JP2003313041A - Method for manufacturing photonic crystal optical fiber preform and photonic crystal optical fiber preform - Google Patents

Method for manufacturing photonic crystal optical fiber preform and photonic crystal optical fiber preform

Info

Publication number
JP2003313041A
JP2003313041A JP2002114988A JP2002114988A JP2003313041A JP 2003313041 A JP2003313041 A JP 2003313041A JP 2002114988 A JP2002114988 A JP 2002114988A JP 2002114988 A JP2002114988 A JP 2002114988A JP 2003313041 A JP2003313041 A JP 2003313041A
Authority
JP
Japan
Prior art keywords
photonic crystal
optical fiber
crystal optical
fiber preform
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002114988A
Other languages
Japanese (ja)
Other versions
JP3962277B2 (en
Inventor
Masataka Nakazawa
正隆 中沢
Kengo Kotani
賢吾 小谷
Kazumasa Osono
和正 大薗
Hei Yo
兵 姚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2002114988A priority Critical patent/JP3962277B2/en
Publication of JP2003313041A publication Critical patent/JP2003313041A/en
Application granted granted Critical
Publication of JP3962277B2 publication Critical patent/JP3962277B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/14Non-solid, i.e. hollow products, e.g. hollow clad or with core-clad interface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/42Photonic crystal fibres, e.g. fibres using the photonic bandgap PBG effect, microstructured or holey optical fibres

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photonic crystal optical fiber preform which is long and has high accuracy of the PBG (photonic bond gap) structure and to provide a method for manufacturing the preform. <P>SOLUTION: The method for manufacturing the photonic crystal optical fiber preform comprises: forming at least one through hole 25 near the center of a disk member 21 composed of SiO<SB>2</SB>; layering a plurality of disk members 21 to obtain a layered body 31 while connecting the through holes 25 of the disk members 21; and sintering the layered body 31 to integrate the disk members 21 into one body. Thus, the photonic crystal optical fiber preform 41 having a clad 44 around a core 43 composed of SiO<SB>2</SB>and having a photonic crystal structure in the clad 44 near the core 43 is manufactured. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、大陸間長距離伝送
などに用いられるフォトニッククリスタル光ファイバ母
材の製造方法及びフォトニッククリスタル光ファイバ母
材に係り、特に、母材長が長いフォトニッククリスタル
光ファイバ母材の製造方法及びフォトニッククリスタル
光ファイバ母材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a photonic crystal optical fiber preform used for long-distance transmission between continents and the like, and a photonic crystal optical fiber preform, and more particularly to a photonic crystal having a long preform. The present invention relates to a method for manufacturing a crystal optical fiber preform and a photonic crystal optical fiber preform.

【0002】[0002]

【従来の技術】従来の光ファイバは、屈折率の高いコア
と、コアよりも僅かに屈折率が低いクラッドとの2層構
造であり、そのベース素材として石英を用いている。コ
アは、クラッドよりも僅かに屈折率を高くするために、
石英にゲルマニウム等の添加物を加えた組成となってい
る。
2. Description of the Related Art A conventional optical fiber has a two-layer structure including a core having a high refractive index and a clad having a refractive index slightly lower than that of the core, and quartz is used as a base material thereof. The core has a slightly higher refractive index than the cladding,
It has a composition in which an additive such as germanium is added to quartz.

【0003】従来の光ファイバにおいては、光ファイバ
のコアの屈折率がクラッドの屈折率よりも高いため、こ
の屈折率差によって、光ファイバに入射した光がコア内
に閉じこめられて光ファイバ中を伝搬することができ
る。伝搬する光の単一モード条件を満足するために、コ
アの直径は5〜10μm程度に形成される。
In the conventional optical fiber, since the refractive index of the core of the optical fiber is higher than the refractive index of the clad, the difference in the refractive index causes the light incident on the optical fiber to be confined within the core and to be guided through the optical fiber. Can be propagated. In order to satisfy the single mode condition of the propagating light, the core has a diameter of about 5 to 10 μm.

【0004】ところが、近年の光増幅技術や波長多重
(WDM)技術の発展により、光ファイバへ入射させる
光のパワーが大きくなってきており、その結果、種々の
非線形効果現象が生じ易くなっている。例えば、非線形
効果現象の一つである自己位相変調現象が生じると、光
ファイバ中のパルス信号波形が歪み、伝送容量が制限さ
れる。また、同じく非線形効果現象の一つであるブリュ
リアン散乱現象も生じ易くなっており、この現象が生じ
ると光ファイバに対する光入射パワーが飽和する。つま
り、これらの非線形効果現象が生じると、光ファイバ中
を伝搬する光信号の伝送特性の劣化を招くことになる。
However, due to the recent development of optical amplification technology and wavelength division multiplexing (WDM) technology, the power of light incident on an optical fiber has increased, and as a result, various non-linear effect phenomena are likely to occur. . For example, when the self-phase modulation phenomenon, which is one of the nonlinear effect phenomena, occurs, the pulse signal waveform in the optical fiber is distorted and the transmission capacity is limited. In addition, the Brüllian scattering phenomenon, which is one of the nonlinear effect phenomena, is also likely to occur, and when this phenomenon occurs, the light incident power on the optical fiber is saturated. That is, when these non-linear effect phenomena occur, the transmission characteristics of the optical signal propagating in the optical fiber are deteriorated.

【0005】また、現状の光ファイバの伝送損失は、伝
送損失が最も小さいもので0.16dB/km程度であ
るが、大陸間長距離伝送等で用いる光ファイバにおいて
は、より一層の低損失化が望まれている。伝送損失の主
要因としては、光が伝搬するコアやコア近傍のクラッド
部の組成密度揺らぎによるレイリー散乱損失が挙げられ
る。
The transmission loss of the current optical fiber is about 0.16 dB / km, which is the smallest transmission loss. However, in the optical fiber used for long distance transmission between continents, the loss is further reduced. Is desired. The main cause of transmission loss is Rayleigh scattering loss due to composition density fluctuations of the core where light propagates and the clad portion near the core.

【0006】そこで、近年、低伝送損失の光ファイバと
して、フォトニッククリスタル光ファイバ(Photonic C
rystal Fiber(以下、PCFと示す))が注目を集めて
いる。このPCFとは、クラッド部にフォトニック結晶
構造を有する光ファイバである。フォトニック結晶構造
とは、屈折率の周期構造のことであり、具体的には蜂の
巣のようなハニカム構造の空間をクラッド部に設けるこ
とで、光のエネルギー禁制帯であるフォトニックバンド
ギャップ(Photonic Band Gap(以下、PBGと示
す))が発生する。PBG構造を導波原理とするPCF
として、例えば、KnightらのPCFがある(Knig
ht etc.,Science282,1476,(1998)参照)。
Therefore, in recent years, a photonic crystal optical fiber (Photonic C
The rystal fiber (hereinafter referred to as PCF)) is attracting attention. This PCF is an optical fiber having a photonic crystal structure in the cladding. The photonic crystal structure is a periodic structure with a refractive index. Specifically, by providing a honeycomb structure space like a honeycomb in the clad portion, a photonic band gap (Photonic band gap), which is an energy forbidden band of light, is formed. Band Gap (hereinafter referred to as PBG)) occurs. PCF with PBG structure as guiding principle
For example, there is PCF of Knight et al. (Knig
ht etc., Science 282, 1476, (1998)).

【0007】ところが、このPCFにおいて光を伝搬さ
せるには、精度良くPBG構造を形成する必要があるた
め、僅かながらでも構造的な揺らぎがあると、光の伝播
条件を維持できなくなってしまい、いわゆる構造不正損
失が生じてしまう。
However, in order to propagate light in this PCF, it is necessary to form a PBG structure with high accuracy. Therefore, if there is a slight structural fluctuation, it becomes impossible to maintain the light propagation condition, and so-called. Structural improper loss will occur.

【0008】そこで、完全なPBG構造を有したPCF
ではないものの、構造不正損失を防ぐために、ガラス組
成の違いにより比屈折率差を持たせた従来の光ファイバ
において、クラッドにおけるコア近傍に長軸方向の貫通
孔を形成してクラッドの実効的な屈折率を下げ、コア/
クラッド間の比屈折率差を大きくすることで、従来の光
ファイバでは得られなかった特性を得ている。例えば、
通常のシングルモードファイバの構造を有する光ファイ
バの、コアの周りのクラッド部に、長手方向全長に亘っ
て4つの空孔を形成してなる空孔付加型ホーリーファイ
バ(Holey Fiber)では、コア/クラッド間の実効的な
比屈折率差を拡大することで、0.8μm帯にゼロ分散
とシングルモード動作が得られる(長谷川 etc.,OFC20
01PD5-1参照)。
Therefore, a PCF having a complete PBG structure
However, in order to prevent structural improper loss, in a conventional optical fiber that has a relative refractive index difference due to the difference in glass composition, a long through-hole in the long axis direction is formed near the core in the clad to form an effective clad. Lowering the refractive index, core /
By increasing the relative refractive index difference between the clads, the characteristics not obtained by the conventional optical fiber are obtained. For example,
In the hole-added type Holley fiber (Holey Fiber) in which four holes are formed over the entire length in the longitudinal direction in the clad portion around the core of an optical fiber having a normal single mode fiber structure, By expanding the effective relative refractive index difference between the claddings, zero dispersion and single mode operation can be obtained in the 0.8 μm band (Hasegawa etc., OFC20
(See 01PD5-1).

【0009】[0009]

【発明が解決しようとする課題 】このようなPCF
は、VAD法などで作製した石英ガラス母材の中央部近
傍に長軸方向の貫通孔を形成したものをPCF母材とし
て用いることで得られる。
[Problems to be Solved by the Invention] Such a PCF
Can be obtained by using, as the PCF base material, a quartz glass base material formed by the VAD method or the like and having a through-hole in the long axis direction formed in the vicinity of the central portion thereof.

【0010】ところで、φ5μmの貫通孔を有するφ1
25μmのPCFを得るためのPCF母材は、PCF母
材の外径が50mmの場合、貫通孔の径が2mmとな
る。このφ2mmの貫通孔をドリルを用いて形成する場
合、ドリル長があまり長くなるとドリルにたわみが生じ
るため、貫通孔に要求される加工精度を満足できなくな
る。よって、加工精度を満足できるドリル長は、最大で
も200mm未満となってしまう。このため、PCF母
材の両端面から、中心軸を合わせて貫通孔を形成したと
しても、貫通孔の長さは最大でも400mm未満であ
る。ここで、PCF母材の外径が200mmの場合、貫
通孔の径は8mmとなるが、φ8mmの貫通孔を形成可
能なドリルの最大長は、φ2mmの貫通孔を形成可能な
ドリルの最大長よりもやや長くなるものの、ドリルのた
わみは本質的に避けれらないことから、それ程大きな差
異はない。
By the way, φ1 having a through hole of φ5 μm
The PCF base material for obtaining a 25 μm PCF has a through hole diameter of 2 mm when the outer diameter of the PCF base material is 50 mm. In the case of forming this φ2 mm through hole using a drill, if the drill length becomes too long, the drill will bend, and the processing accuracy required for the through hole cannot be satisfied. Therefore, the drill length that can satisfy the processing accuracy is less than 200 mm at the maximum. Therefore, even if the through holes are formed by aligning the central axes from both end faces of the PCF base material, the maximum length of the through holes is less than 400 mm. Here, when the outer diameter of the PCF base material is 200 mm, the diameter of the through hole is 8 mm, but the maximum length of a drill that can form a through hole of φ8 mm is the maximum length of a drill that can form a through hole of φ2 mm. Although slightly longer than this, the deflection of the drill is essentially unavoidable, so there is not much difference.

【0011】つまり、PCF母材の最大長は、貫通孔形
成のために用いるドリルの長さによって制約を受けるた
め、全長が400mmを超えるような長尺のPCF母材
を製造することは困難であった。
That is, since the maximum length of the PCF base material is restricted by the length of the drill used for forming the through hole, it is difficult to manufacture a long PCF base material whose total length exceeds 400 mm. there were.

【0012】以上の事情を考慮して創案された本発明の
目的は、長尺で、かつ、PBG構造の精度が高いフォト
ニッククリスタル光ファイバ母材の製造方法及びフォト
ニッククリスタル光ファイバ母材を提供することにあ
る。
The object of the present invention, which was devised in view of the above circumstances, is to provide a method for manufacturing a photonic crystal optical fiber preform having a long length and a high PBG structure accuracy, and a photonic crystal optical fiber preform. To provide.

【0013】[0013]

【課題を解決するための手段】上記目的を達成すべく本
発明に係るフォトニッククリスタル光ファイバ母材の製
造方法は、SiO2で構成されるコアの周りにクラッド
部を有し、かつ、クラッド部のコア近傍にフォトニック
結晶構造を有するフォトニッククリスタル光ファイバ母
材の製造方法において、SiO2で構成される円板部材
の中央部近傍に少なくとも1つの貫通孔を形成し、その
円板部材を複数枚積層して積層体を形成すると共に、各
円板部材の貫通孔を連通させ、その積層体に焼結処理を
施して各円板部材を一体に形成するもの、また、SiO
2で構成される円板部材の中央部近傍に少なくとも1つ
の貫通孔を形成し、その貫通孔に円板部材と同じ材料で
構成したガイド管を嵌合挿通し、そのガイド管に貫通孔
の位置を合わせて円板部材を複数枚積層して積層体を形
成し、その積層体に焼結処理を施して各円板部材及びガ
イド管を一体に形成するものである。
In order to achieve the above object, a method of manufacturing a photonic crystal optical fiber preform according to the present invention has a clad part around a core made of SiO 2 and a clad part. In a method for manufacturing a photonic crystal optical fiber preform having a photonic crystal structure in the vicinity of a core of a disk portion, at least one through hole is formed in the vicinity of the center of a disk member made of SiO 2 , and the disk member is formed. A plurality of layers are laminated to form a laminated body, the through holes of the respective disc members are made to communicate with each other, and the laminated body is subjected to a sintering treatment to integrally form the respective disc members.
At least one through hole is formed in the vicinity of the central portion of the disc member constituted by 2, and a guide tube made of the same material as the disc member is fitted and inserted into the through hole. A plurality of disc members are laminated at the same position to form a laminated body, and the laminated body is subjected to a sintering treatment to integrally form each disc member and the guide tube.

【0014】以上の製造方法によれば、長尺で、かつ、
PBG構造の精度が高いフォトニッククリスタル光ファ
イバ母材を容易に得ることができる。
According to the above manufacturing method, the length is long and
It is possible to easily obtain a photonic crystal optical fiber preform having a high precision PBG structure.

【0015】一方、本発明に係るフォトニッククリスタ
ル光ファイバ母材は、SiO2で構成されるコアの周り
にクラッド部を有し、かつ、クラッド部のコア近傍にフ
ォトニック結晶構造を有するフォトニッククリスタル光
ファイバ母材において、SiO2で構成される円板部材
の中央部近傍に少なくとも1つの貫通孔を形成し、その
円板部材を複数枚積層して積層体を形成すると共に、各
円板部材の貫通孔を連通させ、その積層体に焼結処理を
施して各円板部材を一体化してなるもの、また、SiO
2で構成される円板部材の中央部近傍に少なくとも1つ
の貫通孔を形成し、その貫通孔に円板部材と同じ材料で
構成したガイド管を嵌合挿通し、そのガイド管に貫通孔
の位置を合わせて円板部材を複数枚積層して積層体を形
成し、その積層体に焼結処理を施して各円板部材及びガ
イド管を一体に形成してなるものである。
On the other hand, the photonic crystal optical fiber preform according to the present invention has a photonic crystal structure having a cladding portion around a core made of SiO 2 and having a photonic crystal structure near the core of the cladding portion. In the crystal optical fiber preform, at least one through hole is formed in the vicinity of the central portion of a disk member made of SiO 2 , and a plurality of the disk members are laminated to form a laminated body, and each disk is formed. One in which the through-holes of the members are communicated with each other, and the laminated body is subjected to a sintering treatment to integrate the respective disk members, and SiO.
At least one through hole is formed in the vicinity of the central portion of the disc member constituted by 2, and a guide tube made of the same material as the disc member is fitted and inserted into the through hole. A plurality of disc members are laminated at the same position to form a laminated body, and the laminated body is sintered to integrally form each disc member and the guide tube.

【0016】また、上記円板部材をフッ素をドープした
SiO2で構成し、上記ガイド管を純SiO2で構成して
もよい。
The disc member may be made of fluorine-doped SiO 2 and the guide tube may be made of pure SiO 2 .

【0017】以上の構成によれば、長尺で、かつ、PB
G構造の精度が高いフォトニッククリスタル光ファイバ
母材が得られる。
According to the above construction, the PB is long and long.
A photonic crystal optical fiber preform having a high G structure precision can be obtained.

【0018】一方、本発明に係るフォトニッククリスタ
ル光ファイバは、前述したフォトニッククリスタル光フ
ァイバ母材に線引き加工を施してなるものである。
On the other hand, the photonic crystal optical fiber according to the present invention is formed by drawing the above-mentioned photonic crystal optical fiber preform.

【0019】以上の構成によれば、低伝送損失で、か
つ、安価なフォトニッククリスタル光ファイバを得るこ
とができる。
According to the above construction, it is possible to obtain an inexpensive photonic crystal optical fiber with low transmission loss.

【0020】[0020]

【発明の実施の形態】以下、本発明の好適一実施の形態
を添付図面に基いて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described below with reference to the accompanying drawings.

【0021】SiO2母材の斜視外観図を図1に、円板
部材の斜視外観図を図2に、円板部材を固定治具で固定
した状態を示す断面図を図3に、第1の実施の形態に係
るフォトニッククリスタル光ファイバ母材の斜視外観図
を図4に示す。
FIG. 1 is a perspective external view of the SiO 2 base material, FIG. 2 is a perspective external view of the disk member, and FIG. 3 is a sectional view showing a state where the disk member is fixed by a fixing jig. FIG. 4 is a perspective external view of the photonic crystal optical fiber preform according to the embodiment of FIG.

【0022】第1の実施の形態に係るPCF母材の製造
方法は、先ず、図1に示すように、VAD法などで製造
したSiO2母材11を所定の厚さにスライスし、1つ
のSiO2母材11から複数枚(図1中では5枚)の円
板部材21を作製する。その後、図2に示すように、各
円板部材21の中央部23の周りに、少なくとも1つ
(図2中では、同心円上に、かつ、等間隔に4つ)の貫
通孔25を形成する。
In the method of manufacturing a PCF base material according to the first embodiment, first, as shown in FIG. 1, a SiO 2 base material 11 manufactured by the VAD method or the like is sliced into a predetermined thickness to obtain one piece. A plurality of (five in FIG. 1) disk members 21 are produced from the SiO 2 base material 11. After that, as shown in FIG. 2, at least one (four concentric circles and four at regular intervals in FIG. 2) through holes 25 are formed around the central portion 23 of each disc member 21. .

【0023】次に、図3に示すように、円盤状の底部材
32a,蓋部材32c及び円筒状の側壁部材32bから
なる固定治具32を用意し、複数枚(図3中では10
枚)の円板部材21を側壁部材32b内に配置・積層さ
せて積層体31を作製する。この時、円板部材21の配
置・積層枚数は、SiO2母材11から円板部材21を
切り出す枚数よりも多くすることは言うまでもない。ま
た、各円板部材21の貫通孔25が連通すべく、各円板
部材21の貫通孔25の位置を合わせて配置・積層す
る。
Next, as shown in FIG. 3, a fixing jig 32 comprising a disk-shaped bottom member 32a, a lid member 32c and a cylindrical side wall member 32b is prepared, and a plurality of fixing jigs (10 in FIG. 3) are prepared.
The disk members 21 of (one) are arranged and laminated in the side wall member 32b to produce the laminated body 31. At this time, it goes without saying that the number of arranged and laminated disc members 21 is larger than the number of disc members 21 cut out from the SiO 2 base material 11. Further, the through holes 25 of each disk member 21 are arranged and stacked so that the through holes 25 of each disk member 21 are aligned with each other so that the through holes 25 of each disk member 21 communicate with each other.

【0024】その後、固定治具32ごと積層体31を加
熱炉内に配置すると共に、所定の温度、時間の焼結処理
を施し、各円板部材21を一体に形成する。これによっ
て、図4に示すように、SiO2で構成されるコア43
の周りにクラッド部44を有し、かつ、クラッド部44
におけるコア43の周りに4つの貫通孔45からなるフ
ォトニック結晶構造を有する第1の実施の形態のPCF
母材41が得られる。ここで、得られたPCF母材41
において、各貫通孔45に軸ズレや変形があった場合、
各貫通孔45の内面に、適宜、研削加工を施してもよ
い。
After that, the laminated body 31 together with the fixing jig 32 is placed in a heating furnace, and a sintering process is performed at a predetermined temperature for a predetermined time to integrally form the disc members 21. As a result, as shown in FIG. 4, the core 43 composed of SiO 2 is formed.
Has a clad portion 44 around the
PCF of the first embodiment having a photonic crystal structure consisting of four through holes 45 around the core 43 in
The base material 41 is obtained. Here, the obtained PCF base material 41
In the case where there is an axial displacement or deformation in each through hole 45,
The inner surface of each through hole 45 may be appropriately ground.

【0025】このPCF母材41をプレフォームとし、
PCF母材41に対して所定の張力を付与した状態で線
引き加工を施すことで、コアの周りのクラッド部に長手
方向全長に亘る4つの貫通路を有するPCFが得られ
る。この時、PCFの貫通路の径が所望の径となるよう
に、PCF母材41における各貫通孔45内の圧力を調
整して最適化を図り、その後、線引き加工を行う。
This PCF base material 41 is used as a preform,
By performing the drawing process on the PCF base material 41 in a state in which a predetermined tension is applied, a PCF having four through paths extending along the entire length in the longitudinal direction is obtained in the clad portion around the core. At this time, the pressure in each through hole 45 in the PCF base material 41 is adjusted and optimized so that the diameter of the PCF through passage becomes a desired diameter, and then wire drawing is performed.

【0026】円板部材21の軸方向厚さは特に限定する
ものではないが、20〜100mmが好ましく、特に5
0mm前後が好ましい。
The axial thickness of the disc member 21 is not particularly limited, but is preferably 20 to 100 mm, and particularly 5
Around 0 mm is preferable.

【0027】次に、本実施の形態の作用を説明する。Next, the operation of this embodiment will be described.

【0028】本実施の形態の製造方法によれば、中央部
23の周りに少なくとも1つの貫通孔25を有した円板
部材21を複数枚積層して積層体31を形成すると共
に、各円板部材21の貫通孔25を連通させ、その積層
体31に焼結処理を施して各円板部材21が一体に形成
されたPCF母材41を製造しているため、得られるP
CF母材41の長さの調整は、円板部材21の積層枚数
を増減するだけで自在に調整可能であり、その調整が容
易である。すなわち、従来のPCF母材のように、貫通
孔形成のために用いるドリルの長さによって母材長さが
制限されるということはなく、長尺のPCF母材41の
形成が容易である。
According to the manufacturing method of the present embodiment, a plurality of disc members 21 having at least one through hole 25 around the central portion 23 are laminated to form a laminated body 31, and each disc is formed. Since the through holes 25 of the member 21 are communicated with each other and the laminated body 31 is subjected to the sintering treatment to manufacture the PCF base material 41 in which the respective disk members 21 are integrally formed, the obtained P is obtained.
The length of the CF base material 41 can be adjusted freely by simply increasing or decreasing the number of laminated disk members 21, and the adjustment is easy. That is, unlike the conventional PCF base material, the base material length is not limited by the length of the drill used for forming the through holes, and the long PCF base material 41 can be easily formed.

【0029】また、円板部材21の軸方向厚さは最大で
も約100mmであるため、円板部材21に貫通孔25
を形成する形成手段として、ドリルの他に、より高精度
な加工が可能な研削装置を用いることができる。
Since the disk member 21 has a maximum axial thickness of about 100 mm, the disk member 21 has a through hole 25.
In addition to a drill, a grinding device capable of more highly precise processing can be used as a forming means for forming the.

【0030】さらに、外径が大きなPCF母材41を製
造する場合、その貫通孔45の径も大きく形成する必要
がある。このため、PCF母材41の製造に用いる円板
部材21の外径及びその貫通孔25の径も大きく形成す
る必要がある。しかし、円板部材21の軸方向厚さは最
大でも約100mmであるため、径の大きな貫通孔25
であっても高精度に、かつ、容易に形成することができ
る。よって、外径が大きなPCF母材41を製造する場
合であっても、加工精度の高い貫通孔45を形成するこ
とができる。
Further, when the PCF base material 41 having a large outer diameter is manufactured, it is necessary to form the through hole 45 having a large diameter. Therefore, it is necessary to form the outer diameter of the disc member 21 used for manufacturing the PCF base material 41 and the diameter of the through hole 25 to be large. However, since the axial thickness of the disc member 21 is about 100 mm at the maximum, the through hole 25 having a large diameter is formed.
Even in this case, it can be formed with high accuracy and easily. Therefore, even when the PCF base material 41 having a large outer diameter is manufactured, the through hole 45 with high processing accuracy can be formed.

【0031】また、各貫通孔45の加工精度が高く、か
つ、長尺のPCF母材41を容易に得ることができるた
め、このPCF母材41を用いてPCFを製造すれば、
従来のPCF母材を用いてPCFを製造する場合と比較
して、一工程で得られるPCFの長さが著しく長くな
り、その結果、PCFの製造コストの低減を図ることが
できる。
Further, the processing accuracy of each through hole 45 is high, and a long PCF base material 41 can be easily obtained. Therefore, if a PCF is manufactured using this PCF base material 41,
The length of the PCF obtained in one step is significantly longer than that in the case of manufacturing the PCF using the conventional PCF base material, and as a result, the manufacturing cost of the PCF can be reduced.

【0032】次に、本発明の他の実施の形態を添付図面
に基いて説明する。
Next, another embodiment of the present invention will be described with reference to the accompanying drawings.

【0033】円板部材とガイド管との関係を示す斜視外
観図を図5に、第2の実施の形態に係るフォトニックク
リスタル光ファイバ母材の斜視外観図を図6に示す。
尚、図1〜図3と同様の部材には同じ符号を付し、詳細
な説明は省略する。
FIG. 5 is a perspective external view showing the relationship between the disk member and the guide tube, and FIG. 6 is a perspective external view of the photonic crystal optical fiber preform according to the second embodiment.
The same members as those in FIGS. 1 to 3 are designated by the same reference numerals, and detailed description thereof will be omitted.

【0034】第2の実施の形態に係るPCF母材の製造
方法は、先ず、前実施の形態の製造方法と同様にして、
貫通孔25を有する円板部材21を作製する。
In the method of manufacturing the PCF base material according to the second embodiment, first, in the same manner as the manufacturing method of the previous embodiment,
The disk member 21 having the through holes 25 is manufactured.

【0035】次に、図3に示すように、円盤状の底部材
32a,蓋部材32c及び円筒状の側壁部材32bから
なる固定治具32を用意し、複数枚(図3中では10
枚)の円板部材21を側壁部材32b内に配置・積層さ
せて積層体31を作製する。この時、円板部材21の配
置・積層枚数は、SiO2母材11から円板部材21を
切り出す枚数よりも多くすることは言うまでもない。ま
た、各円板部材21の貫通孔25が連通すべく、図5に
示すように、ある円板部材21の各貫通孔25に、円板
部材21と同じ材料で構成したガイド管51をそれぞれ
嵌合挿通し、その後、ある円板部材21に固定された各
ガイド管51の位置に各貫通孔25の位置を合わせて、
残りの円板部材21を、順次、配置・積層する。
Next, as shown in FIG. 3, a fixing jig 32 comprising a disk-shaped bottom member 32a, a lid member 32c and a cylindrical side wall member 32b is prepared, and a plurality of fixing jigs (10 in FIG. 3) are prepared.
The disk members 21 of (one) are arranged and laminated in the side wall member 32b to produce the laminated body 31. At this time, it goes without saying that the number of arranged and laminated disc members 21 is larger than the number of disc members 21 cut out from the SiO 2 base material 11. Further, in order to allow the through holes 25 of each disc member 21 to communicate with each other, as shown in FIG. 5, a guide tube 51 made of the same material as the disc member 21 is provided in each through hole 25 of a certain disc member 21, respectively. Fitting and inserting, and then aligning the position of each through hole 25 with the position of each guide tube 51 fixed to a certain disc member 21,
The remaining disk members 21 are sequentially arranged and laminated.

【0036】その後、固定治具32ごと積層体31を加
熱炉内に配置すると共に、所定の温度、時間の焼結処理
を施し、各円板部材21及び各ガイド管51を一体に形
成する。これによって、図6に示すように、SiO2
構成されるコア63の周りにクラッド部64を有し、か
つ、クラッド部64におけるコア63の周りに4つの貫
通孔65からなるフォトニック結晶構造を有する第2の
実施の形態のPCF母材61が得られる。ここで、得ら
れたPCF母材61において、各ガイド管51の内周面
が、各貫通孔65の周面を形成している。
After that, the laminated body 31 together with the fixing jig 32 is placed in a heating furnace and subjected to a sintering treatment at a predetermined temperature for a predetermined time to integrally form the disc members 21 and the guide tubes 51. As a result, as shown in FIG. 6, a photonic crystal structure having a clad 64 around a core 63 made of SiO 2 and four through holes 65 around the core 63 in the clad 64. The PCF base material 61 of the second embodiment having is obtained. Here, in the obtained PCF base material 61, the inner peripheral surface of each guide tube 51 forms the peripheral surface of each through hole 65.

【0037】このPCF母材61をプレフォームとし、
PCF母材61に対して所定の張力を付与した状態で線
引き加工を施すことで、コアの周りのクラッド部に長手
方向全長に亘る4つの貫通路を有するPCFが得られ
る。この時、PCFの貫通路の径が所望の径となるよう
に、PCF母材61における各貫通孔65内の圧力を調
整して最適化を図り、その後、線引き加工を行う。
This PCF base material 61 is used as a preform,
By performing the drawing process on the PCF base material 61 in a state in which a predetermined tension is applied, a PCF having four through paths extending along the entire length in the longitudinal direction is obtained in the clad portion around the core. At this time, the pressure in each through hole 65 in the PCF base material 61 is adjusted and optimized so that the diameter of the PCF through passage becomes a desired diameter, and then wire drawing is performed.

【0038】ここで、円板部材21とガイド管51との
組み合わせとしては、円板部材21がフッ素をドープし
たSiO2、ガイド管51が純SiO2などが挙げられ
る。SiO2にフッ素をドープする等の方法により、円
板部材21の融点を純SiO2の融点よりも低くするこ
とができ、その結果、ガイド管51の融点が円板部材2
1の融点よりも高くなる。
Here, as a combination of the disk member 21 and the guide tube 51, the disk member 21 may be fluorine-doped SiO 2 , the guide tube 51 may be pure SiO 2, and the like. The melting point of the disk member 21 can be made lower than the melting point of pure SiO 2 by a method such as doping SiO 2 with fluorine. As a result, the melting point of the guide tube 51 is increased.
Higher than the melting point of 1.

【0039】次に、本実施の形態の作用を説明する。Next, the operation of this embodiment will be described.

【0040】本実施の形態の製造方法においては、ガイ
ド管51の融点を円板部材21の融点よりも高くしてい
るため、積層体31に焼結処理を施す際、各円板部材2
1に収縮が生じたとしても、ガイド管51には収縮は生
じない。つまり、焼結処理の際、各円板部材21の収縮
により、各貫通孔25の周面とガイド管51の外周面と
が強固に一体化するが、各ガイド管51の大部分は未溶
融であるため、各ガイド管51に変形が生じることはな
い。よって、本実施の形態の製造方法によれば、得られ
たPCF母材61において、各貫通孔65に軸ズレや変
形が生じることはなく、その結果、各貫通孔65の内面
に研削加工を施すことなく、加工精度が高い貫通孔65
を有したPCF母材61(高精度のPBG構造を有した
PCF母材61)を得ることができる。
In the manufacturing method of the present embodiment, since the melting point of the guide tube 51 is set higher than that of the disc member 21, each disc member 2 is subjected to the sintering treatment when the laminated body 31 is sintered.
Even if 1 is contracted, the guide tube 51 is not contracted. That is, during the sintering process, the peripheral surface of each through hole 25 and the outer peripheral surface of the guide tube 51 are firmly integrated due to the contraction of each disk member 21, but most of each guide tube 51 is not melted. Therefore, each guide tube 51 is not deformed. Therefore, according to the manufacturing method of the present embodiment, in the obtained PCF base material 61, no axial deviation or deformation occurs in each through hole 65, and as a result, the inner surface of each through hole 65 is ground. Through hole 65 with high processing accuracy without performing
It is possible to obtain a PCF base material 61 having (a PCF base material 61 having a highly accurate PBG structure).

【0041】また、本実施の形態の製造方法において
も、前実施の形態の製造方法と同様の作用効果が得られ
ることは勿論のことである。
Further, it goes without saying that the manufacturing method of the present embodiment can also obtain the same operational effects as those of the manufacturing method of the previous embodiment.

【0042】以上、本発明の実施の形態は、上述した実
施の形態に限定されるものではなく、他にも種々のもの
が想定されることは言うまでもない。
It is needless to say that the embodiments of the present invention are not limited to the above-mentioned embodiments, and various other embodiments are possible.

【0043】[0043]

【実施例】(実施例1)直径50mmの全合成SiO2
母材をVAD法により複数本作製する。各SiO2母材
をガラスカッターを用いて厚さ約50mmにスライス
し、円板部材を作製する。各円板部材の両端面に端面加
工を施した後、各円板部材の中央部の周りに、径2.0
mmの貫通孔を、同心円上に、かつ、等間隔に4つ形成
する。
[Example] (Example 1) Total synthetic SiO 2 having a diameter of 50 mm
A plurality of base materials are produced by the VAD method. A disk member is manufactured by slicing each SiO 2 base material into a thickness of about 50 mm using a glass cutter. After performing end face processing on both end faces of each disc member, a diameter of 2.0
Four through holes of mm are formed concentrically and at equal intervals.

【0044】次に、固定治具を用いて、10枚の円板部
材を配置・積層して積層体を作製する(図3参照)。
Next, using a fixing jig, 10 disk members are arranged and laminated to produce a laminated body (see FIG. 3).

【0045】その後、積層体が互いに離れないように固
定治具で固定し、その状態で固定治具ごと電気炉内に配
置し、1500℃×6時間の焼結処理を施して、各円板
部材を一体に形成する。この一体形成物における各貫通
孔の内面に研削加工を施して、外径が50mm、貫通孔
径が2.0mm、全長が500mmのPCF母材(図4
参照)を作製する。
After that, the laminates were fixed by a fixing jig so that they would not separate from each other, and in that state, the fixing jig was placed in an electric furnace and subjected to a sintering treatment at 1500 ° C. for 6 hours, and then each disc was placed. The member is integrally formed. The inner surface of each through hole in this integrally formed product is ground to obtain a PCF base material having an outer diameter of 50 mm, a through hole diameter of 2.0 mm, and an overall length of 500 mm (see FIG. 4).
Reference).

【0046】このPCF母材に対し、約0.49N(5
×10-2kgf)の張力で、線引速度100m/min
の線引き加工を施すことで、コアの周りのクラッド部に
長手方向全長に亘る4つの貫通路を有し、全長が約70
km、外径が125μm、貫通路の径が5μmのPCF
が得られる。
About 0.49 N (5
× 10 -2 kgf) with a drawing speed of 100 m / min
As a result of the wire drawing process, the clad part around the core has four through passages along the entire length in the longitudinal direction, and the total length is about 70.
PCF with km, outer diameter of 125 μm, and through passage diameter of 5 μm
Is obtained.

【0047】得られたPCFについて特性評価を行った
結果、ゼロ分散波長は810nm、カットオフ波長は7
80nm、伝送損失は、波長800nmで1.5dB/
km、波長1550nmで1.0dB/kmであり、良
好な伝送特性(低伝送損失)が得られた。
The characteristics of the obtained PCF were evaluated. As a result, the zero dispersion wavelength was 810 nm and the cutoff wavelength was 7.
80nm, transmission loss is 1.5dB / at wavelength 800nm
It was 1.0 dB / km at a wavelength of 1550 nm and good transmission characteristics (low transmission loss) were obtained.

【0048】(実施例2)実施例1と同様に、VAD法
による全合成過程でフッ素をドープしたフッ素ソープS
iO2で作製した各円板部材の両端面に端面加工を施し
た後、各円板部材の中央部の周りに、径4.0mmの貫
通孔を、同心円上に、かつ、等間隔に4つ形成する。
(Example 2) As in Example 1, fluorine-doped soap S doped with fluorine in the whole synthesis process by the VAD method.
It was subjected to end face processing on both end faces of the disc member manufactured in iO 2, around the central portion of the disc member, a through hole of diameter 4.0 mm, concentrically and at equal intervals 4 Form one.

【0049】次に、固定治具を用いて、10枚の円板部
材を配置・積層して積層体を作製する(図3参照)。こ
こで、円板部材を配置・積層する際、円板部材の各貫通
孔に、全合成種SiO2からなり、外径が3.8〜3.
9mm、内径が2.0mmのガイド管をそれぞれ嵌合挿
通し、各円板部材間で貫通孔の位置を合わせる。
Next, using a fixing jig, 10 disk members are arranged and laminated to produce a laminated body (see FIG. 3). Here, when arranging and stacking the disc members, each through hole of the disc members is made of all-synthesized SiO 2 and has an outer diameter of 3.8 to 3.
The guide tubes having a diameter of 9 mm and an inner diameter of 2.0 mm are fitted and inserted, and the positions of the through holes are aligned between the disc members.

【0050】その後、積層体が互いに離れないように固
定治具で固定し、その状態で固定治具ごと電気炉内に配
置し、1600℃×6時間の焼結処理を施して、各円板
部材を一体に形成する。これによって、外径が50m
m、貫通孔径が2.0mm、全長が500mmのPCF
母材(図6参照)を作製する。
Thereafter, the laminates were fixed with a fixing jig so that they would not separate from each other, and in that state, the fixing jig was placed in an electric furnace and subjected to a sintering treatment at 1600 ° C. for 6 hours to obtain each disc. The member is integrally formed. With this, the outer diameter is 50m
PCF with m, through hole diameter of 2.0 mm, and total length of 500 mm
A base material (see FIG. 6) is produced.

【0051】実施例2のPCF母材について貫通孔を評
価した結果、各円板部材を一体に形成しただけで、すな
わち各貫通孔の内面に研削加工を施さなくても、実施例
1のPCF母材における貫通孔と同等の精度が得られ
た。
As a result of evaluating the through holes of the PCF base material of Example 2, the PCFs of Example 1 were formed only by integrally forming the respective disk members, that is, without grinding the inner surface of each through hole. The same accuracy as that of the through holes in the base material was obtained.

【0052】[0052]

【発明の効果】以上要するに本発明によれば、次のよう
な優れた効果を発揮する。 (1) 長尺で、かつ、PBG構造の精度が高いフォト
ニッククリスタル光ファイバ母材を容易に得ることがで
きる。 (2) (1)のフォトニッククリスタル光ファイバ母
材を用いることで、低伝送損失で、かつ、安価なフォト
ニッククリスタル光ファイバを得ることができる。
In summary, according to the present invention, the following excellent effects are exhibited. (1) It is possible to easily obtain a photonic crystal optical fiber preform that is long and has a highly accurate PBG structure. (2) By using the photonic crystal optical fiber preform of (1), it is possible to obtain an inexpensive photonic crystal optical fiber with low transmission loss.

【図面の簡単な説明】[Brief description of drawings]

【図1】SiO2母材の斜視外観図である。FIG. 1 is a perspective external view of a SiO 2 base material.

【図2】円板部材の斜視外観図である。FIG. 2 is a perspective external view of a disc member.

【図3】円板部材を固定治具で固定した状態を示す断面
図である。
FIG. 3 is a cross-sectional view showing a state where the disc member is fixed by a fixing jig.

【図4】第1の実施の形態に係るフォトニッククリスタ
ル光ファイバ母材の斜視外観図である。
FIG. 4 is a perspective external view of a photonic crystal optical fiber preform according to the first embodiment.

【図5】円板部材とガイド管との関係を示す斜視外観図
である。
FIG. 5 is a perspective external view showing the relationship between the disc member and the guide tube.

【図6】第2の実施の形態に係るフォトニッククリスタ
ル光ファイバ母材の斜視外観図である。
FIG. 6 is a perspective external view of a photonic crystal optical fiber preform according to a second embodiment.

【符号の説明】[Explanation of symbols]

21 円板部材 25 貫通孔 31 積層体 41,61 PCF母材(フォトニッククリスタル光フ
ァイバ母材) 43,63 コア 44,64 クラッド部 45,65 貫通孔(フォトニック結晶構造) 51 ガイド管
21 Disc Member 25 Through Hole 31 Laminated Body 41, 61 PCF Base Material (Photonic Crystal Optical Fiber Base Material) 43, 63 Core 44, 64 Clad Part 45, 65 Through Hole (Photonic Crystal Structure) 51 Guide Tube

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小谷 賢吾 東京都千代田区大手町一丁目6番1号 日 立電線株式会社内 (72)発明者 大薗 和正 東京都千代田区大手町一丁目6番1号 日 立電線株式会社内 (72)発明者 姚 兵 東京都千代田区大手町一丁目6番1号 日 立電線株式会社内 Fターム(参考) 2H050 AC62 4G021 BA00    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Kengo Otani             1-6-1, Otemachi, Chiyoda-ku, Tokyo             Standing Wire Co., Ltd. (72) Inventor Kazumasa Ozono             1-6-1, Otemachi, Chiyoda-ku, Tokyo             Standing Wire Co., Ltd. (72) Inventor             1-6-1, Otemachi, Chiyoda-ku, Tokyo             Standing Wire Co., Ltd. F-term (reference) 2H050 AC62                 4G021 BA00

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 SiO2で構成されるコアの周りにクラ
ッド部を有し、かつ、クラッド部のコア近傍にフォトニ
ック結晶構造を有するフォトニッククリスタル光ファイ
バ母材の製造方法において、SiO2で構成される円板
部材の中央部近傍に少なくとも1つの貫通孔を形成し、
その円板部材を複数枚積層して積層体を形成すると共
に、各円板部材の貫通孔を連通させ、その積層体に焼結
処理を施して各円板部材を一体に形成することを特徴と
するフォトニッククリスタル光ファイバ母材の製造方
法。
1. A has a cladding portion around the core composed of SiO 2, and a method of manufacturing a photonic crystal optical fiber preform having a photonic crystal structure in the core near the clad portion, of SiO 2 Forming at least one through hole in the vicinity of the central portion of the disk member to be constructed,
A plurality of the disc members are laminated to form a laminated body, the through holes of the respective disc members are made to communicate with each other, and the laminated body is sintered to integrally form the respective disc members. Photonic crystal optical fiber preform manufacturing method.
【請求項2】 SiO2で構成されるコアの周りにクラ
ッド部を有し、かつ、クラッド部のコア近傍にフォトニ
ック結晶構造を有するフォトニッククリスタル光ファイ
バ母材の製造方法において、SiO2で構成される円板
部材の中央部近傍に少なくとも1つの貫通孔を形成し、
その貫通孔に円板部材と同じ材料で構成したガイド管を
嵌合挿通し、そのガイド管に貫通孔の位置を合わせて円
板部材を複数枚積層して積層体を形成し、その積層体に
焼結処理を施して各円板部材及びガイド管を一体に形成
することを特徴とするフォトニッククリスタル光ファイ
バ母材の製造方法。
2. A has a cladding portion around the core composed of SiO 2, and a method of manufacturing a photonic crystal optical fiber preform having a photonic crystal structure in the core near the clad portion, of SiO 2 Forming at least one through hole in the vicinity of the central portion of the disk member to be constructed,
A guide tube made of the same material as the disc member is fitted and inserted into the through hole, the through holes are aligned with the guide tube, and a plurality of disc members are laminated to form a laminated body. A method for manufacturing a photonic crystal optical fiber preform, comprising subjecting each disk member and the guide tube to an integral body by subjecting the disc to a sintering treatment.
【請求項3】 SiO2で構成されるコアの周りにクラ
ッド部を有し、かつ、クラッド部のコア近傍にフォトニ
ック結晶構造を有するフォトニッククリスタル光ファイ
バ母材において、SiO2で構成される円板部材の中央
部近傍に少なくとも1つの貫通孔を形成し、その円板部
材を複数枚積層して積層体を形成すると共に、各円板部
材の貫通孔を連通させ、その積層体に焼結処理を施して
各円板部材を一体に形成してなることを特徴とするフォ
トニッククリスタル光ファイバ母材。
3. A photonic crystal optical fiber preform having a cladding around a core made of SiO 2 and having a photonic crystal structure near the core of the cladding, made of SiO 2 . At least one through hole is formed in the vicinity of the central portion of the disk member, a plurality of the disk members are laminated to form a laminated body, and the through holes of the respective disk members are made to communicate with each other to form a laminated body. A photonic crystal optical fiber preform, which is obtained by subjecting each disk member to an integral process by subjecting it to a binding treatment.
【請求項4】 SiO2で構成されるコアの周りにクラ
ッド部を有し、かつ、クラッド部のコア近傍にフォトニ
ック結晶構造を有するフォトニッククリスタル光ファイ
バ母材において、SiO2で構成される円板部材の中央
部近傍に少なくとも1つの貫通孔を形成し、その貫通孔
に円板部材と同じ材料で構成したガイド管を嵌合挿通
し、そのガイド管に貫通孔の位置を合わせて円板部材を
複数枚積層して積層体を形成し、その積層体に焼結処理
を施して各円板部材及びガイド管を一体に形成してなる
ことを特徴とするフォトニッククリスタル光ファイバ母
材。
4. A photonic crystal optical fiber preform having a clad portion around a core made of SiO 2 and having a photonic crystal structure near the core of the clad portion, made of SiO 2 . At least one through hole is formed in the vicinity of the central portion of the disk member, and a guide tube made of the same material as the disk member is fitted and inserted into the through hole, and the through hole is aligned with the guide tube to form a circle. A photonic crystal optical fiber preform characterized in that a plurality of plate members are laminated to form a laminated body, and the laminated body is sintered to integrally form each disc member and a guide tube. .
【請求項5】 上記円板部材をフッ素をドープしたSi
2で構成し、上記ガイド管を純SiO2で構成した請求
項4記載のフォトニッククリスタル光ファイバ母材。
5. The fluorine-doped Si for the disk member
The photonic crystal optical fiber preform according to claim 4, wherein the guide tube is made of O 2 and the guide tube is made of pure SiO 2 .
【請求項6】 請求項3から5いずれかに記載のフォト
ニッククリスタル光ファイバ母材に線引き加工を施して
なることを特徴とするフォトニッククリスタル光ファイ
バ。
6. A photonic crystal optical fiber obtained by subjecting the photonic crystal optical fiber preform according to any one of claims 3 to 5 to a drawing process.
JP2002114988A 2002-04-17 2002-04-17 Photonic crystal optical fiber preform manufacturing method Expired - Fee Related JP3962277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002114988A JP3962277B2 (en) 2002-04-17 2002-04-17 Photonic crystal optical fiber preform manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002114988A JP3962277B2 (en) 2002-04-17 2002-04-17 Photonic crystal optical fiber preform manufacturing method

Publications (2)

Publication Number Publication Date
JP2003313041A true JP2003313041A (en) 2003-11-06
JP3962277B2 JP3962277B2 (en) 2007-08-22

Family

ID=29533635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002114988A Expired - Fee Related JP3962277B2 (en) 2002-04-17 2002-04-17 Photonic crystal optical fiber preform manufacturing method

Country Status (1)

Country Link
JP (1) JP3962277B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005076047A1 (en) * 2004-02-06 2005-08-18 Matthew Henderson Optical product with integral terminal part
EP2840423A1 (en) * 2013-08-20 2015-02-25 Kohoku Kogyo Co., Ltd. Optical connector, method for manufacturing the same, and mold container for manufacturing the same
WO2015133239A1 (en) * 2014-03-06 2015-09-11 古河電気工業株式会社 Production method for optical fiber parent material, and production method for optical fiber

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001084198A1 (en) * 2000-05-01 2001-11-08 Sumitomo Electric Industries, Ltd. Optical fiber and method for manufacturing the same
JP2002145634A (en) * 2000-08-30 2002-05-22 Sumitomo Electric Ind Ltd Method of manufacturing optical fiber and optical fiber
JP2002249335A (en) * 2001-02-21 2002-09-06 Sumitomo Electric Ind Ltd Method for producing optical fiber, optical fiber and optical communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001084198A1 (en) * 2000-05-01 2001-11-08 Sumitomo Electric Industries, Ltd. Optical fiber and method for manufacturing the same
JP2002145634A (en) * 2000-08-30 2002-05-22 Sumitomo Electric Ind Ltd Method of manufacturing optical fiber and optical fiber
JP2002249335A (en) * 2001-02-21 2002-09-06 Sumitomo Electric Ind Ltd Method for producing optical fiber, optical fiber and optical communication system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005076047A1 (en) * 2004-02-06 2005-08-18 Matthew Henderson Optical product with integral terminal part
EP2840423A1 (en) * 2013-08-20 2015-02-25 Kohoku Kogyo Co., Ltd. Optical connector, method for manufacturing the same, and mold container for manufacturing the same
US9703035B2 (en) 2013-08-20 2017-07-11 Kohoku Kogyo Co., Ltd. Optical connector, method for manufacturing the same, and mold container for manufacturing the same
WO2015133239A1 (en) * 2014-03-06 2015-09-11 古河電気工業株式会社 Production method for optical fiber parent material, and production method for optical fiber
JP2015168597A (en) * 2014-03-06 2015-09-28 古河電気工業株式会社 Method for manufacturing optical fiber preform and method for manufacturing optical fiber

Also Published As

Publication number Publication date
JP3962277B2 (en) 2007-08-22

Similar Documents

Publication Publication Date Title
US10036850B2 (en) Polarizing and polarization maintaining leakage channel fibers
US7668428B2 (en) Optical fiber and optical device
WO2011114795A1 (en) Multi-core optical fibre and production method for same
JP2008277582A (en) Multicore fiber for optical pumping device, manufacturing method therefor, optical pumping device, fiber laser, and fiber amplifier
US20120321263A1 (en) Direct extrusion method for the fabrication of photonic band gap (pbg) fibers and fiber preforms
JP2004240390A (en) Optical fiber
WO2006006604A1 (en) Hole assist type holey fiber and low bending loss multimode holey fiber
JP2007094363A (en) Optical fiber and optical transmission medium
JP2009271108A (en) Optical combiner, and method for manufacturing the same
JP2011033899A (en) Holey fibers
JP5128913B2 (en) Manufacturing method of optical combiner
JP3802843B2 (en) Optical fiber manufacturing method
JP2006017775A (en) Photonic crystal fiber
JP3962277B2 (en) Photonic crystal optical fiber preform manufacturing method
JP4249121B2 (en) Manufacturing method of double clad fiber
US20040151449A1 (en) Single mode fibre
JP6055462B2 (en) Triple sheath single mode optical fiber
JP3871053B2 (en) Dispersion flat fiber
JP2004258610A (en) Spot-size converter element, its manufacture method and waveguide-embedding optical circuit using spot-size converter element
JP2009008850A (en) Dual guide optical fiber
US9234998B2 (en) Optical fiber with a low-index core and a core grating
US6775450B2 (en) Micro-structured optical fibers
JP4490464B2 (en) Optical fiber and manufacturing method thereof
JP2004226541A (en) High anti-stress optical fiber
JP4447528B2 (en) Photonic band gap fiber and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070518

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees