JP2003315285A - Microwave concentration meter - Google Patents

Microwave concentration meter

Info

Publication number
JP2003315285A
JP2003315285A JP2002117063A JP2002117063A JP2003315285A JP 2003315285 A JP2003315285 A JP 2003315285A JP 2002117063 A JP2002117063 A JP 2002117063A JP 2002117063 A JP2002117063 A JP 2002117063A JP 2003315285 A JP2003315285 A JP 2003315285A
Authority
JP
Japan
Prior art keywords
microwave
measuring
measuring tube
tube
densitometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002117063A
Other languages
Japanese (ja)
Other versions
JP3998504B2 (en
Inventor
Kazuhiro Watanabe
一弘 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002117063A priority Critical patent/JP3998504B2/en
Publication of JP2003315285A publication Critical patent/JP2003315285A/en
Application granted granted Critical
Publication of JP3998504B2 publication Critical patent/JP3998504B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a microwave concentration meter that uses an insulating material for its measuring tube, has no recessed section nor projecting section on the internal surface of the measuring tube, and can measure the concentration of a liquid to be measured with high accuracy by eliminating the influence of a microwave propagated through the insulating material. <P>SOLUTION: In the microwave concentration meter for measuring the concentration of the liquid 1a to be measured by disposing microwave transmitting means 2, and a microwave receiving means 3 to face each other on both sides of the measuring tube 19, the transmitting frequency of the microwave is adjusted to 1.7-2.0 GHz, and the specific inductive capacity of the measuring tube 19 is adjusted to 2.0-8.0. In addition, the measuring tube 19 is formed of the insulating material having a thickness of 1.7-3.0 mm. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、被測定対象中の固
形物や懸濁物質の濃度を測定するマイクロ波式濃度計に
係り、特にその測定管の接液部にテフロン(登録商標)
やセラミック等の絶縁物を使用した、例えば、食品分野
に使用するに適したマイクロ波式濃度計に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microwave densitometer for measuring the concentration of solids or suspended substances in an object to be measured, and more particularly to Teflon (registered trademark) at the liquid contact portion of the measuring tube.
The present invention relates to a microwave densitometer using an insulator such as ceramics and ceramics, which is suitable for use in the food field, for example.

【0002】[0002]

【従来の技術】近年では、気泡や汚れの影響を受け難い
濃度計としてマイクロ波式濃度計が開発され、実用化さ
れるようになっている。図6は、マイクロ波式濃度計の
構成例を示している。
2. Description of the Related Art In recent years, a microwave densitometer has been developed and put into practical use as a densitometer that is not easily affected by bubbles and dirt. FIG. 6 shows a configuration example of a microwave densitometer.

【0003】同図に示すように、液体の流通する測定管
1の外周面に、マイクロ波の送信アンテナ2とマイクロ
波の受信アンテナ3とが対向配置され、またマイクロ波
発振器7からマイクロ波が供給されるようになってい
る。マイクロ波発信器7からのマイクロ波の通過経路と
して、パワースプリッタ4、送信アンテナ2、測定管1
内の液体1aとマイクロ波受信アンテナ3を通って位相
差測定回路5に導入される第1の経路と、同じくマイク
ロ波がパワースプリッタ4を通って前記位相差測定回路
5に導入される第2の経路とが形成されている。
As shown in the figure, a microwave transmitting antenna 2 and a microwave receiving antenna 3 are arranged opposite to each other on the outer peripheral surface of a measuring tube 1 in which liquid flows, and a microwave is generated from a microwave oscillator 7. It is being supplied. A power splitter 4, a transmission antenna 2, a measuring tube 1 are provided as a passage path of microwaves from the microwave oscillator 7.
A first path that is introduced into the phase difference measuring circuit 5 through the liquid 1a inside and the microwave receiving antenna 3, and a second path where microwaves are similarly introduced into the phase difference measuring circuit 5 through the power splitter 4. And the path of.

【0004】さらに、位相差測定回路5の出力は濃度演
算器6に入力されている。そして、位相差測定回路5で
第2の経路からのマイクロ波に対する第1の経路からの
マイクロ波の位相遅れから位相差を求める構成となって
いる。
Further, the output of the phase difference measuring circuit 5 is input to the concentration calculator 6. Then, the phase difference measuring circuit 5 is configured to obtain the phase difference from the phase delay of the microwave from the first path with respect to the microwave from the second path.

【0005】この濃度計では、マイクロ波発振器7から
パワースプリッタ4を経由して直接受信するマイクロ波
(第2の経路)に対する測定管1内の被測定対象液1a
中を伝播してくるマイクロ波(第1の経路)の位相遅れ
θ2と、測定管1内に基準流体(例えば濃度ゼロとみな
せる水道水)を充填して被測定対象液1aと同じ条件で
測定したときのマイクロ波の位相遅れθ1とを比較し、
その位相差△θ=(θ2−θ1)から、例えば、図7に
示すような検量線を用いて濃度を求めている。
In this densitometer, the liquid 1a to be measured in the measuring tube 1 for the microwave (second path) which is directly received from the microwave oscillator 7 via the power splitter 4.
Measurement is performed under the same conditions as the liquid 1a to be measured by filling the measurement pipe 1 with a phase delay θ2 of the microwave (first path) propagating in the inside and a reference fluid (for example, tap water that can be regarded as zero concentration). Compared with the microwave phase delay θ1 when
From the phase difference Δθ = (θ2-θ1), for example, the concentration is obtained using a calibration curve as shown in FIG.

【0006】具体的には、濃度X=a△θ+bの演算を
行って濃度を求めるものである。なお、aは検量線の傾
き、bは検量線の切片で、通常はb=0である。
Specifically, the density is calculated by calculating the density X = aΔθ + b. Note that a is the slope of the calibration curve, b is the intercept of the calibration curve, and usually b = 0.

【0007】次に、図8に、従来のマイクロ波式濃度計
における測定管1への送信アンテナ2および受信アンテ
ナ3の取付構造を示す。
Next, FIG. 8 shows a mounting structure of the transmitting antenna 2 and the receiving antenna 3 to the measuring tube 1 in the conventional microwave densitometer.

【0008】測定管1は、ステンレス鋼等金属製のパイ
プが使用されており、その金属パイプの管軸をはさんで
対向する位置にマイクロ波を送・受信するための窓穴
8、9をそれぞれ設け、窓穴8、9にはプラスチック等
の絶縁材製の窓板13、14がシール材11、12を介
して測定管1に気密に取り付けられている。さらに窓板
13、14にはそれぞれマイクロ波の送信アンテナ2、
受信アンテナ3が取り付けられている。
A pipe made of metal such as stainless steel is used as the measuring pipe 1, and window holes 8 and 9 for transmitting and receiving microwaves are provided at positions facing each other with the pipe axis of the metal pipe interposed therebetween. Window plates 13 and 14 made of an insulating material such as plastic are provided in the window holes 8 and 9, respectively, and airtightly attached to the measuring tube 1 via sealing materials 11 and 12. Further, the microwave transmitting antenna 2 is provided on the window plates 13 and 14, respectively.
The receiving antenna 3 is attached.

【0009】なお、このように金属パイプに窓穴8、9
を設けている理由は、金属パイプの外側から内部にマイ
クロ波を入射しようとしてもマイクロ波は金属パイプ壁
で吸収されてしまうため入射できない。そこで、金属パ
イプに窓穴8、9を設け、そこに取り付けた絶縁材製の
窓板13、14を通して内部にマイクロ波を入射し、ま
た受波するようにしている。
In this way, window holes 8 and 9 are formed in the metal pipe in this way.
The reason for providing is that even if an attempt is made to inject microwaves from the outside to the inside of the metal pipe, the microwaves are absorbed by the wall of the metal pipe and cannot be incident. Therefore, window holes 8 and 9 are provided in the metal pipe, and microwaves are made incident and received through the window plates 13 and 14 made of an insulating material attached thereto.

【0010】以上のようなマイクロ波式濃度計は、マイ
クロ波の位相差を測定する方式であり、またマイクロ波
を入射あるいは受波する窓部は透明である必要はないた
め、気泡や汚れの影響を受け難く、しかも連続的に濃度
を測定することができる。
The microwave type densitometer as described above is a method for measuring the phase difference of microwaves, and the window for entering or receiving microwaves does not need to be transparent, so that bubbles and dirt can be prevented. It is hardly affected and the concentration can be measured continuously.

【0011】しかし、長期間の使用に対しては、受信ア
ンテナ取付部の凹凸部やシール材近辺などの隙間に汚れ
や異物が堆積してくるとその影響を無視できなくなる。
However, for long-term use, if dirt or foreign matter accumulates in the irregularities of the receiving antenna mounting portion or in the gaps near the sealing material, the effect cannot be ignored.

【0012】特に、食品分野等に適用する場合は、測定
対象液中の固形分が、配管中の凹凸、隙間部分に残留、
堆積して腐敗することがない様に、パイプ内面に一切凹
凸や隙間ができないサニタリー構造が要求されている。
In particular, when applied to the food field, etc., the solid content in the liquid to be measured remains in the irregularities and gaps in the pipe,
A sanitary structure that does not have any irregularities or gaps on the inner surface of the pipe is required so that it will not accumulate and rot.

【0013】ところが、測定管として金属パイプを用い
る場合は、上述した様に、マイクロ波送信・受信アンテ
ナ取り付け部に凹凸や隙間ができてしまうことは避けら
れないという課題があった。
However, when a metal pipe is used as the measuring tube, there is a problem that it is inevitable that the microwave transmitting / receiving antenna mounting portion has irregularities or gaps as described above.

【0014】また、強酸性、強アルカリ性の測定流体の
場合においては、耐食性の高い、金属やプラスチック等
の測定管が必要とされる。
Further, in the case of a strongly acidic or strongly alkaline measuring fluid, a measuring tube made of metal or plastic having high corrosion resistance is required.

【0015】そのため、特開2001−74671号公
報には、測定管におけるマイクロ波送・受信手段取付部
内面に凹凸や隙間ができない構造とし、汚れが付着し難
い構造としたマイクロ波式濃度計が記述されている。
Therefore, Japanese Unexamined Patent Publication No. 2001-74671 discloses a microwave densitometer having a structure in which irregularities and gaps are not formed on the inner surface of the microwave transmitting / receiving means mounting portion of a measuring tube, and a structure in which dirt is unlikely to adhere. It has been described.

【0016】そして、この構成では測定管を、例えばプ
ラスチックパイプ、またはガラスパイプとする等絶縁物
で構成することにより、従来のように金属製の測定管に
窓穴を設けて、そこに絶縁材製の窓板をシール材を介し
て取り付ける必要をなくし、測定管内面に凹凸や隙間が
できない構造で、耐食性にも優れる構造を実現してい
る。
In this structure, the measuring pipe is made of an insulating material such as a plastic pipe or a glass pipe, and a window is provided in the metallic measuring pipe as in the conventional case, and an insulating material is provided there. It eliminates the need to attach a window plate made of metal via a sealing material, and has a structure that does not have irregularities or gaps on the inner surface of the measuring tube, and has a structure with excellent corrosion resistance.

【0017】また、測定管の外側は、例えば金属製のカ
バーで覆う等、マイクロ波を遮蔽する遮蔽部材で覆う構
成とすることにより、絶縁物製の測定管からの不要電波
(マイクロ波)の漏洩を低減するようにしている。
Further, the outside of the measuring tube is covered with a shielding member for shielding microwaves, such as a metal cover, so that unnecessary radio waves (microwaves) from the insulating measuring tube can be prevented. We are trying to reduce leakage.

【0018】一方、マイクロ波式濃度計の精度向上のた
めの従来技術には、例えば、特開平11-83758号公
報等がある。この記述では、マイクロ波式濃度計の精度
の向上には、使用するマイクロ波の周波数範囲を測定分
解能と、マイクロ波の減衰量のトレードオフで決める必
要があることから、周波数範囲を1.7GHz以上と
し、コストと精度のトレードオフからは上限値を2.0
GHzとすることが記述されている。
On the other hand, as a conventional technique for improving the accuracy of the microwave densitometer, there is, for example, JP-A-11-83758. In this description, in order to improve the accuracy of the microwave densitometer, it is necessary to determine the frequency range of the microwave used by the tradeoff between the measurement resolution and the attenuation amount of the microwave. Above, the upper limit is 2.0 from the cost-accuracy trade-off.
It is described that the frequency is GHz.

【0019】[0019]

【発明が解決しようとする課題】上述した従来のマイク
ロ波濃度計においは、測定管内面に一切凹凸や隙間が出
来ない構造としたので、食品分野等で要求される被測定
対象液中の固形物が測定管内に残留、堆積することから
生じる腐敗の問題や、強酸性、強アルカリ性の場合の測
定管の腐食の問題は解決できたが、測定管内面を絶縁物
で構成したため、この絶縁物を伝播するマイクロ波と被
測定流体を伝播するマイクロ波が干渉し、位相検出精度
が悪化する問題が発生し、高精度で測定することが出来
なくなった。
Since the conventional microwave densitometer described above has a structure in which no irregularities or gaps are formed on the inner surface of the measuring tube, the solid content in the liquid to be measured required in the food field etc. Although the problem of decay caused by the residue and accumulation of objects in the measuring tube and the problem of corrosion of the measuring tube in the case of strong acidity and strong alkali could be solved, this insulator is used because the inner surface of the measuring tube is made of an insulator. Microwaves propagating through and microwaves propagating through the fluid to be measured interfered with each other, which caused a problem that the phase detection accuracy deteriorates, and it became impossible to perform high-precision measurement.

【0020】本発明は、上記点に鑑みてなされたもの
で、測定管の内面に凹凸のない絶縁物とした場合でも高
精度で測定できるマイクロ波式濃度計を提供することを
目的とする。
The present invention has been made in view of the above points, and an object of the present invention is to provide a microwave densitometer capable of highly accurate measurement even when an inner surface of a measuring tube is made of an insulating material.

【0021】[0021]

【課題を解決するための手段】上記目的を達成するため
に、本発明によるマイクロ波式濃度計の請求項1では、
測定管の管軸を挟む形で測定管外周面にマイクロ波送信
手段とマイクロ波受信手段を対向配置し、マイクロ波に
より前記測定管内の被測定対象液の濃度を測定するマイ
クロ波式濃度計において、前記マイクロ波は、1.7G
Hz〜2.0GHzの周波数範囲とし、前記測定管は、
マイクロ波の遮蔽部材で覆われた外管の内面を絶縁物で
構成し、前記絶縁物の比誘電率を2以上で、その肉厚を
3.0mm以下でとしたことを特徴としている。
In order to achieve the above object, a microwave densitometer according to claim 1 of the present invention comprises:
In the microwave densitometer, the microwave transmitting means and the microwave receiving means are arranged to face each other on the outer peripheral surface of the measuring tube so as to sandwich the tube axis of the measuring tube, and the concentration of the liquid to be measured in the measuring tube is measured by microwave. , The microwave is 1.7G
Hz to 2.0 GHz frequency range, the measuring tube,
The inner surface of the outer tube covered with the microwave shielding member is made of an insulator, and the relative permittivity of the insulator is 2 or more and the thickness thereof is 3.0 mm or less.

【0022】従って、請求項1の発明のマイクロ波式濃
度計によれば、測定管内面の絶縁物の厚さを制限するこ
とによって、この絶縁物を介して伝播するマイクロ波を
減衰させるので、高精度で測定することが出来る。
Therefore, according to the microwave densitometer of the first aspect of the present invention, by limiting the thickness of the insulator on the inner surface of the measuring tube, the microwave propagating through the insulator is attenuated. It can be measured with high accuracy.

【0023】上記目的を達成するために、本発明による
マイクロ波濃度計の請求項2では、測定管を挟む形でマ
イクロ波送信手段とマイクロ波受信手段を対向配置し、
マイクロ波により前記測定管内の被測定対象液の濃度を
測定するマイクロ波式濃度計において、前記測定管を絶
縁物とし、前記マイクロ波送信アンテナの電磁波放射面
と前記マイクロ波受信アンテナの電磁波受信面とを前記
測定管を経由して伝播されるマイクロの伝播経路を遮断
する様に金属で覆い、且つ前記金属を接地したことを特
徴としている。
In order to achieve the above-mentioned object, in the second aspect of the microwave densitometer according to the present invention, the microwave transmitting means and the microwave receiving means are arranged so as to face each other with the measuring tube interposed therebetween.
In a microwave densitometer for measuring the concentration of a liquid to be measured in the measuring tube by microwave, the measuring tube is an insulator, and the electromagnetic wave emitting surface of the microwave transmitting antenna and the electromagnetic wave receiving surface of the microwave receiving antenna. Is covered with a metal so as to block a micro propagation path propagated through the measurement tube, and the metal is grounded.

【0024】従って、請求項2のマイクロ波濃度計によ
れば、測定管をテフロン(登録商標)や、セラミックの
みで構成した場合でも、金属リングによってこの測定管
を介して伝播されるマイクロ波を遮断したので、高精度
で測定することが可能となる。
Therefore, according to the microwave densitometer of the second aspect, even when the measuring tube is made of only Teflon (registered trademark) or ceramics, the microwave propagated through the measuring tube by the metal ring is transmitted. Since it is cut off, it is possible to measure with high accuracy.

【0025】[0025]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0026】(第1の実施の形態)図1は、本発明のマ
イクロ波式濃度計に係わる第1の実施の形態の構成図を
示す。なお、測定管19及びそれに送信アンテナ、受信
アンテナの取り付け構造を示す部分は断面図で示してあ
る。また、図2は図1のII−II線矢視断面図である。
(First Embodiment) FIG. 1 shows a block diagram of a first embodiment relating to a microwave densitometer of the present invention. The section showing the mounting structure of the measuring tube 19 and the transmitting antenna and the receiving antenna is shown in a sectional view. FIG. 2 is a sectional view taken along the line II-II of FIG.

【0027】図1において、19はマイクロ波式濃度計
の測定管で、例えばテフロン(登録商標)、プラスチッ
クパイプ、ガラスパイプ、セラミック等の絶縁物製のパ
イプで構成されている。その測定管19の内部を被測定
対象液1aが流れる。22、23はそれぞれ測定管19
の管軸を挟んで外側面の対向する位置に設けられた絶縁
物製のアンテナ取り付け部で、このアンテナ取付部22
にはマイクロ波の送信用アンテナ2が、またアンテナ取
り付け部23にはマイクロ波の受信用アンテナ3が取り
付けられている。
In FIG. 1, reference numeral 19 denotes a measuring tube of a microwave type densitometer, which is composed of an insulating pipe such as Teflon (registered trademark), a plastic pipe, a glass pipe, or a ceramic. The liquid 1a to be measured flows through the inside of the measuring tube 19. 22 and 23 are measuring tubes 19 respectively
The antenna mounting portion made of an insulating material is provided at a position opposite to each other on the outer side surface with the tube axis interposed therebetween.
The microwave transmitting antenna 2 is mounted on the antenna mounting portion 23, and the microwave receiving antenna 3 is mounted on the antenna mounting portion 23.

【0028】なお、アンテナ取り付け部22、23は、
測定管19と同じ材質の部材を測定管1に接着して構成
してもよいし、測定管19と一体成型してもよい。さら
に、24は測定管19を覆う金属製パイプで、その両端
には配管接続するための金属製のフランジ25、26が
設けられている。なお、測定管19についてもその両端
にはフランジ部分が設けられている。
The antenna mounting portions 22 and 23 are
A member made of the same material as the measuring tube 19 may be bonded to the measuring tube 1, or may be integrally molded with the measuring tube 19. Further, 24 is a metal pipe that covers the measuring pipe 19, and metal flanges 25 and 26 for pipe connection are provided at both ends thereof. In addition, the measuring tube 19 is also provided with flange portions at both ends thereof.

【0029】また、液体の流通する測定管19の外周面
のマイクロ波の送信アンテナ2には、マイクロ波発振器
7からマイクロ波が供給されるようになっている。マイ
クロ波発信器7からのマイクロ波は、パワースプリッタ
4、送信アンテナ2、測定管1内の液体1aとマイクロ
波受信アンテナ3を通って位相差測定回路5に導入され
る第1の経路と、同じくマイクロ波がパワースプリッタ
4を通って前記位相差測定回路5に導入される第2の経
路とが形成されている。
Further, the microwave is supplied from the microwave oscillator 7 to the microwave transmitting antenna 2 on the outer peripheral surface of the measuring tube 19 through which the liquid flows. The microwave from the microwave oscillator 7 passes through the power splitter 4, the transmitting antenna 2, the liquid 1a in the measuring tube 1 and the microwave receiving antenna 3, and is introduced into the phase difference measuring circuit 5 through a first path, Similarly, a second path through which the microwave is introduced into the phase difference measuring circuit 5 through the power splitter 4 is formed.

【0030】さらに、位相差測定回路5の出力は濃度演
算器6に入力されている。
Furthermore, the output of the phase difference measuring circuit 5 is input to the concentration calculator 6.

【0031】次に、以上のように構成された実施の形態
の動作について説明する。マイクロ波発振器7からパワ
ースプリッタ4を介して測定管19のアンテナ取り付け
部22に取り付けられた送信アンテナ2にマイクロ波を
供給し、送信アンテナ2と対向配置された受信アンテナ
3で測定管19内の被測定対象液1aを透過してきたマ
イクロ波信号を受信し、その信号を位相差測定回路5に
送る(第1の経路)。
Next, the operation of the embodiment configured as described above will be described. Microwaves are supplied from the microwave oscillator 7 to the transmitting antenna 2 attached to the antenna attaching portion 22 of the measuring tube 19 via the power splitter 4, and the receiving antenna 3 arranged opposite to the transmitting antenna 2 is provided inside the measuring tube 19. The microwave signal transmitted through the liquid to be measured 1a is received and the signal is sent to the phase difference measuring circuit 5 (first path).

【0032】また、マイクロ波発振器7からのマイクロ
波は、パワースプリッタ4を介して直接位相差測定回路
5に送られる(第2の経路)。そして、この位相差測定
回路5で第2の経路からのマイクロ波に対する第1の経
路からのマイクロ波の位相遅れを求める。
Further, the microwave from the microwave oscillator 7 is directly sent to the phase difference measuring circuit 5 via the power splitter 4 (second path). Then, the phase difference measuring circuit 5 obtains the phase delay of the microwave from the first path with respect to the microwave from the second path.

【0033】濃度演算器6では、測定管19内の被測定
対象液1a中を伝播してくるマイクロ波の位相遅れθ2
と、予め測定管1内に基準流体(例えば濃度ゼロとみな
せる水道水)を充填して被測定対象液1aと同じ条件で
測定したときのマイクロ波の位相遅れθ1とを比較し、
その位相差 △θ=(θ2一θ1)から前述の図7に示
すような検量線を用いて濃度演算を行う。
In the concentration calculator 6, the phase delay θ2 of the microwave propagating in the liquid 1a to be measured in the measuring tube 19
And a phase delay θ1 of the microwave when the measurement tube 1 is filled with a reference fluid (for example, tap water that can be regarded as zero concentration) and measured under the same conditions as the liquid to be measured 1a,
From the phase difference Δθ = (θ2−θ1), the concentration is calculated using the calibration curve as shown in FIG.

【0034】ここで、測定管19は、前述した様に絶縁
物のパイプで構成されているため、従来のように金属製
の測定管19に窓穴を設けて、そこに絶縁材製の窓板
を、シール材を介して取り付ける必要がなくマイクロ波
を通過させることができる。
Since the measuring pipe 19 is made of an insulating pipe as described above, a metallic measuring pipe 19 is provided with a window hole as in the conventional case, and an insulating material window is provided there. Microwaves can be passed through without the need for the plate to be attached via a seal.

【0035】従って、従来のように凹凸や隙間に汚れや
異物が付着、堆積するということが生じない、例えば食
品分野等に使用するのに適した構成と成っている。
Therefore, the structure is suitable for use in, for example, the food field, where dirt and foreign substances do not adhere to or accumulate on the unevenness or gap as in the conventional case.

【0036】また金属製パイプ24は、測定管19内に
入射されたマイクロ波が受信アンテナ取り付け部23以
外の部分から外部に不要電波として漏洩する量を低減す
るとともに配管強度を増す働きをしている。更に、金属
製パイプ24の両端に設けられた配管接続のためのフラ
ンジ25、26は、配管強度を増す働きをしている。
The metal pipe 24 serves to reduce the amount of microwaves that enter the measuring pipe 19 leaking out as unnecessary radio waves from the portion other than the receiving antenna mounting portion 23 to the outside and to increase the pipe strength. There is. Further, the flanges 25 and 26 for connecting the pipes provided at both ends of the metal pipe 24 have the function of increasing the pipe strength.

【0037】次にこの様に構成されたマイクロ波式濃度
計について測定管19の厚さと濃度計の測定精度の関係
を調べるための実験を行った。実験は、図1の構成に示
すマイクロ波式濃度計と同じ構成とし、測定管19の厚
みを0.5mm乃至3.5mmまで変えた時の測定精度
を求めた。この時の測定管19の材質はテフロン(登録
商標)とし、マイクロ波の送信周波数を2.0GHzと
し、被測定対象液1aは、ほぼ常温(20℃)で設定し
た。
Next, an experiment was conducted on the microwave type densitometer constructed as described above to examine the relationship between the thickness of the measuring tube 19 and the measurement accuracy of the densitometer. The experiment has the same configuration as the microwave densitometer shown in FIG. 1, and the measurement accuracy is obtained when the thickness of the measuring tube 19 is changed from 0.5 mm to 3.5 mm. At this time, the material of the measuring tube 19 was Teflon (registered trademark), the microwave transmission frequency was 2.0 GHz, and the liquid 1a to be measured was set at about room temperature (20 ° C.).

【0038】この測定管19の材質とマイクロ波の周波
数の選定理由を以下に述べる。マイクロ波の周波数は、
精度とコストの関係から、1.7乃至2.0GHzとし
た。送信周波数も、測定精度がもっとも悪化する条件、
即ち、受信回路のS/Nが最も低下するマイクロ波の減
衰率が大きくなる2.0GHzとした。
The reason for selecting the material of the measuring tube 19 and the microwave frequency will be described below. The microwave frequency is
From the relationship between accuracy and cost, it is set to 1.7 to 2.0 GHz. As for the transmission frequency, the condition where the measurement accuracy is the worst,
That is, the frequency is set to 2.0 GHz, which maximizes the attenuation factor of the microwave, which has the lowest S / N of the receiving circuit.

【0039】一方、測定管19の材質としては、その比
誘電率の値が大きい材質のもの程マイクロ波の減衰率が
大きくなり、測定管19を伝播するマイクロ波の影響は
小さくなる。従って、実験で使用した以上の比誘電率を
有する材質であれば実験結果以上の測定誤差は生じない
ことから、比誘電率の値が比較的小さいサニタリー用途
に適するテフロン(登録商標)、(比誘電率ほぼ2.
0)を使用して実験した。
On the other hand, as the material of the measuring tube 19, the material having a larger relative permittivity value has a larger microwave attenuation factor, and the influence of the microwave propagating through the measuring tube 19 becomes smaller. Therefore, as long as the material has a relative permittivity higher than that used in the experiment, a measurement error higher than the experimental result does not occur. Therefore, Teflon (registered trademark) suitable for sanitary applications having a relatively low relative permittivity value, Dielectric constant of about 2.
0) was used for the experiment.

【0040】さらに、被測定対象液1aの被誘電率は、
温度依存性が大きいため測定精度に影響しない範囲とす
るため、ほぼ常温とした。
Further, the dielectric constant of the measured liquid 1a is
Since the temperature dependence is large, the temperature is set to about room temperature so as not to affect the measurement accuracy.

【0041】その結果を、図3に示す。この図において
測定管19の厚さが2.5mmを超えると急激に測定精
度が悪化するが、測定管19の厚みが3.0mm以下で
あれば濃度測定装置として使用可能な精度1.0%を確
保できることが分かった。また、テフロン(登録商標)
は、その形成工程でピンホールの発生を避けることが出
来ないが、図4に示す様に、1.7mm以上の厚みであ
ればピンホールの発生個数も要求品質の水準以上を確保
できることが確認できた。
The results are shown in FIG. In this figure, when the thickness of the measuring tube 19 exceeds 2.5 mm, the measurement accuracy deteriorates sharply, but if the thickness of the measuring tube 19 is 3.0 mm or less, the accuracy of 1.0% that can be used as a concentration measuring device is obtained. It turns out that I can secure. In addition, Teflon (registered trademark)
It is unavoidable that pinholes are generated in the forming process, but as shown in Fig. 4, it was confirmed that the number of pinholes generated can be kept at the required quality level or higher if the thickness is 1.7 mm or more. did it.

【0042】上述したように、本実施の形態のマイクロ
波濃度計によれば、測定管19を介して伝播するマイク
ロ波を減衰できるので、測定管19内面に凹凸がないサ
ニタリー要求を満足する高精度な測定が可能となる。
As described above, according to the microwave densitometer of the present embodiment, the microwave propagating through the measuring tube 19 can be attenuated, so that the inner surface of the measuring tube 19 has no unevenness, which satisfies the sanitary requirement. Accurate measurement is possible.

【0043】なお、測定管としてガラス等の材質を使用
する場合は、比誘電率は7乃至8程度であり、マイクロ
波の影響はより軽減されるが、ガラスの強度を考慮して
所定の強度以下で使用する必要がある。
When a material such as glass is used for the measuring tube, the relative permittivity is about 7 to 8 and the influence of microwaves is further reduced, but the strength of glass is taken into consideration. Must be used below.

【0044】(第2の実施の形態)図5(a)は、本発
明の第2に実施の形態に係わるマイクロ波式濃度計の
送、受信アンテナ取り付け部の構造を説明する断面図で
ある。図5(b)は、図5(a)のVI−VI矢視断面図で金
属リング20の構造を示す。
(Second Embodiment) FIG. 5 (a) is a sectional view for explaining the structure of a transmitting / receiving antenna mounting portion of a microwave type densitometer according to a second embodiment of the present invention. . FIG. 5B is a sectional view taken along the line VI-VI of FIG. 5A and shows the structure of the metal ring 20.

【0045】被測定対象液1aは、絶縁物材質、例えば
セラミックスや機械的強度のある樹脂等から製造された
測定管21のみで配管強度を満足する様に構成されてい
る。また、測定管21を伝播して受信されるマイクロ波
を遮断するため、送信アンテナ2及びアンテナ取り付け
部22、測定管21、受信アンテナ取り付け部23から
受信アンテナ3への経路で伝播されるマイクロ波を遮断
する金属リング20が測定管21の送信側と受信側に埋
め込まれ、夫々接地されて設定されている。
The liquid 1a to be measured is constructed so that the pipe strength is satisfied only by the measuring pipe 21 made of an insulating material such as ceramics or resin having mechanical strength. Further, in order to block the microwaves propagated through the measurement pipe 21 and received, the microwaves propagated along the path from the transmission antenna 2 and the antenna mounting portion 22, the measurement pipe 21, the reception antenna mounting portion 23 to the reception antenna 3. A metal ring 20 for shutting off is embedded in the transmitting side and the receiving side of the measuring tube 21 and is set to be grounded respectively.

【0046】なお、アンテナ取り付け部22,23は、
測定管21と同一の材質で一体成型してもよい。その他
の構成は、前述の第1の発明の形態と同様であるので、
説明は省略する。
The antenna mounting portions 22 and 23 are
The measuring tube 21 may be integrally molded with the same material. Since other configurations are similar to those of the above-described first aspect of the invention,
The description is omitted.

【0047】この様に構成された、マイクロ波濃度計は
被測定対象液1aを測定管21ののみで保持するので金
属パイプ等の重量物がないので軽量化できる。一方、こ
の構造は外来する電磁波に対する遮蔽や、自らが漏洩す
るマイクロ波の遮蔽が出来ていないが、例えば、本装置
全体が金属筐体に組み込まれ使用されるものであれば十
分遮蔽可能で使用上の問題はない。
Since the microwave densitometer constructed in this way holds the liquid 1a to be measured only by the measuring pipe 21, there is no heavy object such as a metal pipe and the weight can be reduced. On the other hand, this structure does not shield external electromagnetic waves or microwaves leaked by itself, but for example, if the entire device is used by being incorporated in a metal housing, it can be shielded sufficiently. There is no problem above.

【0048】上述したように、本実施の形態のマイクロ
波濃度計によれば、測定管21を介して伝播されるマイ
クロ波を遮蔽できるので軽量で高精度な測定が可能とな
る。
As described above, according to the microwave densitometer of the present embodiment, the microwave propagating through the measuring tube 21 can be shielded, so that lightweight and highly accurate measurement can be performed.

【0049】[0049]

【発明の効果】以上説明したように、送、受信アンテナ
を測定管に対してシール材を介して取り付ける必要のな
い絶縁物製の測定管としたことによって、内面に凹凸や
隙間ができない構造を実現できる。これにより汚れが付
着し難く、異物の堆積も起こらず、サニタリー仕様を容
易に満足し、更に測定管より伝播するマイクロ波を減衰
もしくは遮断したことによって高精度なマイクロ波式濃
度計を提供できる。
As described above, since the transmitting and receiving antennas are made of an insulating measuring tube which does not need to be attached to the measuring tube via a sealing material, a structure having no irregularities or gaps on the inner surface is provided. realizable. As a result, it is possible to provide a highly accurate microwave densitometer because dirt is unlikely to adhere, foreign substances do not accumulate, sanitary specifications are easily satisfied, and the microwave propagating from the measuring tube is attenuated or blocked.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の第1の実施の形態による構成図。FIG. 1 is a configuration diagram according to a first embodiment of the present invention.

【図2】 本発明の第1の実施の形態による測定管の断
面図。
FIG. 2 is a sectional view of the measuring tube according to the first embodiment of the present invention.

【図3】 本発明の第1の実施の形態による作用説明
図。
FIG. 3 is an operation explanatory view according to the first embodiment of the present invention.

【図4】 本発明の第1の実施の形態による作用説明
図。
FIG. 4 is an operation explanatory view according to the first embodiment of the present invention.

【図5】 本発明の第2の実施の形態による測定管の断
面図。
FIG. 5 is a sectional view of a measuring tube according to a second embodiment of the present invention.

【図6】 従来のマイクロ波濃度計の構成図。FIG. 6 is a configuration diagram of a conventional microwave densitometer.

【図7】 マイクロ波濃度計の検量線の説明図。FIG. 7 is an explanatory diagram of a calibration curve of a microwave densitometer.

【図8】 従来のマイクロ波式濃度計の送信、受信アン
テナの取り付け構造を示す断面図。
FIG. 8 is a cross-sectional view showing a mounting structure of a transmission / reception antenna of a conventional microwave densitometer.

【符号の説明】[Explanation of symbols]

1 測定管 1a 被測定対象液 2 送信アンテナ 3 受信アンテナ 4 パワースプリッタ 5 位相差判定回路 6 濃度演算器 7 マイクロ波発信器 8 窓穴 9 窓穴 11 シール材 12 シール材 13 窓板 14 窓板 17 送信ケーブル 18 受信ケーブル 19 測定管(絶縁物) 20 金属リング 21 測定管(絶縁物) 22 アンテナ取り付け部 23 アンテナ取り付け部 24 金属パイプ 25、26 フランジ 1 measuring tube 1a Liquid to be measured 2 transmitting antenna 3 receiving antenna 4 power splitter 5 Phase difference determination circuit 6 Concentration calculator 7 microwave transmitter 8 window holes 9 window holes 11 Seal material 12 Seal material 13 window 14 window 17 Transmission cable 18 Receive cable 19 Measuring tube (insulator) 20 metal rings 21 Measuring tube (insulator) 22 Antenna mounting part 23 Antenna mounting part 24 metal pipes 25, 26 flange

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 測定管の管軸を挟む形で測定管外周面に
マイクロ波送信手段とマイクロ波受信手段を対向配置
し、マイクロ波により前記測定管内の被測定対象液の濃
度を測定するマイクロ波式濃度計において、前記マイク
ロ波は、1.7GHz乃至2.0GHzの周波数範囲と
し、前記測定管は、マイクロ波の遮蔽部材で覆われた外
管の内面を絶縁物で構成し、前記絶縁物の比誘電率を
2.0乃至8.0とし、その肉厚を1.7mm乃至3.
0mmとしたことを特徴とするマイクロ波式濃度計。
1. A microwave measuring means for measuring the concentration of a liquid to be measured in the measuring pipe by arranging a microwave transmitting means and a microwave receiving means on an outer peripheral surface of the measuring pipe so as to sandwich the pipe axis of the measuring pipe. In the microwave densitometer, the microwave has a frequency range of 1.7 GHz to 2.0 GHz, and the measuring tube has an inner surface of an outer tube covered with a microwave shielding member made of an insulating material. The relative permittivity of the product is 2.0 to 8.0, and the wall thickness is 1.7 mm to 3.
A microwave type densitometer characterized by having a thickness of 0 mm.
【請求項2】 測定管の管軸を挟む形で測定管外周面に
マイクロ波送信手段とマイクロ波受信手段を対向配置
し、マイクロ波により前記測定管内の被測定対象液の濃
度を測定するマイクロ波式濃度計において、前記測定管
を絶縁物とし、前記マイクロ波の送信アンテナの電磁波
放射面と前記マイクロ波受信アンテナの電磁波受信面と
を前記測定管を経由して伝播されるマイクロの伝播経路
を遮断する様に金属で覆い、且つ前記金属を接地したこ
とを特徴とするマイクロ波式濃度計。
2. A microwave measuring means for measuring a concentration of a liquid to be measured in the measuring tube by arranging a microwave transmitting means and a microwave receiving means on an outer peripheral surface of the measuring tube so as to sandwich the tube axis of the measuring tube. In the wave densitometer, the measurement tube is an insulator, and the propagation path of the micro wave propagated through the measurement tube between the electromagnetic wave radiation surface of the microwave transmission antenna and the electromagnetic wave reception surface of the microwave reception antenna. A microwave densitometer, characterized in that it is covered with a metal so as to shut off the metal, and the metal is grounded.
JP2002117063A 2002-04-19 2002-04-19 Microwave densitometer Expired - Fee Related JP3998504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002117063A JP3998504B2 (en) 2002-04-19 2002-04-19 Microwave densitometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002117063A JP3998504B2 (en) 2002-04-19 2002-04-19 Microwave densitometer

Publications (2)

Publication Number Publication Date
JP2003315285A true JP2003315285A (en) 2003-11-06
JP3998504B2 JP3998504B2 (en) 2007-10-31

Family

ID=29534383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002117063A Expired - Fee Related JP3998504B2 (en) 2002-04-19 2002-04-19 Microwave densitometer

Country Status (1)

Country Link
JP (1) JP3998504B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007121034A (en) * 2005-10-26 2007-05-17 Meiji Milk Prod Co Ltd Device and method for measuring solid content in viscous fluid
JP2013213833A (en) * 2013-07-12 2013-10-17 Toshiba Corp Electromagnetic wave physical quantity measurement device
JP2014048048A (en) * 2012-08-29 2014-03-17 Toshiba Corp Microwave densitometer
CN110793979A (en) * 2019-10-16 2020-02-14 中国科学院遥感与数字地球研究所 Method and device for measuring wood density of standing tree

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007121034A (en) * 2005-10-26 2007-05-17 Meiji Milk Prod Co Ltd Device and method for measuring solid content in viscous fluid
JP2014048048A (en) * 2012-08-29 2014-03-17 Toshiba Corp Microwave densitometer
JP2013213833A (en) * 2013-07-12 2013-10-17 Toshiba Corp Electromagnetic wave physical quantity measurement device
CN110793979A (en) * 2019-10-16 2020-02-14 中国科学院遥感与数字地球研究所 Method and device for measuring wood density of standing tree
CN110793979B (en) * 2019-10-16 2021-04-06 中国科学院遥感与数字地球研究所 Method and device for measuring wood density of standing tree

Also Published As

Publication number Publication date
JP3998504B2 (en) 2007-10-31

Similar Documents

Publication Publication Date Title
DK2698869T3 (en) Microwave window and level measuring system operating according to the radar principle
JP3139874B2 (en) Densitometer
EP1734348B1 (en) Horn antenna with composite material emitter
US9000775B2 (en) Fill-level measuring device for ascertaining and monitoring fill level of a medium located in the process space of a container by means of a microwave travel time measuring method
US9110165B2 (en) Measuring device of process automation technology for ascertaining and monitoring a chemical or physical process variable in a high temperature process in a container
US7999725B2 (en) Level monitoring device for determining and monitoring a fill level of a medium in the process area of a vessel
EP1794551B1 (en) Radar level gauge comprising a sealing unit with microwave blocking means
US6799475B2 (en) Flowmeter
JPH08500907A (en) Device for measuring filling level in containers
JP2001324374A (en) Filling level measuring device
US10001398B2 (en) Fill-level measuring device and apparatus for determining the dielectric constant
US10113899B2 (en) Apparatus for determining fill level of a fill substance in a container with process isolation having at least two plastics
JP2003315285A (en) Microwave concentration meter
JP3199815B2 (en) Densitometer
JP2001074671A (en) Microwave densitometer
JP4208004B2 (en) Microwave concentration measurement method
JPH11118733A (en) Radiowave densitometer
JP4028284B2 (en) Substance measuring device
JPH1183758A (en) Densitometer
JP2003139722A (en) Microwave type concentration
CN109799247B (en) Device and method for detecting phase content of two-phase flow based on microwave transmission time
CN217641779U (en) High-frequency radar level meter antenna device
JP3730488B2 (en) Densitometer
JP5361124B2 (en) Electromagnetic physical quantity measuring device
JP3885406B2 (en) Sludge concentration meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050224

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050415

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070807

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees