JP2003314990A - Cooling device - Google Patents

Cooling device

Info

Publication number
JP2003314990A
JP2003314990A JP2002122357A JP2002122357A JP2003314990A JP 2003314990 A JP2003314990 A JP 2003314990A JP 2002122357 A JP2002122357 A JP 2002122357A JP 2002122357 A JP2002122357 A JP 2002122357A JP 2003314990 A JP2003314990 A JP 2003314990A
Authority
JP
Japan
Prior art keywords
air
cooling
efficiency
heat exchange
distribution chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002122357A
Other languages
Japanese (ja)
Inventor
Masahiro Maekawa
正宏 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Fuso Truck and Bus Corp
Original Assignee
Mitsubishi Fuso Truck and Bus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Fuso Truck and Bus Corp filed Critical Mitsubishi Fuso Truck and Bus Corp
Priority to JP2002122357A priority Critical patent/JP2003314990A/en
Publication of JP2003314990A publication Critical patent/JP2003314990A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cooling device with a heat exchanger having improved cooling efficiency if not consistent in the quantity of cooling air. <P>SOLUTION: The cooling device M comprises: the heat exchanger 9 formed in a flat shape for cooling air with the passage of the cooling air w; an air distribution chamber provided on one side of the heat exchanger 9 extending to the longitudinal direction for distributing air flowing therein; an inlet duct 15 formed extending to the air distribution chamber; an air collecting chamber 11 provided on the other side opposite one side of the heat exchanger 9 extending to the longitudinal direction for collecting the cooled air, and an outlet duct 16 formed extending to the air collecting chamber 11. The heat exchanger 9 has a high efficiency core portion E1 having high cooling efficiency in a region near a flow path center line L1 of the inlet duct 15 and a low efficiency core portion E2 having low cooling efficiency in a region far from the flow path center line L1. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、空気循環路を流動
して発熱源に供給される空気を熱交換部で空気冷却する
冷却装置、特に、熱交換部が空気分配室と空気集合室を
介し空気循環路に接続されている冷却装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling device for cooling the air flowing in an air circulation path and supplied to a heat source in a heat exchange section, and more particularly, the heat exchange section connects an air distribution chamber and an air collecting chamber. The present invention relates to a cooling device connected to an air circulation path through the cooling device.

【0002】[0002]

【従来の技術】発熱源、例えば、内燃機関に供給される
吸気は吸気密度が大きいほど出力向上を図れることよ
り、熱交換部を成すインタークーラを通過する吸気を走
行風で空気冷却することが行われている。通常、インタ
ークーラは走行風を受け易い場所に配備する必要があ
り、同位置の前部にはラジエータグリル等が配備され、
その後方にはラジエータやエンジンが配備され、これら
対向物体によりインタークーラに達する走行風は流動規
制を受けることが多い。更に、熱交換部を成すインター
クーラはラジエータの配置位置と重なり易く、例えば、
図10(a)に示すように配設される。
2. Description of the Related Art As the intake air supplied to a heat source such as an internal combustion engine has a higher output density as the intake air density increases, the intake air passing through an intercooler forming a heat exchange section can be cooled by running air. Has been done. Normally, it is necessary to deploy the intercooler in a place where it is easy to receive running wind, and a radiator grill etc. is deployed in the front part of the same position,
A radiator and an engine are installed behind it, and the traveling wind that reaches the intercooler is often subject to flow restrictions due to these opposing objects. Furthermore, the intercooler that forms the heat exchange portion easily overlaps with the arrangement position of the radiator.
It is arranged as shown in FIG.

【0003】ここで、ラジエータ160と抱き合わせ状
態で配設されたインタークーラ100は熱交換部である
コア110の左右側端に空気分配室120と空気集合室
130を配し、空気分配室120や空気集合室130を
成す各主壁部材はコア110の幅方向Yと直交する前後
方向Xに向けて分配ガイド170と集合ガイド180と
を延出形成している。分配ガイド170と集合ガイド1
80はそれぞれの連結端部に入口ダクト140や出口ダ
クト150を連結し、図示しないエンジン本体の吸気系
に連結されている。ここで分配ガイド170は、図10
(b)に示すように、流入端170aが円筒状をなし、
同部より延出部eが除々に偏平化されて延び、その先端
の結合部gが偏平縦筒化され、空気分配室120のタン
ク壁と一体結合されている。なお、集合ガイド180も
分配ガイド170と左右対称に形成される。
Here, the intercooler 100, which is arranged in a tie-up state with the radiator 160, has an air distribution chamber 120 and an air collection chamber 130 at the left and right ends of a core 110 which is a heat exchange portion, and the air distribution chamber 120 and Each main wall member forming the air collecting chamber 130 has a distribution guide 170 and a collecting guide 180 that extend in the front-rear direction X that is orthogonal to the width direction Y of the core 110. Distributing guide 170 and gathering guide 1
Reference numeral 80 connects the inlet duct 140 and the outlet duct 150 to the respective connection ends, and is connected to the intake system of the engine body (not shown). Here, the distribution guide 170 is shown in FIG.
As shown in (b), the inflow end 170a has a cylindrical shape,
An extending portion e is gradually flattened and extended from the same portion, and a joint portion g at the tip thereof is formed into a flat vertical cylinder and integrally joined to the tank wall of the air distribution chamber 120. The assembly guide 180 is also formed symmetrically with the distribution guide 170.

【0004】[0004]

【発明が解決しようとする課題】ところで、図10
(b)に示すような分配ガイド170はその吸気断面の
中心線L0に沿って吸気を空気分配室120に流入させ
る。ここで、空気分配室120と対向するコア110に
配備された各冷却パイプにおける流速分布は、図10
(c)に矢印で示すようになる。ここで、分配ガイド1
70の流路中心線L0に近い領域の冷却パイプ内での吸
気速度が速まり、流路中心線L0に遠い領域の冷却パイ
プ内での吸気速度が低くなり、コア内部での流速不均一
が発生し、熱交換部全体としての冷却効率を低下させて
いる。
By the way, FIG.
The distribution guide 170 as shown in (b) causes the intake air to flow into the air distribution chamber 120 along the center line L0 of the intake cross section. Here, the flow velocity distribution in each cooling pipe provided in the core 110 facing the air distribution chamber 120 is shown in FIG.
This is indicated by the arrow in (c). Here, the distribution guide 1
The intake velocity in the cooling pipe in the region close to the flow passage center line L0 of 70 increases, and the intake velocity in the cooling pipe in the region far from the flow passage center line L0 decreases, resulting in uneven flow velocity inside the core. Occurs, reducing the cooling efficiency of the heat exchange section as a whole.

【0005】更に、インタークーラに達する走行風がラ
ジエータグリル等により流動規制を受け、インタークー
ラの一部領域に多量の走行風が当たり、他の領域には少
量の走行風しか当たらないといった不均一な走行風の分
布が生じたような場合も熱交換部全体としての冷却効率
を低下させており、改善が望まれている。本発明は、以
上のような課題に基づき、熱交換器の冷却風当たり面に
おける風量にばらつきがあったとしても熱交換器の冷却
効率を向上できる冷却装置を提供することを目的とす
る。
Further, the traveling wind reaching the intercooler is subject to flow regulation by a radiator grill etc., so that a large amount of traveling wind hits a part of the intercooler and only a small amount of traveling wind hits other regions. The cooling efficiency of the heat exchange section as a whole is reduced even when there is a large distribution of traveling air, and improvement is desired. An object of the present invention is to provide a cooling device which can improve the cooling efficiency of the heat exchanger even if there is a variation in the air volume on the cooling air contact surface of the heat exchanger, based on the above problems.

【0006】[0006]

【課題を解決するための手段】請求項1の発明は、冷却
風の通過によって空気を冷却し冷却風の通過方向と直交
する偏平形状に形成された熱交換部と、前記熱交換部の
一側に長手方向に延びて設けられ流入する空気を分配す
る空気分配室と、前記空気分配室に延出形成された入口
ダクトと、前記熱交換部の前記一側と対向する他側に長
手方向に延びて設けられ冷却された空気を集める空気集
合室と、前記空気集合室に延出形成された出口ダクトと
を備え、前記入口ダクトから流入した空気が前記空気分
配室から前記熱交換部を介して前記空気空気集合室に至
り、前記出口ダクトから排出される冷却装置において、
前記熱交換部は、前記入ロダクトの流路中心線に近い領
域が冷却効率の高い高効率コア部とし、流路中心線に遠
い領域が冷却効率の低い低効率コア部としてそれぞれ形
成されることを特徴とする。このように、熱交換部の
内、前記入ロダクトの流路中心線に近い領域が冷却効率
の高い高効率コア部とされ、流路中心線に遠い領域が冷
却効率の低い低効率コア部とされるので、入ロダクトの
流路中心線に近い領域の各冷却パイプ内に比較的多量の
空気が流入する傾向があることより、同部に比較的多量
に達する空気を高効率で冷却でき、熱交換部全体の冷却
効率を高められる。例えば、該冷却装置をエンジンの吸
気系に用いた場合には、ポンピングロスの減少、空気量
が増大し出力向上が図れる。
According to a first aspect of the present invention, there is provided a heat exchanging portion, which is formed in a flat shape that cools air by passing cooling air and is orthogonal to a passing direction of the cooling air, and the heat exchanging portion. On one side of the heat exchanging portion, the air distribution chamber extending in the longitudinal direction to distribute the inflowing air, the inlet duct extending from the air distribution chamber, and the other side facing the one side of the heat exchanging portion. An air collecting chamber that is provided to extend to collect the cooled air and an outlet duct that is formed to extend to the air collecting chamber, and the air that has flowed in from the inlet duct from the air distribution chamber to the heat exchange section. In the cooling device that reaches the air-air collecting chamber via the exhaust duct,
The heat exchange portion is formed as a high-efficiency core portion having high cooling efficiency in a region close to the flow path center line of the inlet / outlet duct, and as a low efficiency core portion having low cooling efficiency in a region far from the flow path center line. Is characterized by. Thus, in the heat exchange part, a region near the flow path center line of the inlet / outlet duct is a high efficiency core part having high cooling efficiency, and a region far from the flow path center line is a low efficiency core part having low cooling efficiency. Therefore, since a relatively large amount of air tends to flow into each cooling pipe in the region near the flow path center line of the inlet / outlet duct, it is possible to cool the air reaching a relatively large amount to the same portion with high efficiency, The cooling efficiency of the entire heat exchange section can be improved. For example, when the cooling device is used in the intake system of an engine, pumping loss can be reduced and the amount of air can be increased to improve the output.

【0007】好ましくは、高効率コア部は各冷却パイプ
内に冷却効率を高める高効率重視型フィンを装着しても
良い。この場合、高効率コア部の各冷却パイプを流動す
る空気を高効率で冷却でき、熱交換部全体としての冷却
効率を向上させ、しかも、流動抵抗を高めるので、冷却
パイプ内に低圧損重視型フィンを装着した低効率コア部
側に空気を迂回させて比較的多量に流動させることで冷
却効率を引き上げ、熱交換部全体の流速を均一化でき、
熱交換部全体としての冷却効率を向上させることができ
る。
[0007] Preferably, the high-efficiency core portion may be provided with high-efficiency-oriented fins for enhancing cooling efficiency in each cooling pipe. In this case, the air flowing through each cooling pipe of the high-efficiency core can be cooled with high efficiency, improving the cooling efficiency of the heat exchange unit as a whole and further increasing the flow resistance. By cooling air by diverting a relatively large amount of air to the low-efficiency core side with fins installed, the cooling efficiency can be increased and the flow velocity of the entire heat exchange section can be made uniform.
The cooling efficiency of the heat exchange section as a whole can be improved.

【0008】好ましくは、前記入ロダクトが前記空気分
配室の前記長手方向の中央部に接続され、前記熱交換部
は前記長手方向の中央部分に前記高効率コア部を配置す
ると共に前記長手方向の両端部分に各々前記低効率コア
部を配置しても良い。この場合、中央の高効率コア部よ
りその上下側の低効率コア部に冷却風が回り込むことが
でき、低効率コア部に冷却風が比較的多量に流れ、全体
の流速を均一化でき、全体としての冷却効率を向上させ
ることができる。
Preferably, the inlet duct is connected to the central portion of the air distribution chamber in the longitudinal direction, and the heat exchange portion arranges the high-efficiency core portion in the central portion of the longitudinal direction and at the same time in the longitudinal direction. You may arrange | position the said low efficiency core part at both ends, respectively. In this case, the cooling air can flow around the low-efficiency core portion above and below the high-efficiency core portion in the center, a relatively large amount of cooling air can flow into the low-efficiency core portion, and the overall flow velocity can be made uniform. As a result, the cooling efficiency can be improved.

【0009】請求項2の発明は、冷却風の通過によって
空気を冷却し、冷却風の通過方向と直交する偏平形状に
形成された熱交換部と、前記熱交換部の一側に長手方向
に延びて設けられ流入する空気を分配する空気分配室
と、前記空気分配室に延出形成された入口ダクトと、前
記熱交換部の前記一側と対向する他側に長手方向に延び
て設けられ冷却された空気を集める空気集合室と、前記
空気集合室に延出形成された出口ダクトとを備え、前記
入口ダクトから流入した空気が前記空気分配室から前記
熱交換部を介して前記空気空気集合室に至り、前記出口
ダクトから排出される冷却装置において、前記熱交換部
に対向配備され、前記熱交換部を通過する冷却風に流動
規制を与える構造物を備え、前記熱交換部は同熱交換部
に流入する冷却風の流速が速い領域が冷却効率の高い高
効率コア部として形成され、前記熱交換部に流入する冷
却風の流速が遅い領域が冷却効率の低い低効率コア部と
してそれぞれ形成されることを特徴とする。このよう
に、熱交換部に流入する冷却風が熱交換部に対向配備さ
れた構造物等により流動規制されるとしても、熱交換部
に流入する冷却風の流速が速い領域が冷却効率の高い高
効率コア部として形成されるので、同部に比較的多量に
達する空気を高効率で冷却でき、熱交換部全体の冷却効
率を高められる。例えば、該冷却装置をエンジンの吸気
系に用いた場合には、ポンピングロスの減少、空気量が
増大し出力向上が図れる。
According to the second aspect of the present invention, the air is cooled by the passage of the cooling air, and the heat exchanging portion is formed in a flat shape orthogonal to the passage direction of the cooling air. An air distribution chamber that is extended and distributes the inflowing air, an inlet duct that is formed to extend in the air distribution chamber, and a longitudinal direction is provided on the other side of the heat exchange unit that faces the one side. An air collecting chamber that collects cooled air and an outlet duct that is formed to extend in the air collecting chamber are provided, and the air that flows in from the inlet duct is the air air from the air distribution chamber through the heat exchange unit. In the cooling device that reaches the collecting chamber and is discharged from the outlet duct, the cooling device includes a structure that is provided so as to face the heat exchanging portion and restricts the flow of cooling air passing through the heat exchanging portion. Of the cooling air flowing into the heat exchange section A region having a high speed is formed as a high efficiency core part having a high cooling efficiency, and a region having a low flow velocity of cooling air flowing into the heat exchange part is formed as a low efficiency core part having a low cooling efficiency. . In this way, even if the cooling air flowing into the heat exchanging portion is flow-regulated by the structure or the like arranged opposite to the heat exchanging portion, the region where the flow velocity of the cooling air flowing into the heat exchanging portion is high has high cooling efficiency. Since it is formed as a high-efficiency core part, it is possible to highly efficiently cool the air that reaches a relatively large amount to the same part, and it is possible to enhance the cooling efficiency of the entire heat exchange part. For example, when the cooling device is used in an intake system of an engine, pumping loss can be reduced and the amount of air can be increased to improve output.

【0010】好ましくは、高効率コア部は各冷却パイプ
内に冷却効率を高める高効率重視型フィンを装着しても
良い。この場合、高効率コア部の各冷却パイプを流動す
る空気を高効率で冷却でき、熱交換部全体としての冷却
効率を向上させ、しかも、流動抵抗を高めるので、冷却
パイプ内に低圧損重視型フィンを装着した低効率コア部
側に空気を迂回させて比較的多量に流動させることで冷
却効率を引き上げ、熱交換部全体の流速を均一化でき、
熱交換部全体としての冷却効率を向上させることができ
る。
Preferably, the high-efficiency core portion may be provided with high-efficiency type fins for enhancing cooling efficiency in each cooling pipe. In this case, the air flowing through each cooling pipe of the high-efficiency core can be cooled with high efficiency, improving the cooling efficiency of the heat exchange unit as a whole and further increasing the flow resistance. By cooling air by diverting a relatively large amount of air to the low-efficiency core side with fins installed, the cooling efficiency can be increased and the flow velocity of the entire heat exchange section can be made uniform.
The cooling efficiency of the heat exchange section as a whole can be improved.

【0011】[0011]

【発明の実施の形態】図1には本発明の実施形態として
の吸気冷却装置Mを装備するエンジン1を示す。エンジ
ン1は図示しない車両のエンジンルーム2に装着され、
水冷却装置Cを用いてエンジン本体101を水冷してい
る。このエンジン1は図示しない複数のシリンダに吸気
を導く吸気路Iを備え、その途中に吸気冷却装置Mを備
える。ここで水冷却装置Cはエンジン本体101内の図
示しないウォータジャケットの高温の冷却水をラジエー
タ3に導き、走行時には前部(図1で左側)からの走行
風wを受け或いは、図示しないクーリングファンの冷却
風を受けるラジエータ3で冷却水を冷却し、エンジンの
過度の昇温を防止している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an engine 1 equipped with an intake air cooling device M as an embodiment of the present invention. The engine 1 is installed in an engine room 2 of a vehicle (not shown),
The engine body 101 is water-cooled using the water cooling device C. The engine 1 includes an intake passage I that guides intake air to a plurality of cylinders (not shown), and an intake air cooling device M in the middle thereof. Here, the water cooling device C guides high-temperature cooling water of a water jacket (not shown) in the engine body 101 to the radiator 3, receives traveling wind w from the front part (left side in FIG. 1) during traveling, or a cooling fan (not shown). The cooling water is cooled by the radiator 3 that receives the cooling air of (3) to prevent excessive temperature rise of the engine.

【0012】吸気冷却装置Mはエンジン1の吸気路Iの
途中に配設される。吸気路Iは図示しないエアクリーナ
で濾過された吸気を過給機4で加圧して流入ダクト5を
介しインタークーラ6に導き、走行風w或いは冷却風を
受けるインタークーラ6で冷却された吸気を流出ダクト
7及びエンジン本体101側の吸気多岐管8を介して図
示しない燃焼室に供給している。エンジンの吸気冷却装
置Mはインタークーラ6と同インタークーラに過給機4
側からの吸気を導く流入ダクト5と、インタークーラ6
からの吸気を流出させる流出ダクト7とを備える。
The intake air cooling device M is arranged in the intake passage I of the engine 1. In the intake passage I, the intake air filtered by an air cleaner (not shown) is pressurized by the supercharger 4 and guided to the intercooler 6 through the inflow duct 5, and the intake air cooled by the intercooler 6 that receives the traveling wind w or the cooling air flows out. It is supplied to the combustion chamber (not shown) via the duct 7 and the intake manifold 8 on the engine body 101 side. The intake air cooling device M of the engine is the same as the intercooler 6 and the supercharger 4
Inflow duct 5 that guides intake air from the side, and intercooler 6
And an outflow duct 7 for outflowing intake air from.

【0013】インタークーラ6はエンジンルーム2内の
前後方向Xでの前方部分(図1で左側)に配設される。
図1、図2(a),(b)に示すように、インタークー
ラ6はラジエータ3の前部に所定間隔を介して重ねて配
備される熱交換部としての熱交換器9と、熱交換器9の
車幅方向Yにおける両側の上下方向に連続して設けられ
た空気分配室11及び空気集合室12の各タンク壁部1
3、14と、空気分配室11に接続される入口ダクト1
5と、空気集合室12に接続される出口ダクト16とを
備える。なお、インタークーラ6は入口ダクト15と出
口ダクト16とで走行風w或いは冷却風の通過域側に位
置するラジエータ3を抱き込む状態で配設される。
The intercooler 6 is arranged in a front portion (left side in FIG. 1) in the front-rear direction X in the engine room 2.
As shown in FIG. 1, FIG. 2A, and FIG. 2B, the intercooler 6 and the heat exchanger 9 as a heat exchanging portion are arranged in a front portion of the radiator 3 so as to be overlapped with each other at a predetermined interval. Each of the tank wall portions 1 of the air distribution chamber 11 and the air collecting chamber 12 which are continuously provided in the vertical direction on both sides in the vehicle width direction Y of the container 9.
3, 14 and the inlet duct 1 connected to the air distribution chamber 11
5 and an outlet duct 16 connected to the air collecting chamber 12. The intercooler 6 is arranged in a state in which an inlet duct 15 and an outlet duct 16 embrace the radiator 3 located on the side of the passage area of the traveling wind w or the cooling wind.

【0014】インタークーラ6の熱交換器9は、図2
(a),(b)に示すように、車幅方向Yに延び上下に
複数配列される冷却パイプ19及びそれらを支持する基
枠18とを有する。ここで、各冷却パイプ19はその左
右の開口端191を基枠18側の左右のパイプ支持板1
81に貫通状態で一体結合され、左右のパイプ支持板1
81は上下枠部182に一体結合され、これにより上下
に配列された複数の冷却パイプ19からなる熱交換器9
の保形性を確保している。なお、図2(a)に示すよう
に、熱交換器9の中央には互いに所定間隔を介して2つ
の長板片20が装着され、各長板片20は各冷却パイプ
19を貫通させると共に、上下に隣り合う各冷却パイプ
19間の振れを抑えるように機能する。
The heat exchanger 9 of the intercooler 6 is shown in FIG.
As shown in (a) and (b), it has a plurality of cooling pipes 19 extending in the vehicle width direction Y and arranged vertically, and a base frame 18 supporting them. Here, the left and right opening ends 191 of the respective cooling pipes 19 are provided on the left and right pipe support plates 1 on the base frame 18 side.
The pipe support plates 1 on the left and right are integrally connected to the pipe 81 in a penetrating state.
Reference numeral 81 is integrally connected to the upper and lower frame portions 182, so that the heat exchanger 9 including a plurality of cooling pipes 19 arranged vertically
The shape retention of is secured. As shown in FIG. 2 (a), two long plate pieces 20 are attached to the center of the heat exchanger 9 with a predetermined gap therebetween, and each long plate piece 20 penetrates each cooling pipe 19. , And functions to suppress the vibration between the vertically adjacent cooling pipes 19.

【0015】図1、図2(a)、図3(a)に示すよう
に、空気分配室11はパイプ支持板181とタンク壁部
13とで覆われる。タンク壁部13の車幅方向Yで外側
端部には入口ダクト15が一体結合される。
As shown in FIGS. 1, 2A and 3A, the air distribution chamber 11 is covered with a pipe support plate 181 and a tank wall portion 13. An inlet duct 15 is integrally connected to an outer end portion of the tank wall portion 13 in the vehicle width direction Y.

【0016】入口ダクト15は冷却風である走行風wの
通過域側に位置するラジエータ3と対向する略扇形の主
部151と同主部151から略直角に折れ曲がり延びて
空気分配室11に接続される接続部152とを一体的に
形成している。主部151は流入ダクト5に嵌着する筒
部151aと、筒部151aより空気分配室11の中央
部に指向して斜め上方向から接続されるよう偏平して延
出する偏平部151bと、偏平部151bより空気分配
室11と接続される接続部152に達する曲折部151
cとを備える。主部151の通路断面a1は上下に長い
矩形状を成し、その矩形断面は曲折部151cに向うほ
ど上下に長く偏平され、接続部152に達する位置で空
気分配室11の長手方向(上下方向)に沿うような偏平
形状として形成される。
The inlet duct 15 is connected to the air distribution chamber 11 by bending a substantially fan-shaped main portion 151 facing the radiator 3 located on the side of the passage of the traveling wind w, which is the cooling wind, from the main portion 151 at a substantially right angle. The connecting portion 152 to be formed is integrally formed. The main portion 151 has a tubular portion 151a fitted to the inflow duct 5, and a flat portion 151b that extends flatly from the tubular portion 151a toward the center of the air distribution chamber 11 so as to be connected obliquely from above. Bent portion 151 reaching from flat portion 151b to connection portion 152 connected to air distribution chamber 11
and c. A passage cross section a1 of the main portion 151 has a vertically long rectangular shape, and the rectangular cross section is flattened vertically as it goes to the bent portion 151c, and reaches a connecting portion 152 in the longitudinal direction of the air distribution chamber 11 (vertical direction). ) Is formed as a flat shape.

【0017】熱交換器9の入口ダクト15と反対側に配
置される出口ダク16は、熱交換器9を左右に二分する
仮想中央面(図2(a)において紙面垂直な符号fで示
す面)に対して、入口ダクト15の形状と左右対称に形
成される。このようにインタークーラ6には入口ダクト
15と同様に出口ダクト16も形成されるので、入口ダ
クト15から流入した空気が空気分配室11から熱交換
器9を介して空気空気集合室12に至り、出口ダクト1
6から流出ダクト7側に流出することができる。
The outlet duct 16 arranged on the side opposite to the inlet duct 15 of the heat exchanger 9 is a virtual center plane that divides the heat exchanger 9 into right and left (a plane indicated by a symbol f perpendicular to the plane of FIG. 2A). ), It is formed symmetrically with the shape of the inlet duct 15. In this way, the outlet duct 16 is formed in the intercooler 6 as well as the inlet duct 15, so that the air flowing from the inlet duct 15 reaches the air-air collecting chamber 12 from the air distribution chamber 11 via the heat exchanger 9. , Outlet duct 1
It is possible to flow out from 6 to the outflow duct 7 side.

【0018】ところで、図3(a)に示すように、入口
ダクト15は上下に長い矩形の通路断面a1を備える。
その流路中心線L1は空気分配室11の中央部に指向し
て斜め上方向から接続されている。このため、入口ダク
ト15はその筒部151aに流入した吸気を空気分配室
11の長手方向(上下方向)において、図9(c)に示
すように流路中心線L1に近い入口領域E1に比較的多
量を流入させ、流路中心線L1に遠い側端領域E2には
比較的少量を流入させる構成となっている。
By the way, as shown in FIG. 3 (a), the inlet duct 15 is provided with a vertically elongated rectangular passage cross section a1.
The flow path center line L1 is directed toward the center of the air distribution chamber 11 and is connected obliquely from above. Therefore, the inlet duct 15 compares the intake air flowing into the tubular portion 151a with the inlet region E1 near the flow path center line L1 in the longitudinal direction (vertical direction) of the air distribution chamber 11 as shown in FIG. 9C. A very large amount is made to flow in, and a relatively small amount is made to flow into the side end region E2 far from the flow path center line L1.

【0019】ここで熱交換器9は、図5に示すように、
入口領域E1に位置すると共に横断面幅Bの各冷却パイ
プ19内に冷却効率を高める高効率重視型フィンf1を
装着する。高効率重視型フィンf1は図6(a)に示す
ように、横断面幅Bに近い幅B1のベルト状金属板自体
が予め凹凸を一様に成形され、その上で繰返して屈曲変
形されて成形されており、放熱面積がより増大したもの
であり、これを冷却パイプ19内に装着することで、放
熱面積を十分に増大させ、同冷却パイプ19の冷却効率
を向上させることができる。
Here, the heat exchanger 9 is, as shown in FIG.
The high-efficiency-oriented fins f1 for increasing the cooling efficiency are mounted in the respective cooling pipes 19 which are located in the inlet region E1 and have a cross-sectional width B. As shown in FIG. 6A, in the high-efficiency-oriented fin f1, the belt-shaped metal plate itself having a width B1 close to the width B of the cross-section is formed in advance to have unevenness, and then repeatedly bent and deformed. It is molded and has a larger heat radiation area. By mounting this in the cooling pipe 19, the heat radiation area can be sufficiently increased and the cooling efficiency of the cooling pipe 19 can be improved.

【0020】熱交換器9の側端領域E2に位置する各冷
却パイプ19内に低圧損重視型フィンf2を装着する。
低圧損重視型フィンf2は図6(b)に示すように、冷
却パイプ19の横断面幅Bに近い幅B1のベルト状金属
板を繰返して屈曲変形して形成されており、高効率重視
型フィンf1と比較して、放熱面積が少なく、冷却パイ
プ内を通過する吸気の圧力損失が少なく、且つ冷却効率
も低い。このように、熱交換器9は、図3(a)、図4
に示すように、入口領域E1を冷却効率の高い高効率コ
ア部とし、側端領域E2を低圧損重視型フィンf2が内
蔵される冷却効率の低い低効率コア部として形成され
た。
A low pressure loss-oriented fin f2 is mounted in each cooling pipe 19 located in the side end region E2 of the heat exchanger 9.
As shown in FIG. 6B, the low-pressure loss-oriented fin f2 is formed by repeatedly bending and deforming a belt-shaped metal plate having a width B1 that is close to the cross-sectional width B of the cooling pipe 19, and thus the high efficiency-oriented fin f2 is formed. Compared to the fin f1, the heat radiation area is small, the pressure loss of the intake air passing through the cooling pipe is small, and the cooling efficiency is low. As described above, the heat exchanger 9 has the structure shown in FIG.
As shown in (1), the inlet region E1 is formed as a high-efficiency core part having high cooling efficiency, and the side end region E2 is formed as a low-efficiency core part having low cooling efficiency in which the low-pressure-loss-oriented fins f2 are incorporated.

【0021】このようにインタークーラ6の熱交換器9
に達し、冷却パイプ19内を通過しようとする吸気流速
に、図10(c)に示したように、ばらつきがあって
も、最も吸気流速が速くなる入口領域E1を冷却効率の
高い高効率コア部とすることで、吸気の冷却機能を有効
に働かせ、図3(b)に示すように熱交換器9全体とし
ての冷却効率を向上させることができる。
Thus, the heat exchanger 9 of the intercooler 6
As shown in FIG. 10 (c), the inlet region E1 where the intake flow velocity is the highest even if there is variation in the intake flow velocity reaching the inside of the cooling pipe 19 has high cooling efficiency. By forming the portion, the cooling function of the intake air can be effectively operated, and the cooling efficiency of the heat exchanger 9 as a whole can be improved as shown in FIG. 3B.

【0022】しかも、この場合、入口領域E1の冷却パ
イプ19内の高効率重視型フィンf1により冷却パイプ
19の流動抵抗が高くなることより、流動抵抗が低い側
端領域E2側に吸気流動割合を増大させ、熱交換器9全
体の冷却効率を高められる。この場合、特に、上下方向
の中央の高効率コア部である入口領域E1よりその上下
側に分離して低効率コア部である側端領域E2側に吸気
が回り込むことができ、側端領域E2側に吸気が比較的
多量に流れ込むこととなり、全体の流速を均一化でき
(図3(b)参照)、全体としての冷却効率を向上させ
ることができる。図7〜図9を用いて、図1、2に示す
インタークーラの変形例を説明する。
Further, in this case, since the flow efficiency of the cooling pipe 19 is increased by the high-efficiency type fin f1 in the cooling pipe 19 in the inlet region E1, the intake flow ratio is reduced to the side end region E2 side where the flow resistance is low. The cooling efficiency of the entire heat exchanger 9 can be increased. In this case, in particular, the intake air can be separated into the upper and lower sides of the inlet region E1 that is the high-efficiency core portion at the center in the up-down direction and can flow around to the side end region E2 side that is the low-efficiency core portion. Since a relatively large amount of intake air flows into the side, the overall flow rate can be made uniform (see FIG. 3B), and the overall cooling efficiency can be improved. A modified example of the intercooler shown in FIGS. 1 and 2 will be described with reference to FIGS.

【0023】上述のインタークーラ6において、熱交換
器9は、図4に示すように、入口領域E1を冷却効率の
高い高効率コア部とし、この入口領域E1を冷却効率の
低い上下の側端領域E2でサンドイッチ状に挟むように
構成されていたが、これに代えて、インタークーラ6に
対向配備された車両構造物によって流動規制を受ける走
行風を考慮して図7(a)、図9に示すように構成して
も良い。ここでインタークーラ6bは図1、2に示すイ
ンタークーラ6と比較し、熱交換器9bの構成のみが相
違することより、重複説明を略す。
In the above-mentioned intercooler 6, as shown in FIG. 4, the heat exchanger 9 has an inlet region E1 as a high-efficiency core portion having a high cooling efficiency, and the inlet region E1 has upper and lower side ends having a low cooling efficiency. Although it was configured to be sandwiched in the region E2, instead of this, in consideration of the traveling wind subjected to flow regulation by the vehicle structure disposed opposite to the intercooler 6, FIG. 7A and FIG. It may be configured as shown in. Here, the intercooler 6b is different from the intercooler 6 shown in FIGS. 1 and 2 only in the configuration of the heat exchanger 9b, and thus the duplicate description will be omitted.

【0024】ここで熱交換器9bに達する走行風wは図
示しない車両のラジエータグリルにより流動規制を強く
受け、熱交換器9bの下半分側には上半分側に比べて比
較的多量の走行風wが流入する。そこで、熱交換器9b
は冷却効率を高める高効率コア部である高走行風領域E
3を下半分側に、冷却効率の低い低効率コア部である低
走行風領域E4を上半分側に形成している。高走行風領
域E3に位置する各冷却パイプ19bは、図8に示すよ
うに、各冷却パイプ19bの内部に、パイプ長手方向に
同一断面(屈曲断面)で、パイプ内に吸気通路を確保で
きる高効率重視型フィンf1(図6(a)を参照)を嵌
挿して成る。この高効率重視型フィンf1は、冷却パイ
プ19aとほぼ同一長さの金属板を繰返して屈曲変形し
て横断面が同一の屈曲金属板と成し、冷却パイプ19b
内部に圧入装着される。
The traveling wind w reaching the heat exchanger 9b is strongly regulated by a radiator grill (not shown) of the vehicle, and a relatively large amount of traveling wind is applied to the lower half side of the heat exchanger 9b compared to the upper half side. w flows in. Therefore, the heat exchanger 9b
Is a high-efficiency wind area E that is a high-efficiency core that enhances cooling efficiency
3 is formed on the lower half side, and the low traveling wind region E4, which is a low-efficiency core portion having low cooling efficiency, is formed on the upper half side. As shown in FIG. 8, each cooling pipe 19b located in the high traveling wind area E3 has a height that can secure an intake passage inside the cooling pipe 19b with the same cross section (bending cross section) in the pipe longitudinal direction. An efficiency-oriented fin f1 (see FIG. 6A) is fitted and inserted. This high-efficiency type fin f1 repeatedly bends and deforms a metal plate having substantially the same length as the cooling pipe 19a to form a bent metal plate having the same cross section, and the cooling pipe 19b.
It is press-fitted inside.

【0025】なお、高効率重視型フィンf1は金属板自
体が予め凹凸を一様に成形され、その上で繰返して屈曲
変形されて成形されており、放熱面積が十分に増大した
ものであり各冷却パイプ19bに流入した吸気との接触
面積が増大し、吸気側の熱を冷却パイプ19b表面に十
分伝達でき、これにより吸気を走行風wで効率よく冷却
できる。又、低走行風領域E4に位置する各冷却パイプ
19には、低圧損重視型フィンf2(図6(b)を参
照)が嵌挿されている。
The high-efficiency-oriented fin f1 is formed by forming the unevenness of the metal plate itself in advance, and then repeatedly bending and deforming the metal plate so that the heat radiation area is sufficiently increased. The contact area with the intake air that has flowed into the cooling pipe 19b is increased, and heat on the intake side can be sufficiently transferred to the surface of the cooling pipe 19b, whereby the intake air can be efficiently cooled by the traveling wind w. Further, a low pressure loss-oriented fin f2 (see FIG. 6B) is fitted into each cooling pipe 19 located in the low traveling wind area E4.

【0026】図7(a)、図8に示すように、インター
クーラ6bの熱交換器9bは、高走行風領域E3を冷却
効率の高い高効率コア部として形成されている。しか
も、図7(b)の実線で示すように、ここでの熱交換器
9bの下半分側には上半分側に比べて比較的多量の走行
風wが流入するもので、熱交換器9bの冷却風当たり面
における風量にばらつきがあっても、これに対応でき、
高走行風領域E3での吸気の冷却効率は極めて高レベル
と成り、熱交換器9全体としての冷却効率を向上させる
ことができる。
As shown in FIGS. 7A and 8, the heat exchanger 9b of the intercooler 6b is formed in the high traveling air region E3 as a highly efficient core portion having high cooling efficiency. Moreover, as shown by the solid line in FIG. 7 (b), a relatively large amount of running wind w flows into the lower half side of the heat exchanger 9b here compared to the upper half side, and the heat exchanger 9b Even if there is variation in the air volume on the cooling air contact surface of
The cooling efficiency of the intake air in the high traveling wind area E3 becomes extremely high, and the cooling efficiency of the heat exchanger 9 as a whole can be improved.

【0027】上述のところにおいて、吸気冷却装置Mを
車両用として説明したが、定置式エンジンの冷却装置、
或いは電動機用冷却装置にも同様に適用でき、これらの
場合、冷却風は走行風に代えてファンが生じる空気流と
なり、これらの場合も、図1の吸気冷却装置と同様の作
用効果が得られる。
In the above description, the intake air cooling device M has been described for a vehicle. However, a stationary engine cooling device,
Alternatively, it can be similarly applied to a cooling device for an electric motor. In these cases, the cooling air becomes an air flow generated by a fan instead of the running air, and in these cases, the same action and effect as the intake air cooling device of FIG. 1 can be obtained. .

【0028】[0028]

【発明の効果】以上のように、請求項1の発明は、熱交
換部の内、前記入ロダクトの流路中心線に近い領域が冷
却効率の高い高効率コア部とされ、流路中心線に遠い領
域が冷却効率の低い低効率コア部とされるので、入ロダ
クトの流路中心線に近い領域の各冷却パイプ内に比較的
多量の空気が流入する傾向があることより、同部に比較
的多量に達する空気を高効率で冷却でき、熱交換部全体
の冷却効率を高められる。例えば、該冷却装置をエンジ
ンの吸気系に用いた場合には、ポンピングロスの減少、
空気量が増大し出力向上が図れる。
As described above, according to the invention of claim 1, in the heat exchange portion, a region close to the flow path center line of the inlet / outlet duct is a high efficiency core portion having high cooling efficiency, and the flow path center line is Since the low efficiency core part where the cooling efficiency is low is located in the area farther than, there is a tendency for a relatively large amount of air to flow into each cooling pipe in the area near the flow path center line of the inlet / outlet duct. Air reaching a relatively large amount can be cooled with high efficiency, and the cooling efficiency of the entire heat exchange section can be improved. For example, when the cooling device is used in the intake system of an engine, pumping loss is reduced,
The amount of air increases and the output can be improved.

【0029】請求項2の発明は、熱交換部に流入する冷
却風が対向物体等により流動規制されるとしても、熱交
換部に流入する冷却風の流速が速い領域が冷却効率の高
い高効率コア部として形成されるので、同部に比較的多
量に達する空気を高効率で冷却でき、熱交換部全体の冷
却効率を高められる。例えば、該冷却装置をエンジンの
吸気系に用いた場合には、ポンピングロスの減少、空気
量が増大し出力向上が図れる。
According to the second aspect of the present invention, even if the flow of the cooling air flowing into the heat exchanging portion is regulated by an opposed object or the like, the region where the flow velocity of the cooling air flowing into the heat exchanging portion is high has a high cooling efficiency. Since it is formed as the core portion, it is possible to highly efficiently cool the air that reaches a relatively large amount in the same portion, and it is possible to enhance the cooling efficiency of the entire heat exchange portion. For example, when the cooling device is used in an intake system of an engine, pumping loss can be reduced and the amount of air can be increased to improve output.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態としての吸気冷却装置を装
備するエンジンの概略構成図である。
FIG. 1 is a schematic configuration diagram of an engine equipped with an intake air cooling device as an embodiment of the present invention.

【図2】図1内のインタークーラであり、(a)は正面
図、(b)は要部拡大切欠断面図である。
FIG. 2 is an intercooler in FIG. 1, where (a) is a front view and (b) is an enlarged cutaway sectional view of essential parts.

【図3】図1内のインタークーラであり、(a)は側面
図、(b)は熱交換器での冷却パイプ内の吸気流速の分
布説明図である。
FIG. 3 is an intercooler in FIG. 1, where (a) is a side view and (b) is an explanatory view of intake air flow velocity distribution in a cooling pipe in a heat exchanger.

【図4】図1内のインタークーラの熱交換器での機能領
域分布説明図である。
FIG. 4 is a functional region distribution explanatory diagram in the heat exchanger of the intercooler in FIG. 1.

【図5】図1内のインタークーラの熱交換器内の複数の
冷却パイプの部分断面図を示すものである。
5 is a partial cross-sectional view of a plurality of cooling pipes in the heat exchanger of the intercooler in FIG.

【図6】図1内のインタークーラの熱交換器で用いるフ
ィンの斜視図であり、(a)は高効率重視型フィンを、
(b)は低圧損重視型フィンを示す。
FIG. 6 is a perspective view of fins used in the heat exchanger of the intercooler in FIG. 1, where (a) is a high efficiency type fin,
(B) shows a low pressure loss-oriented fin.

【図7】図1内のインタークーラの変形例であり、
(a)は概略側面図を、(b)は熱交換器での各冷却パ
イプ間の走行風流速の分布説明図である。
FIG. 7 is a modified example of the intercooler in FIG.
(A) is a schematic side view, (b) is a distribution explanatory view of the traveling wind flow velocity between each cooling pipe in a heat exchanger.

【図8】図7のインタークーラの熱交換器内の複数の冷
却パイプの部分断面図を示すものである。
8 is a partial cross-sectional view of a plurality of cooling pipes in the heat exchanger of the intercooler of FIG.

【図9】図7のインタークーラの熱交換器での機能領域
分布説明図である。
9 is a functional region distribution explanatory diagram in the heat exchanger of the intercooler of FIG. 7. FIG.

【図10】従来のインタークーラを示し、(a)は平面
図を、(b)は側面図を、(c)はインタークーラの冷
却パイプ内の吸気流速の分布を示す。
10A and 10B show a conventional intercooler, in which FIG. 10A is a plan view, FIG. 10B is a side view, and FIG. 10C is a distribution of intake air velocity in a cooling pipe of the intercooler.

【符号の説明】[Explanation of symbols]

9 熱交換器 11 空気分配室 15 入口ダクト 12 空気集合室 16 出口ダクト L1 流路中心線 E1 入口領域 E2 側端領域 E3 高走行風領域 E4 低走行風領域 a1 通路断面 w 冷却風 M 吸気冷却装置 9 heat exchanger 11 air distribution chamber 15 entrance duct 12 air meeting room 16 Exit duct L1 flow path center line E1 entrance area E2 side edge area E3 High wind area E4 Low driving wind area a1 passage cross section w Cooling wind M intake cooling system

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】冷却風の通過によって空気を冷却し冷却風
の通過方向と直交する偏平形状に形成された熱交換部
と、前記熱交換部の一側に長手方向に延びて設けられ流
入する空気を分配する空気分配室と、前記空気分配室に
延出形成された入口ダクトと、前記熱交換部の前記一側
と対向する他側に長手方向に延びて設けられ冷却された
空気を集める空気集合室と、前記空気集合室に延出形成
された出口ダクトとを備え、前記入口ダクトから流入し
た空気が前記空気分配室から前記熱交換部を介して前記
空気空気集合室に至り、前記出口ダクトから排出される
冷却装置において、 前記熱交換部は、前記入ロダクトの流路中心線に近い領
域が冷却効率の高い高効率コア部とし、流路中心線に遠
い領域が冷却効率の低い低効率コア部としてそれぞれ形
成されることを特徴とする冷却装置。
1. A heat exchanging portion formed in a flat shape that cools air by passage of cooling air and is orthogonal to the passage direction of cooling air, and is provided on one side of the heat exchanging portion so as to extend in the longitudinal direction and flow in. An air distribution chamber that distributes air, an inlet duct that is formed to extend in the air distribution chamber, and a cooling air that is provided in a longitudinal direction on the other side of the heat exchange section that faces the one side and collects the cooled air. An air collecting chamber and an outlet duct that is formed to extend in the air collecting chamber are provided, and the air that has flowed in from the inlet duct reaches the air-air collecting chamber from the air distribution chamber via the heat exchange section, In the cooling device discharged from the outlet duct, the heat exchange section has a high-efficiency core portion having a high cooling efficiency in a region close to the flow path center line of the input / output duct, and has a low cooling efficiency in a region far from the flow path center line. Shaped as low efficiency core A cooling device characterized by being formed.
【請求項2】冷却風の通過によって空気を冷却し、冷却
風の通過方向と直交する偏平形状に形成された熱交換部
と、前記熱交換部の一側に長手方向に延びて設けられ流
入する空気を分配する空気分配室と、前記空気分配室に
延出形成された入口ダクトと、前記熱交換部の前記一側
と対向する他側に長手方向に延びて設けられ冷却された
空気を集める空気集合室と、前記空気集合室に延出形成
された出口ダクトとを備え、前記入口ダクトから流入し
た空気が前記空気分配室から前記熱交換部を介して前記
空気空気集合室に至り、前記出口ダクトから排出される
冷却装置において、 前記熱交換部に対向配備され、前記熱交換部を通過する
冷却風に流動規制を与える構造物を備え、前記熱交換部
は同熱交換部に流入する冷却風の流速が速い領域が冷却
効率の高い高効率コア部として形成され、前記熱交換部
に流入する冷却風の流速が遅い領域が冷却効率の低い低
効率コア部としてそれぞれ形成されることを特徴とする
冷却装置。
2. A heat exchange part formed in a flat shape perpendicular to the passage direction of the cooling air, the air being cooled by the passage of the cooling air, and an inflow provided on one side of the heat exchange part so as to extend in the longitudinal direction. An air distribution chamber for distributing the air, an inlet duct formed to extend in the air distribution chamber, and a cooled air provided in the other side of the heat exchanging portion opposite to the one side in the longitudinal direction. An air collecting chamber and an outlet duct formed to extend in the air collecting chamber are provided, and the air flowing from the inlet duct reaches the air-air collecting chamber from the air distribution chamber via the heat exchange unit. In the cooling device discharged from the outlet duct, a structure is provided opposite to the heat exchange section, and a structure for restricting flow of cooling air passing through the heat exchange section is provided, and the heat exchange section flows into the heat exchange section. The area where the flow velocity of the cooling air A cooling device, which is formed as a high-efficiency core portion having a high cooling efficiency, and regions in which the flow velocity of the cooling air flowing into the heat exchange portion is slow are formed as low-efficiency core portions having a low cooling efficiency.
JP2002122357A 2002-04-24 2002-04-24 Cooling device Pending JP2003314990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002122357A JP2003314990A (en) 2002-04-24 2002-04-24 Cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002122357A JP2003314990A (en) 2002-04-24 2002-04-24 Cooling device

Publications (1)

Publication Number Publication Date
JP2003314990A true JP2003314990A (en) 2003-11-06

Family

ID=29537990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002122357A Pending JP2003314990A (en) 2002-04-24 2002-04-24 Cooling device

Country Status (1)

Country Link
JP (1) JP2003314990A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008044387A (en) * 2006-08-10 2008-02-28 Nissan Diesel Motor Co Ltd Radiator warm air entrainment preventing structure
WO2014010675A1 (en) * 2012-07-12 2014-01-16 いすゞ自動車株式会社 Vehicle intercooler
JPWO2020235449A1 (en) * 2019-05-21 2020-11-26
CN114110785A (en) * 2021-11-23 2022-03-01 珠海格力电器股份有限公司 Heat exchange air port structure, control method thereof and air conditioner

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008044387A (en) * 2006-08-10 2008-02-28 Nissan Diesel Motor Co Ltd Radiator warm air entrainment preventing structure
WO2014010675A1 (en) * 2012-07-12 2014-01-16 いすゞ自動車株式会社 Vehicle intercooler
JP2014020590A (en) * 2012-07-12 2014-02-03 Isuzu Motors Ltd Vehicular intercooler
JPWO2020235449A1 (en) * 2019-05-21 2020-11-26
KR20210151195A (en) * 2019-05-21 2021-12-13 가부시키가이샤 도모에가와 세이시쇼 temperature unit
CN113812219A (en) * 2019-05-21 2021-12-17 株式会社巴川制纸所 Temperature control unit
KR102643544B1 (en) * 2019-05-21 2024-03-04 가부시키가이샤 도모에가와 세이시쇼 temperature control unit
US11985795B2 (en) 2019-05-21 2024-05-14 Tomoegawa Corporation Temperature control unit
CN113812219B (en) * 2019-05-21 2024-06-07 巴川集团股份有限公司 Temperature regulating unit
CN114110785A (en) * 2021-11-23 2022-03-01 珠海格力电器股份有限公司 Heat exchange air port structure, control method thereof and air conditioner

Similar Documents

Publication Publication Date Title
US8037685B2 (en) Method for cooling an internal combustion engine having exhaust gas recirculation and charge air cooling
JP4683111B2 (en) Exhaust heat exchanger
US9593647B2 (en) Gas-to-liquid heat exchanger
JP4543083B2 (en) Focusing tube heat exchanger, especially for supercharged internal combustion engines
US20120024511A1 (en) Intercooler
JP6509277B2 (en) Vehicle heat exchanger
JP5906250B2 (en) Heat exchanger and associated method of forming a flow perturbant
JP6556566B2 (en) Vehicle cooling system
JP2010223508A (en) Intercooler of engine for vehicle
JP5866798B2 (en) Intercooler
JP5682541B2 (en) Intake air cooling system
JP2003314990A (en) Cooling device
JP6577282B2 (en) Heat exchanger
CN113412407A (en) Heat exchanger
JP6051641B2 (en) Intercooler for vehicle
JP6135057B2 (en) Intercooler for vehicle
JP2013174128A (en) Intercooler
JP2007216748A (en) Air guide for vehicle
GB2280021A (en) Cooling air flow distribution in radiators
CN112689576B (en) Radiator structure
JP2003326988A (en) Cooler, and intake cooler for engine
JP6376519B2 (en) Vehicle exhaust system
JP2005061343A (en) Cooling device of vehicle
KR101172065B1 (en) Intercooler
JP2014132163A (en) Intercooler

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040922

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070720

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080115