP3649206B2 (en) 2002-04-26 2002-04-26 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2003317720A true JP2003317720A (en) 2003-11-07
JP3649206B2 JP3649206B2 (en) 2005-05-18

Family

ID=29541127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002126816A Expired - Fee Related JP3649206B2 (en) 2002-04-26 2002-04-26 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3649206B2 (en)

Also Published As

Publication number Publication date
JP3649206B2 (en) 2005-05-18

Similar Documents

Publication Publication Date Title
WO2019135322A1 (en) Positive electrode material and battery
US9276259B2 (en) Secondary battery of improved lithium ion mobility and cell capacity
KR101514605B1 (en) Positive Electrode Material for Lithium-Ion Batteries and Lithium-Ion Battery Having the Same
US7462422B2 (en) Positive electrode active material and non-aqueous electrolyte secondary cell
EP2437336B1 (en) Positive electrode active material, and positive electrode and lithium secondary battery comprising same
CN108511786B (en) All-solid-state lithium battery and preparation method thereof
US20110256437A1 (en) Lithium secondary battery positive electrode and lithium secondary battery
EP2549577B1 (en) Lithium secondary battery using ionic liquid
JP3232910B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
WO2018070517A1 (en) Production method for lithium secondary battery positive electrode active material
WO2017078136A1 (en) Positive electrode active material for lithium secondary batteries, method for producing positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
KR102063898B1 (en) Positive Electrode Material for Lithium-Ion Batteries and Lithium-Ion Battery Having the Same
JP2020105063A (en) Doped titanium niobate and battery
JP3244227B2 (en) Non-aqueous electrolyte secondary battery
JP2011014254A (en) Manufacturing method of nonaqueous electrolyte secondary battery
US10177370B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP3649206B2 (en) Lithium secondary battery
WO2019155881A1 (en) Carbon material, electrode for electricity storage devices, electricity storage device, and nonaqueous electrolyte secondary battery
US20230084047A1 (en) Negative electrode material and battery
JPH10214626A (en) Lithium secondary battery and lithium secondary battery positive active material
WO2023074143A1 (en) Solid electrolyte material and battery
WO2023212538A1 (en) Ultra-conformal fluorinated polymer coating on li-metal by solid-liquid-solid phase conversion using physical treatment
JP2014067610A (en) Process of manufacturing nonaqueous electrolyte secondary battery and manufactured battery
JP2000021388A (en) Nonaqueous electrolyte secondary battery
JP2007188759A (en) Positive-electrode active material for nonaqueous electrolytic solution battery, and its manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees