JP5866798B2 - Intercooler - Google Patents

Intercooler Download PDF

Info

Publication number
JP5866798B2
JP5866798B2 JP2011112903A JP2011112903A JP5866798B2 JP 5866798 B2 JP5866798 B2 JP 5866798B2 JP 2011112903 A JP2011112903 A JP 2011112903A JP 2011112903 A JP2011112903 A JP 2011112903A JP 5866798 B2 JP5866798 B2 JP 5866798B2
Authority
JP
Japan
Prior art keywords
inflow side
inlet pipe
core connection
connection portion
side core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011112903A
Other languages
Japanese (ja)
Other versions
JP2012241627A (en
Inventor
聡 竹中
聡 竹中
一秀 高田
一秀 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2011112903A priority Critical patent/JP5866798B2/en
Publication of JP2012241627A publication Critical patent/JP2012241627A/en
Application granted granted Critical
Publication of JP5866798B2 publication Critical patent/JP5866798B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0263Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by varying the geometry or cross-section of header box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0246Arrangements for connecting header boxes with flow lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0082Charged air coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F2009/0285Other particular headers or end plates
    • F28F2009/029Other particular headers or end plates with increasing or decreasing cross-section, e.g. having conical shape

Description

本発明は、過給機からエンジン本体に供給する吸気ガスを冷却するインタークーラに関する。   The present invention relates to an intercooler that cools intake gas supplied from a supercharger to an engine body.

エンジンの出力向上を図る目的からエンジンの吸気系に過給機を装着する過給機付エンジンにおいては、過給機で過給された吸気ガス(圧縮空気)が高温となるため、この高温の吸気ガスをエンジンの燃焼室にそのまま供給してしまうと、充填効率の低下やノッキング(ガソリンエンジンの場合)の問題が生じ得る。   In a turbocharged engine in which a supercharger is installed in the intake system of the engine for the purpose of improving engine output, the intake gas (compressed air) supercharged by the supercharger becomes high temperature. If the intake gas is supplied to the combustion chamber of the engine as it is, problems such as a decrease in charging efficiency and knocking (in the case of a gasoline engine) may occur.

このため、過給機付エンジンにおいては、過給機により過給された吸気ガスを冷却するためのインタークーラをエンジンの吸気系に装着するようにしている(例えば、特許文献1、2参照)。   For this reason, in an engine with a supercharger, an intercooler for cooling the intake gas supercharged by the supercharger is mounted on the intake system of the engine (see, for example, Patent Documents 1 and 2). .

インタークーラは、例えば、吸気流入口を有する流入側ヘッダと、吸気吐出口を有する吐出側ヘッダと、これら流入側ヘッダと吐出側ヘッダとの間に配設された熱交換用のコアとから主に構成される。   The intercooler includes, for example, an inflow side header having an intake air inlet, a discharge side header having an intake air discharge port, and a heat exchange core disposed between the inflow side header and the discharge side header. Configured.

トラック用のエンジンの場合は、インタークーラがエンジンの前方に搭載されており、走行による空気流或いはクーリングファンの吸い込みによる空気流がインタークーラに流れ込むことにより、過給機による過給で高温となった吸気ガスが冷やされる。また、乗用車のエンジンにおいても搭載位置は若干異なるものの、インタークーラの前面に走行による空気流があたるようになっている。   In the case of a truck engine, an intercooler is mounted in front of the engine, and airflow from running or suction of a cooling fan flows into the intercooler, resulting in high temperature due to supercharging by the supercharger. Intake gas is cooled. In addition, although the mounting position of a passenger car engine is slightly different, an airflow caused by traveling is applied to the front surface of the intercooler.

特開2010−275982号公報JP 2010-275982 A 特開2010−223508号公報JP 2010-223508 A

このようなインタークーラにおける圧損の一部はコアの圧損であるが、コアの圧損を低減するには、例えばコアのチューブ本数を増やすことが考えられる。しかしながら、コアのチューブ本数を増やすと、インタークーラが大型化し、更にはエンジン及びエンジンに装着される各種装置類のレイアウト変更が必要となることがある。そのため、コアのチューブ本数を増やす方法によりコアの圧損を低減する方法の採用は困難であるといえる。一方、流入側ヘッダは、形状変更により圧損を低減する余地があると思われる。   A part of the pressure loss in such an intercooler is the pressure loss of the core. In order to reduce the pressure loss of the core, for example, it is conceivable to increase the number of core tubes. However, when the number of core tubes is increased, the size of the intercooler may increase, and the layout of the engine and various devices attached to the engine may need to be changed. Therefore, it can be said that it is difficult to adopt a method for reducing the core pressure loss by increasing the number of core tubes. On the other hand, the inflow side header seems to have room to reduce pressure loss by changing the shape.

そこで、本発明の目的は、エンジン及びエンジンに装着される各種装置類のレイアウト変更を行うことなく、流入側ヘッダの圧損を効果的に低減することにある。   Accordingly, an object of the present invention is to effectively reduce the pressure loss of the inflow side header without changing the layout of the engine and various devices mounted on the engine.

上述の目的を達成するために、本発明は、吸気流入口を有する流入側ヘッダと、吸気吐出口を有する吐出側ヘッダと、前記流入側ヘッダと前記吐出側ヘッダとの間に配設された熱交換用のコアとを備えるインタークーラにおいて、前記流入側ヘッダは、前記コアに接続され、前記コアの一端部に沿って延びる流入側コア接続部と、前記流入側コア接続部の後部に形成されて前記流入側コア接続部と連通すると共に、前記流入側コア接続部から筒状かつ背面側に延び、先端に前記吸気流入口が形成された入口パイプ部とを有し、前記流入側コア接続部と前記入口パイプ部との連通部分の背面側内壁面を前記流入側コア接続部の背面位置よりも前側に湾曲させ、R形状としたものである。 In order to achieve the above-mentioned object, the present invention is disposed between an inflow side header having an intake inflow port, a discharge side header having an intake discharge port, and the inflow side header and the discharge side header. in the intercooler and a core of heat exchange, the inflow-side header is connected to the core, the inlet-side core connecting portion extending along one end portion of the core, formed in the rear of the inflow-side core connecting portion The inflow side core connection part, and an inlet pipe part that extends from the inflow side core connection part to the rear side of the cylinder and has the intake air inlet formed at a tip thereof. The inner wall surface on the back surface side of the communication portion between the connecting portion and the inlet pipe portion is curved to the front side with respect to the back surface position of the inflow side core connecting portion to form an R shape.

前記流入側コア接続部と前記入口パイプ部との連通部分の背面が、前記流入側コア接続部の背面位置に対して前側に湾曲して凹曲面を形成し、前記流入側コア接続部と前記入口パイプ部との連通部分の前面を凸曲面状に湾曲させることで、前記流入側コア接続部と前記入口パイプ部との連通部分の前面側内壁面をR形状としたものであっても良い。 The back surface of the communication portion between the inflow side core connection portion and the inlet pipe portion is curved forward with respect to the back surface position of the inflow side core connection portion to form a concave curved surface, and the inflow side core connection portion and the The front side inner wall surface of the communicating part between the inflow side core connecting part and the inlet pipe part may be formed in an R shape by curving the front surface of the communicating part with the inlet pipe part into a convex curved surface. .

前記流入側コア接続部と前記入口パイプ部との連通部分の背面を凹曲面状に湾曲させることで、前記流入側コア接続部と前記入口パイプ部との連通部分のコア接続部長手方向内壁面をR形状としても良い。 The inner wall surface in the longitudinal direction of the core connection portion of the communication portion between the inflow side core connection portion and the inlet pipe portion by curving the back surface of the communication portion between the inflow side core connection portion and the inlet pipe portion into a concave curved surface May be R-shaped.

前記入口パイプ部のコア接続部長手方向の径を当該コア接続部長手方向に直交する方向の径に対して大きく形成しても良い。 You may form the diameter of the core connection part longitudinal direction of the said inlet pipe part largely with respect to the diameter of the direction orthogonal to the said core connection part longitudinal direction .

本発明によれば、エンジン及びエンジンに装着される各種装置類のレイアウト変更を行うことなく、流入側ヘッダの圧損を効果的に低減することができるという優れた効果を奏する。   According to the present invention, it is possible to effectively reduce the pressure loss of the inflow side header without changing the layout of the engine and various devices attached to the engine.

本発明の一実施形態に係るインタークーラの背面図である。It is a rear view of the intercooler concerning one embodiment of the present invention. 本発明の一実施形態に係るインタークーラの側面図である。It is a side view of the intercooler concerning one embodiment of the present invention. 図2のA−A線断面図である。It is the sectional view on the AA line of FIG. 本発明の一実施形態に係るインタークーラを装着した過給機付エンジンの構成図である。It is a lineblock diagram of an engine with a supercharger equipped with an intercooler concerning one embodiment of the present invention.

以下、本発明の好適な実施形態を添付図面に基づいて詳述する。   DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

先ず、本実施形態に係るインタークーラが装着されるエンジンについて図4を用いて説明する。なお、図4中、矢印Iは吸気ガスの流れを示し、矢印Eは排気ガスの流れを示し、矢印Acは走行による空気流或いはクーリングファンの吸い込みによる空気流を示している。   First, an engine to which an intercooler according to this embodiment is mounted will be described with reference to FIG. In FIG. 4, arrow I indicates the flow of intake gas, arrow E indicates the flow of exhaust gas, and arrow Ac indicates the air flow due to running or the air flow due to suction of a cooling fan.

図4に示すエンジン1は、例えばディーゼルエンジンであって、トラック等の車両に搭載されるものである。なお、エンジン1は、ディーゼルエンジンには限定はされず、ガソリンエンジン等であっても良い。   An engine 1 shown in FIG. 4 is a diesel engine, for example, and is mounted on a vehicle such as a truck. The engine 1 is not limited to a diesel engine, and may be a gasoline engine or the like.

図4に示すように、エンジン1は、エンジン本体2と、エンジン本体2の吸気ポートに接続された吸気マニホールド3と、吸気マニホールド3に接続された吸気管4と、吸気管4に配設されエンジン本体2に供給する吸気ガスを過給する過給機5のコンプレッサ5cと、コンプレッサ5cよりも吸気後流側の吸気管4に配設され吸気ガスを冷却する空冷式のインタークーラ10と、エンジン本体2の排気ポートに接続された排気マニホールド6と、排気マニホールド6に接続された排気管7と、排気管7に配設されコンプレッサ5cを駆動する過給機5のタービン5tと、エンジン本体2内を循環するエンジン冷却水を冷却する空冷式のラジエータ8と、エンジン本体2により回転駆動されるクーリングファン(冷却ファン)9とを備える。   As shown in FIG. 4, the engine 1 is disposed in the engine body 2, the intake manifold 3 connected to the intake port of the engine body 2, the intake pipe 4 connected to the intake manifold 3, and the intake pipe 4. A compressor 5c of a supercharger 5 that supercharges intake gas to be supplied to the engine body 2, an air-cooled intercooler 10 that is disposed in the intake pipe 4 on the intake downstream side of the compressor 5c and cools the intake gas, An exhaust manifold 6 connected to an exhaust port of the engine body 2, an exhaust pipe 7 connected to the exhaust manifold 6, a turbine 5t of a supercharger 5 disposed in the exhaust pipe 7 and driving a compressor 5c, an engine body An air-cooled radiator 8 that cools engine coolant circulating in the engine 2 and a cooling fan (cooling fan) 9 that is rotationally driven by the engine body 2 are provided.

図4に示すエンジン1では、エンジン本体2の前方から後方に向かって順に、インタークーラ10、ラジエータ8、クーリングファン9(エンジン本体2)が一直線上に配設されている。そのため、図4に示すエンジン1においては、走行による空気流或いはクーリングファン9の吸い込みによる空気流Acは、インタークーラ10を通過し、さらにラジエータ8を通過してクーリングファン9に流れるようになっている。   In the engine 1 shown in FIG. 4, an intercooler 10, a radiator 8, and a cooling fan 9 (engine body 2) are arranged on a straight line in order from the front to the rear of the engine body 2. For this reason, in the engine 1 shown in FIG. 4, the air flow Ac due to traveling or the air flow Ac due to the suction of the cooling fan 9 passes through the intercooler 10 and further passes through the radiator 8 and flows to the cooling fan 9. Yes.

次に、本実施形態に係るインタークーラ10について図1から図3を用いて説明する。   Next, the intercooler 10 according to the present embodiment will be described with reference to FIGS. 1 to 3.

図1から図3に示すように、本実施形態に係るインタークーラ10は、吸気流入口11を有する流入側ヘッダ12と、吸気吐出口13を有する吐出側ヘッダ14と、流入側ヘッダ12と吐出側ヘッダ14との間に配設された熱交換用のコア15とを備えている。コア15は、背面視で略矩形状に形成されている。   As shown in FIGS. 1 to 3, the intercooler 10 according to the present embodiment includes an inflow side header 12 having an intake inflow port 11, a discharge side header 14 having an intake discharge port 13, an inflow side header 12, and a discharge. A heat exchange core 15 disposed between the side header 14 and the side header 14 is provided. The core 15 is formed in a substantially rectangular shape in rear view.

流入側ヘッダ12は、コア15に接続され、コア15の一端部(図1中の右側)に沿って延びる流入側コア接続部16と、流入側コア接続部16の後部に連通され、先端に吸気流入口11が形成された円筒状の入口パイプ部17とから構成されている。本実施形態では、入口パイプ部17は、流入側コア接続部16の上部に結合されている。   The inflow side header 12 is connected to the core 15 and communicates with the inflow side core connection portion 16 extending along one end portion (right side in FIG. 1) of the core 15 and the rear portion of the inflow side core connection portion 16 at the tip. It is comprised from the cylindrical inlet pipe part 17 in which the intake inflow port 11 was formed. In the present embodiment, the inlet pipe portion 17 is coupled to the upper portion of the inflow side core connecting portion 16.

本実施形態では、流入側コア接続部16と入口パイプ部17との連通部分の背面(図2中の左側)を凹曲面状に湾曲させることで、流入側コア接続部16と入口パイプ部17との連通部分の背面側内壁面18aを内側に凸のR形状としている(図3参照)。つまり、流入側コア接続部16と入口パイプ部17との連通部分は、流入側コア接続部16の背面位置よりも前側に湾曲している。即ち、流入側コア接続部16と入口パイプ部17との連通部分の背面を凹曲面状に湾曲させることで、流入側コア接続部16の背面に凹部16aを形成すると共に、流入側コア接続部16と入口パイプ部17との連通部分内に内側に突出する凸部16bを形成している。凹部16aは、流入側コア接続部16の背面位置から前側に凹となっている。   In the present embodiment, the inflow side core connection portion 16 and the inlet pipe portion 17 are curved in a concave curved shape on the back surface (left side in FIG. 2) of the communication portion between the inflow side core connection portion 16 and the inlet pipe portion 17. The back side inner wall surface 18a of the communicating part with the inner side is formed in an R shape convex inward (see FIG. 3). That is, the communication portion between the inflow side core connection portion 16 and the inlet pipe portion 17 is curved to the front side of the back surface position of the inflow side core connection portion 16. That is, the back surface of the communication portion between the inflow side core connection portion 16 and the inlet pipe portion 17 is curved into a concave curved surface, thereby forming the recess 16a on the back surface of the inflow side core connection portion 16 and the inflow side core connection portion. A convex portion 16 b that protrudes inward is formed in a communicating portion between 16 and the inlet pipe portion 17. The concave portion 16 a is concave from the back surface position of the inflow side core connecting portion 16 to the front side.

本実施形態では、流入側コア接続部16と入口パイプ部17との連通部分の背面側内壁面18aの曲率半径Rを10mmから80mmの範囲で入口パイプ部17の長手方向に対して徐々に変化させている。なお、流入側コア接続部16と入口パイプ部17との連通部分の背面側内壁面18aの曲率半径Rを入口パイプ部17の長手方向に対して一定値としても良い。   In this embodiment, the curvature radius R of the back side inner wall surface 18a of the communication portion between the inflow side core connecting portion 16 and the inlet pipe portion 17 is gradually changed with respect to the longitudinal direction of the inlet pipe portion 17 in the range of 10 mm to 80 mm. I am letting. In addition, the curvature radius R of the back side inner wall surface 18 a of the communication portion between the inflow side core connection portion 16 and the inlet pipe portion 17 may be a constant value with respect to the longitudinal direction of the inlet pipe portion 17.

また、本実施形態では、流入側コア接続部16と入口パイプ部17との連通部分の前面(図2中の右側)を凸曲面状に湾曲させることで、流入側コア接続部16と入口パイプ部17との連通部分の前面側内壁面18bを外側に凸のR形状としている(図3参照)。前面側内壁面18bは、流入側コア接続部16の前面位置で流入側コア接続部16に連通されている。つまり、入口パイプ部17は、流入側コア接続部16の前面位置よりも前側に突出されていない。   Moreover, in this embodiment, the inflow side core connection part 16 and an inlet pipe are curved by curving the front surface (right side in FIG. 2) of the communication part of the inflow side core connection part 16 and the inlet pipe part 17 in the shape of a convex curve. The front side inner wall surface 18b of the communication portion with the portion 17 is formed in an outwardly convex R shape (see FIG. 3). The front side inner wall surface 18 b communicates with the inflow side core connection part 16 at the front surface position of the inflow side core connection part 16. That is, the inlet pipe portion 17 does not protrude forward from the front surface position of the inflow side core connecting portion 16.

流入側コア接続部16と入口パイプ部17との連通部分の前面側内壁面18bの曲率半径は、入口パイプ部17の長手方向に対して徐々に変化させても良く、入口パイプ部17の長手方向に対して一定値としても良い。   The curvature radius of the front side inner wall surface 18b of the communication portion between the inflow side core connecting portion 16 and the inlet pipe portion 17 may be gradually changed with respect to the longitudinal direction of the inlet pipe portion 17. It may be a constant value with respect to the direction.

さらに、本実施形態では、流入側コア接続部16と入口パイプ部17との連通部分の背面を凹曲面状に湾曲させることで、流入側コア接続部16と入口パイプ部17との連通部分のコア接続部長手方向内壁面(上下方向内壁面)19a、19bを内側に凸のR形状としている(図2参照)。   Further, in the present embodiment, the back surface of the communication portion between the inflow side core connection portion 16 and the inlet pipe portion 17 is curved into a concave curved surface so that the communication portion between the inflow side core connection portion 16 and the inlet pipe portion 17 is curved. The core connection portion longitudinal inner wall surfaces (vertical inner wall surfaces) 19a and 19b are formed in an R shape convex inward (see FIG. 2).

流入側コア接続部16と入口パイプ部17との連通部分のコア接続部長手方向内壁面19a、19bの曲率半径は、入口パイプ部17の長手方向に対して徐々に変化させても良く、入口パイプ部17の長手方向に対して一定値としても良い。   The curvature radii of the inner wall surfaces 19a, 19b in the longitudinal direction of the core connecting portion at the communicating portion between the inflow side core connecting portion 16 and the inlet pipe portion 17 may be gradually changed with respect to the longitudinal direction of the inlet pipe portion 17. It may be a constant value with respect to the longitudinal direction of the pipe portion 17.

なお、流入側コア接続部16と入口パイプ部17との連通部分の背面を凹曲面状に湾曲させることで入口パイプ部17内の流量が減少する場合には、入口パイプ部17の上下方向の径を左右方向の径に対して大きくすることで入口パイプ部17内の流量を確保するようにしても良い。   When the flow rate in the inlet pipe portion 17 is reduced by curving the back surface of the communication portion between the inflow side core connecting portion 16 and the inlet pipe portion 17 in a concave curved surface, the vertical direction of the inlet pipe portion 17 is reduced. You may make it ensure the flow volume in the inlet pipe part 17 by enlarging a diameter with respect to the diameter of the left-right direction.

流入側ヘッダ12(流入側コア接続部16、入口パイプ部17)は、例えばアルミニウムからなる。本実施形態では、流入側コア接続部16及び入口パイプ部17は、アルミニウムの鋳造により一体形成されている。   The inflow side header 12 (inflow side core connection part 16, inlet pipe part 17) consists of aluminum, for example. In this embodiment, the inflow side core connection part 16 and the inlet pipe part 17 are integrally formed by casting of aluminum.

吐出側ヘッダ14は、コア15に接続され、コア15の他端部(図1中の左側)に沿って延びる吐出側コア接続部20と、吐出側コア接続部20の後部に連通され、先端に吸気吐出口13が形成された円筒状の出口パイプ部21とから構成されている。本実施形態では、出口パイプ部21は、吐出側コア接続部20の上部に結合されている。   The discharge-side header 14 is connected to the core 15 and communicates with a discharge-side core connection portion 20 that extends along the other end portion (left side in FIG. 1) of the core 15 and a rear portion of the discharge-side core connection portion 20. And a cylindrical outlet pipe portion 21 in which an intake / discharge port 13 is formed. In the present embodiment, the outlet pipe portion 21 is coupled to the upper portion of the discharge side core connection portion 20.

吐出側ヘッダ14(吐出側コア接続部20、出口パイプ部21)は、例えばアルミニウムからなる。本実施形態では、吐出側コア接続部20及び出口パイプ部21は、アルミニウムの鋳造により一体形成されている。   The discharge side header 14 (discharge side core connection part 20, outlet pipe part 21) consists of aluminum, for example. In the present embodiment, the discharge side core connecting portion 20 and the outlet pipe portion 21 are integrally formed by aluminum casting.

コア15は、一対のエンドプレート22と、一対のエンドプレート22間に架け渡された複数のチューブ23と、隣接するチューブ23間に各々設けられた複数の外気流通路24とから構成されている。   The core 15 includes a pair of end plates 22, a plurality of tubes 23 spanned between the pair of end plates 22, and a plurality of external airflow passages 24 respectively provided between adjacent tubes 23. .

チューブ23は、流入側ヘッダ12から吐出側ヘッダ14へと吸気ガスを流すためのものであって、扁平中空状のパイプからなる。外気流通路24は、チューブ23を流れる吸気ガスを冷却するための空気が流れる流路であり、インタークーラ10の前面と背面とを貫通するように形成されている。また、外気流通路24には、冷却効率を高めるためにフィン(コルゲートフィン)25が配設されている。なお、図1では、フィン25の一部のみを図示している。   The tube 23 is for flowing intake gas from the inflow side header 12 to the discharge side header 14 and is formed of a flat hollow pipe. The external airflow passage 24 is a flow path through which air for cooling the intake gas flowing through the tube 23 flows, and is formed so as to penetrate the front surface and the back surface of the intercooler 10. Further, fins (corrugated fins) 25 are disposed in the external airflow passage 24 in order to increase the cooling efficiency. In FIG. 1, only a part of the fin 25 is illustrated.

コア15(エンドプレート22、チューブ23、フィン25)は、例えばアルミニウムからなる。   The core 15 (end plate 22, tube 23, fin 25) is made of, for example, aluminum.

次に、本実施形態の作用を説明する。   Next, the operation of this embodiment will be described.

本実施形態では、流入側コア接続部16と入口パイプ部17との連通部分の背面を凹曲面状に湾曲させることで、流入側コア接続部16と入口パイプ部17との連通部分の背面側内壁面18aをR形状としている。このように、流入側コア接続部16と入口パイプ部17との連通部分の背面側内壁面18aをR形状とすることにより、図3中に矢印X1で示すように吸気ガスの主流を積極的に流入側コア接続部16の背面側に導き(曲げ)、吸気ガスの主流の流入側コア接続部16の前面への衝突を出来る限り避けることができる。従って、流入側ヘッダ12内におけるエネルギー損失を少なくすることができ、流入側ヘッダ12の圧損を低減することが可能となる。   In the present embodiment, the back surface side of the communication portion between the inflow side core connection portion 16 and the inlet pipe portion 17 is formed by bending the back surface of the communication portion between the inflow side core connection portion 16 and the inlet pipe portion 17 into a concave curved surface. The inner wall surface 18a has an R shape. In this way, by making the back side inner wall surface 18a of the communication portion between the inflow side core connecting portion 16 and the inlet pipe portion 17 into an R shape, the main flow of the intake gas is positively shown as indicated by an arrow X1 in FIG. Then, it is guided (bent) to the back surface side of the inflow side core connection portion 16, and collision of the main flow of intake gas with the front surface of the inflow side core connection portion 16 can be avoided as much as possible. Therefore, the energy loss in the inflow side header 12 can be reduced, and the pressure loss of the inflow side header 12 can be reduced.

特に本実施形態では、流入側コア接続部16と入口パイプ部17との連通部分の背面を凹曲面状に湾曲させることで、流入側コア接続部16と入口パイプ部17との連通部分の背面側内壁面18aをR形状としているので、インタークーラ10が大型化し、更にはエンジン1及びエンジン1に装着される各種装置類(特にラジエータ8)のレイアウト変更が必要となることはない。即ち、流入側コア接続部16と入口パイプ部17との連通部分の背面を凹曲面状に形成するのであれば、流入側コア接続部16の前後方向幅を変更する必要はなく、インタークーラ10の大型化を招くことはない。   In particular, in the present embodiment, the back surface of the communication portion between the inflow side core connection portion 16 and the inlet pipe portion 17 is curved in a concave curved surface so that the back surface of the communication portion between the inflow side core connection portion 16 and the inlet pipe portion 17 is curved. Since the side inner wall surface 18a has an R shape, the size of the intercooler 10 is increased, and further, the layout of the engine 1 and various devices (particularly the radiator 8) mounted on the engine 1 is not required. That is, if the back surface of the communication portion between the inflow side core connection portion 16 and the inlet pipe portion 17 is formed in a concave curved surface shape, it is not necessary to change the front-rear direction width of the inflow side core connection portion 16 and the intercooler 10 Does not lead to an increase in size.

また、本実施形態では、流入側コア接続部16と入口パイプ部17との連通部分の前面を凸曲面状に湾曲させることで、流入側コア接続部16と入口パイプ部17との連通部分の前面側内壁面18bをR形状としている。このように流入側コア接続部16と入口パイプ部17との連通部分の前面側内壁面18bをR形状とすることにより、図3中に矢印X2で示すように吸気ガスが前面側内壁面18bに沿って流れるようになる。吸気ガスの主流の流入側コア接続部16の前面への衝突を和らげることで、流入側ヘッダ12内におけるエネルギー損失を少なくすることができる。   Further, in the present embodiment, the front surface of the communication portion between the inflow side core connection portion 16 and the inlet pipe portion 17 is curved into a convex curved surface so that the communication portion between the inflow side core connection portion 16 and the inlet pipe portion 17 is curved. The front side inner wall surface 18b has an R shape. Thus, by making the front side inner wall surface 18b of the communication part between the inflow side core connecting portion 16 and the inlet pipe portion 17 into an R shape, the intake gas flows into the front side inner wall surface 18b as shown by an arrow X2 in FIG. Will flow along. By reducing the collision of the mainstream of the intake gas with the front surface of the inflow side core connection portion 16, energy loss in the inflow side header 12 can be reduced.

さらに、本実施形態では、流入側コア接続部16と入口パイプ部17との連通部分の背面を凹曲面状に湾曲させることで、流入側コア接続部16と入口パイプ部17との連通部分のコア接続部長手方向内壁面(上下方向内壁面)19a、19bをR形状としている。このように流入側コア接続部16と入口パイプ部17との連通部分のコア接続部長手方向内壁面19a、19bもR形状とすることにより、図2中に矢印Y1、Y2で示すように吸気ガスの主流を流入側コア接続部16の長手方向(上下方向)にも積極的に導く(曲げる)ことができ、吸気ガスの主流を全体的に均一に近づけることが可能になる。吸気ガスの主流が全体的に均一になることで、最大流速が下がり、流入側ヘッダ12内のエネルギー損失が低減する。   Further, in the present embodiment, the back surface of the communication portion between the inflow side core connection portion 16 and the inlet pipe portion 17 is curved into a concave curved surface so that the communication portion between the inflow side core connection portion 16 and the inlet pipe portion 17 is curved. The core connection part longitudinal direction inner wall surface (vertical direction inner wall surface) 19a, 19b is made into R shape. As described above, the inner wall surfaces 19a and 19b in the longitudinal direction of the core connection portion at the communication portion between the inflow side core connection portion 16 and the inlet pipe portion 17 are also formed in an R shape so that the intake air as shown by arrows Y1 and Y2 in FIG. The main flow of gas can be actively guided (bent) in the longitudinal direction (vertical direction) of the inflow-side core connecting portion 16, and the main flow of intake gas can be made uniform as a whole. Since the main flow of the intake gas becomes uniform as a whole, the maximum flow velocity is reduced and energy loss in the inflow side header 12 is reduced.

以上、本発明の好適な実施形態について説明したが、本発明は上述の実施形態には限定されず他の様々な実施形態を採ることが可能である。   The preferred embodiments of the present invention have been described above. However, the present invention is not limited to the above-described embodiments, and various other embodiments can be adopted.

10 インタークーラ
11 吸気流入口
12 流入側ヘッダ
13 吸気吐出口
14 吐出側ヘッダ
15 コア
16 流入側コア接続部
17 入口パイプ部
18a 背面側内壁面
18b 前面側内壁面
19a、19b コア接続部長手方向内壁面(上下方向内壁面)
DESCRIPTION OF SYMBOLS 10 Intercooler 11 Intake inlet 12 Inlet side header 13 Inlet outlet 14 Outlet header 15 Core 16 Inlet side core connection part 17 Inlet pipe part 18a Rear side inner wall surface 18b Front side inner wall surface 19a, 19b In the core connection part longitudinal direction Wall surface (upper and lower inner wall surface)

Claims (4)

吸気流入口を有する流入側ヘッダと、吸気吐出口を有する吐出側ヘッダと、前記流入側ヘッダと前記吐出側ヘッダとの間に配設された熱交換用のコアとを備えるインタークーラにおいて、
前記流入側ヘッダは、前記コアに接続され、前記コアの一端部に沿って延びる流入側コア接続部と、前記流入側コア接続部の後部に形成されて前記流入側コア接続部と連通すると共に、前記流入側コア接続部から筒状かつ背面側に延び、先端に前記吸気流入口が形成された入口パイプ部とを有し、
前記流入側コア接続部と前記入口パイプ部との連通部分の背面側内壁面を前記流入側コア接続部の背面位置よりも前側に湾曲させ、R形状としたことを特徴とするインタークーラ。
In an intercooler comprising an inflow header having an intake inlet, a discharge header having an intake discharge port, and a heat exchange core disposed between the inflow header and the discharge header,
The inflow side header is connected to the core and is formed at an inflow side core connection portion extending along one end portion of the core, and a rear portion of the inflow side core connection portion, and communicates with the inflow side core connection portion. And an inlet pipe portion extending from the inflow side core connection portion to the back surface side in a cylindrical shape and having the intake air inlet formed at a tip thereof.
An intercooler characterized in that a rear inner wall surface of a communication portion between the inflow side core connection portion and the inlet pipe portion is curved to the front side with respect to the back surface position of the inflow side core connection portion to form an R shape.
前記流入側コア接続部と前記入口パイプ部との連通部分の背面が、前記流入側コア接続部の背面位置に対して前側に湾曲して凹曲面を形成し
前記流入側コア接続部と前記入口パイプ部との連通部分の前面を凸曲面状に湾曲させることで、前記流入側コア接続部と前記入口パイプ部との連通部分の前面側内壁面をR形状とした請求項1に記載のインタークーラ。
The back surface of the communication portion between the inflow side core connection portion and the inlet pipe portion is curved forward with respect to the back surface position of the inflow side core connection portion to form a concave curved surface ,
By curving the front surface of the communication portion between the inflow side core connection portion and the inlet pipe portion into a convex curved surface, the front side inner wall surface of the communication portion between the inflow side core connection portion and the inlet pipe portion has an R shape. The intercooler according to claim 1.
前記流入側コア接続部と前記入口パイプ部との連通部分の背面を凹曲面状に湾曲させることで、前記流入側コア接続部と前記入口パイプ部との連通部分のコア接続部長手方向内壁面をR形状とした請求項1又は2に記載のインタークーラ。 The inner wall surface in the longitudinal direction of the core connection portion of the communication portion between the inflow side core connection portion and the inlet pipe portion by curving the back surface of the communication portion between the inflow side core connection portion and the inlet pipe portion into a concave curved surface The intercooler according to claim 1 or 2, which has an R shape. 前記入口パイプ部のコア接続部長手方向の径を当該コア接続部長手方向に直交する方向の径に対して大きく形成した請求項1から3のいずれかに記載のインタークーラ。 The intercooler according to any one of claims 1 to 3, wherein a diameter in a longitudinal direction of the core connecting portion of the inlet pipe portion is formed larger than a diameter in a direction orthogonal to the longitudinal direction of the core connecting portion .
JP2011112903A 2011-05-19 2011-05-19 Intercooler Expired - Fee Related JP5866798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011112903A JP5866798B2 (en) 2011-05-19 2011-05-19 Intercooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011112903A JP5866798B2 (en) 2011-05-19 2011-05-19 Intercooler

Publications (2)

Publication Number Publication Date
JP2012241627A JP2012241627A (en) 2012-12-10
JP5866798B2 true JP5866798B2 (en) 2016-02-17

Family

ID=47463606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011112903A Expired - Fee Related JP5866798B2 (en) 2011-05-19 2011-05-19 Intercooler

Country Status (1)

Country Link
JP (1) JP5866798B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10815848B2 (en) 2019-03-28 2020-10-27 Modine Manufacturing Company Gas inlet pipe for exhaust gas cooler

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6228365B2 (en) * 2013-02-05 2017-11-08 日野自動車株式会社 EGR cooler
JP6505976B2 (en) * 2014-03-28 2019-04-24 日野自動車株式会社 EGR cooler
US10845135B2 (en) * 2018-03-16 2020-11-24 Hamilton Sundstrand Corporation Inlet header duct design features
CN110284957A (en) * 2019-06-05 2019-09-27 贵州凯宏汇达冷却系统有限公司 A kind of turbocharger intercooler

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58148484U (en) * 1982-03-31 1983-10-05 日野自動車株式会社 Intercooler for internal combustion engine
JP2003326988A (en) * 2002-05-15 2003-11-19 Mitsubishi Fuso Truck & Bus Corp Cooler, and intake cooler for engine
KR20050028106A (en) * 2003-09-17 2005-03-22 현대자동차주식회사 Inter cooler performance improving system of vehicles
CN101027473A (en) * 2004-09-21 2007-08-29 沃尔沃拉斯特瓦格纳公司 Pipe line for a turbocharger system for an internal combustion engine
JP4622962B2 (en) * 2005-11-30 2011-02-02 株式会社デンソー Intercooler inlet / outlet piping structure
JP2010223508A (en) * 2009-03-24 2010-10-07 Tokyo Radiator Mfg Co Ltd Intercooler of engine for vehicle
JP2010275982A (en) * 2009-06-01 2010-12-09 Isuzu Motors Ltd Intercooler and internal combustion engine using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10815848B2 (en) 2019-03-28 2020-10-27 Modine Manufacturing Company Gas inlet pipe for exhaust gas cooler

Also Published As

Publication number Publication date
JP2012241627A (en) 2012-12-10

Similar Documents

Publication Publication Date Title
US9593647B2 (en) Gas-to-liquid heat exchanger
JP5866798B2 (en) Intercooler
JP4543083B2 (en) Focusing tube heat exchanger, especially for supercharged internal combustion engines
CN103608577B (en) Air intake casing and air inlet module for explosive motor
EP2037200A2 (en) Composite heat exchanger
US9016355B2 (en) Compound type heat exchanger
JP2013174128A (en) Intercooler
JP6481275B2 (en) Corrugated fin heat exchanger
KR101769747B1 (en) Vehicle engine cooling system
JP2718193B2 (en) Heat exchanger
JP5029547B2 (en) Intake air cooling system
US20100044022A1 (en) Air-to-air cooling assembly
WO2014010675A1 (en) Vehicle intercooler
JP6531357B2 (en) Corrugated fin type heat exchanger
WO2014014023A1 (en) Intercooler for vehicle
KR20160009409A (en) Integrated heat exchanger
KR101172065B1 (en) Intercooler
JP2012017921A (en) Heat exchanger and intake air cooling system of engine using the same
JP2010106723A (en) Hybrid type heat exchanger
JP7239024B2 (en) vehicle cooling system
JP2010275982A (en) Intercooler and internal combustion engine using the same
JP6417901B2 (en) Intercooler
JP6405949B2 (en) Intercooler
JPH07280466A (en) Heat exchanger
JP2016031178A (en) Corrugated fin heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151221

R150 Certificate of patent or registration of utility model

Ref document number: 5866798

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees