JP2003309415A - Satellite acquisition system for on-vehicle relay station and satellite acquisition method for on-vehicle relay station - Google Patents

Satellite acquisition system for on-vehicle relay station and satellite acquisition method for on-vehicle relay station

Info

Publication number
JP2003309415A
JP2003309415A JP2002113757A JP2002113757A JP2003309415A JP 2003309415 A JP2003309415 A JP 2003309415A JP 2002113757 A JP2002113757 A JP 2002113757A JP 2002113757 A JP2002113757 A JP 2002113757A JP 2003309415 A JP2003309415 A JP 2003309415A
Authority
JP
Japan
Prior art keywords
satellite
antenna
beacon signal
vehicle
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002113757A
Other languages
Japanese (ja)
Other versions
JP3732151B2 (en
Inventor
Masahiro Mukai
雅宏 迎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002113757A priority Critical patent/JP3732151B2/en
Publication of JP2003309415A publication Critical patent/JP2003309415A/en
Application granted granted Critical
Publication of JP3732151B2 publication Critical patent/JP3732151B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a satellite acquisition system capable of reliably and automatically directing an on-vehicle station antenna to an acquisition object satellite. <P>SOLUTION: The satellite acquisition system is provided with: a beacon reception discrimination apparatus 7 for discriminating a beacon signal from the acquisition object satellite on the basis of a reception frequency and a reception level; an antenna controller 6 for calculating an azimuth angle and an elevating angle on the basis of positional information of an on-vehicle station 10 and the acquisition object satellite 1; and an antenna driver 5 for driving an antenna 2. The antenna driver 5 drives the antenna 2 within a first angular rang around the azimuth angle calculated by the antenna controller 6, and the antenna 2 locks on the beacon signal on the basis of a discrimination signal from the beacon reception discrimination apparatus 7. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、車載中継局の衛星
捕捉システム及び車載中継局の衛星捕捉方法に係り、更
に詳しくは、衛星通信用車載局のアンテナを捕捉対象衛
星に自動的に指向させる衛星捕捉システム及びその方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a satellite acquisition system for an on-vehicle relay station and a satellite acquisition method for an on-vehicle relay station, and more particularly, to automatically direct an antenna of an on-vehicle satellite communication station to an acquisition target satellite. The present invention relates to a satellite acquisition system and method.

【0002】[0002]

【従来の技術】図4は、従来の衛星捕捉システムの構成
を示したブロック図であり、衛星通信用の車載中継局が
示されている。図中の1は通信衛星、2は車載局アンテ
ナ、3は給電装置、4は送受信装置、5はアンテナ駆動
装置、6はアンテナ制御装置、8はスペクトラムアナラ
イザ、10は衛星通信用車載局である。
2. Description of the Related Art FIG. 4 is a block diagram showing a configuration of a conventional satellite acquisition system, showing an on-vehicle relay station for satellite communication. In the figure, 1 is a communication satellite, 2 is an in-vehicle station antenna, 3 is a power feeding device, 4 is a transmitting / receiving device, 5 is an antenna driving device, 6 is an antenna control device, 8 is a spectrum analyzer, and 10 is a satellite communication in-vehicle station. .

【0003】車載局10は、中継現場に到着した後、ま
ず車載局アンテナ2を捕捉すべき通信衛星1(捕捉対象
衛星)に指向させる必要がある。そのため、車載局運用
者は、捕捉対象衛星1及び車載局10の位置情報をアン
テナ制御装置6に入力する。アンテナ制御装置6は、オ
ペレータにより入力された位置情報に基づいて、捕捉対
象衛星1に対する車載局アンテナ2の方位角及び仰角を
算出する。アンテナ駆動装置5は、算出された方位角及
び仰角に基づいて車載局アンテナ2を駆動し、車載局ア
ンテナ2を捕捉対象衛星1へ指向させる。
After arriving at the relay site, the vehicle-mounted station 10 must first direct the vehicle-mounted station antenna 2 to the communication satellite 1 (capture target satellite) to be captured. Therefore, the onboard station operator inputs the position information of the satellite 1 to be captured and the onboard station 10 to the antenna control device 6. The antenna control device 6 calculates the azimuth angle and the elevation angle of the vehicle-mounted station antenna 2 with respect to the capture target satellite 1 based on the position information input by the operator. The antenna driving device 5 drives the vehicle-mounted station antenna 2 based on the calculated azimuth angle and elevation angle, and directs the vehicle-mounted station antenna 2 to the capture target satellite 1.

【0004】しかし、通信衛星1は僅かながら絶えず動
いている。また、10GHz以上の信号を送受信する場
合、車載局アンテナ2として指向性の高いパラボラアン
テナが用いられるが、その受信ビーム幅(半値幅)は約
1度又はそれ以下となり非常に狭い。さらに、アンテナ
2の角度検出機構の検出精度にも限界がある。従って、
上述のアンテナ制御方法を用いても、捕捉対象衛星1が
車載局アンテナ2のビームの真の中心位置となるように
車載局アンテナ2を自動的に駆動制御することは精度的
に不可能であった。
However, the communication satellite 1 is moving slightly but constantly. Further, when transmitting and receiving a signal of 10 GHz or more, a parabolic antenna with high directivity is used as the vehicle-mounted station antenna 2, but its reception beam width (half-value width) is about 1 degree or less, which is very narrow. Furthermore, there is a limit to the detection accuracy of the angle detection mechanism of the antenna 2. Therefore,
Even if the above-mentioned antenna control method is used, it is not possible to accurately drive and control the vehicle-mounted station antenna 2 so that the capture target satellite 1 is at the true center position of the beam of the vehicle-mounted station antenna 2. It was

【0005】このため、従来の車載局運用者は最終的に
スペクラムアナライザ8を用いて捕捉対象衛星1からの
受信キャリアをモニターし、その受信レベルが最大とな
るようアンテナ2の方位角・仰角を各々手動にて微調整
し、捕捉対象衛星1のビーム中心位置へ指向させてい
た。
For this reason, the conventional on-vehicle station operator finally monitors the reception carrier from the satellite 1 to be captured by using the spectrum analyzer 8 and azimuth / elevation angle of the antenna 2 so that the reception level becomes maximum. Were manually adjusted to direct the beam to the beam center position of the satellite 1 to be captured.

【0006】[0006]

【発明が解決しようとする課題】従来の衛星捕捉システ
ムは、上述した通り、車載局アンテナを捕捉対象衛星に
指向させる際、最終的には車載局運用者が手動で車載局
アンテナを微調整していた。このため、車載局が現場に
到着してから中継を開始するまでにかなりの時間(例え
ば15分程度)を要していた。また、通信衛星からの受
信キャリアをスペクトラムアナライザで観察するのみで
は、本当に捕捉対象衛星を捕捉しているのか判別でき
ず、捕捉対象外の衛星を誤って捕捉するという運用ミス
を引き起こす可能性があった。従って、衛星捕捉には、
かなりの熟練した運用者が必要とされていた。
As described above, in the conventional satellite acquisition system, when the on-vehicle station antenna is directed to the satellite to be acquired, the on-vehicle station operator manually finely adjusts the on-vehicle station antenna. Was there. Therefore, it takes a considerable time (for example, about 15 minutes) from when the vehicle-mounted station arrives at the site to start the relay. In addition, it is not possible to determine whether or not the satellite to be captured is actually captured only by observing the received carrier from the communication satellite with a spectrum analyzer, and there is a possibility of causing an operational error that the satellite not to be captured is mistakenly captured. It was Therefore, for satellite acquisition,
Quite skilled operators were needed.

【0007】本発明は、上記のような問題点を解決する
ためになされたものであり、短時間で車載局アンテナを
捕捉対象衛星に指向させることができる衛星捕捉システ
ム及び衛星捕捉方法を提供することを目的とする。ま
た、誤って捕捉対象外の衛星を捕捉することのない衛星
捕捉システム及び衛星捕捉方法を提供することを目的と
する。また、自動的に車載局アンテナを捕捉対象衛星に
指向させることができる衛星捕捉システム及び衛星捕捉
方法を提供することを目的とする。
The present invention has been made to solve the above problems, and provides a satellite acquisition system and a satellite acquisition method capable of directing an on-vehicle station antenna to an acquisition target satellite in a short time. The purpose is to Another object of the present invention is to provide a satellite acquisition system and a satellite acquisition method that do not mistakenly acquire satellites that are not targets for acquisition. Another object of the present invention is to provide a satellite acquisition system and a satellite acquisition method that can automatically orient an on-vehicle station antenna to a satellite to be acquired.

【0008】[0008]

【課題を解決するための手段】請求項1に記載の本発明
による車載中継局の衛星捕捉システムは、通信衛星から
送信されるビーコン信号を受信するアンテナと、受信周
波数及び受信レベルに基づいて捕捉対象衛星からのビー
コン信号を判別するビーコン受信判別装置と、車載局及
び捕捉対象衛星の位置情報に基づいて方位角及び仰角を
算出するアンテナ制御装置と、アンテナを駆動するアン
テナ駆動装置とを備え、アンテナ制御装置により算出さ
れた方位角を中心とする第1の角度範囲内においてアン
テナを駆動し、ビーコン受信判別装置からの判別信号に
基づいてビーコン信号にロックオンすることにより、捕
捉対象衛星を自動捕捉するように構成される。
A satellite acquisition system for an on-vehicle relay station according to the present invention according to claim 1 acquires an antenna for receiving a beacon signal transmitted from a communication satellite, and an acquisition based on a reception frequency and a reception level. A beacon reception determination device that determines a beacon signal from a target satellite, an antenna control device that calculates an azimuth angle and an elevation angle based on position information of an in-vehicle station and a capture target satellite, and an antenna drive device that drives an antenna, By automatically driving the satellite to be captured by driving the antenna within the first angle range centered on the azimuth calculated by the antenna control device and locking on the beacon signal based on the determination signal from the beacon reception determination device. Configured to capture.

【0009】請求項2に記載の本発明による車載中継局
の衛星捕捉システムは、捕捉対象衛星のビーコン信号に
ロックオンさせた後、第1の角度範囲よりも狭い第2の
角度範囲内においてアンテナを駆動してピークサーチを
行うように構成される。
According to a second aspect of the present invention, there is provided a satellite acquisition system for a vehicle-mounted relay station, which locks on a beacon signal of a satellite to be acquired, and then an antenna within a second angle range narrower than the first angle range. Is configured to be driven to perform a peak search.

【0010】請求項3に記載の本発明による車載中継局
の衛星捕捉方法は、通信衛星から送信されるビーコン信
号を受信する受信ステップと、受信周波数及び受信レベ
ルに基づいて捕捉対象衛星からのビーコン信号を判別す
るビーコン信号判別ステップと、車載局及び捕捉対象衛
星の位置情報に基づいて方位角及び仰角を算出する角度
演算ステップと、角度演算ステップにより算出された方
位角を中心とする第1の角度範囲内においてアンテナを
駆動し、ビーコン信号判別ステップによる判別結果に基
づいてビーコン信号にロックオンするロックオンステッ
プとを備えて構成される。
According to a third aspect of the present invention, there is provided a satellite capturing method for a vehicle-mounted relay station, the receiving step of receiving a beacon signal transmitted from a communication satellite, and the beacon from the capturing target satellite based on the receiving frequency and the receiving level. A beacon signal determination step of determining a signal, an angle calculation step of calculating an azimuth angle and an elevation angle based on position information of an in-vehicle station and a satellite to be captured, and a first centered on the azimuth angle calculated by the angle calculation step. A lock-on step of driving the antenna within the angle range and locking on the beacon signal based on the determination result of the beacon signal determination step.

【0011】請求項4に記載の本発明による車載中継局
の衛星捕捉方法は、ロックオンステップにより捕捉対象
衛星のビーコン信号にロックオンさせた後、第1の角度
範囲よりも狭い第2の角度範囲内においてアンテナを駆
動して受信レベルが最大となる方位角及び仰角をサーチ
するピークサーチステップを備えて構成される。
According to a fourth aspect of the present invention, there is provided a satellite acquisition method for a vehicle-mounted relay station, wherein a lock-on step locks on a beacon signal of a satellite to be acquired, and then a second angle narrower than a first angle range. It comprises a peak search step of driving the antenna within the range to search for an azimuth angle and an elevation angle at which the reception level becomes maximum.

【0012】[0012]

【発明の実施の形態】図1は、本発明による車載中継局
の衛星捕捉システムの一構成例を示したブロック図であ
る。図中の1は捕捉対象衛星、2は車載局アンテナ、3
は給電装置、4は送受信装置、5はアンテナ駆動装置、
6はアンテナ制御装置、7はビーコン受信判別装置、1
0は衛星通信用車載局である。
1 is a block diagram showing an example of the configuration of a satellite acquisition system for a vehicle-mounted relay station according to the present invention. In the figure, 1 is a satellite to be captured, 2 is an in-vehicle station antenna, 3
Is a power feeding device, 4 is a transmitting / receiving device, 5 is an antenna driving device,
6 is an antenna control device, 7 is a beacon reception determination device, 1
0 is an in-vehicle station for satellite communication.

【0013】捕捉対象衛星1は、車載局10が捕捉すべ
き通信衛星であり、通信信号の送受信を行うとともに、
既知の所定周波数からなる無変調波をビーコン信号とし
て送信している。ここでは、衛星1が赤道上に打ち上げ
られた商用の静止衛星であり、送受信波の周波数が10
GHz以上、例えば送信波が14GHz、受信波が12
GHzであるものとする。
The capture target satellite 1 is a communication satellite to be captured by the vehicle-mounted station 10, and transmits and receives communication signals.
An unmodulated wave having a known predetermined frequency is transmitted as a beacon signal. Here, the satellite 1 is a commercial geostationary satellite launched on the equator, and the frequency of the transmitted / received wave is 10
GHz or higher, for example, the transmitted wave is 14 GHz and the received wave is 12
It shall be GHz.

【0014】車載局10は、車載局アンテナ2、給電装
置3、送受信装置4、アンテナ駆動装置5、アンテナ制
御装置6及びビーコン受信判別装置7からなる移動可能
な衛星通信用の中継局であり、移動先で静止した状態で
通信衛星1との送受信が行われる。
The on-vehicle station 10 is a relay station for mobile satellite communication, which comprises an on-vehicle station antenna 2, a power feeding device 3, a transmitting / receiving device 4, an antenna driving device 5, an antenna control device 6 and a beacon reception discriminating device 7. Transmission and reception with the communication satellite 1 are performed in a stationary state at the destination.

【0015】車載局アンテナ2には、10GHz以上の
高い周波数の送受信を行うために指向性の高いパラボラ
アンテナが用いられる。パラボラアンテナのビーム幅
は、指向性の平面アンテナ(フェーズドアレイアンテ
ナ)に比べて狭く、また、直径が大きくなるほど小さく
なる。例えば、直径1.4mのパラボラアンテナを用い
た場合のアンテナのビーム幅は約1度と狭い。
As the vehicle-mounted station antenna 2, a parabolic antenna having a high directivity is used for transmitting and receiving a high frequency of 10 GHz or more. The beam width of the parabolic antenna is narrower than that of a directional planar antenna (phased array antenna), and becomes smaller as the diameter increases. For example, when a parabolic antenna with a diameter of 1.4 m is used, the beam width of the antenna is as narrow as about 1 degree.

【0016】給電装置3は、アンテナ2及び送受信装置
4間で送信波及び受信波を伝達するための導波管であ
る。送受信装置4は、通信信号の変復調、周波数変換な
どの送受信処理を行っている。
The power feeding device 3 is a waveguide for transmitting a transmission wave and a reception wave between the antenna 2 and the transmission / reception device 4. The transmission / reception device 4 performs transmission / reception processing such as modulation / demodulation of communication signals and frequency conversion.

【0017】ビーコン受信判別装置7は、アンテナ2の
受信信号から捕捉対象衛星1のビーコン信号の周波数成
分を抽出して受信レベルを測定している。ビーコン信号
のロックオンのためのサーチ時には、捕捉対象衛星1か
らのビーコン信号であるか否かを判定している。すなわ
ち、受信周波数及び受信レベルに基づいて、捕捉対象衛
星1からのビーコン信号にロックオンしているか否かを
判定し、判定信号をアンテナ制御装置6に出力してい
る。また、ロックオン後のピークサーチ時には、受信レ
ベルが最大となる方向(方位角及び仰角)を求める。
The beacon reception discriminating device 7 measures the reception level by extracting the frequency component of the beacon signal of the satellite 1 to be captured from the reception signal of the antenna 2. During the search for lock-on of the beacon signal, it is determined whether the beacon signal is from the capture target satellite 1. That is, based on the reception frequency and the reception level, it is determined whether or not the beacon signal from the capture target satellite 1 is locked on, and the determination signal is output to the antenna control device 6. At the time of peak search after lock-on, the direction (azimuth angle and elevation angle) that maximizes the reception level is obtained.

【0018】アンテナ制御装置6は、オペレータが入力
する捕捉対象衛星1及び車載局10の位置情報に基づい
て車載局アンテナ2の仰角及び方位角を制御する。ま
た、ビーコン信号の判定信号に基づいて車載局アンテナ
2の仰角及び方位角を自動制御して捕捉対象衛星1を捕
捉する。アンテナ駆動装置5は、アンテナ制御装置6か
らの制御信号に基づいてモータ制御等を行って、車載局
アンテナ2を駆動する。
The antenna control device 6 controls the elevation angle and azimuth angle of the vehicle-mounted station antenna 2 based on the position information of the satellite 1 to be captured and the vehicle-mounted station 10 input by the operator. Further, the elevation angle and the azimuth angle of the vehicle-mounted station antenna 2 are automatically controlled based on the determination signal of the beacon signal to capture the capture target satellite 1. The antenna driving device 5 drives the vehicle-mounted station antenna 2 by performing motor control or the like based on the control signal from the antenna control device 6.

【0019】図2のステップS100〜S107は、本
発明による車載中継局の衛星捕捉方法の一例を示したフ
ローチャートであり、衛星通信用車載局10が中継現場
に到着した後、アンテナ2を捕捉対象衛星1に自動的に
指向させるための動作が示されている。
Steps S100 to S107 of FIG. 2 are a flow chart showing an example of the satellite capturing method of the vehicle-mounted relay station according to the present invention. After the satellite communication vehicle-mounted station 10 arrives at the relay site, the antenna 2 is captured. The operation for automatically pointing the satellite 1 is shown.

【0020】まず、車載局運用者が自局の地理的位置及
び捕捉対象衛星1の軌道位置等の位置情報をアンテナ制
御装置6に入力する(ステップS101)。例えば、自
局の地理的位置として緯度及び経度のデータが入力され
る。また、捕捉対象衛星1が赤道上の静止衛星であれ
ば、高度及び緯度が一定であるため、これらのデータは
予め設定されており、経度のデータのみが入力される。
また、ビーコン受信判別装置7の受信周波数を捕捉対象
衛星1のビーコン周波数に設定する(ステップS10
2)。アンテナ制御装置6は、入力された位置情報に基
づいて、捕捉対象衛星1に対するアンテナ2の方位角及
び仰角を算出する(ステップS103)。
First, the in-vehicle station operator inputs positional information such as the geographical position of the own station and the orbital position of the satellite 1 to be captured to the antenna control device 6 (step S101). For example, latitude and longitude data is input as the geographical position of the own station. If the satellite 1 to be captured is a geostationary satellite on the equator, since the altitude and latitude are constant, these data are preset and only the longitude data is input.
Further, the reception frequency of the beacon reception determination device 7 is set to the beacon frequency of the capture target satellite 1 (step S10).
2). The antenna control device 6 calculates the azimuth angle and the elevation angle of the antenna 2 with respect to the capture target satellite 1 based on the input position information (step S103).

【0021】次に、車載局運用者が、アンテナ制御装置
6を衛星捕捉モードに切り替えることにより、自動衛星
捕捉が開始される。すなわち、その後は車載局運用者が
介在することなく衛星捕捉が行われる。まず最初に、ア
ンテナ2の仰角がアンテナ制御装置6において算出され
た角度となるように、アンテナ駆動装置5がアンテナ2
を仰角方向に駆動して固定する(ステップS104)。
Next, the in-vehicle station operator switches the antenna control device 6 to the satellite capture mode to start automatic satellite capture. That is, after that, satellite acquisition is performed without the intervention of the on-board station operator. First, the antenna driving device 5 sets the antenna 2 so that the elevation angle of the antenna 2 becomes the angle calculated by the antenna control device 6.
Is driven and fixed in the elevation direction (step S104).

【0022】一方、アンテナ2の方位角は、アンテナ制
御装置6において算出された角度を中心とする予め定め
られた角度範囲(2α度)について、ビーコン信号のサ
ーチを開始する(S105)。すなわち、アンテナ制御
装置6は、サーチ開始角度として、算出された方位角に
−α(又は+α)を加えた角度を求め、アンテナ駆動装
置5に対し、アンテナ方位角として出力する。その後、
アンテナ制御装置6は、方位角を順に増大(又は減少)
させて、ビーコン信号にロックオンする方位角をサーチ
する。
On the other hand, as for the azimuth of the antenna 2, the beacon signal search is started within a predetermined angle range (2α degrees) centered on the angle calculated by the antenna control device 6 (S105). That is, the antenna control device 6 obtains an angle obtained by adding −α (or + α) to the calculated azimuth angle as the search start angle, and outputs it to the antenna drive device 5 as the antenna azimuth angle. afterwards,
The antenna control device 6 sequentially increases (or decreases) the azimuth angle.
Then, the azimuth angle at which the beacon signal is locked on is searched for.

【0023】このとき、ビーコン受信判別装置7は、ア
ンテナ2の受信波からビーコン信号の周波数成分を抽出
して、その受信レベルを求めている。アンテナ制御装置
6は、ロックオンしたビーコン信号の受信レベルを予め
定められた閾値と比較し、その結果、受信レベルが閾値
を越えていればサーチを中止する一方、閾値を越えてい
なければ、サーチを継続する(ステップS106)。
At this time, the beacon reception discriminating device 7 extracts the frequency component of the beacon signal from the received wave of the antenna 2 and obtains its reception level. The antenna control device 6 compares the reception level of the locked-on beacon signal with a predetermined threshold value. As a result, if the reception level exceeds the threshold value, the search is stopped, while if it does not exceed the threshold value, the search is performed. Is continued (step S106).

【0024】2以上の通信衛星が同一周波数のビーコン
信号を送信している場合、最も近い捕捉対象衛星以外の
通信衛星からのビーコン信号の受信レベルは、捕捉対象
衛星からのビーコン信号の受信レベルに比べて、顕著に
小さくなるため、閾値レベルを適切に設定すれば、捕捉
対象衛星からのビーコン信号を識別することができる。
When two or more communication satellites are transmitting beacon signals of the same frequency, the reception level of the beacon signal from the communication satellite other than the closest satellite to be captured becomes the reception level of the beacon signal from the satellite to be captured. Since it is significantly smaller than the above, the beacon signal from the acquisition target satellite can be identified by appropriately setting the threshold level.

【0025】ビーコン信号にロックオンし、かつ、受信
レベルが所定の閾値を越えている場合には、ピークサー
チによる微調整が行われる(ステップS107)。すな
わち、微小な角度範囲において仰角及び方位角をそれぞ
れ変化させ、ビーコン受信判別装置7が受信レベルを求
めることにより、受信レベルが最大となり、アンテナ2
のビームの中心に捕捉対象衛星1が位置する仰角及び方
位角を求める。なお、ピークサーチの角度範囲は、ロッ
クオンのためのサーチの角度範囲(2α度)よりも小さ
い。
If the beacon signal is locked on and the reception level exceeds a predetermined threshold value, fine adjustment is performed by peak search (step S107). That is, the elevation level and the azimuth angle are respectively changed in a minute angle range, and the beacon reception determination device 7 obtains the reception level, so that the reception level becomes maximum and
The elevation angle and the azimuth angle at which the capture target satellite 1 is located at the center of the beam are obtained. The peak search angle range is smaller than the search angle range (2α degrees) for lock-on.

【0026】図3は、自動衛星捕捉時における図1のア
ンテナ2のビームの動き一例を示した図であり、(a)
はロックオンのためのサーチ動作、(b)はピークサー
チン動作を示している。図中のD1〜D5は、アンテナ
2のビーム方向(方位角)、1は捕捉対象衛星、1’は
捕捉対象外の衛星である。
FIG. 3 is a diagram showing an example of the movement of the beam of the antenna 2 of FIG. 1 at the time of automatic satellite acquisition.
Shows a search operation for lock-on, and (b) shows a peak search operation. D1 to D5 in the figure are beam directions (azimuth angles) of the antenna 2, 1 is a satellite to be captured, and 1'is a satellite not to be captured.

【0027】ビーム方位D1は、捕捉対象衛星1及び車
載局10の位置情報により算出される方位角である。ア
ンテナ2のビームは、方位D1を中心として、角度範囲
が2αとなるように、方位D2からD3へ駆動される。
このとき、衛星1’のビーコン信号を受信するが、受信
レベルが閾値を越えないのでサーチを継続し、方位D4
で受信レベルが閾値を越える衛星1のビーコン信号を受
信するとサーチを停止する。その後に、アンテナ2のビ
ームは、方位D4を中心として角度範囲が2βとなるよ
うに駆動され、受信レベルが最大となる方位D5が検出
される。
The beam azimuth D1 is an azimuth calculated from the position information of the satellite 1 to be captured and the vehicle-mounted station 10. The beam of the antenna 2 is driven from the azimuth D2 to D3 so that the angular range is 2α with the azimuth D1 as the center.
At this time, the beacon signal of the satellite 1'is received, but since the reception level does not exceed the threshold value, the search is continued and the direction D4
When the beacon signal of the satellite 1 whose reception level exceeds the threshold value is received at, the search is stopped. After that, the beam of the antenna 2 is driven so that the angular range is 2β centering on the azimuth D4, and the azimuth D5 having the maximum reception level is detected.

【0028】この様にして、ロックオンしたビーコン信
号の受信レベルが閾値を越えていれば、捕捉対象衛星と
判断し、更にピークサーチにより微調整が行われ、衛星
捕捉が完了する。この自動衛星捕捉(ステップS103
〜S107)の所要時間は2〜3分であり、従来の手動
で行う場合に比べて短時間で衛星捕捉を完了することが
できる。また、ビーコン信号の周波数及び受信レベルに
基づいてビーコン信号をサーチしているため、捕捉対象
衛星以外の衛星を誤って捕捉することがない。
In this way, if the reception level of the locked-on beacon signal exceeds the threshold value, it is determined as the satellite to be captured, and further fine adjustment is performed by peak search to complete satellite capture. This automatic satellite acquisition (step S103
~ S107) takes 2 to 3 minutes, and satellite acquisition can be completed in a shorter time compared to the conventional manual operation. Further, since the beacon signal is searched based on the frequency and reception level of the beacon signal, satellites other than the satellite to be captured will not be erroneously captured.

【0029】[0029]

【発明の効果】本発明による車載中継局の衛星捕捉シス
テム及び車載中継局の衛星捕捉方法によれば、短時間で
車載局アンテナを捕捉対象衛星に指向させることができ
る。このため、中継現場に到着してから短時間で中継を
開始することができる車載局を実現することができる。
According to the satellite capturing system of the vehicle-mounted relay station and the satellite capturing method of the vehicle-mounted relay station according to the present invention, the antenna of the vehicle-mounted station can be directed to the satellite to be captured in a short time. Therefore, it is possible to realize an in-vehicle station that can start relaying in a short time after arriving at the relay site.

【0030】また、本発明による車載中継局の衛星捕捉
システム及び車載中継局の衛星捕捉方法によれば、誤っ
て捕捉対象外の通信衛星を捕捉するのを防止し、捕捉対
象衛星を確実に捕捉することができる。さらに、通信衛
星を自動的に捕捉することができるため、熟練したオペ
レータを必要とせず、人件費削減により運用コストを低
減することができるとともに、オペレータの人為的ミス
を防止することができる。
Further, according to the satellite capturing system of the vehicle-mounted relay station and the satellite capturing method of the vehicle-mounted relay station according to the present invention, it is possible to prevent the communication satellite which is not the capturing target from being captured by mistake and to reliably capture the capturing target satellite. can do. Further, since the communication satellite can be automatically captured, a skilled operator is not required, labor cost can be reduced, and operating cost can be reduced, and human error of the operator can be prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明による車載中継局の衛星捕捉システム
の一構成例を示したブロック図である。
FIG. 1 is a block diagram showing a configuration example of a satellite acquisition system for an on-vehicle relay station according to the present invention.

【図2】 本発明による車載中継局の衛星捕捉方法の一
例を示したフローチャートである。
FIG. 2 is a flowchart showing an example of a satellite acquisition method for an onboard relay station according to the present invention.

【図3】 自動衛星捕捉時における図1のアンテナ2の
ビームの動き一例を示した図である。
FIG. 3 is a diagram showing an example of a beam movement of the antenna 2 of FIG. 1 during automatic satellite acquisition.

【図4】 従来の衛星捕捉システムの構成を示したブロ
ック図である。
FIG. 4 is a block diagram showing a configuration of a conventional satellite acquisition system.

【符号の説明】[Explanation of symbols]

1 捕捉対象衛星、2 車載局アンテナ、3 給電装
置、4 送受信装置、5 アンテナ駆動装置、6 アン
テナ制御装置、7 ビーコン受信装置、8 スペクラム
アナライザ 10 衛星通信用車載局、D1〜D5 ビ
ーム方位
1 satellite to be captured, 2 in-vehicle station antenna, 3 power feeding device, 4 transmitting / receiving device, 5 antenna driving device, 6 antenna control device, 7 beacon receiving device, 8 spectrum analyzer 10 satellite communication in-vehicle station, D1 to D5 beam azimuth

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 通信衛星から送信されるビーコン信号を
受信するアンテナと、受信周波数及び受信レベルに基づ
いて捕捉対象衛星からのビーコン信号を判別するビーコ
ン受信判別装置と、車載局及び捕捉対象衛星の位置情報
に基づいて方位角及び仰角を算出するアンテナ制御装置
と、アンテナを駆動するアンテナ駆動装置とを備え、ア
ンテナ制御装置により算出された方位角を中心とする第
1の角度範囲内においてアンテナを駆動し、ビーコン受
信判別装置からの判別信号に基づいてビーコン信号にロ
ックオンすることにより、捕捉対象衛星を自動捕捉する
ことを特徴とする車載中継局の衛星捕捉システム。
1. An antenna for receiving a beacon signal transmitted from a communication satellite, a beacon reception discriminating device for discriminating a beacon signal from a capture target satellite based on a reception frequency and a reception level, an on-vehicle station and a capture target satellite. An antenna control device that calculates an azimuth angle and an elevation angle based on position information, and an antenna drive device that drives the antenna are provided, and the antenna is controlled within a first angle range centered on the azimuth angle calculated by the antenna control device. A satellite acquisition system for an on-vehicle relay station, which is automatically driven to lock on to a beacon signal based on a determination signal from a beacon reception determination device.
【請求項2】 捕捉対象衛星のビーコン信号にロックオ
ンさせた後、第1の角度範囲よりも狭い第2の角度範囲
内においてアンテナを駆動してピークサーチを行うこと
を特徴とする請求項1に記載の車載中継局の衛星捕捉シ
ステム。
2. The peak search is performed by driving the antenna within a second angle range narrower than the first angle range after locking on the beacon signal of the satellite to be captured. The satellite acquisition system for the vehicle-mounted relay station described in.
【請求項3】 通信衛星から送信されるビーコン信号を
受信する受信ステップと、受信周波数及び受信レベルに
基づいて捕捉対象衛星からのビーコン信号を判別するビ
ーコン信号判別ステップと、車載局及び捕捉対象衛星の
位置情報に基づいて方位角及び仰角を算出する角度演算
ステップと、角度演算ステップにより算出された方位角
を中心とする第1の角度範囲内においてアンテナを駆動
し、ビーコン信号判別ステップによる判別結果に基づい
てビーコン信号にロックオンするロックオンステップと
を備えたことを特徴とする車載中継局の衛星捕捉方法。
3. A receiving step of receiving a beacon signal transmitted from a communication satellite, a beacon signal determining step of determining a beacon signal from a capture target satellite based on a reception frequency and a reception level, an in-vehicle station and a capture target satellite. The angle calculation step of calculating the azimuth angle and the elevation angle based on the position information of the antenna, the antenna is driven within the first angle range centered on the azimuth angle calculated by the angle calculation step, and the discrimination result by the beacon signal discrimination step Lock-on step of locking on to a beacon signal based on the above.
【請求項4】 ロックオンステップにより捕捉対象衛星
のビーコン信号にロックオンさせた後、第1の角度範囲
よりも狭い第2の角度範囲内においてアンテナを駆動し
て受信レベルが最大となる方位角及び仰角をサーチする
ピークサーチステップを備えたことを特徴とする請求項
3に記載の車載中継局の衛星捕捉方法。
4. An azimuth angle at which the reception level becomes maximum by driving the antenna within a second angle range narrower than the first angle range after locking on the beacon signal of the satellite to be captured by the lock-on step. And a peak search step for searching an elevation angle, the satellite capturing method for a vehicle-mounted relay station according to claim 3, characterized in that:
JP2002113757A 2002-04-16 2002-04-16 Satellite capture system for in-vehicle relay station and satellite capture method for in-vehicle relay station Expired - Fee Related JP3732151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002113757A JP3732151B2 (en) 2002-04-16 2002-04-16 Satellite capture system for in-vehicle relay station and satellite capture method for in-vehicle relay station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002113757A JP3732151B2 (en) 2002-04-16 2002-04-16 Satellite capture system for in-vehicle relay station and satellite capture method for in-vehicle relay station

Publications (2)

Publication Number Publication Date
JP2003309415A true JP2003309415A (en) 2003-10-31
JP3732151B2 JP3732151B2 (en) 2006-01-05

Family

ID=29395849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002113757A Expired - Fee Related JP3732151B2 (en) 2002-04-16 2002-04-16 Satellite capture system for in-vehicle relay station and satellite capture method for in-vehicle relay station

Country Status (1)

Country Link
JP (1) JP3732151B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009081490A (en) * 2007-09-25 2009-04-16 Funai Electric Co Ltd Broadcast receiving apparatus
JP2009118460A (en) * 2007-11-07 2009-05-28 Wiworld Co Ltd Satellite tracking antenna system with improved tracking characteristics and operating method thereof
JP2011102766A (en) * 2009-11-11 2011-05-26 Japan Radio Co Ltd Satellite capturing device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009081490A (en) * 2007-09-25 2009-04-16 Funai Electric Co Ltd Broadcast receiving apparatus
US8074246B2 (en) 2007-09-25 2011-12-06 Funai Electric Co., Ltd. Broadcast receiving apparatus
JP2009118460A (en) * 2007-11-07 2009-05-28 Wiworld Co Ltd Satellite tracking antenna system with improved tracking characteristics and operating method thereof
JP2011102766A (en) * 2009-11-11 2011-05-26 Japan Radio Co Ltd Satellite capturing device

Also Published As

Publication number Publication date
JP3732151B2 (en) 2006-01-05

Similar Documents

Publication Publication Date Title
EP1739449B1 (en) Satellite beacon for faster sky-search and pointing error identification
KR101289058B1 (en) Auto positioning antenna system and method for multi satellite
JP7318806B2 (en) Antenna direction adjustment method, portable station device, and antenna direction adjustment program in satellite communication system
EP2955856B1 (en) Method of find and tracking a signal of interest from a satellite and narrowband rssi indicator
CN101087041A (en) A polarization adjustment device of onboard satellite communication antenna and method
KR20160004839A (en) Satellite broadcasting system capable of tracking multi satellite signal using global positioning system at moving vehicle
JP3732151B2 (en) Satellite capture system for in-vehicle relay station and satellite capture method for in-vehicle relay station
CN116192235A (en) Quick satellite alignment method applied to Ka high-flux satellite portable terminal and application
KR950013141B1 (en) Auto-satallite-tracing antenna
JP3995320B2 (en) Satellite radio wave monitoring device
WO1996038876A1 (en) Satellite communication device mounted on mobile body
WO2021250821A1 (en) Antenna direction adjustment method, portable station device, and antenna direction adjustment program in satellite communication system
JPH10190338A (en) Tracking antenna device
JPH05232205A (en) Antenna control apparatus
JPH0829512A (en) Method and system for controlling tracking of mobile antenna
JPH09247124A (en) Radio communication path link-up system
KR20050011119A (en) Method for automatically controlling the angle of a satellite antenna for a vehicle, especially concerned with transceiving a radio signal in an optimum state based on calculating the azimuth and elevation angles of the satellite antenna with the angle between a vehicle and a satellite
CN114710818A (en) Satellite station, satellite system and satellite finding method
JP3149156B2 (en) Microwave antenna device for mounting on moving object
JPS62178027A (en) Line setting system in mobile radio communication
JP4750243B2 (en) Satellite tracking system
JP3993178B2 (en) Ground beacon station and beacon wave transmission method
JP3501214B2 (en) Satellite tracking device
JP2768392B2 (en) Tracking antenna device
CN117713951A (en) Photoelectric terahertz communication system with automatic alignment function and communication method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees