JP2003315146A - Monitoring method and device for pump vibration - Google Patents

Monitoring method and device for pump vibration

Info

Publication number
JP2003315146A
JP2003315146A JP2002125159A JP2002125159A JP2003315146A JP 2003315146 A JP2003315146 A JP 2003315146A JP 2002125159 A JP2002125159 A JP 2002125159A JP 2002125159 A JP2002125159 A JP 2002125159A JP 2003315146 A JP2003315146 A JP 2003315146A
Authority
JP
Japan
Prior art keywords
pump
vibration
frequency
vertical
pump system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002125159A
Other languages
Japanese (ja)
Other versions
JP3624289B2 (en
Inventor
Masaaki Takayanagi
政明 高柳
Shinichi Shimoide
新一 下出
Hiroaki Yoda
裕明 依田
Taiji Hashimoto
泰司 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Ltd
Hitachi Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Industries Co Ltd filed Critical Hitachi Ltd
Priority to JP2002125159A priority Critical patent/JP3624289B2/en
Publication of JP2003315146A publication Critical patent/JP2003315146A/en
Application granted granted Critical
Publication of JP3624289B2 publication Critical patent/JP3624289B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To predict and prevent an excessive vibration before the vibration increases due to resonance when a pump is started. <P>SOLUTION: Pressure fluctuation and vibration of an internal fluid in a pipe or a casing are measured. By conducting frequency analysis of the obtained data, a vertical direction excitation vibration frequency f<SB>v</SB>, a horizontal direction excitation vibration frequency f<SB>h</SB>, an excitation vibration frequency f<SB>p</SB>generated by pressure fluctuation, a vertical direction natural frequency f<SB>vn</SB>, and a horizontal direction natural frequency f<SB>hn</SB>are obtained. When 2f<SB>hn</SB>-2f<SB>hn</SB>×0.05≤f<SB>v</SB>≤2f<SB>hn</SB>+2 f<SB>hn</SB>×0.05, or 2f<SB>hn</SB>-2f<SB>hn</SB>×0.05≤f<SB>p</SB>≤2f<SB>hn</SB>+2f<SB>hn</SB>×0.05, or when 0.975≤2f<SB>hn</SB>/f<SB>vn</SB>≤1.025 and f<SB>h</SB>is in a range between plus and minus 5% of f<SB>hn</SB>or f<SB>v</SB>is in a range between plus and minus 5% or f<SB>vn</SB>, an alarm warning an excessive vibration is issued. In addition, by recording the measurement and monitoring data, a discharge pressure, a discharge flow rate, and a rotating speed of the pump, and level of suction water, and referring these data in a continuous operation and operation condition change, an operation condition which may increase vibration can be avoided. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はポンプの原動機加振
力、流体加振力等によるポンプ運転時の振動を防止ある
いは減少させる技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for preventing or reducing vibration during pump operation due to a driving force of a prime mover of a pump, a fluid exciting force and the like.

【0002】[0002]

【従来の技術】振動予知のためには振動値のみを監視す
る方法が採られることが多い。例えば特開10-176950号
公報記載の「振動監視装置」では、振動監視の対象とな
る装置の振動について過去から現在までの振動状態の変
化を初期の振動値に対する相対値で視覚的に認識できる
よう表示する振動監視装置をキャンドモーターポンプに
適用している。
2. Description of the Related Art A method of monitoring only a vibration value is often adopted for predicting vibration. For example, in the "vibration monitoring device" described in Japanese Patent Laid-Open No. 10-176950, it is possible to visually recognize the change in the vibration state from the past to the present regarding the vibration of the device that is the object of the vibration monitoring, as a relative value to the initial vibration value. The vibration monitoring device that displays is applied to the canned motor pump.

【0003】[0003]

【発明が解決しようとする課題】ポンプ運転時の振動を
予知・防止するための従来技術の振動値のみを監視する
方法では、初期の振動測定値との相対比較で判定するし
かなく、共振により振動が大きくなるまで感知できな
い。このため、共振により過大な振動が生ずるおそれが
あった。
In the prior art method of monitoring only the vibration value for predicting / preventing vibration during pump operation, there is no choice but to make a relative comparison with the initial vibration measurement value, and to detect the vibration. It cannot be detected until the vibration becomes large. Therefore, there is a possibility that excessive vibration may occur due to resonance.

【0004】本願発明の目的は、共振により振動が大き
くなるまえに、ポンプ運転時の過大な振動を予知・防止
することにある。
An object of the present invention is to predict and prevent excessive vibration during pump operation before the vibration is increased due to resonance.

【0005】[0005]

【課題を解決するための手段】本発明に係るポンプの振
動を予知し防止する方法及び装置の基本的な部分は次の
二つから成る。
The basic parts of the method and device for predicting and preventing the vibration of the pump according to the present invention consist of the following two.

【0006】その一つは、ポンプの複数箇所、例えばケ
ーシングやその支持構造物、原動機支持構造物、ベンド
管部の、立軸方向及び水平方向の振動と、配管あるいは
ケーシングの内部流体の圧力を計測し、通常の共振関係
(加振振動数=固有振動数)だけでなく、パラメトリッ
ク励振の発生条件を監視することにより、振動発生を予
知、警告することである。
One of them is to measure the vertical and horizontal vibrations of a plurality of parts of the pump, such as the casing and its supporting structure, the motor supporting structure, and the bend pipe, and the pressure of the fluid inside the pipe or casing. However, not only the normal resonance relationship (excitation frequency = natural frequency) but also the occurrence condition of parametric excitation is monitored to predict and warn the occurrence of vibration.

【0007】他の一つは、ポンプ運転条件及び上記計測
・監視データを保存しておき、連続運転時や運転条件変
更時に参照可能とすることである。
The other is to store the pump operating conditions and the above measurement / monitoring data so that they can be referred to during continuous operation or when operating conditions are changed.

【0008】パラメトリック励振の発生条件の一つは、
立軸方向の加振振動数fvが、水平方向の固有振動数fhn
の2倍の振動数の近傍にあることであり、具体的には水
平方向の固有振動数fhnの2倍の振動数を含んで設定さ
れる警報領域にあることである。警報領域の幅は、立軸
方向の振動の加速度の大きさに応じて設定する必要はあ
る。
One of the conditions for generating parametric excitation is
The vibration frequency fv in the vertical direction is the natural frequency fhn in the horizontal direction.
That is, it is in the vicinity of a frequency twice as high as that of, and specifically, it is in an alarm region set including a frequency twice the natural frequency fhn in the horizontal direction. The width of the alarm area needs to be set according to the magnitude of acceleration of vibration in the vertical direction.

【0009】パラメトリック励振の発生条件の他の一つ
は、ポンプ内部の水の圧力変動に起因する加振振動数fp
が、水平方向の固有振動数fhnの2倍の振動数の近傍に
あることであり、具体的には水平方向の固有振動数fhn
の2倍の振動数を含んで設定される前記警報領域にある
ことである。
Another one of the conditions for generating parametric excitation is the vibration frequency fp caused by the pressure fluctuation of water inside the pump.
Is in the vicinity of a frequency twice the natural frequency fhn in the horizontal direction. Specifically, the natural frequency fhn in the horizontal direction is fhn.
It is in the alarm area that is set to include twice the frequency.

【0010】パラメトリック励振の発生条件のさらに他
の一つは、立軸方向の固有振動数fvnが、水平方向の固
有振動数fhnに対して、0.975≦2fhn/fvn≦1.025の条
件を満たし、かつ、水平方向の加振力の加振振動数fh
≒fhn(fhがfhnの±5%の範囲内)または立軸方向の加振
力の加振振動数fv≒fvn(fv がfvn の±5%の範囲内)の
条件が満たされることである。
Still another one of the conditions for generating parametric excitation is that the natural frequency fvn in the vertical direction satisfies the condition of 0.975≤2fhn / fvn≤1.025 with respect to the natural frequency fhn in the horizontal direction, and Excitation frequency fh of excitation force in the horizontal direction
It means that the condition of ≈fhn (fh is within ± 5% of fhn) or the vibration frequency fv of the vertical axis force fv≈fvn (where fv is within ± 5% of fvn) is satisfied.

【0011】前記各加振振動数、固有振動数は、ポンプ
の複数箇所に取りつけた加速度計で計測した立軸方向や
水平方向の振動のデータの周波数分析結果、ポンプの複
数箇所に取りつけた圧力計で計測したポンプ内の水の圧
力変動のデータの周波数分析結果に基いて算出できる。
The above-mentioned vibration frequencies and natural frequencies are the frequency analysis results of vertical and horizontal vibration data measured by accelerometers attached to a plurality of points of the pump, and pressure gauges attached to a plurality of points of the pump. It can be calculated based on the frequency analysis result of the data of the pressure fluctuation of the water in the pump measured in step.

【0012】算出された前記各加振振動数、固有振動数
に基いて、前記パラメトリック励振の発生条件のいずれ
かが成立するかどうかを判断する。前記パラメトリック
励振の発生条件のいずれかが成立すると判断されたら、
振動増大の危険性ありとして警報を出力する。また、警
報出力に併せて、ポンプ運転条件の変更を指示する制御
信号を出力する。
Based on the calculated vibration frequencies and natural frequencies, it is determined whether any of the conditions for generating the parametric excitation is satisfied. If it is determined that any of the conditions for occurrence of the parametric excitation is satisfied,
An alarm is output as there is a risk of increased vibration. In addition to the alarm output, it also outputs a control signal instructing to change the pump operating conditions.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態を図1
〜図8を参照して説明する。図1は本発明の実施の形態
に係るポンプ設備を示す断面図で、図示のポンプ設備
は、建屋7に形成された吸込水路13と、この吸込水路13
の水を排水するポンプ系32と、ポンプ系32に付属して
設けられた制御部を含んで構成されている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to FIG.
~ It demonstrates with reference to FIG. FIG. 1 is a cross-sectional view showing a pump equipment according to an embodiment of the present invention. The illustrated pump equipment includes a suction water passage 13 formed in a building 7 and this suction water passage 13
It is configured to include a pump system 32 for draining the above water and a control unit attached to the pump system 32.

【0014】ポンプ系32は、吸込水路13の水面下に回
転軸を上下方向にし吸込口12を下方に向けて配置された
ポンプ部1と、ポンプ部1の上側にポンプ部1と同心状
に結合された円筒状の吐出側ケ−シング5と、吐出側ケ
−シング5の上側に結合されたベンド管11と、ベンド管
11の下流端に軸線を水平にして結合された吐出弁8と、
吐出弁8の出側に接続された吐出配管9と、ベンド管11
の上部に結合された原動機台10と、原動機台10に設置さ
れ前記ポンプ部1と上下方向に配置された駆動軸4で結
合されてポンプ部1を駆動する減速機3及び原動機2
と、吐出側ケ−シング5の外周に固着されてポンプ系全
体を建屋7に結合して支持する支持構造物6と、を含ん
で構成されている。すなわち、ポンプ系32は、水路水
面と垂直方向に水を吸込む立軸ポンプからなっている。
The pump system 32 includes a pump portion 1 which is arranged below the surface of the suction water passage 13 with a rotating shaft in the vertical direction, and a suction port 12 facing downward, and above the pump portion 1 concentrically with the pump portion 1. The combined cylindrical discharge side casing 5, the bend pipe 11 connected to the upper side of the discharge side casing 5, and the bend pipe.
A discharge valve 8 connected to the downstream end of 11 with its axis horizontal,
A discharge pipe 9 connected to the outlet side of the discharge valve 8 and a bend pipe 11
A motor base 10 coupled to the upper part of the motor, and a reducer 3 and a motor 2 that drive the pump unit 1 by being connected to the pump unit 1 installed on the motor base 10 and vertically arranged in the pump unit 1.
And a support structure 6 fixed to the outer periphery of the discharge side casing 5 to support the entire pump system by being coupled to the building 7. That is, the pump system 32 is a vertical pump that sucks water in a direction perpendicular to the water surface of the water channel.

【0015】制御部は、図2に示すように、ポンプ系3
2に装着された加速度計15〜23及び圧力計24〜26と、加
速度計15〜23及び圧力計24〜26に接続されたA/D変換
器27と、A/D変換器27に接続されたFFTアナライザ28
と、FFTアナライザ28に接続された演算・表示・保存・
参照部29と、演算・表示・保存・参照部29に接続された
ポンプ制御装置31と、を含んで構成され、ポンプ制御装
置31は、ポンプ系32に接続されて原動機2及び減速機
3を介してポンプ部1を駆動し、制御する。演算・表示
・保存・参照部29は、インターネット30に接続されてい
る。ポンプ制御装置31は、図示されていない入出力装置
を介して入力されるポンプ系の運転管理者の操作指示に
よる他、図示されていないセンサの信号を入力として生
成される内装された制御プログラムによる自動制御信
号、演算・表示・保存・参照部29から入力される制御信
号、インターネット30を介して入力される制御信号等に
より、ポンプ系32の運転や吐出弁8の開度を制御す
る。
The control unit, as shown in FIG.
2 is connected to the accelerometers 15 to 23 and the pressure gauges 24 to 26, the A / D converter 27 connected to the accelerometers 15 to 23 and the pressure gauges 24 to 26, and the A / D converter 27. FFT analyzer 28
And the calculation, display, save, etc. connected to the FFT analyzer 28.
It is configured to include a reference unit 29 and a pump control device 31 connected to the calculation / display / save / reference unit 29. The pump control device 31 is connected to the pump system 32 to connect the prime mover 2 and the speed reducer 3 to each other. The pump unit 1 is driven and controlled via the above. The calculation / display / save / reference unit 29 is connected to the Internet 30. The pump control device 31 uses an internal control program that is generated by inputting a sensor signal (not shown) as an input, in addition to an operation instruction of a pump system operation manager that is input via an input / output device (not shown). The operation of the pump system 32 and the opening of the discharge valve 8 are controlled by an automatic control signal, a control signal input from the calculation / display / save / reference unit 29, a control signal input via the Internet 30, and the like.

【0016】振動検出手段である加速度計15、16、17、
18、21、22は、管の軸方向と周方向の加速度成分を連続
的に計測するもので、同じく振動検出手段である加速度
計19、20は、支持構造物6の上面の互いに同じ高さの位
置に設置され、上下方向の加速度成分を連続的に計測す
るものである。振動検出手段である加速度計23は、原動
機2の上面中央に設置され、立軸方向の振動の加速度成
分を計測する。加速度計15、17、21は、それぞれ上下方
向の高さ(駆動軸をz軸としたとき、z軸方向の位置)
が異なる、吸込口12、吐出側ケ−シング5、原動機台10
の外周面にに設置され、いずれも管の上下の中心軸(z
軸)を含むx−z面の面内の軸方向加速度とx−z面に
直交する周方向の加速度を測定するように配置されてい
る。加速度計16、18、22は、それぞれ吸込口12、吐出側
ケ−シング5、ベンド管11の外周面のそれぞれ対応する
加速度計15、17、21と同じ高さに設置され、いずれも管
の上下の中心軸(z軸)を含むy−z面(前記x−z面
と直角に交わる面)の面内の軸方向加速度とy−z面に
直交する周方向の加速度を測定するように配置されてい
る。また、加速度計19はx−z面の面内の加速度を測定
するように配置され、加速度計20は、y−z面の面内の
加速度を測定するように配置されている。つまり、加速
度計15、17、19、21と加速度計16、18、20、22は、管の
上下の中心軸(駆動軸つまりz軸)を原点とするx−y
平面上で、90度ずれた位置に配置されている。
Accelerometers 15, 16, 17, which are vibration detecting means,
18, 21 and 22 continuously measure the acceleration components in the axial direction and the circumferential direction of the pipe, and the accelerometers 19 and 20 which are also vibration detection means have the same height on the upper surface of the support structure 6. It is installed at the position of and continuously measures the acceleration component in the vertical direction. An accelerometer 23, which is a vibration detecting means, is installed at the center of the upper surface of the prime mover 2 and measures the acceleration component of vibration in the vertical direction. Accelerometers 15, 17, and 21 are vertical heights (positions in the z-axis direction when the drive axis is the z-axis)
Different, suction inlet 12, discharge side casing 5, prime mover base 10
Are installed on the outer peripheral surface of the
It is arranged so as to measure the in-plane axial acceleration of the xz plane including the axis) and the circumferential acceleration orthogonal to the xz plane. The accelerometers 16, 18, and 22 are installed at the same height as the corresponding accelerometers 15, 17, and 21 on the suction port 12, the discharge side casing 5, and the outer peripheral surface of the bend pipe 11, respectively. In order to measure the in-plane axial acceleration of the yz plane (the plane that intersects the xz plane at right angles) including the upper and lower central axes (z axis) and the circumferential acceleration orthogonal to the yz plane. It is arranged. The accelerometer 19 is arranged to measure the in-plane acceleration of the xz plane, and the accelerometer 20 is arranged to measure the in-plane acceleration of the yz plane. That is, the accelerometers 15, 17, 19, and 21 and the accelerometers 16, 18, 20, and 22 are xy whose origins are the upper and lower central axes (driving axis or z axis) of the tube.
They are arranged at positions shifted by 90 degrees on the plane.

【0017】圧力検出手段である圧力計24は、加速度
計15とほぼ同位置に設けられ吸込側の変動圧力を連続的
に計測するもので、同じく圧力検出手段である圧力計2
5、26は、加速度計17、22とほぼ同位置に設けられて吐
出側の変動圧力を計測する。
The pressure gauge 24, which is a pressure detecting means, is provided at substantially the same position as the accelerometer 15 and continuously measures the fluctuation pressure on the suction side.
Reference numerals 5 and 26 are provided at substantially the same positions as the accelerometers 17 and 22, and measure the fluctuating pressure on the discharge side.

【0018】加速度計15〜23及び圧力計24〜26とA/D
変換器27とFFTアナライザ28と演算・表示・保存・参
照部29で、計測データ処理システムが構成されている。
Accelerometers 15-23 and pressure gauges 24-26 and A / D
The converter 27, the FFT analyzer 28, and the calculation / display / save / reference unit 29 constitute a measurement data processing system.

【0019】以下、上記構成の実施の形態の動作につい
て説明する。ポンプ運転時に、図2に示す計測データ処
理システムにより、加速度計15〜23と圧力計24〜26の信
号をA/D変換器27でデジタル化した後、FFTアナライザ2
8を用いてフーリェスペクトルを計算し、圧力変動の周
波数を求める。また、圧力信号を入力、振動値を応答と
して周波数応答関数(振幅比と位相)をFFTアナライザ2
8を用いて求める。図6にフーリェスペクトルの例を示
し、図7に周波数応答関数の例を示す。
The operation of the embodiment having the above configuration will be described below. During pump operation, the measurement data processing system shown in Fig. 2 digitizes the signals of accelerometers 15-23 and pressure gauges 24-26 with A / D converter 27, and then FFT analyzer 2
Calculate the Fourier spectrum using 8 and obtain the frequency of the pressure fluctuation. In addition, the frequency response function (amplitude ratio and phase) with the pressure signal as input and the vibration value as the response is FFT analyzer 2
Calculate using 8. FIG. 6 shows an example of the Fourier spectrum, and FIG. 7 shows an example of the frequency response function.

【0020】演算・表示・保存・参照部29では、FFTア
ナライザ28から出力されるフーリェスペクトルや周波数
応答関数を用いて、まず立軸方向の振動モードの固有振
動数を決定する。軸方向の加速度成分を計測する複数の
加速度信号の周波数応答関数から、共通するピークの周
波数を選び、圧力との位相が±90゜に近い場合、管系の
立軸方向の固有振動数fvnと決定する。圧力との位相が
±90゜に近いことは、共振していることを意味する。立
軸方向の振動モードであることの判定には、支持構造物
に設けた加速度計19、20の信号の周波数応答関数やフー
リェスペクトルの共通するピークの周波数の振幅値(絶
対値)がほぼ同等の大きさであることが有力な根拠とな
る。
The calculation / display / save / reference unit 29 first determines the natural frequency of the vibration mode in the vertical direction using the Fourier spectrum and the frequency response function output from the FFT analyzer 28. Select a common peak frequency from the frequency response functions of multiple acceleration signals that measure the acceleration component in the axial direction. If the phase with pressure is close to ± 90 °, determine the natural frequency fvn in the vertical direction of the pipe system. To do. The fact that the phase with the pressure is close to ± 90 ° means that it resonates. To determine the vertical vibration mode, the frequency response function of the signals of the accelerometers 19 and 20 provided on the support structure and the amplitude value (absolute value) of the common peak frequency of the Fourier spectrum are almost the same. Size is a strong reason.

【0021】演算・表示・保存・参照部29は、同様に、
周方向の加速度成分を計測する複数の加速度信号を図1
におけるx−z面或はy−z面の成分に分け、それぞれ
の周波数応答関数から共通するピークの周波数を選び、
圧力との位相が±90゜に近い場合、管系のx−z面或は
y−z面内の水平方向の固有振動数fhnと決定する。管
系の水平方向の振動モードであることの判定には、支持
構造物に設けた加速度計19、20の信号の周波数応答関数
やフーリェスペクトルの共通するピークの周波数のスペ
クトル値がどちらか一方が卓越して大きく他方はゼロに
近いことが有力な根拠となる。加速度計19、20の信号か
ら得られた結果のうち、大きい方が含まれる面内で管系
が水平方向に振動するモードとなる。
The calculation / display / save / reference section 29 similarly
Figure 1 shows multiple acceleration signals that measure the acceleration component in the circumferential direction.
In the xz plane or the yz plane component in, the common peak frequency is selected from each frequency response function,
When the phase with the pressure is close to ± 90 °, it is determined as the horizontal natural frequency fhn in the xz plane or the yz plane of the pipe system. To determine the horizontal vibration mode of the pipe system, either the frequency response function of the signals of the accelerometers 19 and 20 provided on the support structure or the spectral value of the frequency of the common peak of the Fourier spectrum is determined. It is a strong reason that it is outstandingly large and the other is close to zero. Among the results obtained from the signals of the accelerometers 19 and 20, a mode in which the pipe system vibrates in the horizontal direction within a plane including the larger one is obtained.

【0022】演算・表示・保存・参照部29は、次に、軸
方向の加速度成分を計測する複数の加速度信号のフーリ
ェスペクトルから、共通するピークの振動数を選び、管
系の立軸方向の加振力の加振振動数fvを決定する。立軸
方向の強制振動成分であることの判定には、支持構造物
に設けた加速度計19、20の信号のフーリェスペクトルの
共通するピークの振動数のスペクトル値がほぼ同等の大
きさであることが有力な根拠となり、この振動数で立軸
方向に加振される。
The calculation / display / save / reference unit 29 then selects a common peak frequency from the Fourier spectra of a plurality of acceleration signals for measuring the acceleration component in the axial direction, and applies the vibration in the vertical direction of the pipe system. Determine the vibration frequency fv of the vibration force. To determine the forced vibration component in the vertical direction, the spectral values of the common peak frequencies of the Fourier spectra of the signals of the accelerometers 19 and 20 provided on the support structure should be approximately equal. It becomes a strong basis, and is excited in the vertical direction at this frequency.

【0023】同様に演算・表示・保存・参照部29は、周
方向の加速度成分を計測する複数の加速度信号のフーリ
ェスペクトルのピークを求め、図1におけるx−z面或
はy−z面の成分に分けて、それぞれの面内の水平方向
の加振力の加振振動数fhを決定する。管系の水平方向の
強制振動成分であることの判定には、支持構造物に設け
た加速度計19、20の信号のフーリェスペクトルの共通す
るピークの周波数のスペクトル値がどちらか一方が卓越
して大きく他方はゼロに近いことが有力な根拠となる。
大きいほうが含まれる面内で管系が水平方向に加振され
る。
Similarly, the calculation / display / save / reference unit 29 finds the peaks of the Fourier spectrum of a plurality of acceleration signals for measuring the acceleration component in the circumferential direction, and calculates the peaks in the xz plane or the yz plane in FIG. The vibration frequency fh of the horizontal vibration force in each plane is determined for each component. To determine the horizontal forced vibration component of the pipe system, either one of the spectral values of the common peak frequency of the Fourier spectrum of the signals of the accelerometers 19 and 20 provided on the support structure is outstanding. The strong reason is that the other is close to zero.
The pipe system is excited horizontally in the plane containing the larger one.

【0024】これらの加振力は原動機、ポンプ、減速機
等から生ずる。
These exciting forces are generated by a prime mover, a pump, a speed reducer and the like.

【0025】圧力計の信号のフーリェスペクトルから、
変動圧力による加振振動数fpが得られる。
From the Fourier spectrum of the pressure gauge signal,
The vibration frequency fp due to the fluctuating pressure is obtained.

【0026】演算・表示・保存・参照部29は、次に、加
振振動数と固有振動数の関係を監視して、共振の恐れが
ある時警告を出す。一般の共振現象である加振振動数と
固有振動数が一致する場合は、当然のことである。ここ
では、特に以下の場合について判定し、必要に応じ警告
信号を出力する。まず、立軸方向の加振振動数fvがx−
z面或はy−z面内の水平方向の固有振動数fhn のほぼ
2倍になると、水平方向の振幅が大きくなる恐れがあ
る。これはパラメトリック励振現象と呼ばれる。パラメ
トリック励振現象の模式図を図4に示す。水平方向の振
動1周期の間に軸方向の振動が2周期生ずる。すなわち、
立軸方向の振動数が水平方向の固有振動数のほぼ2倍に
なっている。立軸ポンプでこの条件を満たす立軸方向の
加振振動数が加わると水平方向の振動が生じやすいこと
になる。この条件を満たす場合、警告を発し回転数を変
更してこの危険な条件を変更することを指示する。立軸
方向の加振源としては上述の原動機、ポンプ、減速機等
がある。
The calculation / display / save / reference unit 29 then monitors the relationship between the vibration frequency and the natural frequency and issues a warning when there is a risk of resonance. It is natural when the vibration frequency and the natural frequency, which are general resonance phenomena, match. Here, particularly, the following cases are determined, and a warning signal is output if necessary. First, the vibration frequency fv in the vertical direction is x−
Approximate horizontal natural frequency fhn in the z-plane or yz-plane
If doubled, the horizontal amplitude may increase. This is called the parametric excitation phenomenon. Figure 4 shows a schematic diagram of the parametric excitation phenomenon. Two horizontal vibrations occur in one horizontal vibration cycle. That is,
The vertical frequency is almost twice the horizontal natural frequency. When a vertical axis pumping vibration frequency satisfying this condition is applied, horizontal vibration is likely to occur. If this condition is met, a warning is issued and the number of rotations is changed to instruct to change this dangerous condition. As the vertical vibration source, there are the above-mentioned prime mover, pump, speed reducer and the like.

【0027】この場合のパラメトリック励振が生じる恐
れの多い立軸方向の加振振動数fvの範囲は、x−z面或
はy−z面内の水平方向の固有振動数fhn の2倍の周波
数を中心にした領域であるが、領域の広さは、立軸方向
の加速度に関連している。図8は、立軸方向の振動の加
速度の大きさを縦軸に取り、立軸方向の加振振動数fvを
横軸にとって、パラメトリック励振が生じる危険性のあ
る立軸方向の加振振動数領域(警報領域)を、曲線Aの
内側として示している。すなわち、立軸方向の振動の加
速度が小さければ、パラメトリック励振が生じる危険性
のある立軸方向の加振振動数fvの範囲も狭まる。したが
って、パラメトリック励振が生じる危険性のある立軸方
向の加振振動数fvの領域の広さは、実際のプラントの、
立軸方向の振動の加速度のレベルに応じて、前記x−z
面或はy−z面内の水平方向の固有振動数fhn の2倍の
周波数の両側に設定するのが望ましい。
In this case, the range of the excitation frequency fv in the vertical direction in which parametric excitation is likely to occur is a frequency twice the natural frequency fhn in the horizontal direction in the xz plane or the yz plane. Although it is a centered region, the width of the region is related to the acceleration in the vertical direction. In FIG. 8, the vertical axis represents the magnitude of acceleration of vibration in the vertical axis, and the horizontal axis represents the vibration frequency fv in the vertical axis, and the horizontal axis represents the vibration frequency range in the vertical axis (alarm Region) is shown as inside of curve A. That is, if the acceleration of the vibration in the vertical direction is small, the range of the vibration frequency fv in the vertical direction that may cause parametric excitation is narrowed. Therefore, the width of the area of the excitation frequency fv in the vertical direction where there is a risk of parametric excitation is
Depending on the level of acceleration of vibration in the vertical direction, the xz
It is desirable to set both sides of the frequency twice the natural frequency fhn in the horizontal direction in the plane or the yz plane.

【0028】図8の場合、対象のポンプ系に生じる立軸
方向の振動の加速度のレベルを考慮して、パラメトリッ
ク励振が生じる危険性のある立軸方向の加振振動数fvの
範囲、すなわち警報領域が、2fhn−2fhn×0.05≦
fv≦2fhn+2fhn×0.05に設定されている。立軸方
向の加振振動数fvがこの警報領域にあるときは、振動増
大の危険性を示す警報を出力し、ポンプ系の運転管理者
に対応を促すか、前記図2に示すポンプ制御装置31に
より、運転条件を変更することになるまた、変動圧力の
振動数をfpとするとベンド管11の立軸方向加振力の振
動数がfpとなる。立軸方向加振力の振動数fpがx−z
面或はy−z面内の水平方向の固有振動数fhn のほぼ2
倍(2fhn−2fhn×0.05≦fp≦2fhn+2fhn×0.
05)になると、パラメトリック励振現象により立軸方
向加振によって水平方向の振幅が大きくなる恐れがあ
る。この条件を満たす場合、演算・表示・保存・参照部
29は、警告信号を発し、ポンプ回転数を変更してこの危
険な状態を惹起している運転条件を変更することを指示
する。ここでいう運転条件は、図5に示されているよう
に、ポンプ吐出流量、ポンプ回転数、ポンプ吐出圧力、
吸込み水位の組合せであり、これらの値を少なくとも一
つ変えることで振動状態が変化し、前記危険な状態を回
避することができる。
In the case of FIG. 8, in consideration of the level of acceleration of vertical vibration generated in the target pump system, the range of vertical vibration frequency fv at which there is a risk of parametric excitation, that is, the alarm region is 2fhn-2fhn × 0.05 ≦
It is set to fv ≦ 2fhn + 2fhn × 0.05. When the vibration frequency fv in the vertical direction is in this alarm region, an alarm indicating the risk of increased vibration is output to prompt the pump system operation manager to take action, or the pump control device 31 shown in FIG. As a result, the operating conditions are changed. Further, if the frequency of the fluctuating pressure is fp, the frequency of the vertical axis exciting force of the bend pipe 11 is fp. Vertical vibration frequency fp is xz
The natural frequency fhn of the horizontal direction in the plane or yz plane is approximately 2
(2fhn-2fhn × 0.05 ≦ fp ≦ 2fhn + 2fhn × 0.
In the case of (05), there is a possibility that the amplitude in the horizontal direction will increase due to the vertical direction excitation due to the parametric excitation phenomenon. If this condition is met, the calculation / display / save / reference section
29 issues a warning signal and indicates that the pump speed should be changed to change the operating conditions causing this dangerous condition. The operating conditions here are, as shown in FIG. 5, the pump discharge flow rate, the pump rotation speed, the pump discharge pressure,
It is a combination of suction water levels, and by changing at least one of these values, the vibration state changes, and the dangerous state can be avoided.

【0029】更に、加振振動数fe(fh,fv)と立軸方向
固有振動数fvn、水平方向固有振動数fhnの間の関係をチ
ェックする。fvn ≒2fhn(0.975≦2fhn/fvn≦1.025)
の内部共振条件を満たし、且つfh≒fhn(fhがfhnの±5
%の範囲内)またはfv≒fvn(fvがfvn の±5%の範囲内)
の時、小さい加振力でパラメトリック励振が発生する恐
れがある。この条件を満たす場合、演算・表示・保存・
参照部29は警告信号を発し、ポンプ回転数を変更してこ
の危険な状態を惹起している運転条件を変更することを
指示する。
Further, the relationship between the vibration frequency fe (fh, fv), the vertical natural frequency fvn, and the horizontal natural frequency fhn is checked. fvn ≈ 2fhn (0.975 ≦ 2fhn / fvn ≦ 1.025)
Satisfying the internal resonance condition of fh ≈ fhn (fh is ± 5 of fhn
%) Or fv≈fvn (fv is within ± 5% of fvn)
At that time, a small excitation force may cause parametric excitation. If this condition is met, calculation / display / save /
The reference unit 29 issues a warning signal and instructs to change the pump speed to change the operating conditions causing this dangerous condition.

【0030】上述の手順の流れを図3のフローチャート
に示す。演算・表示・保存・参照部29は、図3に示す演
算処理を予め定められている時間間隔で実行し、パラメ
トリック励振による振動増大の恐れがないかどうかを判
定する。連続運転時や運転条件変更時には、加振振動数
と固有振動数を演算・表示・保存・参照部29により表示
し、上記の振動数関係により不安定振動発生の危険性の
有無判定を行い、パラメトリック励振の条件を満たす場
合、警告信号を発し、ポンプ制御装置31によりポンプ回
転数を変更するなどの対応をして安定条件下の運転モー
ドにする。
The flow of the above procedure is shown in the flowchart of FIG. The calculation / display / save / reference unit 29 executes the calculation process shown in FIG. 3 at predetermined time intervals, and determines whether or not there is a risk of vibration increase due to parametric excitation. During continuous operation or when operating conditions are changed, the vibration frequency and natural frequency are calculated / displayed / stored / displayed by the reference unit 29, and the presence or absence of risk of unstable vibration is determined based on the above frequency relationship. When the condition of the parametric excitation is satisfied, a warning signal is issued, the pump control device 31 changes the pump rotation speed, and the like, and the operation mode under stable conditions is set.

【0031】演算・表示・保存・参照部29としてパソコ
ンを使用し、このパソコンをインターネット30に接続し
て前記フーリェスペクトルや周波数応答関数、さらには
前記fh,fv、fhn,fvnをインターネット30に接続した端
末から読み出せるようにすることにより、関係者は遠隔
地から振動状態を参照し、パラメトリック励振の条件を
満たす場合、警告を発し、ポンプ制御装置31により回転
数変更などの対応処置ができる。
A personal computer is used as the calculation / display / save / reference unit 29, and the personal computer is connected to the Internet 30 to connect the Fourier spectrum and frequency response function, and further the fh, fv, fhn, fvn to the Internet 30. By making the data read from the terminal, the related person can refer to the vibration state from a remote place, issue a warning when the condition of the parametric excitation is satisfied, and take a corresponding action such as changing the rotation speed by the pump control device 31.

【0032】上記実施の形態のポンプ設備は、吸込水
位、回転数、流量、吐出圧力などの条件を変えて運転さ
れる場合がある。このため、図5に示すようにポンプ吐
出流量、ポンプ回転数、吐出圧力、吸込水位等の運転条
件を、前記ポンプ制御装置31を介して、演算・表示・保
存・参照部29に、所定の時間間隔で取りこんで記憶格納
するとともに、それら運転条件のデータを取りこむ各時
点での、前記各加振振動数及び固有振動数ならびに警報
出力の有無を併せて記憶格納しておき、連続運転時や運
転条件変更時に参照することにより、振動発生を予知
し、防止することができる。また、演算・表示・保存・
参照部29にパソコンを使用し、このパソコンをインター
ネット30に接続して前記図5に示すデータをインターネ
ット30に接続した端末から読み出せるようにすることに
より、関係者が離れた場所から過去及び現在の運転条件
と振動の関係を参照するための装置を提供できる。
The pump equipment of the above embodiment may be operated under different conditions such as suction water level, rotation speed, flow rate and discharge pressure. Therefore, as shown in FIG. 5, the pump discharge flow rate, the pump rotation speed, the discharge pressure, the operating conditions such as suction water level, through the pump control device 31, to the calculation, display, storage, reference unit 29, a predetermined While taking in at a time interval and storing it, the vibration frequency and natural frequency at each time when the data of those operating conditions are taken in and the presence or absence of an alarm output are also stored together at the time of continuous operation or By referring to it when changing the operating conditions, it is possible to predict and prevent the occurrence of vibration. In addition, calculation / display / save /
By using a personal computer for the reference unit 29 and connecting the personal computer to the internet 30 so that the data shown in FIG. 5 can be read from the terminal connected to the internet 30, the past and present can be viewed from a remote location. It is possible to provide a device for referring to the relationship between the operating condition and the vibration.

【0033】[0033]

【発明の効果】本発明によれば、広範囲の運転状態の立
軸ポンプの振動増大を予知・防止あるいは減少させるこ
とができる。
According to the present invention, it is possible to predict / prevent or reduce an increase in vibration of a vertical shaft pump in a wide range of operating conditions.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態に係るポンプ設備を示す側
面図である。
FIG. 1 is a side view showing a pump facility according to an embodiment of the present invention.

【図2】図1に示す実施の形態における計測データ処理
システムの要部構成を示すブロック図である。
FIG. 2 is a block diagram showing a main configuration of a measurement data processing system according to the embodiment shown in FIG.

【図3】図1に示す実施の形態における計測データ処理
システムの演算処理の流れを示す手順図である。
FIG. 3 is a procedure diagram showing a flow of arithmetic processing of the measurement data processing system in the embodiment shown in FIG.

【図4】図1に示す実施の形態における水平方向振動と
立軸方向振動の振動数関係の例を示す概念図である。
FIG. 4 is a conceptual diagram showing an example of a frequency relationship between horizontal vibration and vertical vibration in the embodiment shown in FIG.

【図5】図1に示す実施の形態において採取され格納さ
れる運転条件と加振振動数及び固有振動数のデータを示
す図である。
5 is a diagram showing operating conditions, vibration frequencies, and natural frequency data collected and stored in the embodiment shown in FIG. 1. FIG.

【図6】本発明の実施の形態によるフーリエスペクトル
の例を示す図である。
FIG. 6 is a diagram showing an example of a Fourier spectrum according to the embodiment of the present invention.

【図7】本発明の実施の形態による周波数応答関数の例
を示す図である。
FIG. 7 is a diagram showing an example of a frequency response function according to the embodiment of the present invention.

【図8】パラメトリック励振の恐れのある周波数領域の
例を示すグラフである。
FIG. 8 is a graph showing an example of a frequency region in which parametric excitation may occur.

【符号の説明】[Explanation of symbols]

1 ポンプ部 2 原動機 3 減速機 4 駆動軸 5 吐出ケ−シング 6 支持構造物 7 建屋 8 吐出弁 9 吐出配管 10 原動機台 11 ベンド管 12 吸込口 13 吸込水路 14 水表面 15〜23 加速度計 24〜26 圧力計 27 A/D変換器 28 FFTアナライザ 29 演算・表示・保存・参照部 30 インターネット 31 ポンプ制御装置 32 ポンプ系 1 pump section 2 prime mover 3 reducer 4 drive shaft 5 Discharge casing 6 Support structure 7 buildings 8 discharge valve 9 Discharge pipe 10 prime mover 11 Bend tube 12 Suction port 13 Suction channel 14 water surface 15-23 accelerometer 24-26 pressure gauge 27 A / D converter 28 FFT Analyzer 29 Calculation / display / save / reference section 30 Internet 31 Pump controller 32 pump system

───────────────────────────────────────────────────── フロントページの続き (72)発明者 下出 新一 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 依田 裕明 東京都足立区中川四丁目13番17号 株式会 社日立インダストリイズ内 (72)発明者 橋本 泰司 東京都足立区中川四丁目13番17号 株式会 社日立インダストリイズ内 Fターム(参考) 2G024 AD03 BA11 CA13 FA04 2G064 AA11 AB01 BA02 CC53 CC54 DD15 3H020 AA01 AA07 BA11 BA18 BA21 CA00 CA01 CA08 DA00 EA01 EA07 EA10 EA12 EA17 3H045 AA06 AA09 AA12 AA22 AA23 AA31 BA01 BA28 BA31 BA41 CA00 CA01 CA21 CA26 CA29 CA30 DA00 DA45 DA46 EA11 EA20 EA34 EA36 EA37 EA38 EA50    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Shinichi Shimode             502 Kintatemachi, Tsuchiura City, Ibaraki Japan             Tate Seisakusho Mechanical Research Center (72) Inventor Hiroaki Yoda             4-13 Nakagawa Adachi-ku, Tokyo Stock Exchange             Inside Hitachi Industries (72) Inventor Taiji Hashimoto             4-13 Nakagawa Adachi-ku, Tokyo Stock Exchange             Inside Hitachi Industries F-term (reference) 2G024 AD03 BA11 CA13 FA04                 2G064 AA11 AB01 BA02 CC53 CC54                       DD15                 3H020 AA01 AA07 BA11 BA18 BA21                       CA00 CA01 CA08 DA00 EA01                       EA07 EA10 EA12 EA17                 3H045 AA06 AA09 AA12 AA22 AA23                       AA31 BA01 BA28 BA31 BA41                       CA00 CA01 CA21 CA26 CA29                       CA30 DA00 DA45 DA46 EA11                       EA20 EA34 EA36 EA37 EA38                       EA50

Claims (18)

【特許請求の範囲】[Claims] 【請求項1】 上下方向に配置された駆動軸を備え、水
面下に位置する吸込み口から水面と垂直の方向に水を吸
込む立軸ポンプを有してなるポンプ系の振動監視方法で
あって、ポンプ立軸方向の加振振動数を検出して監視
し、検出したポンプ立軸方向の加振振動数が、ポンプ水
平方向の固有振動数の2倍の振動数を含む予め定めた警
報領域にあるとき、振動増加の危険性を警報するポンプ
系の振動監視方法。
1. A vibration monitoring method for a pump system, comprising: a vertical shaft pump; and a vertical shaft pump that sucks water in a direction perpendicular to the water surface from a suction port located below the water surface. When the vibration frequency in the pump vertical direction is detected and monitored, and the detected vibration frequency in the pump vertical direction is in a predetermined alarm area that includes twice the natural frequency in the horizontal direction of the pump. , A vibration monitoring method for pump systems that warns of the danger of increased vibration.
【請求項2】 上下方向に配置された駆動軸を備え、水
面下に位置する吸込み口から水面と垂直の方向に水を吸
込む立軸ポンプを有してなるポンプ系の振動監視方法で
あって、ポンプ内の流体の圧力変動の振動数を検出して
監視し、検出した圧力変動の振動数が、ポンプ水平方向
の固有振動数の2倍の振動数を含む予め定めた警報領域
にあるとき、振動増加の危険性を警報するポンプ系の振
動監視方法。
2. A vibration monitoring method for a pump system, comprising: a vertical axis drive shaft; and a vertical axis pump that sucks water in a direction perpendicular to the water surface from a suction port located below the water surface. When the frequency of the pressure fluctuation of the fluid in the pump is detected and monitored, and the detected frequency of the pressure fluctuation is in a predetermined alarm area that includes twice the natural frequency of the pump horizontal direction, A vibration monitoring method for pump systems that warns of the danger of increased vibration.
【請求項3】 請求項1又は2に記載のポンプ系の振動
監視方法において、ポンプ運転中に、ポンプ水平方向の
固有振動数を検出し、前記警報領域は、検出されたポン
プ水平方向の固有振動数に基いて設定されることを特徴
とするポンプ系の振動監視方法。
3. The vibration monitoring method for a pump system according to claim 1, wherein a natural frequency in the horizontal direction of the pump is detected during pump operation, and the alarm region is the natural frequency in the detected horizontal direction of the pump. A vibration monitoring method for a pump system, wherein the method is set based on a frequency.
【請求項4】 上下方向に配置された駆動軸を備え、水
面下に位置する吸込み口から水面と垂直の方向に水を吸
込む立軸ポンプを有してなるポンプ系の振動監視方法で
あって、加振力の振動数を検出するとともに、ポンプの
立軸方向の固有振動数fvn及び水平方向の固有振動数fhn
を検出し、立軸方向の固有振動数fvnが水平方向の固有
振動数fhnに対して、0.975≦2fhn/fvn≦1.025の関係
にあり、かつ、加振力の振動数が立軸方向或いは水平方
向の固有振動数に近くなったとき、振動増加の危険性を
警報するポンプ系の振動監視方法。
4. A vibration monitoring method for a pump system, comprising: a vertical axis drive shaft; and a vertical axis pump that sucks water in a direction perpendicular to the water surface from a suction port located below the water surface. The vibration frequency of the exciting force is detected, and the natural frequency fvn of the pump in the vertical direction and the natural frequency fhn of the horizontal direction are calculated.
And the natural frequency fvn in the vertical direction is 0.975 ≦ 2fhn / fvn ≦ 1.025 with respect to the natural frequency fhn in the horizontal direction, and the vibration frequency of the exciting force is in the vertical or horizontal direction. A vibration monitoring method for pump systems that warns of the danger of increased vibration when the natural frequency is approached.
【請求項5】 回転の駆動軸を上下方向にし、吸込み口
を水面下に位置させて設置され、水面と垂直の方向に水
を吸込む立軸ポンプを有してなるポンプ系の振動監視方
法であって、ポンプ上下方向高さの異なる複数箇所それ
ぞれで、上下方向の振動と、互いに直交する水平2方向
の振動を計測するとともに、ポンプの少なくとも2箇所
でポンプ内部の水の圧力変化を計測し、計測した信号の
それぞれを周波数分析して立軸方向の加振振動数を検
出、監視し、立軸方向の加振振動数がポンプ水平方向の
固有振動数の2倍の振動数を含む予め定めた警報領域に
あるとき、振動増加の危険性を警報する手順を含んでな
るポンプ系の振動監視方法。
5. A vibration monitoring method for a pump system, comprising: a vertical drive shaft for rotation, a suction port located below the water surface, and a vertical shaft pump that sucks water in a direction perpendicular to the water surface. Then, the vertical vibration and the horizontal two-direction vibrations orthogonal to each other are measured at each of a plurality of locations having different vertical heights of the pump, and the pressure change of the water inside the pump is measured at at least two locations of the pump. The frequency of each measured signal is analyzed to detect and monitor the vibration frequency in the vertical direction, and the vibration frequency in the vertical direction includes a frequency that is twice the natural frequency in the horizontal direction of the pump. A method for monitoring vibration of a pump system, which includes a procedure for warning of a risk of increased vibration when in an area.
【請求項6】 回転の駆動軸を上下方向にし、吸込み口
を水面下に位置させて設置され、水面と垂直の方向に水
を吸込む立軸ポンプを有してなるポンプ系の振動監視方
法であって、ポンプ上下方向高さの異なる複数箇所それ
ぞれで、上下方向の振動と、互いに直交する水平2方向
の振動を計測するとともに、ポンプの少なくとも2箇所
でポンプ内部の水の圧力変化を計測し、計測した信号の
それぞれを周波数分析して圧力変動の振動数を検出、監
視し、圧力変動の振動数がポンプ水平方向の固有振動数
の2倍の振動数を含む予め定めた警報領域にあるとき、
振動増加の危険性を警報する手順を含んでなるポンプ系
の振動監視方法。
6. A vibration monitoring method for a pump system, comprising: a vertical drive shaft for rotation, a suction port located below the water surface, and a vertical shaft pump that sucks water in a direction perpendicular to the water surface. Then, the vertical vibration and the horizontal two-direction vibrations orthogonal to each other are measured at each of a plurality of locations having different vertical heights of the pump, and the pressure change of the water inside the pump is measured at at least two locations of the pump. When the frequency of pressure fluctuation is detected and monitored by frequency analysis of each of the measured signals, and the frequency of pressure fluctuation is in a predetermined alarm area that includes twice the natural frequency of the pump horizontal direction. ,
A vibration monitoring method for a pump system, which includes a procedure for warning of a risk of increased vibration.
【請求項7】 請求項5又は6に記載のポンプ系の振動
監視方法において、ポンプ運転中に、計測した前記信号
を周波数分析してポンプ水平方向の固有振動数を検出
し、前記警報領域は、検出されたポンプ水平方向の固有
振動数に基いて設定されることを特徴とするポンプ系の
振動監視方法。
7. The vibration monitoring method for a pump system according to claim 5, wherein during pump operation, the measured signal is subjected to frequency analysis to detect a natural frequency in the horizontal direction of the pump, and the alarm region is And a method for monitoring vibration of a pump system, wherein the method is set based on the detected natural frequency of the pump in the horizontal direction.
【請求項8】 回転の駆動軸を上下方向にし、吸込み口
を水面下に位置させて設置され、水面と垂直の方向に水
を吸込む立軸ポンプを有してなるポンプ系の振動監視方
法であって、ポンプ上下方向高さの異なる複数箇所それ
ぞれで、上下方向の振動と、互いに直交する水平2方向
の振動を計測するとともに、ポンプの少なくとも2箇所
でポンプ内部の水の圧力変化を計測し、計測した信号の
それぞれを周波数分析して加振力の振動数を検出すると
ともに、ポンプの立軸方向の固有振動数fvn及び水平方
向の固有振動数fhnを検出し、立軸方向の固有振動数fvn
が水平方向の固有振動数fhnに対して、0.975≦2fhn/f
vn≦1.025の関係にあり、かつ、加振力の振動数が立軸
方向或いは水平方向の固有振動数に近くなったとき、振
動増加の危険性を警報するポンプ系の振動監視方法。
8. A vibration monitoring method for a pump system, comprising: a vertical drive shaft for rotation, a suction port located below the water surface, and a vertical shaft pump that sucks water in a direction perpendicular to the water surface. Then, the vertical vibration and the horizontal two-direction vibrations orthogonal to each other are measured at each of a plurality of locations having different vertical heights of the pump, and the pressure change of the water inside the pump is measured at at least two locations of the pump. Each of the measured signals is subjected to frequency analysis to detect the vibration frequency of the exciting force, and the natural frequency fvn in the vertical direction of the pump and the natural frequency fhn in the horizontal direction of the pump are detected to determine the natural frequency fvn in the vertical direction.
Is 0.975 ≦ 2fhn / f for the natural frequency fhn in the horizontal direction.
A vibration monitoring method for a pump system that warns of the risk of increased vibration when the vibration frequency of the excitation force is close to the natural frequency in the vertical direction or the horizontal direction in the relationship of vn ≦ 1.025.
【請求項9】 回転軸を上下方向にして設置されたポン
プと、このポンプの下面に結合され下方に向かって開口
する吸込み口と、前記ポンプの上面に軸線を上下方向に
して結合された円筒状の吐出ケーシングと、前記吐出ケ
ーシングの上端部に結合されたベンド管と、前記ベンド
管上面に取りつけられた原動機支持構造物と、前記吐出
ケーシングの内部に軸線を上下方向にして配置され、下
端が前記ポンプの回転軸に結合された駆動軸と、前記原
動機支持構造物に取りつけられた減速機を介して前記駆
動軸を回転駆動する原動機と、前記吐出ケーシングの外
周に結合されて、少なくとも前記ポンプ、原動機、減速
機、吐出ケーシング、ベンド管の重量をポンプ据付座に
伝達する支持構造物と、を有してなるポンプ系の振動監
視方法であって、前記吐出ケーシング、支持構造物、原
動機支持構造物及びベンド管のうちの複数箇所で立軸方
向及び互いに直交する水平2方向の振動を計測し、前記
吐出ケーシング、吸込み口、及びベンド管のうちの少な
くとも2箇所で内部の流体の圧力変化を計測し、計測結
果として出力された信号を周波数分析して立軸方向の加
振振動数を検出して監視し、立軸方向の加振振動数が水
平方向の固有振動数の2倍の振動数を含む予め定められ
た警報領域にあるとき、振動増加の危険性を警報するポ
ンプ系の振動監視方法。
9. A pump installed with its rotation axis in the vertical direction, a suction port that is connected to the lower surface of the pump and opens downward, and a cylinder that is connected to the upper surface of the pump with its axis line in the vertical direction. -Shaped discharge casing, a bend pipe coupled to the upper end of the discharge casing, a motor support structure attached to the upper face of the bend pipe, and an axial line arranged vertically inside the discharge casing, and a lower end. Is a drive shaft coupled to the rotary shaft of the pump, a prime mover that rotationally drives the drive shaft via a speed reducer attached to the prime mover support structure, and is coupled to the outer periphery of the discharge casing, and at least the A vibration monitoring method for a pump system, comprising: a pump, a prime mover, a speed reducer, a discharge casing, and a support structure for transmitting the weight of a bend pipe to a pump installation seat. At least one of the discharge casing, the suction port, and the bend pipe is measured by measuring vibrations in a vertical axis direction and two horizontal directions orthogonal to each other at a plurality of positions of the discharge casing, the support structure, the motor support structure, and the bend pipe. The pressure change of the internal fluid is measured at two locations, and the signal output as the measurement result is subjected to frequency analysis to detect and monitor the vibration frequency in the vertical direction, and the vibration frequency in the vertical direction is A vibration monitoring method for a pump system, which warns of a danger of increased vibration when in a predetermined alarm region including a frequency twice as high as the natural frequency.
【請求項10】 回転軸を上下方向にして設置されたポ
ンプと、このポンプの下面に結合され下方に向かって開
口する吸込み口と、前記ポンプの上面に軸線を上下方向
にして結合された円筒状の吐出ケーシングと、前記吐出
ケーシングの上端部に結合されたベンド管と、前記ベン
ド管上面に取りつけられた原動機支持構造物と、前記吐
出ケーシングの内部に軸線を上下方向にして配置され、
下端が前記ポンプの回転軸に結合された駆動軸と、前記
原動機支持構造物に取りつけられた減速機を介して前記
駆動軸を回転駆動する原動機と、前記吐出ケーシングの
外周に結合されて、少なくとも前記ポンプ、原動機、減
速機、吐出ケーシング、ベンド管の重量をポンプ据付座
に伝達する支持構造物と、を有してなるポンプ系の振動
監視方法であって、前記吐出ケーシング、支持構造物、
原動機支持構造物及びベンド管のうちの複数箇所で立軸
方向及び互いに直交する水平2方向の振動を計測し、前
記吐出ケーシング、吸込み口、及びベンド管のうちの少
なくとも2箇所で内部の流体の圧力変化を計測し、計測
結果として出力された信号を周波数分析して圧力変動の
振動数を検出して監視し、圧力変動の振動数が水平方向
の固有振動数の2倍の振動数を含む予め定められた警報
領域にあるとき、振動増加の危険性を警報するポンプ系
の振動監視方法。
10. A pump installed with its rotating shaft in the vertical direction, a suction port connected to the lower surface of the pump and opening downward, and a cylinder connected to the upper surface of the pump with its axis line in the vertical direction. -Shaped discharge casing, a bend pipe coupled to the upper end of the discharge casing, a prime mover support structure mounted on the upper face of the bend pipe, and arranged in the discharge casing with the axis line up and down.
A drive shaft having a lower end coupled to the rotary shaft of the pump, a prime mover that rotationally drives the drive shaft through a speed reducer attached to the prime mover support structure, and a drive shaft that is coupled to an outer periphery of the discharge casing, and at least A pump system vibration monitoring method comprising: a pump, a prime mover, a speed reducer, a discharge casing, and a support structure for transmitting the weight of a bend pipe to a pump installation seat, wherein the discharge casing, the support structure,
Vibrations in the vertical direction and in two horizontal directions orthogonal to each other are measured at a plurality of positions of the prime mover support structure and the bend pipe, and the internal fluid pressure is measured at at least two positions of the discharge casing, the suction port, and the bend pipe. The change is measured, the signal output as the measurement result is subjected to frequency analysis to detect and monitor the frequency of the pressure fluctuation, and the frequency of the pressure fluctuation includes a frequency twice the natural frequency in the horizontal direction in advance. A vibration monitoring method for a pump system that warns of the danger of increased vibration when it is in a specified alarm area.
【請求項11】 請求項9または10に記載のポンプ系
の振動監視方法において、ポンプ運転中に、計測結果と
して出力された前記信号を周波数分析してポンプ水平方
向の固有振動数を検出し、前記警報領域は、検出された
ポンプ水平方向の固有振動数に基いて設定されることを
特徴とするポンプ系の振動監視方法。
11. The vibration monitoring method for a pump system according to claim 9, wherein during pump operation, the signal output as a measurement result is subjected to frequency analysis to detect a natural frequency in the horizontal direction of the pump, The vibration monitoring method for a pump system, wherein the alarm area is set based on the detected natural frequency in the horizontal direction of the pump.
【請求項12】 回転軸を上下方向にして設置されたポ
ンプと、このポンプの下面に結合され下方に向かって開
口する吸込み口と、前記ポンプの上面に軸線を上下方向
にして結合された円筒状の吐出ケーシングと、前記吐出
ケーシングの上端部に結合されたベンド管と、前記ベン
ド管上面に取りつけられた原動機支持構造物と、前記吐
出ケーシングの内部に軸線を上下方向にして配置され、
下端が前記ポンプの回転軸に結合された駆動軸と、前記
原動機支持構造物に取りつけられた減速機を介して前記
駆動軸を回転駆動する原動機と、前記吐出ケーシングの
外周に結合されて、少なくとも前記ポンプ、原動機、減
速機、吐出ケーシング、ベンド管の重量をポンプ据付座
に伝達する支持構造物と、を有してなるポンプ系の振動
監視方法であって、前記吐出ケーシング、支持構造物、
原動機支持構造物及びベンド管のうちの複数箇所で立軸
方向及び互いに直交する水平2方向の振動を計測し、前
記吐出ケーシング、吸込み口、及びベンド管のうちの少
なくとも2箇所で内部の流体の圧力変化を計測し、計測
結果として出力された信号を周波数分析して加振力の振
動数を検出するとともに、ポンプの立軸方向の固有振動
数fvn及び水平方向の固有振動数fhnを検出し、立軸方向
の固有振動数fvnが水平方向の固有振動数fhnに対して、
0.975≦2fhn/fvn≦1.025の関係にあり、かつ、加振力
の振動数が立軸方向或いは水平方向の固有振動数に近く
なったとき、振動増加の危険性を警報するポンプ系の振
動監視方法。
12. A pump installed with its rotating shaft in the vertical direction, a suction port connected to the lower surface of the pump and opening downward, and a cylinder connected to the upper surface of the pump with its axis line in the vertical direction. -Shaped discharge casing, a bend pipe coupled to the upper end of the discharge casing, a prime mover support structure mounted on the upper face of the bend pipe, and arranged in the discharge casing with the axis line up and down.
A drive shaft having a lower end coupled to the rotary shaft of the pump, a prime mover that rotationally drives the drive shaft through a speed reducer attached to the prime mover support structure, and a drive shaft that is coupled to an outer periphery of the discharge casing, and at least A pump system vibration monitoring method comprising: a pump, a prime mover, a speed reducer, a discharge casing, and a support structure for transmitting the weight of a bend pipe to a pump installation seat, wherein the discharge casing, the support structure,
Vibrations in the vertical direction and in two horizontal directions orthogonal to each other are measured at a plurality of positions of the prime mover support structure and the bend pipe, and the internal fluid pressure is measured at at least two positions of the discharge casing, the suction port, and the bend pipe. The change is measured and the signal output as the measurement result is subjected to frequency analysis to detect the vibration frequency of the exciting force, and the natural frequency fvn of the vertical axis of the pump and the natural frequency fhn of the horizontal direction of the pump are detected. Direction natural frequency fvn is relative to horizontal direction natural frequency fhn,
Vibration monitoring method for pump system that warns the danger of increased vibration when 0.975 ≤ 2fhn / fvn ≤ 1.025 and the vibration frequency of the excitation force is close to the natural frequency in the vertical or horizontal direction .
【請求項13】 請求項1〜12のうちのいずれか1項
に記載のポンプ系の振動監視方法において、前記ポンプ
の吐出流量、回転数、吐出圧力、吸込み水位を含む運転
条件を所定の時間間隔で取りこんで記憶格納するととも
に、前記運転条件を取りこむ各時点での前記決定した各
加振振動数と固有振動数および警報出力の有無を記憶格
納し、ポンプ運転条件変更時には、変更後の運転条件で
の警報出力の有無を格納記憶している前記データに基い
て判定するよう構成されていることを特徴とするポンプ
系の振動監視方法。
13. The vibration monitoring method for a pump system according to claim 1, wherein an operating condition including a discharge flow rate of the pump, a rotation speed, a discharge pressure, and a suction water level is set for a predetermined time. In addition to storing and storing at intervals, the determined vibration frequencies and natural frequencies and the presence / absence of an alarm output at each time when the operating conditions are taken in are stored and stored, and when the pump operating conditions are changed, the changed operation is performed. A vibration monitoring method for a pump system, characterized in that the presence or absence of an alarm output under a condition is configured to be determined based on the stored data.
【請求項14】 上下方向に配置された駆動軸を備え、
水面下に位置する吸込み口から水面と垂直の方向に水を
吸込む立軸ポンプを有してなるポンプ系の振動を監視す
る振動監視装置であって、前記ポンプ系の複数箇所のポ
ンプ立軸方向と水平方向の振動を検出し、電気信号とし
て出力する振動検出手段と、前記ポンプ系の複数箇所に
設けられてポンプ内の水の圧力変動を検出し、電気信号
として出力する圧力検出手段と、前記振動検出手段及び
圧力検出手段の出力信号をディジタル信号に変換するA
/D変換器と、前記A/D変換器の出力信号を周波数分
析してフーリェスペクトルと周波数応答関数を生成する
FFTアナライザと、前記FFTアナライザの出力側に
接続され、FFTアナライザの出力を演算処理する演算
・表示・保存・参照部と、を含んでなり、前記演算・表
示・保存・参照部は、 a.前記FFTアナライザから出力される周波数応答関
数を入力として、水平方向固有振動数fhnを決定し、 b.前記FFTアナライザから出力されるフーリェスペ
クトルを入力として、立軸方向加振振動数fvを決定し、 c.立軸方向加振振動数fvが、水平方向固有振動数fhn
の2倍の振動数を含む予め設定された警報領域にあるか
どうかを判定し、 d.立軸方向加振振動数fvが前記警報領域にあるとき、
振動増加の危険性を示す警報を出力する、 よう構成されているポンプ系の振動監視装置。
14. A drive shaft arranged in a vertical direction,
A vibration monitoring device for monitoring the vibration of a pump system comprising a vertical pump that sucks water in a direction perpendicular to the water surface from a suction port located below the water surface, and is horizontal to the pump vertical direction at a plurality of points of the pump system. A vibration detecting means for detecting a vibration in a direction and outputting it as an electric signal; a pressure detecting means provided at a plurality of points of the pump system to detect a pressure fluctuation of water in the pump and outputting it as an electric signal; A for converting the output signals of the detection means and the pressure detection means into digital signals
A / D converter, an FFT analyzer that frequency-analyzes an output signal of the A / D converter to generate a Fourier spectrum and a frequency response function, and is connected to an output side of the FFT analyzer to perform an arithmetic processing on an output of the FFT analyzer. And a calculation / display / save / reference section for performing the calculation / display / save / reference section. Determining the horizontal natural frequency fhn with the frequency response function output from the FFT analyzer as an input; b. Using the Fourier spectrum output from the FFT analyzer as an input, determine the vertical excitation frequency fv, c. The vertical vibration frequency fv is the horizontal natural frequency fhn
It is in a preset alarm area containing twice the frequency of d. When the vertical vibration frequency fv is in the alarm range,
A vibration monitoring device for a pump system configured to output an alarm indicating the risk of increased vibration.
【請求項15】 上下方向に配置された駆動軸を備え、
水面下に位置する吸込み口から水面と垂直の方向に水を
吸込む立軸ポンプを有してなるポンプ系の振動を監視す
る振動監視装置であって、前記ポンプ系の複数箇所のポ
ンプ立軸方向と水平方向の振動を検出し、電気信号とし
て出力する振動検出手段と、前記ポンプ系の複数箇所に
設けられてポンプ内の水の圧力変動を検出し、電気信号
として出力する圧力検出手段と、前記振動検出手段及び
圧力検出手段の出力信号をディジタル信号に変換するA
/D変換器と、前記A/D変換器の出力信号を周波数分
析してフーリェスペクトルと周波数応答関数を生成する
FFTアナライザと、前記FFTアナライザの出力側に
接続され、FFTアナライザの出力を演算処理する演算
・表示・保存・参照部と、を含んでなり、前記演算・表
示・保存・参照部は、 a.前記FFTアナライザから出力される周波数応答関
数を入力として、水平方向固有振動数fhnを決定し、 b.前記FFTアナライザから出力されるフーリェスペ
クトルを入力として、ポンプ変動圧力加振振動数fpを決
定し、 c.ポンプ変動圧力加振振動数fpが、水平方向固有振動
数fhnの2倍の振動数を含む予め設定された警報領域に
あるかどうかを判定し、 d.ポンプ変動圧力加振振動数fpが前記警報領域にある
とき、振動増加の危険性を示す警報を出力する、 よう構成されているポンプ系の振動監視装置。
15. A drive shaft arranged in a vertical direction,
A vibration monitoring device for monitoring the vibration of a pump system comprising a vertical pump that sucks water in a direction perpendicular to the water surface from a suction port located below the water surface, and is horizontal to the pump vertical direction at a plurality of points of the pump system. A vibration detecting means for detecting a vibration in a direction and outputting it as an electric signal; a pressure detecting means provided at a plurality of points of the pump system to detect a pressure fluctuation of water in the pump and outputting it as an electric signal; A for converting the output signals of the detection means and the pressure detection means into digital signals
A / D converter, an FFT analyzer that frequency-analyzes an output signal of the A / D converter to generate a Fourier spectrum and a frequency response function, and is connected to an output side of the FFT analyzer to perform an arithmetic processing on an output of the FFT analyzer. And a calculation / display / save / reference section for performing the calculation / display / save / reference section. Determining the horizontal natural frequency fhn with the frequency response function output from the FFT analyzer as an input; b. The Fourier spectrum output from the FFT analyzer is used as an input to determine the pump fluctuation pressure excitation frequency fp, and c. It is determined whether the pump fluctuation pressure excitation frequency fp is in a preset alarm region including a frequency twice the horizontal natural frequency fhn, and d. A vibration monitoring device for a pump system configured to output an alarm indicating a risk of increased vibration when the pump fluctuating pressure vibration frequency fp is in the alarm region.
【請求項16】 上下方向に配置された駆動軸を備え、
水面下に位置する吸込み口から水面と垂直の方向に水を
吸込む立軸ポンプを有してなるポンプ系の振動を監視す
る振動監視装置であって、前記ポンプ系の複数箇所のポ
ンプ立軸方向と水平方向の振動を検出し、電気信号とし
て出力する振動検出手段と、前記ポンプ系の複数箇所に
設けられてポンプ内の水の圧力変動を検出し、電気信号
として出力する圧力検出手段と、前記振動検出手段及び
圧力検出手段の出力信号をディジタル信号に変換するA
/D変換器と、前記A/D変換器の出力信号を周波数分
析してフーリェスペクトルと周波数応答関数を生成する
FFTアナライザと、前記FFTアナライザの出力側に
接続され、FFTアナライザの出力を演算処理する演算
・表示・保存・参照部と、を含んでなり、前記演算・表
示・保存・参照部は、 a.前記FFTアナライザから出力される周波数応答関
数を入力として、水平方向固有振動数fhn及び立軸方向
固有振動数fvnを決定し、 b.前記FFTアナライザから出力されるフーリェスペ
クトルを入力として、水平方向加振振動数fh及び立軸方
向加振振動数fvを決定し、 c.0.975≦2 fhn/fvn≦1.025で、かつfv≒fvnまたは
fh≒ fhnの条件が満たされるかどうかを判定し、 d.前記条件が満たされるとき、振動増加の危険性を示
す警報を出力する、よう構成されているポンプ系の振動
監視装置。
16. A drive shaft arranged in a vertical direction,
A vibration monitoring device for monitoring the vibration of a pump system comprising a vertical pump that sucks water in a direction perpendicular to the water surface from a suction port located below the water surface, and is horizontal to the pump vertical direction at a plurality of points of the pump system. A vibration detecting means for detecting a vibration in a direction and outputting it as an electric signal; a pressure detecting means provided at a plurality of points of the pump system to detect a pressure fluctuation of water in the pump and outputting it as an electric signal; A for converting the output signals of the detection means and the pressure detection means into digital signals
A / D converter, an FFT analyzer that frequency-analyzes an output signal of the A / D converter to generate a Fourier spectrum and a frequency response function, and is connected to an output side of the FFT analyzer to perform an arithmetic processing on an output of the FFT analyzer. And a calculation / display / save / reference section for performing the calculation / display / save / reference section. Determine the horizontal natural frequency fhn and the vertical natural frequency fvn by using the frequency response function output from the FFT analyzer as an input, b. With the Fourier spectrum output from the FFT analyzer as an input, the horizontal vibration frequency fh and the vertical vibration frequency fv are determined, and c. 0.975 ≦ 2 fhn / fvn ≦ 1.025, and fv≈fvn or
determining whether the condition of fh≈fhn is satisfied, d. A vibration monitoring device for a pump system configured to output an alarm indicating a risk of increased vibration when the above conditions are satisfied.
【請求項17】 請求項14〜16のいずれか1項に記
載のポンプ系の振動監視装置において、前記演算・表示
・保存・参照部は、前記ポンプ系の運転を制御するポン
プ制御装置に接続され、このポンプ制御装置を介して、
前記ポンプの吐出流量、回転数、吐出圧力、吸込み水位
を含む運転条件を所定の時間間隔で取りこんで記憶格納
するとともに、前記運転条件を取りこむ各時点での前記
決定した各加振振動数と固有振動数および警報出力の有
無を記憶格納し、ポンプ運転条件変更時には、変更後の
運転条件での警報出力の有無を格納記憶している前記デ
ータに基いて判定するよう構成されていることを特徴と
するポンプ系の振動監視装置。
17. The vibration monitoring device for a pump system according to claim 14, wherein the calculation / display / save / reference unit is connected to a pump control device for controlling the operation of the pump system. Via this pump controller
The operating conditions including the discharge flow rate of the pump, the number of revolutions, the discharge pressure, and the suction water level are taken in at predetermined time intervals and stored and stored, and the vibration frequencies determined at each time point when the operating conditions are taken are unique to each vibration frequency. The frequency and the presence / absence of an alarm output are stored and stored, and when the pump operating condition is changed, the presence / absence of the alarm output under the changed operating condition is determined based on the stored data. A vibration monitoring device for a pump system.
【請求項18】 請求項14〜16のいずれか1項に記
載のポンプ系の振動監視装置において、前記演算・表示
・保存・参照部は、前記ポンプ系の運転を制御するポン
プ制御装置に接続され、前記警報を出力した場合、同時
に、ポンプ制御装置に対して、前記ポンプの吐出流量、
回転数、吐出圧力を含む運転条件を変更するよう指示す
る制御信号を出力するよう構成されていることを特徴と
するポンプ系の振動監視装置。
18. The vibration monitoring device for a pump system according to claim 14, wherein the calculation / display / save / reference unit is connected to a pump control device for controlling the operation of the pump system. When the alarm is output, at the same time, the discharge flow rate of the pump is
A vibration monitoring device for a pump system, which is configured to output a control signal for instructing to change an operating condition including a rotation speed and a discharge pressure.
JP2002125159A 2002-04-26 2002-04-26 Pump vibration monitoring method and apparatus Expired - Fee Related JP3624289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002125159A JP3624289B2 (en) 2002-04-26 2002-04-26 Pump vibration monitoring method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002125159A JP3624289B2 (en) 2002-04-26 2002-04-26 Pump vibration monitoring method and apparatus

Publications (2)

Publication Number Publication Date
JP2003315146A true JP2003315146A (en) 2003-11-06
JP3624289B2 JP3624289B2 (en) 2005-03-02

Family

ID=29539959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002125159A Expired - Fee Related JP3624289B2 (en) 2002-04-26 2002-04-26 Pump vibration monitoring method and apparatus

Country Status (1)

Country Link
JP (1) JP3624289B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006029154A (en) * 2004-07-14 2006-02-02 Hitachi Industrial Equipment Systems Co Ltd Abnormality diagnosing device and abnormality diagnosing system for screw compressor
JP2006200129A (en) * 2005-01-18 2006-08-03 Shimizu Corp Vibration damping structure and aseismatic reinforcing method of structure
JP2007232508A (en) * 2006-02-28 2007-09-13 Toshiba Corp Evaluation system for normal pumping, evaluation device for normal pumping and its method, evaluation program, measuring instrument and its data processing method, and data processing program
CN102222168A (en) * 2011-06-16 2011-10-19 中国海洋大学 Deepwater drilling vertical tube parametric-excitation transversal vibration analysis method
CN102507115A (en) * 2011-09-30 2012-06-20 中国海洋大学 Large deformation bending vibration analysis method of deep-water top-tensioned riser
CN110259700A (en) * 2019-06-10 2019-09-20 许昌许继晶锐科技有限公司 A kind of performance estimating method of pump
JP2020510153A (en) * 2017-03-10 2020-04-02 カーエスベー ソシエタス ヨーロピア ウント コンパニー コマンディート ゲゼルシャフト アウフ アクチェンKSB SE & Co. KGaA Operating method of variable speed circulating pump and circulating pump for implementing the method
KR20210143032A (en) * 2020-05-19 2021-11-26 한국전력공사 Apparatus and method for analyzing resonance of seawater vertical pumping pipe
KR102444430B1 (en) * 2021-12-10 2022-09-19 한전케이피에스 주식회사 Vertical pump test device
JP7431148B2 (en) 2020-12-04 2024-02-14 株式会社クボタ Pump operation control method, discharge flow rate derivation method, and discharge flow rate control method
CN117628308A (en) * 2024-01-25 2024-03-01 日照艾迪尔流体设备有限公司 Pulsation damper and testing device thereof

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006029154A (en) * 2004-07-14 2006-02-02 Hitachi Industrial Equipment Systems Co Ltd Abnormality diagnosing device and abnormality diagnosing system for screw compressor
JP4511886B2 (en) * 2004-07-14 2010-07-28 株式会社日立産機システム Abnormality diagnosis device and abnormality diagnosis system for screw compressor
JP2006200129A (en) * 2005-01-18 2006-08-03 Shimizu Corp Vibration damping structure and aseismatic reinforcing method of structure
JP4573109B2 (en) * 2005-01-18 2010-11-04 清水建設株式会社 Damping structure and seismic reinforcement method for structure
JP2007232508A (en) * 2006-02-28 2007-09-13 Toshiba Corp Evaluation system for normal pumping, evaluation device for normal pumping and its method, evaluation program, measuring instrument and its data processing method, and data processing program
JP4625777B2 (en) * 2006-02-28 2011-02-02 株式会社東芝 Pump soundness evaluation system, pump soundness evaluation device and its evaluation method, evaluation program
CN102222168A (en) * 2011-06-16 2011-10-19 中国海洋大学 Deepwater drilling vertical tube parametric-excitation transversal vibration analysis method
CN102507115B (en) * 2011-09-30 2015-01-21 中国海洋大学 Large deformation bending vibration analysis method of deep-water top-tensioned riser
CN102507115A (en) * 2011-09-30 2012-06-20 中国海洋大学 Large deformation bending vibration analysis method of deep-water top-tensioned riser
JP2020510153A (en) * 2017-03-10 2020-04-02 カーエスベー ソシエタス ヨーロピア ウント コンパニー コマンディート ゲゼルシャフト アウフ アクチェンKSB SE & Co. KGaA Operating method of variable speed circulating pump and circulating pump for implementing the method
CN110259700A (en) * 2019-06-10 2019-09-20 许昌许继晶锐科技有限公司 A kind of performance estimating method of pump
KR20210143032A (en) * 2020-05-19 2021-11-26 한국전력공사 Apparatus and method for analyzing resonance of seawater vertical pumping pipe
KR102379882B1 (en) * 2020-05-19 2022-03-30 한국전력공사 Apparatus and method for analyzing resonance of seawater vertical pumping pipe
JP7431148B2 (en) 2020-12-04 2024-02-14 株式会社クボタ Pump operation control method, discharge flow rate derivation method, and discharge flow rate control method
KR102444430B1 (en) * 2021-12-10 2022-09-19 한전케이피에스 주식회사 Vertical pump test device
CN117628308A (en) * 2024-01-25 2024-03-01 日照艾迪尔流体设备有限公司 Pulsation damper and testing device thereof
CN117628308B (en) * 2024-01-25 2024-04-09 日照艾迪尔流体设备有限公司 Pulsation damper and testing device thereof

Also Published As

Publication number Publication date
JP3624289B2 (en) 2005-03-02

Similar Documents

Publication Publication Date Title
JP2003315146A (en) Monitoring method and device for pump vibration
US6560552B2 (en) Dynamically configurable process for diagnosing faults in rotating machines
US10711802B2 (en) Pump monitoring
EP1540186B1 (en) Condition monitoring of pumps and pump system
EP2169497B1 (en) Dynamic vibration condition monitoring parameter normalization system and method
US20010041139A1 (en) Apparatus and method for controlling a pump system
EP1734354A2 (en) Engine status detection with external microphone
JP6221652B2 (en) Life prediction method, life prediction device, life prediction system, life calculation device, and rotating machine
JPH04258727A (en) Crack detecting method for stationary central shaft system
KR102183933B1 (en) Agitator with selfdiagnosis and recovery function
US6876715B2 (en) Measurement system of torsion vibration for reactor internal pump
KR20190031667A (en) Method and system for failure diagnosing compressors
JP3739681B2 (en) Vibration monitoring method and apparatus
JPS628023A (en) Diagnosis of rotary machine
JP6987280B2 (en) Diagnostic system and refrigeration cycle equipment
JP2002181525A (en) Device for measuring interval of impeller for pump and anomaly determining method
JP2003271241A (en) Operation supervisory and controlling system
JPH0875617A (en) Fault diagnostic method of pump
JP7495919B2 (en) Wear detection system and wear detection method
JP4369320B2 (en) Diagnosis method of rotating machinery
EP3933355A1 (en) A method for monitoring operating condition of a rotating equipment
JPH02212722A (en) Handy diagnostic apparatus for construction
JP2947500B2 (en) Diagnostic equipment for blower equipment
JPH11108907A (en) Method and apparatus for diagnosis of facility inside of building
JP2024057123A (en) Method and device for predictive diagnosis of device including rotating body and bearing

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3624289

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071210

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071210

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071210

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees