JP2003307121A - Exhaust emission control device of internal combustion engine - Google Patents

Exhaust emission control device of internal combustion engine

Info

Publication number
JP2003307121A
JP2003307121A JP2002111266A JP2002111266A JP2003307121A JP 2003307121 A JP2003307121 A JP 2003307121A JP 2002111266 A JP2002111266 A JP 2002111266A JP 2002111266 A JP2002111266 A JP 2002111266A JP 2003307121 A JP2003307121 A JP 2003307121A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
poisoning recovery
recovery control
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002111266A
Other languages
Japanese (ja)
Inventor
Zenichiro Masuki
善一郎 益城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002111266A priority Critical patent/JP2003307121A/en
Publication of JP2003307121A publication Critical patent/JP2003307121A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

<P>PROBLEM TO BE SOLVED: To prevent a sulfur poisoning recovery control from continuing for a long time, and properly restrain deterioration of fuel economy and emission control regardless of a rich degree in the sulfur poisoning recovery control. <P>SOLUTION: An engine 10 is equipped with an NOx occlusion reducing catalyst 22 for occluding sulfur components in exhaust gas at an exhaust passage 18. An electronic control device 40 executes the sulfur poisoning recovery control for controlling an exhaust air-fuel ratio to a rich air-fuel ratio when the occlusion volume of the sulfur components occluded by the NOx occlusion reducing catalyst 22 exceeds a tolerance during lean combustion of the engine 10. At that time, the electronic control device 40 sets an allowable continuing time of rich combustion according to the exhaust air-fuel ratio controlled by the sulfur poisoning recovery control, and completes the sulfur poisoning recovery control when the continuing time of rich combustion reaches to an allowable continuing time. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、リーン燃焼を行う
内燃機関に適用され、その排気通路に設けられた触媒に
より排気を浄化するようにした内燃機関の排気浄化装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying apparatus for an internal combustion engine, which is applied to an internal combustion engine that performs lean combustion and purifies exhaust gas by a catalyst provided in an exhaust passage thereof.

【0002】[0002]

【従来の技術】近年、ストイキ空燃比(理論空燃比)よ
りも燃料濃度を低下させたリーン空燃比での燃焼を行う
ことにより、燃料消費率の低減を図るようにした内燃機
関が提案されている。こうした内燃機関においては、リ
ーン燃焼時の排気中に多量に含まれる窒素酸化物(NO
x)を効率的に浄化するためのNOx吸蔵還元触媒装置
を備えるようにしている。この触媒装置は、リーン燃焼
時の排気に含まれる窒素酸化物(NOx)を一時的に吸
蔵する。そして、空燃比がストイキ空燃比或いはこれよ
りも燃料濃度の高いリッチ空燃比での燃焼が行われてい
るときに、その吸蔵されているNOxを排気に含まれる
炭化水素(HC)や一酸化炭素(CO)によって還元浄
化して放出するようにしている。
2. Description of the Related Art In recent years, an internal combustion engine has been proposed which is designed to reduce the fuel consumption rate by performing combustion at a lean air-fuel ratio in which the fuel concentration is lower than the stoichiometric air-fuel ratio (theoretical air-fuel ratio). There is. In such an internal combustion engine, a large amount of nitrogen oxides (NO
The NOx storage reduction catalyst device for efficiently purifying x) is provided. This catalyst device temporarily stores nitrogen oxides (NOx) contained in the exhaust gas during lean combustion. When the air-fuel ratio is burning at a stoichiometric air-fuel ratio or a rich air-fuel ratio having a higher fuel concentration than this, the stored NOx is contained in exhaust gas such as hydrocarbon (HC) or carbon monoxide. (CO) reduces and purifies and releases.

【0003】このNOx吸蔵還元触媒装置にあっては、
燃料に含まれる硫黄成分の酸化物(SOx)がNOxと
略同様のメカニズムによって吸蔵される。こうした現象
は一般にSOx被毒と称され、こうしたSOx吸蔵量
(SOx被毒量)が増大するとその分だけNOx吸蔵量
が低下するために、触媒装置におけるNOx吸蔵能力の
低下を招くこととなる。
In this NOx storage reduction catalyst device,
The sulfur component oxide (SOx) contained in the fuel is occluded by a mechanism substantially similar to NOx. Such a phenomenon is generally referred to as SOx poisoning, and when the SOx storage amount (SOx poisoning amount) increases, the NOx storage amount decreases by that amount, and thus the NOx storage capacity of the catalyst device decreases.

【0004】そのため、このNOx吸蔵還元触媒装置で
は、吸蔵されたSOx量を算出するとともに、この算出
されたSOx量が許容値を上回ることを条件にSOxを
脱離するために、排気空燃比をリッチ空燃比に制御する
硫黄被毒回復制御が行われている。
Therefore, in this NOx occlusion reduction catalyst device, the exhaust air-fuel ratio is set in order to calculate the stored SOx amount and desorb SOx on the condition that the calculated SOx amount exceeds the allowable value. Sulfur poisoning recovery control is performed to control the rich air-fuel ratio.

【0005】ところで、NOx吸蔵還元触媒からの硫黄
成分の単位時間当たりの脱離量は、触媒温度が高いほど
多くなる。そこで、特開平6−229231号公報にお
いては、燃費悪化やエミッション悪化を抑制しながら硫
黄成分を脱離するために、上記硫黄被毒回復制御におけ
る排気空燃比のリッチ度合を触媒温度に応じて可変設定
することが提案されている。また、特開2000−16
1107には、上記硫黄被毒回復制御における排気空燃
比のリッチ化度合を触媒温度や触媒に吸蔵されたSOx
量に応じて可変設定することが提案されている。
The desorption amount of the sulfur component from the NOx storage reduction catalyst per unit time increases as the catalyst temperature increases. Therefore, in Japanese Unexamined Patent Publication No. 6-229231, in order to desorb a sulfur component while suppressing deterioration of fuel efficiency and deterioration of emission, the rich degree of the exhaust air-fuel ratio in the sulfur poisoning recovery control is changed according to the catalyst temperature. It is suggested to set. In addition, Japanese Patent Laid-Open No. 2000-16
In 1107, the degree of enrichment of the exhaust air-fuel ratio in the above sulfur poisoning recovery control is determined by the catalyst temperature and the SOx stored in the catalyst.
It is proposed to variably set according to the amount.

【0006】[0006]

【発明が解決しようとする課題】ところで、上記硫黄被
毒回復制御は、触媒に吸蔵された硫黄成分が脱離され、
その吸蔵量が所定値を下回ったことを条件に終了され
る。しかしながら、触媒温度が低くて硫黄成分が脱離さ
れにくいようなときには、硫黄被毒回復制御が長期に亘
り継続されることになって、燃費悪化やエミッション悪
化を招くことになり、硫黄被毒回復制御におけるリッチ
化度合に応じて燃費悪化やエミッション悪化が生じてい
る。
By the way, in the above sulfur poisoning recovery control, the sulfur component stored in the catalyst is desorbed,
The process is terminated on the condition that the storage amount is below a predetermined value. However, when the catalyst temperature is low and the sulfur component is difficult to be desorbed, the sulfur poisoning recovery control is continued for a long period of time, which leads to deterioration of fuel consumption and emission. Fuel consumption deterioration and emission deterioration are occurring depending on the degree of enrichment in control.

【0007】本発明は、こうした従来の実情に鑑みてな
されたものであり、その目的は、硫黄被毒回復制御が長
期に亘り継続されるのを防止するとともに、硫黄被毒回
復制御におけるリッチ化度合に関わらず燃費悪化やエミ
ッション悪化を適切に抑制することができる内燃機関の
排気浄化装置を提供することにある。
The present invention has been made in view of such conventional circumstances, and an object thereof is to prevent the sulfur poisoning recovery control from being continued for a long period of time and to enrich the sulfur poisoning recovery control. An object of the present invention is to provide an exhaust emission control device for an internal combustion engine that can appropriately suppress deterioration of fuel consumption and deterioration of emission regardless of the degree.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
の構成及びその作用効果について以下に記載する。請求
項1に記載の発明は、排気空燃比が少なくともリーン空
燃比のときに排気ガス中の硫黄成分を吸蔵する触媒が排
気通路に設けられた内燃機関であり、前記触媒に吸蔵さ
れた硫黄成分の吸蔵量を算出し、この算出された吸蔵量
が許容値を上回ることを条件に排気空燃比をリッチ空燃
比に制御する硫黄被毒回復制御を実行するとともに、前
記算出された吸蔵量が前記許容値よりも小さい所定値を
下回ったときに前記硫黄被毒回復制御を終了する内燃機
関の排気浄化装置において、前記硫黄被毒回復制御によ
って制御される排気空燃比に応じて前記硫黄被毒回復制
御の継続許可時間を設定する設定手段と、前記硫黄被毒
回復制御の継続時間が前記継続許可時間に達したときに
前記硫黄被毒回復制御を強制的に終了する終了手段とを
備えることを特徴とする。
A structure for achieving the above-mentioned object and its function and effect will be described below. The invention according to claim 1 is an internal combustion engine in which a catalyst for storing a sulfur component in exhaust gas is provided in an exhaust passage when the exhaust air-fuel ratio is at least a lean air-fuel ratio, and the sulfur component stored in the catalyst is The storage amount of is calculated, while performing a sulfur poisoning recovery control for controlling the exhaust air-fuel ratio to a rich air-fuel ratio on condition that the calculated storage amount exceeds an allowable value, the calculated storage amount is In an exhaust purification device of an internal combustion engine, which terminates the sulfur poisoning recovery control when the value falls below a predetermined value smaller than an allowable value, the sulfur poisoning recovery is performed according to an exhaust air-fuel ratio controlled by the sulfur poisoning recovery control. A setting means for setting a continuation permission time of control, and an end means for forcibly ending the sulfur poisoning recovery control when the duration of the sulfur poisoning recovery control reaches the continuation permission time. And butterflies.

【0009】硫黄被毒回復制御は排気空燃比をリッチ空
燃比に制御することにより行われる。硫黄被毒回復制御
を実行しても触媒温度が低く硫黄成分が脱離されにくい
ときには、硫黄被毒回復制御が長期化するおそれがあ
り、燃費悪化やエミッションの悪化を生じる可能性があ
る。この点、請求項1の構成によれば、硫黄被毒回復制
御中の排気空燃比に応じて継続許可時間が設定され、硫
黄被毒回復制御の継続時間が継続許可時間に達したとき
硫黄被毒回復制御が終了されるので、硫黄被毒回復制御
が長期に亘り継続されるのを防止でき、燃費悪化やエミ
ッションの悪化を抑制することができる。
The sulfur poisoning recovery control is performed by controlling the exhaust air-fuel ratio to a rich air-fuel ratio. When the catalyst temperature is low and the sulfur component is difficult to be desorbed even if the sulfur poisoning recovery control is executed, the sulfur poisoning recovery control may be prolonged, which may cause deterioration of fuel consumption and emission. In this respect, according to the configuration of claim 1, the continuation permission time is set according to the exhaust air-fuel ratio during the sulfur poisoning recovery control, and the sulfur poisoning recovery control is performed when the duration reaches the continuation permission time. Since the poison recovery control is terminated, it is possible to prevent the sulfur poisoning recovery control from being continued for a long period of time, and it is possible to suppress deterioration of fuel consumption and deterioration of emission.

【0010】しかも、硫黄被毒回復制御によって制御さ
れる排気空燃比に応じて上記継続許可時間が設定される
ので、硫黄被毒回復制御における排気空燃比のリッチ化
度合に関わらず、燃費悪化やエミッション悪化を適切に
抑制することができる。
Moreover, since the above-described continuation permission time is set according to the exhaust air-fuel ratio controlled by the sulfur poisoning recovery control, the fuel consumption is deteriorated regardless of the degree of enrichment of the exhaust air-fuel ratio in the sulfur poisoning recovery control. Emission deterioration can be appropriately suppressed.

【0011】請求項2に記載の発明は、請求項1におい
て、前記硫黄被毒回復制御によって制御される排気空燃
比は、少なくとも前記触媒の触媒温度が低くなるほどリ
ッチ化度合が大きくなるように可変とされることを特徴
とする。
According to a second aspect of the present invention, in the first aspect, the exhaust air-fuel ratio controlled by the sulfur poisoning recovery control is varied so that the degree of enrichment becomes larger at least as the catalyst temperature of the catalyst becomes lower. It is characterized by being.

【0012】硫黄被毒回復制御を行う際、触媒温度が低
いほど硫黄成分が脱離しにくく、硫黄被毒回復制御が長
期化するおそれがあり、硫黄被毒回復制御によって制御
される排気空燃比を少なくとも触媒温度が低くなるほど
リッチ度合が大きくなるように可変とする場合、燃費悪
化やエミッション悪化の傾向が顕著に生じる。しかしな
がら、請求項2の構成によれば、触媒温度が低いほどリ
ッチ度合を大きくしたとしても、好適に燃費悪化やエミ
ッション悪化を抑制することができる。
When performing the sulfur poisoning recovery control, the lower the catalyst temperature, the more difficult it is for the sulfur component to be desorbed, and the sulfur poisoning recovery control may be prolonged. Therefore, the exhaust air-fuel ratio controlled by the sulfur poisoning recovery control is At least when the catalyst temperature is set to be variable so that the degree of richness increases as the temperature lowers, fuel consumption and emission tend to deteriorate significantly. However, according to the configuration of claim 2, even if the rich degree is increased as the catalyst temperature is lower, it is possible to preferably suppress deterioration of fuel consumption and deterioration of emission.

【0013】[0013]

【発明の実施の形態】以下、本発明に係る一実施形態に
ついて図面を参照して説明する。図1は本実施形態に係
る排気浄化装置及び同装置が適用される車両用筒内噴射
式4気筒ガソリンエンジン(以下、単に「エンジン」と
いう)10の概略構成を示している。
DETAILED DESCRIPTION OF THE INVENTION An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a schematic configuration of an exhaust emission control device according to the present embodiment and a vehicle direct injection 4-cylinder gasoline engine (hereinafter simply referred to as “engine”) 10 to which the device is applied.

【0014】図1に示されるように、エンジン10に
は、その各気筒#1〜#4の燃焼室12(同図1ではそ
の一つ気筒の燃焼室のみを示す)内に燃料を直接噴射す
るインジェクタ14と、この噴射された燃料に点火する
点火プラグ16とがそれぞれ設けられている。
As shown in FIG. 1, the engine 10 directly injects fuel into the combustion chamber 12 of each cylinder # 1 to # 4 (in FIG. 1, only the combustion chamber of one cylinder is shown). The injector 14 and the spark plug 16 that ignites the injected fuel are provided.

【0015】また、燃焼室12に接続される排気通路1
8には、三元触媒装置(以下、単に「三元触媒」とい
う)20と、その下流側に位置してNOx吸蔵還元触媒
装置(以下、単に「NOx触媒」という)22がそれぞ
れ配設されている。これら三元触媒20及びNOx吸蔵
還元触媒22によって、排気ガスに含まれるHC(炭化
水素)、CO(一酸化炭素)、及びNOx(窒素酸化
物)が浄化される。
Further, the exhaust passage 1 connected to the combustion chamber 12
In FIG. 8, a three-way catalyst device (hereinafter, simply referred to as “three-way catalyst”) 20 and a NOx storage reduction catalyst device (hereinafter, simply referred to as “NOx catalyst”) 22 are disposed downstream thereof. ing. The three-way catalyst 20 and the NOx storage reduction catalyst 22 purify HC (hydrocarbon), CO (carbon monoxide), and NOx (nitrogen oxide) contained in the exhaust gas.

【0016】即ち、三元触媒20においては、排気に含
まれるHC、CO、及びNOxが酸化還元反応によって
それぞれ同時に浄化される。一方、NOx触媒22にお
いては、リーン燃焼モード中の排気に含まれるNOxが
一旦吸蔵され、この吸蔵されたNOxがリッチ燃焼モー
ド(或いはストイキ燃焼モード)中の排気に含まれるH
C及びCOを還元剤として還元され浄化される。
That is, in the three-way catalyst 20, HC, CO, and NOx contained in the exhaust gas are simultaneously purified by the redox reaction. On the other hand, in the NOx catalyst 22, the NOx contained in the exhaust gas in the lean combustion mode is temporarily stored, and the stored NOx is contained in the exhaust gas in the rich combustion mode (or stoichiometric combustion mode).
It is reduced by using C and CO as reducing agents and purified.

【0017】三元触媒20とNOx触媒22との間の排
気通路18には排気成分中の酸素を検出する酸素センサ
24が設けられている。また、NOx触媒22には触媒
の温度を検出する温度センサ26が設けられている。
An oxygen sensor 24 for detecting oxygen in exhaust components is provided in the exhaust passage 18 between the three-way catalyst 20 and the NOx catalyst 22. Further, the NOx catalyst 22 is provided with a temperature sensor 26 that detects the temperature of the catalyst.

【0018】車両Cには、機関回転速度を検出するため
の回転速度センサ31、アクセルペダル(図示略)の踏
込量を検出するアクセルセンサ32、及び車両Cの走行
速度(車速SPD)を検出する車速センサ33が設けら
れている。前記酸素センサ24の検出信号及び各センサ
31〜33の検出信号は、エンジン10の各種制御を実
行する電子制御装置40に入力される。
On the vehicle C, a rotation speed sensor 31 for detecting the engine rotation speed, an accelerator sensor 32 for detecting the depression amount of an accelerator pedal (not shown), and a traveling speed (vehicle speed SPD) of the vehicle C are detected. A vehicle speed sensor 33 is provided. The detection signal of the oxygen sensor 24 and the detection signals of the sensors 31 to 33 are input to the electronic control unit 40 that executes various controls of the engine 10.

【0019】電子制御装置40は、酸素センサ24、温
度センサ26及び各センサ31〜33等によって検出さ
れるエンジン10の運転状態や車両の走行状態に基づい
て、燃料噴射制御等、各種制御を実行する。また、電子
制御装置40は、こうした各種制御を実行するためのプ
ログラムや演算用マップ、制御の実行に際して算出され
る各種データ等を記憶するメモリ41を備えている。
The electronic control unit 40 executes various controls such as fuel injection control based on the operating state of the engine 10 and the running state of the vehicle detected by the oxygen sensor 24, the temperature sensor 26, the sensors 31 to 33, and the like. To do. The electronic control unit 40 also includes a memory 41 that stores a program for executing such various controls, a calculation map, various data calculated when executing the control, and the like.

【0020】また、本実施形態におけるエンジン10で
は、上記インジェクタ14による燃料噴射態様や点火プ
ラグ16による点火時期等が変更されることにより、そ
の機関燃焼モードが成層燃焼(リーン燃焼)モード、ス
トイキ燃焼モード(通常燃焼モード)、リッチ燃焼モー
ド、並びに昇温燃焼モードとの間で切り替えられる。
In the engine 10 of this embodiment, the engine combustion mode is changed to the stratified combustion (lean combustion) mode or stoichiometric combustion by changing the fuel injection mode by the injector 14 or the ignition timing by the spark plug 16. The mode (normal combustion mode), the rich combustion mode, and the temperature rising combustion mode are switched.

【0021】例えば、成層燃焼モードにおいては、燃料
噴射時期は圧縮行程後期に設定される。従って、点火時
において点火プラグ16近傍の混合気のみが部分的に点
火可能な可燃混合気状態となる。また、この場合の混合
気の平均的な空燃比(A/F)は各気筒#1〜#4とも
一律にストイキ空燃比(A/F=14.5)よりもリー
ン(例えばA/F=25〜50)に設定される。
For example, in the stratified charge combustion mode, the fuel injection timing is set to the latter stage of the compression stroke. Therefore, at the time of ignition, only the air-fuel mixture in the vicinity of the spark plug 16 is in a combustible air-fuel mixture state where it can be partially ignited. Further, the average air-fuel ratio (A / F) of the air-fuel mixture in this case is uniformly leaner than the stoichiometric air-fuel ratio (A / F = 14.5) in each of the cylinders # 1 to # 4 (for example, A / F = 25 to 50).

【0022】また、ストイキ燃焼モードにおいては、燃
料噴射時期は吸気行程中に設定される。従って、点火時
での燃焼室12内における空燃比は略均一になり、その
混合気の空燃比は各気筒#1〜#4とも一律にストイキ
空燃比近傍に設定される。
Further, in the stoichiometric combustion mode, the fuel injection timing is set during the intake stroke. Therefore, the air-fuel ratio in the combustion chamber 12 at the time of ignition becomes substantially uniform, and the air-fuel ratio of the air-fuel mixture is uniformly set near the stoichiometric air-fuel ratio in each of the cylinders # 1 to # 4.

【0023】これら各機関燃焼モードの切り替えは、基
本的には機関負荷及び機関回転速度といったエンジン1
0の運転状態に基づいて行われている。通常、機関燃焼
モードは低負荷低回転運転領域では成層燃焼モードに設
定され、高負荷高回転運転領域ではストイキ燃焼モード
に機関燃焼モードがそれぞれ設定される。
Switching between the engine combustion modes is basically performed by the engine 1 such as engine load and engine speed.
It is performed based on the driving state of 0. Normally, the engine combustion mode is set to the stratified charge combustion mode in the low load / low speed operation region, and the engine combustion mode is set to the stoichiometric combustion mode in the high load / high speed operation region.

【0024】また、リッチ燃焼モードにおいては、燃料
噴射時期はストイキ燃焼モードと同様に、吸気行程中に
設定されるとともに、その混合気の空燃比は各気筒#1
〜#4とも一律にストイキ空燃比よりもリッチに設定さ
れる。このリッチ燃焼モードは、例えば、NOx触媒2
2のNOx吸蔵量が所定量を超えたときに、排気空燃比
を一時的にリッチにし、排気中に含まれるHC,COの
量を増大させることで、同NOx触媒22に吸蔵されて
いるNOxを還元浄化する処理(リッチスパイク処理)
に際して選択される。
Further, in the rich combustion mode, the fuel injection timing is set during the intake stroke as in the stoichiometric combustion mode, and the air-fuel ratio of the air-fuel mixture is set in each cylinder # 1.
All of # 4 to # 4 are uniformly set richer than the stoichiometric air-fuel ratio. This rich combustion mode is used, for example, for the NOx catalyst 2
When the NOx storage amount of No. 2 exceeds a predetermined amount, the exhaust air-fuel ratio is temporarily made rich to increase the amounts of HC and CO contained in the exhaust gas, so that the NOx stored in the NOx catalyst 22 is increased. Process for reducing and purifying (rich spike process)
Selected at the time.

【0025】これに対して、昇温燃焼モードは、NOx
触媒22においてSOx被毒回復のための昇温要求があ
るとき、即ちNOx触媒22のSOx被毒量が所定量を
超えるなど、所定の条件が満たされたときに選択され
る。
On the other hand, the temperature rising combustion mode is NOx.
It is selected when there is a temperature increase request for SOx poisoning recovery in the catalyst 22, that is, when a predetermined condition is satisfied, such as the SOx poisoning amount of the NOx catalyst 22 exceeds a predetermined amount.

【0026】この昇温燃焼モードでは、各気筒#1〜#
4のうち、一部の気筒の空燃比がストイキ空燃比よりも
リッチに、残りの気筒の空燃比がストイキ空燃比よりも
リーンに設定される。また、これら全気筒#1〜#4の
平均的な空燃比はストイキ空燃比或いはリッチ空燃比に
設定される。
In this temperature rising combustion mode, each cylinder # 1 to #
Among the four, the air-fuel ratio of some cylinders is set richer than the stoichiometric air-fuel ratio, and the air-fuel ratios of the remaining cylinders are set leaner than the stoichiometric air-fuel ratio. The average air-fuel ratio of all the cylinders # 1 to # 4 is set to the stoichiometric air-fuel ratio or the rich air-fuel ratio.

【0027】そして、このように機関燃焼モードが昇温
燃焼モードに切り替えられることにより、空燃比がリッ
チに設定された一部の気筒から排出される排気中の燃料
未燃成分と、空燃比がリーンに設定された残りの気筒か
ら排出される排気中の酸素とが三元触媒20或いはNO
x触媒22の触媒機能によって燃焼する。その結果、そ
の燃焼熱によってNOx触媒22が温度上昇し、NOx
触媒22に吸蔵されているSOxが同触媒22から除去
されるようになる。
By switching the engine combustion mode to the temperature rising combustion mode in this manner, the unburned fuel components in the exhaust gas discharged from some of the cylinders whose air-fuel ratio is set rich, and the air-fuel ratio Oxygen in the exhaust gas discharged from the remaining lean cylinders is the three-way catalyst 20 or NO.
The x catalyst 22 burns due to the catalytic function. As a result, the NOx catalyst 22 rises in temperature due to the combustion heat, and NOx
The SOx stored in the catalyst 22 comes to be removed from the catalyst 22.

【0028】次に、こうしたNOx触媒22のSOx被
毒回復処理の詳細について図2及び図3を参照して説明
する。これら図2及び図3は、SOx被毒回復処理にお
ける処理手順を示すフローチャートである。このフロー
チャートに示される一連の処理は所定クランク角の割り
込み処理として電子制御装置40により実行される。
Next, details of the SOx poisoning recovery process for the NOx catalyst 22 will be described with reference to FIGS. 2 and 3. 2 and 3 are flowcharts showing the processing procedure in the SOx poisoning recovery processing. The series of processes shown in this flowchart is executed by the electronic control unit 40 as an interrupt process of a predetermined crank angle.

【0029】電子制御装置40の処理がこの一連の処理
に移行すると、まず、ステップ100において、NOx
触媒22に吸蔵されている総SOx量が算出される。こ
の総SOx量はリーン空燃比でのリーン燃焼が実行され
ているときには加算され、リッチ空燃比でのリッチ燃焼
が実行されているときには減算される。このときの加算
量は、吸入空気量が多くなるほど、また空燃比が小さい
(即ち燃料濃度が濃い)ときほど、大きな値に設定され
る。これは吸入空気量が多いときほど、また燃料濃度が
濃いときほど単位時間当たりにNOx触媒22に接触し
てこれに吸蔵されるSOx量が増大するためである。ま
た、SOx量算出における減算量は、空燃比がリッチで
あるときほど、また触媒床温が高いときほど大きな値に
設定される。これは、触媒床温が高いときほど、また空
燃比がリッチであるほど、NOx触媒22においてその
SOxの脱離が促進されるためである。なお、総SOx
量の算出には使用燃料のイオウ含有量の要素が含まれて
いる。例えば、高オクタン価ガソリンの場合には低オク
タン価ガソリンよりもイオウ含有量は少ないので、この
ときの単位時間当たりに吸蔵されるSOx量は小さくな
る。逆に低オクタン価ガソリンの場合には高オクタン価
ガソリンよりもイオウ含有量は多いので、このときの単
位時間当たりに吸蔵されるSOx量は大きくなる。因み
に、高オクタン価ガソリンの場合にはノッキングが発生
し難いため、エンジン10の点火時期は点火進角制御を
通じてより進角側の時期に設定されるのに対し、低オク
タン価ガソリンの場合はこれと比較して遅角側の時期に
設定される傾向がある。このため、このような燃料種類
の判定は、例えば、こうした傾向に基づいて行うことが
できる。また、これら吸入空気量及び空燃比とSOxの
加算量、及び空燃比及び触媒床温とSOxの減算量との
関係は実験等を通じて予め求められ、電子制御装置40
のメモリ41に記憶されている。
When the processing of the electronic control unit 40 shifts to this series of processing, first, at step 100, NOx
The total SOx amount stored in the catalyst 22 is calculated. This total SOx amount is added when lean combustion is being performed at a lean air-fuel ratio, and is subtracted when rich combustion is being performed at a rich air-fuel ratio. The addition amount at this time is set to a larger value as the intake air amount increases and as the air-fuel ratio decreases (that is, the fuel concentration increases). This is because the amount of SOx that comes into contact with the NOx catalyst 22 per unit time increases as the intake air amount increases and the fuel concentration increases as the SOx amount increases. Further, the subtraction amount in the SOx amount calculation is set to a larger value as the air-fuel ratio is richer and the catalyst bed temperature is higher. This is because the higher the catalyst bed temperature and the richer the air-fuel ratio, the more the desorption of SOx in the NOx catalyst 22 is promoted. Note that total SOx
The calculation of the amount includes the element of the sulfur content of the fuel used. For example, high octane gasoline has a lower sulfur content than low octane gasoline, so the SOx amount stored per unit time at this time is small. On the contrary, since the low octane gasoline has a higher sulfur content than the high octane gasoline, the SOx amount stored per unit time at this time becomes large. Incidentally, in the case of high-octane gasoline, knocking is less likely to occur, so the ignition timing of the engine 10 is set to a more advanced timing through ignition advance control, whereas in the case of low-octane gasoline, comparison is made with this. Then, there is a tendency that the timing is set on the retard side. Therefore, such a fuel type determination can be performed based on such a tendency, for example. The relationship between the intake air amount, the air-fuel ratio and the SOx addition amount, and the relationship between the air-fuel ratio, the catalyst bed temperature and the SOx subtraction amount are obtained in advance through experiments and the like, and the electronic control unit
Stored in the memory 41.

【0030】このようにして総SOx量を算出した後、
SOx被毒回復処理を行う必要があることを示す被毒回
復要求フラグがオンであるかどうかが判断される(ステ
ップ102)。被毒回復要求フラグがオンでないと判断
された場合には(ステップ102:NO)、処理はステ
ップ104に進む。また、被毒回復要求フラグがオンで
あると判断された場合(ステップ102:YES)に
は、処理はステップ108に移行する。
After calculating the total SOx amount in this way,
It is determined whether the poisoning recovery request flag indicating that the SOx poisoning recovery process needs to be performed is on (step 102). When it is determined that the poisoning recovery request flag is not on (step 102: NO), the process proceeds to step 104. When it is determined that the poisoning recovery request flag is on (step 102: YES), the process proceeds to step 108.

【0031】被毒回復要求フラグがオンでないと判断さ
れた場合には、先のステップ100にて算出された総S
Ox量が許容値ASt以上かどうかが判断される(ステ
ップ104)。この許容値AStは、NOx吸蔵能力の
低下が無視できない程度にまでSOx被毒量が増大した
ことを判定するための値である。ここで総SOx量が許
容値ASt以上である旨判断された場合には(ステップ
104:YES)、SOx被毒回復処理を行う必要があ
るものとして被毒回復要求フラグがオンに設定され(ス
テップ106)、この後処理はステップ108に進み、
燃焼モードがリーン燃焼モードから昇温燃焼モードに切
り替えられる。また、先のステップ104の判断におい
てSOx量が許容値ASt未満であってSOx被毒量に
ついてまだ余裕がある旨判断された場合(ステップ10
4:NO)には、処理はステップ128に移行する。
When it is determined that the poisoning recovery request flag is not on, the total S calculated in the previous step 100 is calculated.
It is determined whether the Ox amount is equal to or more than the allowable value Ast (step 104). This allowable value ASt is a value for determining that the SOx poisoning amount has increased to such an extent that the decrease in NOx storage capacity cannot be ignored. If it is determined that the total SOx amount is equal to or greater than the allowable value Ast (step 104: YES), the poisoning recovery request flag is set to be on (SOx poisoning recovery process is necessary) (step). 106), and the post-processing proceeds to step 108,
The combustion mode is switched from the lean combustion mode to the temperature rising combustion mode. Further, when it is determined that the SOx amount is less than the allowable value ASt and there is still a margin for the SOx poisoning amount in the determination in step 104 (step 10).
If the answer is NO, the process proceeds to step 128.

【0032】先のステップ102で被毒回復要求フラグ
がオンであるとされた場合、あるいはステップ106で
被毒回復要求フラグがオンに設定された場合には、ステ
ップ108において温度センサ26により検出された触
媒床温が所定温度THc以上であるかどうかが判断され
る。この所定温度THcは、NOx触媒22がSOxを
脱離することができることをその温度状態に基づいて判
定するためのものである。
If the poisoning recovery request flag is turned on in the previous step 102, or if the poisoning recovery request flag is set on in step 106, the temperature sensor 26 detects it in step 108. It is determined whether the catalyst bed temperature is equal to or higher than the predetermined temperature THc. The predetermined temperature THc is used to determine that the NOx catalyst 22 can desorb SOx based on its temperature state.

【0033】触媒床温が所定温度THc未満であると判
定された場合(ステップ108:NO)には、まずは触
媒床温を昇温させる必要があるものとして燃焼モードが
リーン燃焼モードからストイキ空燃比とした昇温燃焼モ
ードに切り替えられる。上記したようにこの昇温燃焼モ
ードでは、各気筒#1〜#4のうち、一部の気筒の空燃
比がストイキ空燃比よりもリッチに、残りの気筒の空燃
比がストイキ空燃比よりもリーンに設定される。また、
これら全気筒#1〜#4の平均的な空燃比はストイキ空
燃比に設定され、各触媒20,22に達する排気につい
ては酸素センサ24による空燃比フィードバック制御に
よりその平均的な空燃比がストイキ空燃比に維持され
る。この昇温燃焼により、空燃比がリッチに設定された
一部の気筒から排出される排気中の燃料未燃成分と、空
燃比がリーンに設定された残りの気筒から排出される排
気中の酸素とが三元触媒20或いはNOx触媒22の触
媒機能によって燃焼し、その燃焼熱によってNOx触媒
22の温度が上昇する。
When it is determined that the catalyst bed temperature is lower than the predetermined temperature THc (step 108: NO), it is first necessary to raise the catalyst bed temperature, and the combustion mode is changed from the lean combustion mode to the stoichiometric air-fuel ratio. The temperature rising combustion mode is switched to. As described above, in the temperature rising combustion mode, the air-fuel ratio of some of the cylinders # 1 to # 4 is richer than the stoichiometric air-fuel ratio, and the air-fuel ratios of the remaining cylinders are leaner than the stoichiometric air-fuel ratio. Is set to. Also,
The average air-fuel ratio of all the cylinders # 1 to # 4 is set to the stoichiometric air-fuel ratio, and the exhaust gas reaching each of the catalysts 20 and 22 is stoichiometric when the average air-fuel ratio is controlled by the air-fuel ratio feedback control by the oxygen sensor 24. The fuel ratio is maintained. Due to this temperature rise combustion, unburned fuel components in the exhaust gas discharged from some cylinders whose air-fuel ratio is set to rich and oxygen in the exhaust gas discharged from the remaining cylinders whose air-fuel ratio is set to lean And are burned by the catalytic function of the three-way catalyst 20 or the NOx catalyst 22, and the heat of combustion raises the temperature of the NOx catalyst 22.

【0034】一方、触媒床温が所定温度THcを上回っ
ている場合には(ステップ108:YES)、NOx触
媒22からのSOxの脱離が可能なため、後述する一連
の処理により全気筒#1〜#4の平均的な空燃比をリッ
チ空燃比としたリッチ燃焼が実行され、まず、リッチ燃
焼の継続時間Teが計測される(ステップ110)。
On the other hand, when the catalyst bed temperature is higher than the predetermined temperature THc (step 108: YES), SOx can be desorbed from the NOx catalyst 22. The rich combustion with the average air-fuel ratio of # 4 to # 4 as the rich air-fuel ratio is executed, and first, the rich combustion duration Te is measured (step 110).

【0035】次にステップ112において、触媒床温に
応じて目標空燃比がリッチ側に設定される。図4に示す
ように、NOx触媒22からのSOx脱離量は空燃比が
リッチ空燃比であるほど大きく、かつ触媒床温が高いほ
ど大きくなる傾向がある。このリッチ燃焼の実行に際し
ては、図5に示されるように制御中心がストイキ空燃比
よりもリッチ寄りとなるような酸素センサ24による空
燃比フィードバック制御を通じてフィードバック(F/
B)係数kafが算出される。従って、ステップ112
では空燃比フィードバック制御に用いるフィードバック
(F/B)定数が設定される。すなわち、図6(a)に
示されるマップを参照し、触媒床温に応じて酸素センサ
24の出力反転時期からF/B係数kafを減少させる
リッチ側のスキップ量を加えるまでのディレー時間TD
Rが設定され、F/B係数kafを増加させるリーン側
のスキップ量を加えるまでのディレー時間TDLが設定
される。また、図6(b)に示されるマップを参照し、
触媒床温に応じてF/B係数kafを増加させて空燃比
をリッチにする積分定数CR及びF/B係数kafを減
少させて空燃比をリーンにする積分定数CLが設定され
る。従って、このときの空燃比の制御中心は図5に鎖線
で示されるように、破線で示されるストイキ空燃比の制
御中心よりもリッチ側となる。なお、この昇温燃焼モー
ドでは、先のステップ126におけるストイキ空燃比と
した昇温燃焼モードでのリッチな気筒の空燃比がよりリ
ッチに、残りの気筒の空燃比がストイキ空燃比寄りに設
定され、これら全気筒#1〜#4の平均的な空燃比はリ
ッチ空燃比に設定される。
Next, at step 112, the target air-fuel ratio is set to the rich side according to the catalyst bed temperature. As shown in FIG. 4, the SOx desorption amount from the NOx catalyst 22 tends to increase as the air-fuel ratio becomes a rich air-fuel ratio and increase as the catalyst bed temperature increases. When performing this rich combustion, as shown in FIG. 5, feedback is performed through the air-fuel ratio feedback control by the oxygen sensor 24 such that the control center is closer to the rich side than the stoichiometric air-fuel ratio.
B) The coefficient kaf is calculated. Therefore, step 112
In, the feedback (F / B) constant used for the air-fuel ratio feedback control is set. That is, referring to the map shown in FIG. 6A, the delay time TD from the output reversal timing of the oxygen sensor 24 to the addition of the rich side skip amount that decreases the F / B coefficient kaf according to the catalyst bed temperature.
R is set, and the delay time TDL until the lean side skip amount for increasing the F / B coefficient kaf is added is set. Also, referring to the map shown in FIG. 6 (b),
An integration constant CR that increases the F / B coefficient kaf and makes the air-fuel ratio rich according to the catalyst bed temperature, and an integration constant CL that decreases the F / B coefficient kaf and makes the air-fuel ratio lean are set. Therefore, the control center of the air-fuel ratio at this time is on the rich side of the control center of the stoichiometric air-fuel ratio shown by the broken line, as shown by the chain line in FIG. In this temperature rising combustion mode, the air-fuel ratio of the rich cylinder in the temperature rising combustion mode which is the stoichiometric air-fuel ratio in the previous step 126 is set to be richer, and the air-fuel ratios of the remaining cylinders are set to be closer to the stoichiometric air-fuel ratio. The average air-fuel ratio of all the cylinders # 1 to # 4 is set to the rich air-fuel ratio.

【0036】このようにして目標空燃比がリッチ側に設
定されると、ステップ114においてリッチ燃焼の継続
許可時間Tpが設定される。排気空燃比がリッチ側に設
定されて実際にリッチ燃焼が行われると、燃費悪化やエ
ミッションが悪化することとなる。この燃費悪化やエミ
ッション悪化はリッチ燃焼の継続時間Teが長くなれば
なるほど悪化することとなる。そのため、図7に示され
るマップを参照してリッチ燃焼時の空燃比に基づいてリ
ッチ継続許可時間Tpが設定される。
When the target air-fuel ratio is set to the rich side in this way, the rich combustion continuation permission time Tp is set in step 114. When the exhaust air-fuel ratio is set to the rich side and the rich combustion is actually performed, the fuel consumption and the emission are deteriorated. The deterioration of fuel consumption and the deterioration of emission become worse as the rich combustion duration Te becomes longer. Therefore, referring to the map shown in FIG. 7, the rich continuation permission time Tp is set based on the air-fuel ratio at the time of rich combustion.

【0037】リッチ燃焼の継続許可時間Tpが設定され
た後、図5に示されるように排気空燃比がリッチ側の目
標空燃比となるように制御されてリッチ燃焼が行われる
(ステップ116)。
After the rich combustion continuation permission time Tp is set, as shown in FIG. 5, the exhaust air-fuel ratio is controlled so as to reach the target air-fuel ratio on the rich side, and rich combustion is performed (step 116).

【0038】このようにしてリッチ燃焼が行われると、
リッチ燃焼の継続時間Teが先のステップ114にて設
定された継続許可時間Tp以上かどうかが判断される
(ステップ118)。継続時間Teが継続許可時間Tp
未満であると判断された場合には(ステップ118:N
O)、処理はステップ120に進む。また、継続時間T
eが継続許可時間Tpであると判断された場合(ステッ
プ118:YES)には、処理はステップ122に移行
する。
When rich combustion is performed in this way,
It is determined whether the rich combustion duration time Te is equal to or longer than the duration permission time Tp set in the previous step 114 (step 118). The continuation time Te is the continuation permission time Tp
If it is determined that the value is less than (step 118: N
O), the process proceeds to step 120. Also, the duration T
When it is determined that e is the continuing permission time Tp (step 118: YES), the process proceeds to step 122.

【0039】継続時間Teが継続許可時間Tp未満であ
ると判断された場合には、先のステップ100にて算出
された総SOx量が所定値ASb以上かどうかが判断さ
れる(ステップ120)。この所定値ASbは被毒回復
処理の実行によりSOx被毒量が減少してNOx触媒2
2のNOx吸蔵能力が回復してきたことを判定するため
の値であり、所定値ASbはASt>ASb>0となる
ように設定されている。
When it is determined that the continuation time Te is less than the continuation permission time Tp, it is determined whether the total SOx amount calculated in the previous step 100 is the predetermined value ASb or more (step 120). This predetermined value ASb reduces the SOx poisoning amount by executing the poisoning recovery process, and the NOx catalyst 2
This is a value for determining that the NOx storage capacity of 2 has recovered, and the predetermined value ASb is set so that Ast>ASb> 0.

【0040】ここで総SOx量が所定値ASb以上であ
ると判断された場合には(ステップ120:YES)、
未だSOx被毒回復処理を継続する必要があり、この一
連の処理は一旦終了される。また、先のステップ120
の判断において総SOx量が所定値ASb未満であって
NOx触媒22のNOx吸蔵能力が回復したと判断され
た場合(ステップ120:NO)には、処理はステップ
122に移行する。
When it is determined that the total SOx amount is the predetermined value ASb or more (step 120: YES),
It is necessary to continue the SOx poisoning recovery process, and this series of processes is once ended. In addition, the previous step 120
When it is determined that the total SOx amount is less than the predetermined value ASb and the NOx storage capacity of the NOx catalyst 22 has recovered (step 120: NO), the process proceeds to step 122.

【0041】先のステップ118で継続時間Teが継続
許可時間Tpであると判断された場合、あるいはステッ
プ120で総SOx量が所定値ASb未満であると判断
された場合には、SOx被毒回復処理を止めるものとし
て被毒回復要求フラグがオフに設定される(ステップ1
22)。
If it is determined in the previous step 118 that the duration time Te is the duration permission time Tp, or if it is determined in step 120 that the total SOx amount is less than the predetermined value ASb, SOx poisoning recovery The poisoning recovery request flag is set to OFF to stop the processing (step 1).
22).

【0042】そして、次のステップ124では、排気空
燃比がリーン空燃比となるように制御されて成層燃焼が
行われる。また、先のステップ104の判断においてS
Ox量が所定値ASt未満であってSOx被毒量につい
てまだ余裕があると判断された場合には、そのときの燃
焼モードがストイキ燃焼モードであるかどうかが判断さ
れる(ステップ128)。ここでストイキ燃焼モードで
ないと判断された場合には(ステップ128:NO)、
未だSOx被毒回復処理を行う必要がないものとしてリ
ーン空燃比でのリーン燃焼のままとされ、この一連の処
理は一旦終了される。ストイキ燃焼モードであると判断
された場合(ステップ128:YES)には、処理はス
テップ130に進む。
Then, in the next step 124, stratified charge combustion is carried out by controlling the exhaust air-fuel ratio to a lean air-fuel ratio. In addition, in the determination in the previous step 104, S
When it is determined that the Ox amount is less than the predetermined value Ast and the SOx poisoning amount still has a margin, it is determined whether the combustion mode at that time is the stoichiometric combustion mode (step 128). If it is determined that the stoichiometric combustion mode is not set (step 128: NO),
As it is not necessary to perform the SOx poisoning recovery process yet, the lean combustion with the lean air-fuel ratio is left as it is, and this series of processes is once ended. When it is determined that the stoichiometric combustion mode is set (step 128: YES), the process proceeds to step 130.

【0043】ステップ130では先のステップ100に
て算出された総SOx量が第2の所定値AS0より大き
いかどうかが判断される(ステップ130)。この第2
の所定値AS0はNOx触媒22のNOx吸蔵能力が回
復してきたことを判定するための値であり、本実施形態
において所定値AS0=0に設定されている。
In step 130, it is determined whether the total SOx amount calculated in the previous step 100 is larger than the second predetermined value AS0 (step 130). This second
The predetermined value AS0 is a value for determining that the NOx storage capacity of the NOx catalyst 22 has recovered, and is set to the predetermined value AS0 = 0 in the present embodiment.

【0044】ここで総SOx量が所定値AS0以下であ
ってNOx触媒22のNOx吸蔵能力が回復したと判断
された場合(ステップ130:NO)には、この一連の
処理は一旦終了される。
If it is determined that the total SOx amount is less than or equal to the predetermined value AS0 and the NOx storage capacity of the NOx catalyst 22 has recovered (step 130: NO), this series of processing is temporarily terminated.

【0045】先のステップ130の判断において総SO
x量が所定値AS0を超えていると判断された場合には
(ステップ130:YES)、処理はステップ132に
進む。このステップ132では温度センサ26により検
出された触媒床温がSOxを脱離することができる所定
温度THc以上であるかどうかが判断される。触媒床温
が所定温度THc未満であると判定された場合(ステッ
プ132:NO)には、この一連の処理は一旦終了され
る。
In the determination at the previous step 130, the total SO
When it is determined that the x amount exceeds the predetermined value AS0 (step 130: YES), the process proceeds to step 132. In step 132, it is determined whether the catalyst bed temperature detected by the temperature sensor 26 is equal to or higher than a predetermined temperature THc at which SOx can be desorbed. When it is determined that the catalyst bed temperature is lower than the predetermined temperature THc (step 132: NO), this series of processes is temporarily terminated.

【0046】一方、触媒床温がこの所定温度THcを上
回っている場合には(ステップ132:YES)、NO
x触媒22からのSOxの脱離が可能であるため、燃焼
モードがリッチ空燃比でのリッチ燃焼に切り替えられて
リッチ燃焼の継続時間Teが計測される(ステップ13
4)。
On the other hand, if the catalyst bed temperature exceeds the predetermined temperature THc (step 132: YES), NO.
Since SOx can be desorbed from the x catalyst 22, the combustion mode is switched to the rich combustion at the rich air-fuel ratio, and the rich combustion duration Te is measured (step 13).
4).

【0047】次にステップ136において、触媒床温に
応じて目標空燃比がリッチ側に設定される。この場合の
リッチ燃焼も図5に示されるように制御中心がストイキ
空燃比よりもリッチ寄りとなるような酸素センサ24に
よる空燃比フィードバック制御を通じてフィードバック
(F/B)係数kafが算出される。従って、ステップ
136では、先のステップ112と同様にして空燃比フ
ィードバック制御に用いるフィードバック(F/B)定
数が設定される。なお、このリッチ燃焼モードでは、全
気筒の空燃比がストイキ空燃比からリッチ空燃比に設定
され、これら全気筒#1〜#4の平均的な空燃比もスト
イキ空燃比よりもリッチに設定される。
Next, at step 136, the target air-fuel ratio is set to the rich side according to the catalyst bed temperature. In the rich combustion in this case as well, as shown in FIG. 5, the feedback (F / B) coefficient kaf is calculated through the air-fuel ratio feedback control by the oxygen sensor 24 such that the control center is closer to the rich side than the stoichiometric air-fuel ratio. Therefore, in step 136, the feedback (F / B) constant used for the air-fuel ratio feedback control is set in the same manner as in step 112 above. In this rich combustion mode, the air-fuel ratios of all cylinders are set from the stoichiometric air-fuel ratio to the rich air-fuel ratio, and the average air-fuel ratios of all the cylinders # 1 to # 4 are also set richer than the stoichiometric air-fuel ratio. .

【0048】このようにして目標空燃比がリッチ側に設
定されると、ステップ138においてリッチ燃焼の継続
許可時間Tp1が設定される。排気空燃比がリッチ側に
設定されて実際にリッチ燃焼が行われると、燃費悪化や
エミッションが悪化することとなる。この燃費悪化やエ
ミッション悪化はリッチ燃焼の継続時間Teが長くなれ
ばなるほど悪化することとなる。そのため、図7に示さ
れるマップを参照してリッチ燃焼時の空燃比に基づいて
リッチ継続許可時間Tp1が設定される。
When the target air-fuel ratio is set to the rich side in this way, the rich combustion continuation permission time Tp1 is set in step 138. When the exhaust air-fuel ratio is set to the rich side and the rich combustion is actually performed, the fuel consumption and the emission are deteriorated. The deterioration of fuel consumption and the deterioration of emission become worse as the rich combustion duration Te becomes longer. Therefore, referring to the map shown in FIG. 7, the rich continuation permission time Tp1 is set based on the air-fuel ratio at the time of rich combustion.

【0049】リッチ燃焼の継続許可時間Tp1が設定さ
れた後、図5に示されるように排気空燃比がリッチ側の
目標空燃比となるように制御されて全気筒においてリッ
チ燃焼が行われる(ステップ140)。
After the rich combustion continuation permission time Tp1 is set, as shown in FIG. 5, the exhaust air-fuel ratio is controlled so as to reach the target air-fuel ratio on the rich side, and rich combustion is performed in all cylinders (step. 140).

【0050】このようにしてリッチ燃焼が行われると、
リッチ燃焼の継続時間Teが先のステップ138にて設
定された継続許可時間Tp1以上かどうかが判断される
(ステップ142)。継続時間Teが継続許可時間Tp
1未満であると判断された場合には(ステップ142:
NO)、この一連の処理は一旦終了される。また、継続
時間Teが継続許可時間Tp1以上であると判断された
場合(ステップ142:YES)には、処理はステップ
144に進む。
When rich combustion is performed in this way,
It is determined whether the rich combustion duration time Te is equal to or longer than the duration permission time Tp1 set in the previous step 138 (step 142). The continuation time Te is the continuation permission time Tp
When it is determined that it is less than 1 (step 142:
NO), this series of processing is once ended. If it is determined that the continuation time Te is equal to or longer than the continuation permission time Tp1 (step 142: YES), the process proceeds to step 144.

【0051】そして、次のステップ144では、排気空
燃比がストイキ空燃比となるように制御されてストイキ
燃焼が行われてSOx被毒回復処理が終了される。以上
説明した本実施形態によれば、以下の作用効果を奏す
る。
Then, in the next step 144, the exhaust air-fuel ratio is controlled so as to be the stoichiometric air-fuel ratio, stoichiometric combustion is performed, and the SOx poisoning recovery process is ended. According to this embodiment described above, the following operational effects are exhibited.

【0052】・ NOx触媒22の硫黄被毒回復制御を
行うに際して、硫黄被毒回復制御中の排気空燃比に応じ
てリッチ継続許可時間Tpが設定され、硫黄被毒回復制
御におけるリッチ燃焼の継続時間Teが継続許可時間T
pに達したとき硫黄被毒回復制御が強制的に終了され
る。そのため、硫黄被毒回復制御が長期に亘り継続され
るのを防止でき、燃費悪化やエミッションの悪化を抑制
することができる。
When performing the sulfur poisoning recovery control of the NOx catalyst 22, the rich continuation permission time Tp is set according to the exhaust air-fuel ratio during the sulfur poisoning recovery control, and the rich combustion continuation time in the sulfur poisoning recovery control is set. Te is the continuous permission time T
When it reaches p, the sulfur poisoning recovery control is forcibly ended. Therefore, it is possible to prevent the sulfur poisoning recovery control from being continued for a long period of time, and it is possible to suppress deterioration of fuel efficiency and emission.

【0053】・ しかも、硫黄被毒回復制御によって制
御される排気空燃比に応じてリッチ継続許可時間Tpが
設定されるので、硫黄被毒回復制御における排気空燃比
のリッチ化度合に関わらず、燃費悪化やエミッション悪
化を適切に抑制することができる。
Moreover, since the rich continuation permission time Tp is set according to the exhaust air-fuel ratio controlled by the sulfur poisoning recovery control, regardless of the degree of enrichment of the exhaust air-fuel ratio in the sulfur poisoning recovery control, the fuel consumption is reduced. It is possible to appropriately suppress the deterioration and the emission deterioration.

【0054】・ また、硫黄被毒回復制御によって制御
される排気空燃比は、触媒温度が低くなるほどリッチ化
度合が大きくなるように可変としているので、燃費悪化
やエミッション悪化の傾向が顕著に生じるが、このよう
にリッチ化度合を可変したとしても、好適に燃費悪化や
エミッション悪化を抑制することができる。
Further, since the exhaust air-fuel ratio controlled by the sulfur poisoning recovery control is variable so that the degree of enrichment becomes larger as the catalyst temperature becomes lower, the tendency of deterioration of fuel consumption and deterioration of emission occurs remarkably. Even if the degree of enrichment is changed in this way, it is possible to preferably suppress deterioration in fuel consumption and deterioration in emissions.

【0055】なお、実施形態は以下のように構成を変更
して実施することができる。 ・ 上記実施形態において、排気通路18において三元
触媒20及びNOx触媒22間に設けた酸素センサ24
に代えて、排気空燃比をリニアに検出する空燃比センサ
を設けてもよい。この場合には、被毒回復制御における
リッチ燃焼の目標空燃比を直接的に設定するようにして
もよい。
The embodiment can be implemented by changing the configuration as follows. In the above embodiment, the oxygen sensor 24 provided between the three-way catalyst 20 and the NOx catalyst 22 in the exhaust passage 18
Instead of this, an air-fuel ratio sensor that linearly detects the exhaust air-fuel ratio may be provided. In this case, the rich combustion target air-fuel ratio in the poisoning recovery control may be directly set.

【0056】・ 上記実施形態では、総SOx量が許容
値ASt以上であって触媒床温がTHc以上のときには
昇温燃焼におけるリッチ気筒をよりリッチに、リーン気
筒の空燃比をリッチ側にすることによりリッチ燃焼を実
行するようにしたが、全気筒の空燃比をリッチとしたリ
ッチ燃焼を行うようにしてもよい。
In the above embodiment, when the total SOx amount is the allowable value Ast or more and the catalyst bed temperature is THc or more, the rich cylinder in the temperature rising combustion is made richer and the air-fuel ratio of the lean cylinder is made richer. Although the rich combustion is performed by the above, the rich combustion may be performed by setting the air-fuel ratios of all the cylinders to be rich.

【0057】・ 上記実施形態では、排気通路18に三
元触媒20及びNOx吸蔵還元触媒22を設けてある
が、排気通路18にNOx吸蔵還元触媒22のみを設け
た構成であってもよい。この場合には、ストイキ燃焼運
転中において、NOx吸蔵還元触媒による排気浄化によ
りHC,COエミッションの悪化を避けることができ
る。
In the above embodiment, the exhaust passage 18 is provided with the three-way catalyst 20 and the NOx storage reduction catalyst 22, but the exhaust passage 18 may be provided with only the NOx storage reduction catalyst 22. In this case, during stoichiometric combustion operation, deterioration of HC and CO emissions can be avoided by exhaust gas purification by the NOx storage reduction catalyst.

【0058】・ 上記実施形態では、排気浄化装置を燃
焼室12内にインジェクタ14から燃料を直接噴射す
る、いわゆる筒内噴射式のエンジン10に適用している
が、燃料を吸気ポート内に噴射する吸気ポート噴射式の
エンジンに適用することもできる。
In the above embodiment, the exhaust gas purification device is applied to the so-called in-cylinder injection type engine 10 in which the fuel is directly injected from the injector 14 into the combustion chamber 12, but the fuel is injected into the intake port. It can also be applied to an intake port injection type engine.

【0059】・ 上記実施形態では、成層燃焼として燃
料噴射時期を圧縮行程後期に設定する燃焼(強成層燃
焼)のみを行うエンジンを想定していた。こうした強成
層燃焼の他、例えば燃料を吸気行程と圧縮行程とに分割
して噴射することにより、成層強度を弱めた燃焼(弱成
層燃焼)を行うエンジンに対して本発明にかかる排気浄
化装置を適用することもできる。また、均質燃焼とし
て、空燃比をストイキ空燃比に設定した燃焼(均質スト
イキ燃焼)の他、空燃比をストイキ空燃比よりもリーン
側に設定した燃焼(均質リーン燃焼)を行うエンジンに
対して本発明にかかる排気浄化装置を適用するようにし
てもよい。
In the above embodiment, the engine is assumed to perform only the combustion (strong stratified charge combustion) in which the fuel injection timing is set to the latter stage of the compression stroke as the stratified charge combustion. In addition to such strong stratified charge combustion, for example, the fuel is divided into an intake stroke and a compression stroke and injected, so that the exhaust purification system according to the present invention is applied to an engine that performs combustion with weaker stratified strength (weak stratified charge combustion). It can also be applied. In addition, as homogeneous combustion, in addition to combustion that sets the air-fuel ratio to the stoichiometric air-fuel ratio (homogeneous stoichiometric combustion), combustion that sets the air-fuel ratio to the lean side of the stoichiometric air-fuel ratio (homogeneous lean combustion) The exhaust gas purification device according to the invention may be applied.

【0060】・ 上記実施形態では温度センサ26によ
りNOx触媒22の触媒温度を直接検出するようにした
が、内燃機関の運転状態に基づき、より好適には内燃機
関の運転履歴に基づき触媒温度を間接的に検出(推定)
するようにしてもよい。
In the above embodiment, the catalyst temperature of the NOx catalyst 22 is directly detected by the temperature sensor 26, but the catalyst temperature is indirectly detected based on the operating state of the internal combustion engine, more preferably based on the operating history of the internal combustion engine. Detected (estimated)
You may do it.

【図面の簡単な説明】[Brief description of drawings]

【図1】一実施形態に係る内燃機関の排気浄化装置を示
す概略構成図。
FIG. 1 is a schematic configuration diagram showing an exhaust emission control device for an internal combustion engine according to an embodiment.

【図2】被毒回復処理の処理手順を示すフローチャー
ト。
FIG. 2 is a flowchart showing a processing procedure of poisoning recovery processing.

【図3】被毒回復処理の処理手順を示すフローチャー
ト。
FIG. 3 is a flowchart showing a processing procedure of poisoning recovery processing.

【図4】排気空燃比とSOx脱離量との関係を示す説明
図。
FIG. 4 is an explanatory diagram showing a relationship between an exhaust air-fuel ratio and a SOx desorption amount.

【図5】被毒回復処理時のF/B定数と空燃比との関係
を示す説明図。
FIG. 5 is an explanatory diagram showing a relationship between an F / B constant and an air-fuel ratio during poisoning recovery processing.

【図6】(a)被毒回復制御時における目標空燃比を設
定するために使用されるディレー時間を示すマップ、
(b)被毒回復制御時における目標空燃比を設定するた
めに使用される積分定数を示すマップ。
FIG. 6 (a) is a map showing a delay time used to set a target air-fuel ratio during poisoning recovery control;
(B) A map showing integration constants used to set the target air-fuel ratio during poisoning recovery control.

【図7】排気空燃比とリッチ継続許可時間との関係を示
すマップ。
FIG. 7 is a map showing a relationship between an exhaust air-fuel ratio and a rich continuation permission time.

【符号の説明】[Explanation of symbols]

10…エンジン、14…インジェクタ、16…点火プラ
グ、18…排気通路、20…三元触媒、22…NOx吸
蔵還元触媒、24…酸素センサ、26…温度センサ、4
0…設定手段及び終了手段としての電子制御装置、C…
車両。
10 ... Engine, 14 ... Injector, 16 ... Spark plug, 18 ... Exhaust passage, 20 ... Three way catalyst, 22 ... NOx storage reduction catalyst, 24 ... Oxygen sensor, 26 ... Temperature sensor, 4
0 ... Electronic control device as setting means and ending means, C ...
vehicle.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3G091 AA12 AA17 AB03 AB06 BA11 BA17 BA20 BA33 DA02 DA03 DC01 EA01 EA02 EA07 EA18 EA34 EA39 FB07 FB10 GA06 HA10 HA38 HA42 3G301 HA01 HA15 JA15 JA21 JA25 LB01 MA01 MA11 ND01 ND02 NE02 NE13 PA11Z PD02Z PD12Z PE01Z PF01Z PF03Z   ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 3G091 AA12 AA17 AB03 AB06 BA11                       BA17 BA20 BA33 DA02 DA03                       DC01 EA01 EA02 EA07 EA18                       EA34 EA39 FB07 FB10 GA06                       HA10 HA38 HA42                 3G301 HA01 HA15 JA15 JA21 JA25                       LB01 MA01 MA11 ND01 ND02                       NE02 NE13 PA11Z PD02Z                       PD12Z PE01Z PF01Z PF03Z

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】排気空燃比が少なくともリーン空燃比のと
きに排気ガス中の硫黄成分を吸蔵する触媒が排気通路に
設けられた内燃機関であり、前記触媒に吸蔵された硫黄
成分の吸蔵量を算出し、この算出された吸蔵量が許容値
を上回ることを条件に排気空燃比をリッチ空燃比に制御
する硫黄被毒回復制御を実行するとともに、前記算出さ
れた吸蔵量が前記許容値よりも小さい所定値を下回った
ときに前記硫黄被毒回復制御を終了する内燃機関の排気
浄化装置において、 前記硫黄被毒回復制御によって制御される排気空燃比に
応じて前記硫黄被毒回復制御の継続許可時間を設定する
設定手段と、 前記硫黄被毒回復制御の継続時間が前記継続許可時間に
達したときに前記硫黄被毒回復制御を強制的に終了する
終了手段とを備えることを特徴とする内燃機関の排気浄
化装置。
1. An internal combustion engine provided in an exhaust passage with a catalyst that stores a sulfur component in exhaust gas when the exhaust air-fuel ratio is at least a lean air-fuel ratio, and stores the stored amount of the sulfur component stored in the catalyst. Calculated, while performing the sulfur poisoning recovery control to control the exhaust air-fuel ratio to the rich air-fuel ratio on the condition that the calculated storage amount exceeds the allowable value, the calculated storage amount is greater than the allowable value. In an exhaust gas purification apparatus for an internal combustion engine, which terminates the sulfur poisoning recovery control when the value falls below a small predetermined value, a continuation permission of the sulfur poisoning recovery control according to an exhaust air-fuel ratio controlled by the sulfur poisoning recovery control Setting means for setting a time, and an end means for forcibly ending the sulfur poisoning recovery control when the duration of the sulfur poisoning recovery control reaches the continuation permission time. Exhaust gas purification device of the combustion engine.
【請求項2】請求項1に記載の内燃機関の排気浄化装置
において、 前記硫黄被毒回復制御によって制御される排気空燃比
は、少なくとも前記触媒の触媒温度が低くなるほどリッ
チ化度合が大きくなるように可変とされることを特徴と
する内燃機関の排気浄化装置。
2. The exhaust gas purification device for an internal combustion engine according to claim 1, wherein the exhaust air-fuel ratio controlled by the sulfur poisoning recovery control has a greater degree of enrichment as the catalyst temperature of the catalyst becomes lower. An exhaust gas purification device for an internal combustion engine, characterized in that it is variable.
JP2002111266A 2002-04-12 2002-04-12 Exhaust emission control device of internal combustion engine Pending JP2003307121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002111266A JP2003307121A (en) 2002-04-12 2002-04-12 Exhaust emission control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002111266A JP2003307121A (en) 2002-04-12 2002-04-12 Exhaust emission control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2003307121A true JP2003307121A (en) 2003-10-31

Family

ID=29394146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002111266A Pending JP2003307121A (en) 2002-04-12 2002-04-12 Exhaust emission control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2003307121A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013029094A (en) * 2011-07-29 2013-02-07 Osaka Gas Co Ltd Engine combustion control system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013029094A (en) * 2011-07-29 2013-02-07 Osaka Gas Co Ltd Engine combustion control system

Similar Documents

Publication Publication Date Title
JP3067685B2 (en) Exhaust purification system for spark ignition type direct injection type internal combustion engine
KR20000058077A (en) In-cylinder injection type internal combustion engine
JP3870430B2 (en) In-cylinder internal combustion engine
JP3033449B2 (en) Combustion control device for spark ignition internal combustion engine
US6519934B2 (en) Emission control method and apparatus of an internal combustion engine
JP3460503B2 (en) Exhaust gas purification device for in-cylinder injection internal combustion engine
JP3854013B2 (en) Exhaust gas purification device for internal combustion engine
US7370473B2 (en) Exhaust gas purification device for internal combustion engine
JP3584798B2 (en) Exhaust gas purification device for in-vehicle internal combustion engine
JP3867612B2 (en) Air-fuel ratio control device for internal combustion engine
JP3446812B2 (en) Internal combustion engine
JP3675198B2 (en) Exhaust gas purification device for internal combustion engine
JP2003307121A (en) Exhaust emission control device of internal combustion engine
JP3832288B2 (en) Exhaust gas purification device
JP3642194B2 (en) In-cylinder internal combustion engine
JP2001020781A (en) Exhaust emission control device for internal combustion engine
JP2001115827A (en) Exhaust emission control device for internal combustion engine
JP3876569B2 (en) Exhaust gas purification device for in-cylinder internal combustion engine
JP3842092B2 (en) Exhaust purification device and purification method for internal combustion engine
JP2004044421A (en) Exhaust emission control device of internal combustion engine
JP2000080914A (en) Internal combustion engine
JP2004092513A (en) Combustion control device for internal combustion engine
JP6950651B2 (en) Internal combustion engine system
JP2002013414A (en) Exhaust emission control device for internal combustion engine
JP3835071B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080430