JP2003306957A - Water distribution system - Google Patents

Water distribution system

Info

Publication number
JP2003306957A
JP2003306957A JP2002113329A JP2002113329A JP2003306957A JP 2003306957 A JP2003306957 A JP 2003306957A JP 2002113329 A JP2002113329 A JP 2002113329A JP 2002113329 A JP2002113329 A JP 2002113329A JP 2003306957 A JP2003306957 A JP 2003306957A
Authority
JP
Japan
Prior art keywords
water
distribution
reservoir
flow rate
water level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002113329A
Other languages
Japanese (ja)
Inventor
Shizuo Toyoshima
静夫 豊嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002113329A priority Critical patent/JP2003306957A/en
Publication of JP2003306957A publication Critical patent/JP2003306957A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Testing And Monitoring For Control Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water distribution system in which an abnormality in an apparently normal water level of a water level gauge in a water distribution reservoir range is accurately judged and an abnormal position can be specified. <P>SOLUTION: Water delivery rates T, A, B from the preceding conveying pumps 5, 12A. 12B are compared with the sum quantity of the distribution flow rates a, b, c and the sum of the water delivery rates A, B to the following distribution reservoir, in the respective water delivery reservoirs 7A, 7B, 7C. When the difference is out of a specified range, as it is judged that an abnormality has been generated in the corresponding water delivery reservoir, even when such a trouble that the water level gauge signal is fixed within a normal range generates, in the water level gauges 8A, 8B, 8C of the water distribution reservoir, it can be early detected. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、上水道の送配水に
際して、配水池設備の計装機器である水位計の異常検知
や上水系統内における全体の流量バランスに異常がない
かを検知できる配水システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water distribution system capable of detecting an abnormality in a water level gauge, which is an instrumentation device of a distribution reservoir facility, or detecting an abnormality in the overall flow balance in a water supply system during water supply and distribution of water supply. Regarding the system.

【0002】[0002]

【従来の技術】一般的な市町村の上水道系統では、原水
が水源地の取水井から取水ポンプによって取水され、浄
水場に送られる。この浄水場では一般家庭を含む需要者
に対して水質基準に適合する水が必要水量だけ生産され
ている。
2. Description of the Related Art In a general municipal water supply system, raw water is taken from an intake well at a water source by an intake pump and sent to a water purification plant. This water purification plant produces a required amount of water that meets the water quality standards for consumers, including ordinary households.

【0003】需要者への給水は、通常、浄水場の水を送
水ポンプによって送水流量計を介して配水池へ圧送し、
配水池から自然流下で需要者に供給している。
[0003] Normally, water is supplied to consumers by pumping water from a water purification plant by a water pump through a water flow meter to a reservoir.
The water is supplied from the distribution reservoir to consumers by gravity flow.

【0004】この場合、需要者への配水系統では、人々
の生活リズムがそのまま給水量(需要水量)の変化とな
って表れてくる。すなわち、一般的には日中は需要水量
が多く夜間は少ないという日変化が普通である。また、
この需要水量は春、夏、秋、冬等の四季によっても変化
する。
In this case, in the water distribution system to the consumer, the life rhythm of people directly appears as a change in the water supply amount (demand water amount). That is, in general, the daily change is that the water demand is high during the day and low at night. Also,
This water demand also changes in four seasons such as spring, summer, autumn, and winter.

【0005】この需要水量の変化に対しては、配水池の
水位を常に一定にして、給水の安定化を計る必要がある
が、配水池の水位を一定に維持させるには、次ぎのよう
な諸問題が発生していた。
In order to keep the water level stable, the water level in the distribution reservoir must be kept constant to cope with this change in the demanded water amount. There were various problems.

【0006】図7は、配水池の水位に対する水位計信号
の関係を示している。同図から、配水池の水位計は通常
の状況では0〜12mの水位に対し、4〜20mA範囲
の電気信号を出力し、これを監視や制御の信号として使
用している。
FIG. 7 shows the relationship of the water level gauge signal with respect to the water level of the distribution reservoir. From the figure, the water level gauge of the distribution reservoir outputs an electric signal in the range of 4 to 20 mA for a water level of 0 to 12 m under normal conditions, and uses this as a signal for monitoring and control.

【0007】このうち、監視機能では、配水池水位異常
高HHや配水池水位異常低LLが発生した時に、運用者
に知らせて異常に対処する監視システムとなっている。
また、制御機能では、配水池の水位を、需要者に安定供
給する一定範囲内に保つため、浄水場に設けられた送水
ポンプの運転水位Lと停止水位Hとを設定し、送水ポン
プにより浄水場から送られてくる水量を制御し、配水池
の水位を自動的に一定範囲内に維持させている。
Among them, the monitoring function is a monitoring system that notifies the operator when an abnormally high water level HH of the distribution reservoir or an abnormally low distribution water level LL occurs and copes with the abnormality.
Further, in the control function, in order to keep the water level of the distribution reservoir within a certain range for stable supply to users, the operating water level L and the stop water level H of the water pump installed at the water purification plant are set, and the water purification pump cleans the water. By controlling the amount of water sent from the site, the water level in the reservoir is automatically maintained within a certain range.

【0008】この場合、水位計の故障対応としては2台
の水位計を設置し、その2台の水位計による水位差によ
って水位計の故障検出をしたり、1台が故障しても1台
は予備としてバックアップ出来るようにし、システムの
信頼性を高めている。
In this case, two water level gauges are installed to cope with the water level gauge failure, and the water level difference between the two water level gauges is used to detect the failure of the water level gauge, or even if one fails, one Enables backup as a backup to improve system reliability.

【0009】また、配水池の水位計が正常であれば、水
位計の出力電流値の範囲は4〜20mAであり、水位は
0〜12mを指示している。通常、水位計の故障時に
は、この電流値4〜20mAの範囲での電気信号が0m
Aになり、監視機能で異常と判断できるため、故障発生
を早期に把握でき、故障修理の対応が迅速にできる。
If the water level gauge of the distribution reservoir is normal, the output current value range of the water level gauge is 4 to 20 mA, and the water level indicates 0 to 12 m. Normally, when the water level gauge is out of order, the electric signal in the current value range of 4 to 20 mA is 0 m.
Since the status becomes A, and the monitoring function can determine that there is an abnormality, the occurrence of a failure can be grasped at an early stage, and the failure repair can be dealt with promptly.

【0010】[0010]

【発明が解決しようとする課題】しかし、水位計に、実
際の水位が変化しても、電気系統の故障などにより水位
信号が電流値4〜20mAの範囲内、例えば、図示のA
LM箇所に相当する電位に固定されてしまう異常が発生
すると、水位計からは見かけ上正常な水位信号が出力さ
れ続けることとなり、監視機能では異常として検出する
ことができない。
However, even if the actual water level changes in the water level gauge, the water level signal is within the range of the current value of 4 to 20 mA due to the failure of the electric system, for example, A in the figure.
When an abnormality occurs in which the potential is fixed to the potential corresponding to the LM point, the water level gauge continues to output an apparently normal water level signal, which cannot be detected by the monitoring function as an abnormality.

【0011】この異常が、送水ポンプの運転状態のとき
に生じると、水位信号は送水ポンプ停止水位より低い水
位で固定されるため、送水ポンプは運転しっぱなしとな
る。したがって、配水池の水位は異常に高くなり、配水
池はオバーフローして、配水池からの流出事故や給水量
の過剰生産による損失が発生することになる。
If this abnormality occurs while the water pump is operating, the water level signal is fixed at a water level lower than the water pump stop water level, and the water pump continues to operate. Therefore, the water level in the distribution reservoir will become abnormally high, and the distribution reservoir will overflow, resulting in losses due to runoff accidents from the distribution reservoir and excessive production of water supply.

【0012】反対に、この異常が、送水ポンプの停止状
態のときに生じると、水位信号が送水ポンプの運転水位
より高い水位で固定されるため、運転は行なわれなくな
る。したがって、配水池の水位は低下し続けて最終的に
は水がなくなり断水状態になってしまう。
On the other hand, when this abnormality occurs when the water pump is stopped, the water level signal is fixed at a water level higher than the operating water level of the water pump, so that the operation is not performed. Therefore, the water level in the distribution reservoir will continue to drop, and eventually the water will run out and the water supply will be cut off.

【0013】本発明の目的は、配水池における水位計の
見かけ上正常な水位範囲における異常を正確に判断し、
且つ、その異常箇所を特定し得る配水システムを提供す
ることにある。
An object of the present invention is to accurately judge an abnormality in an apparently normal water level range of a water level gauge in a reservoir,
Moreover, it is to provide the water distribution system which can specify the abnormal part.

【0014】[0014]

【課題を解決するための手段】本発明による配水システ
ムは、浄水場及び多段に構成された複数の配水池を有
し、初段の配水池は浄水場から送水ポンプにより送水を
受け、最終段以外の配水池はそれぞれ、自己の配水池の
水を次段の配水池に送水する送水ポンプを有し、各配水
池は需要家への配水設備をそれぞれ備えたものであっ
て、浄水場及び最終段以外の配水池に設けられ、対応す
る配水池への送水流量を測定する送水流量計と、前記各
配水池に設けられ、各池水位を測定する水位計及び各配
水流量を測定する配水流量計と、各配水池の水位を入力
し、対応する配水池の水位に応じてその配水池の前段側
に位置する送水ポンプの運転を制御する送水制御手段
と、各配水池について、一定時間ごとの前段側に位置す
る送水ポンプの送水流量と次段への送水流量及び自己の
配水流量の合計値とを比較し、その差が所定範囲外の場
合は対応する配水池に異常発生と判断する各池毎判定手
段と を備えたことを特徴とする。
A water distribution system according to the present invention has a water purification plant and a plurality of water reservoirs configured in multiple stages. The first stage water reservoir receives water from a water purification plant by a water supply pump, and a water pump other than the last stage. Each of the reservoirs has a water pump that feeds the water from its own reservoir to the next stage reservoir, and each reservoir is equipped with water distribution facilities for consumers. Water flow meters installed in distribution reservoirs other than the terraces to measure the flow rate of water to the corresponding distribution reservoirs, and water level meters installed in each of the reservoirs to measure the water level of each reservoir and the distribution flow rate to measure each distribution flow rate. Input the total water level of each distribution reservoir and the water level of the corresponding distribution reservoir, and according to the water level of the corresponding distribution reservoir, the water supply control means that controls the operation of the water supply pump located at the upstream side of that distribution reservoir, and for each distribution reservoir at fixed time intervals. Flow rate of water pump located in front of It is equipped with means for judging each reservoir by comparing the total amount of water flow to the next stage and the total value of its own distribution flow, and if the difference is outside the specified range, it judges that there is an abnormality in the corresponding distribution reservoir. And

【0015】また、本発明では、一定時間ごとの浄水場
からの送水流量と各配水池からの配水流量の合計値とを
比較し、その差が所定範囲外の場合はいずれかに不具合
発生と判断する全体判定手段を加えてもよい。
Further, according to the present invention, the flow rate of water supplied from the water purification plant and the total value of the flow rate of water distributed from each reservoir are compared at regular intervals, and if the difference is outside the predetermined range, it is determined that a problem has occurred. An overall judging means for judging may be added.

【0016】また、本発明では、浄水場及び各配水池に
設けられた各測定器による測定値は浄水場及び各配水池
に設けられた各端末から通信回線により中央監視システ
ムに送信され、中央監視システムにて積算及び判定処理
されるように構成してもよい。
Further, in the present invention, the values measured by the respective measuring devices provided in the water purification plant and each distribution reservoir are transmitted from the respective terminals provided in the water purification plant and each distribution reservoir to the central monitoring system through the communication line, and the central monitoring system is provided. The monitoring system may be configured to perform integration and determination processing.

【0017】さらに、本発明では、中央監視システムと
同等の監視機能を有し、他の水道系統の端末からも情報
授受が可能で、中央監視システムに代って監視制御処理
を実行可能な総合監視システムを通信回線に接続した構
成としてもよい。
Furthermore, the present invention has a monitoring function equivalent to that of the central monitoring system, can exchange information with terminals of other water systems, and can execute monitoring control processing in place of the central monitoring system. The monitoring system may be connected to a communication line.

【0018】これらの発明では、各配水池において、前
段側に位置する送水ポンプからの送水流量と、自己の配
水池からの配水流量及び次段の配水池への送水流量の合
計値とを比較しその差が所定範囲外の場合は対応する配
水池に異常発生と判断するので、配水池の水位計に、正
常範囲内の水位信号で固定されてしまう故障が発生して
も、これを早期に検出すことができる。
In each of these inventions, in each distribution reservoir, a comparison is made between the water flow rate from the water supply pump located on the front stage side and the total value of the water flow rate from its own reservoir and the water flow rate to the next stage reservoir. However, if the difference is outside the specified range, it is determined that an abnormality has occurred in the corresponding reservoir, so even if the water level gauge in the reservoir has a failure that is fixed by the water level signal within the normal range, this can be promptly detected. Can be detected.

【0019】[0019]

【発明の実施の形態】以下、本発明による配水システム
の一実施の形態を図1乃至図5について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of a water distribution system according to the present invention will be described below with reference to FIGS.

【0020】図2は、配水流量の深夜0時から23時ま
での日変化パターンを示した積算グラフで、横軸に時間
が、縦軸に配水流量Q1がそれぞれ示されている。配水
流量Q1は夜22時から早朝7時前までは少なく、早朝
7時以降、特に、8時頃から11時頃までの昼間がピーク
となる様子が示されている。
FIG. 2 is an integrated graph showing a daily change pattern of the distribution flow rate from midnight to 23:00, with the horizontal axis representing time and the vertical axis representing the distribution flow rate Q1. The distribution flow rate Q1 is low from 22:00 to before 7:00 in the morning, and it is shown that after 7:00 in the morning, it peaks in the daytime from 8:00 to 11:00.

【0021】また、配水流量を示す流量信号は瞬時値と
積算値との2種類で扱うのが一般的で、このうち瞬時値
は、時系列に対して連続的に変化する信号の或る点の配
水流量値、例えば、D点を示す。積算値は1時間単位や
1日単位に流れた水の量を積算(積分)した値、例え
ば、面積Eを示している。
Further, the flow rate signal indicating the distribution flow rate is generally handled as two types, an instantaneous value and an integrated value. Of these, the instantaneous value is a certain point of the signal that continuously changes in time series. The distribution flow rate value of, for example, point D is shown. The integrated value indicates a value obtained by integrating (integrating) the amount of water that has flowed on an hourly or daily basis, for example, the area E.

【0022】一方、送水流量は、送水ポンプが運転して
いる時だけ送水されるので、図3に示すような流量変化
のパターンとなる。図3では、横軸に時間tが、縦軸に
送水流量Q2がそれぞれとられていて、矩形部分Fが送
水ポンプ運転時を、また、空隙部分Gが送水ポンプ停止
時をそれぞれ示している。
On the other hand, the water flow rate is such that the water flow rate is as shown in FIG. 3 because water is fed only when the water pump is operating. In FIG. 3, the horizontal axis represents time t, and the vertical axis represents the water supply flow rate Q2. The rectangular portion F indicates the time when the water supply pump is operating, and the void portion G indicates when the water supply pump is stopped.

【0023】そして、この送水流量(生産水量)と配水
流量(需要水量)とは、1日単位ではほぼ同じ水量とな
るのが普通である。
The water flow rate (produced water quantity) and the distribution water flow rate (demand water quantity) are usually almost the same in a day unit.

【0024】この原理を適用した本発明の一実施の形態
を図1、図4、図5を用いて説明する。
An embodiment of the present invention to which this principle is applied will be described with reference to FIGS. 1, 4 and 5.

【0025】図1において、本発明の配水システムは浄
水場4と多段に構成された複数(図の例ではサフィック
スA,B,Cで示すように3個)の配水池7とを有する。
また、原水を取水する取水井1には、取水ポンプ2が設
置されていて、この取水ポンプ2の出力側は取水流量計
3を介して浄水場4に接続されている。浄水場4は一般
家庭を含む需要者に対して水質基準に適合する水を必要
水量だけ生産する。
In FIG. 1, the water distribution system of the present invention has a water purification plant 4 and a plurality of (three as shown by suffixes A, B, and C in the example of the drawing) water distribution reservoirs 7 configured in multiple stages.
Further, an intake pump 2 is installed in the intake well 1 for intake of raw water, and an output side of the intake pump 2 is connected to a water purification plant 4 via an intake flow meter 3. The water purification plant 4 produces a required amount of water that meets the water quality standard for consumers including general households.

【0026】浄水場4は送水ポンプ5と送水流量計6と
を介して、初段の配水池7Aに接続されており、浄水場
4から送水ポンプ5によって配水池7Aに浄水が送水さ
れ、その送水流量は送水流量計6によって測定される。
前記した取水流量計3および送水流量計6の出力は端末
9に送られ、この端末9はNTT回線等の通信回線10
を経て中央監視システム11に接続されている。この中
央監視システム11は計算機・シーケンサ11Aを有
し、これにプラント監視用のCRT監視装置11Bとプ
リンタ11Cとが接続されている。
The water purification plant 4 is connected to the first stage distribution reservoir 7A via a water supply pump 5 and a water flow meter 6, and the purified water is supplied from the water purification plant 4 to the distribution reservoir 7A by the water supply pump 5 and the water supply is performed. The flow rate is measured by the water flow meter 6.
The outputs of the intake water flow meter 3 and the water flow meter 6 described above are sent to a terminal 9, which communicates with a communication line 10 such as an NTT line.
And is connected to the central monitoring system 11. The central monitoring system 11 has a computer / sequencer 11A, to which a CRT monitoring device 11B for plant monitoring and a printer 11C are connected.

【0027】初段の配水池7Aには、その水位を計る水
位計8Aと送水ポンプ12Aとが設置されている。この
送水ポンプ12Aは配水池7Aの水を次段の配水池7B
に送水する。また、配水池7Aには、自然流下によって
需要者に配水される配水設備が設けられている。配水設
備には配水流量計13Aが設けられており、需要者への
配水流量を測定する。また、送水ポンプ12Aによる送
水系統は、送水流量計14Aを有し、次段の配水池7B
への送水量を測定する。
A water level gauge 8A for measuring the water level and a water feed pump 12A are installed in the first-stage reservoir 7A. This water supply pump 12A uses the water in the reservoir 7A for the next stage reservoir 7B.
Send to. Further, the distribution reservoir 7A is provided with a distribution facility for distributing water to the consumers by natural flow. The water distribution facility is provided with a water distribution flow meter 13A, and measures the water distribution flow rate to the consumer. Further, the water supply system by the water supply pump 12A has a water supply flow meter 14A, and the next stage distribution reservoir 7B.
Measure the amount of water sent to.

【0028】これら水位計8A、配水流量計13A、お
よび送水流量計14A等の出力は配水池7Aに対応して
設けられた端末15に送られる。この端末15もNTT
回線などの通信回線10を介して中央監視システム11
に接続されている。
Outputs of the water level meter 8A, the distribution flow meter 13A, the water flow meter 14A, etc. are sent to a terminal 15 provided corresponding to the distribution reservoir 7A. This terminal 15 is also NTT
Central monitoring system 11 via a communication line 10 such as a line
It is connected to the.

【0029】配水池7Bにも、自身の水位を計る水位計
8Bおよび次段配水池7Cへの送水ポンプ12Bが設置
されていて、この送水系統には送水流量計14Bが設け
られている。また、需要者に配水する配水設備を有し、
配水流量計13Bが設けられている。
The water reservoir 7B is also provided with a water level gauge 8B for measuring its own water level and a water feed pump 12B to the next stage water reservoir 7C, and a water flow meter 14B is provided in this water feed system. In addition, we have water distribution facilities to distribute water to customers,
A water flow meter 13B is provided.

【0030】これら水位計8B、送水流量計14B、お
よび配水流量計13B等の各出力は配水池7Bに対応し
て設けられた端末16に送られる。この端末16もNT
T回線などの通信回線10を介して中央監視システム1
1に接続されている。
Outputs of the water level meter 8B, the water flow meter 14B, the water flow meter 13B and the like are sent to a terminal 16 provided corresponding to the water reservoir 7B. This terminal 16 is also NT
Central monitoring system 1 via a communication line 10 such as a T line
Connected to 1.

【0031】最終段の配水池7Cは、水位計8Cと需要
者への配水設備に設けられた配水流量計13Cとを有す
る。水位計8Cおよび配水流量計13Cの出力は、配水
池7Cに対応して設けられた端末17に接続され、その
端末17はNTT回線などの通信回線10を介して中央
監視システム11に接続されている。
The final stage distribution reservoir 7C has a water level meter 8C and a distribution flow meter 13C provided in a facility for distributing water to consumers. The outputs of the water level meter 8C and the distribution flow meter 13C are connected to a terminal 17 provided corresponding to the distribution reservoir 7C, and the terminal 17 is connected to the central monitoring system 11 via a communication line 10 such as an NTT line. There is.

【0032】このようなシステム構成において、浄水場
4で生産された水は送水ポンプ5で圧送され、送水流量
計6を通して配水池7Aに供給される。このとき、浄水
場4からの送水流量Tは送水流量計6で測定される。
In such a system configuration, the water produced in the water purification plant 4 is pressure-fed by the water feed pump 5 and supplied to the water reservoir 7A through the water flow meter 6. At this time, the water flow rate T from the water purification plant 4 is measured by the water flow rate meter 6.

【0033】浄水場4の送水ポンプ5は、配水池7Aの
水位計8Aの水位信号により、配水池7Aの水位が一定
範囲、すなわち、図7における送水ポンプ停止水位Hと
送水ポンプ運転水位Lとの範囲になるように自動運転制
御される。
The water pump 5 of the water purification plant 4 receives the water level signal from the water level meter 8A of the water reservoir 7A, and the water level of the water reservoir 7A falls within a certain range, that is, the water pump stop water level H and the water pump operating water level L in FIG. The automatic operation is controlled to be within the range.

【0034】配水池7Aでは配水設備により需要者への
配水が行なわれ、その配水流量aは配水流量計13Aに
よって測定される。また、配水池7Aに貯留された水の
一部は、送水ポンプ12Aにより次段の配水池7Bに圧
送供給され、その送水流量Aは送水流量計14Aにより
測定される。
At the distribution reservoir 7A, water is distributed to consumers by the distribution facility, and the distribution flow rate a is measured by the distribution flow meter 13A. Further, a part of the water stored in the distribution reservoir 7A is pressure-fed and supplied to the next-stage distribution reservoir 7B by the water supply pump 12A, and the water supply flow rate A is measured by the water supply flow meter 14A.

【0035】この時、配水池7Aの送水ポンプ12Aは
次段の配水池7Bの水位計8Bの水位信号により、配水
池7Bの水位が一定範囲(図7における送水ポンプ停止
水位Hと送水ポンプ運転水位Lとの範囲)になるように
自動運転される。
At this time, the water pump 12A of the water reservoir 7A receives a water level signal from the water level meter 8B of the water reservoir 7B at the next stage so that the water level of the water reservoir 7B is within a certain range (the water pump stop water level H in FIG. It is automatically operated so as to be within the range of water level L).

【0036】同様に、次段の配水池7B及び配水池7C
では、各配水設備により需要者への配水が行なわれ、そ
の配水流量b、cは配水流量計13B、13Cによって
測定される。また、配水池7Bに貯留された水の一部
は、送水ポンプ12Bにより最終段の配水池7Cに圧送
供給され、その送水流量Bは送水流量計14Bにより測
定される。
Similarly, the next-stage distribution reservoir 7B and distribution reservoir 7C
Then, water is distributed to the consumers by each water distribution facility, and the distribution flow rates b and c are measured by the distribution flow meters 13B and 13C. Further, a part of the water stored in the distribution reservoir 7B is pressure-fed and supplied to the final-stage distribution reservoir 7C by the water supply pump 12B, and the water supply flow rate B is measured by the water supply flow meter 14B.

【0037】この時、配水池7Bの送水ポンプ12B
も、最終段の配水池7Cの水位計8Cの水位信号によ
り、配水池7Cの水位が一定範囲(図7における送水ポ
ンプ停止水位Hと送水ポンプ運転水位Lとの範囲)にな
るように自動運転される。
At this time, the water supply pump 12B of the distribution reservoir 7B
Also, by the water level signal from the water level gauge 8C of the final stage distribution reservoir 7C, the automatic operation is performed so that the water level of the distribution reservoir 7C falls within a certain range (range between the water pump stop water level H and the water pump operating water level L in FIG. 7). To be done.

【0038】この各池水位計8A、8B、8Cにより測
定された水位信号は、対応する端末15、16、17に
より中央監視システム11に伝えられ、前段に位置する
送水ポンプ5、12A、12Bに対する自動運転は、中
央監視システム11の計算機・シーケンサ11Aに設定
された送水制御手段で実行される。
The water level signals measured by the pond water level gauges 8A, 8B and 8C are transmitted to the central monitoring system 11 by the corresponding terminals 15, 16 and 17 to the water pumps 5, 12A and 12B located in the preceding stage. The automatic operation is executed by the water supply control means set in the computer / sequencer 11A of the central monitoring system 11.

【0039】また、送水流量計6、14A、14Bで測
定された各配水池7A、7B、7Cへの送水流量T、
A、Bは、対応する端末9、15、16により中央監視
システム11に伝えられ、さらに、配水流量計13A、
13B、13Cで測定された各配水池7A、7B、7C
からの配水流量a、b、cも、対応する端末15、1
6、17により中央監視システム11に伝えられ、監視
制御に使用される。
Further, the flow rate T of the water supplied to the respective distribution reservoirs 7A, 7B and 7C measured by the water flow meters 6, 14A and 14B,
A and B are transmitted to the central monitoring system 11 by the corresponding terminals 9, 15 and 16, and further, the distribution flow meter 13A,
Reservoir 7A, 7B, 7C measured at 13B, 13C
The distribution water flow rates a, b, c from the corresponding terminals 15, 1
It is transmitted to the central monitoring system 11 by 6 and 17 and used for monitoring control.

【0040】この中央監視システム11によって行なわ
れる監視制御の制御手順を図4のフローチャートで説明
する。
The control procedure of the monitoring control performed by the central monitoring system 11 will be described with reference to the flowchart of FIG.

【0041】同図において、まづ、リアルタイムに各配
水池7A、7B、7Cへの送水流量T、A、B及び各配
水池7A、7B、7Cからの配水流量a、b、cの入力
と保存を行ない、かつ、これら流量信号を積算値に変換
処理し(符号は流量信号と積算値とで共通に使用する)
保存を行なう(処理ステップS101)。この積算値に
は、図5に示すように、過去n時間分の流量を所定周期
毎に積算した値を用いる次ぎに、合計配水流量積算値、
すなわち、配水流量積算値a+配水流量積算値b+配水
流量積算値cを計算して保存し(処理ステップS10
2)、送水流量積算値Tと合計配水流量積算値とがほぼ
一致しているか(所定範囲内か)を比較する(処理ステ
ップS103)。
In the figure, the flow rates T, A, B of the water distributions 7A, 7B, 7C and the flow rates a, b, c of the water distribution reservoirs 7A, 7B, 7C are input in real time. Save and convert these flow rate signals to integrated values (the code is commonly used for flow rate signals and integrated values)
Save (processing step S101). As shown in FIG. 5, as the integrated value, a value obtained by integrating the flow rate for the past n hours at a predetermined cycle is used.
That is, the distribution flow rate integrated value a + the distribution flow rate integrated value b + the distribution flow rate integrated value c are calculated and stored (processing step S10).
2) It is compared whether or not the integrated value T of the water supply flow rate and the integrated value of the total distribution water flow rate are substantially equal (within a predetermined range) (processing step S103).

【0042】この比較結果がほぼ一致している時は上水
道系統の流量収支は正常であり、各配水池の7A、7
B、7Cの水位計8A、8B、8Cも正常であると考え
る。逆に、違っている場合は、各配水池の7A、7B、
7Cの水位計8A、8B、8Cのいずれかに異常があ
り、過剰送水または送水停止の状態が生じているものと
判断される。すなわち、ステップS103にて設備全体
について異常の有無を見ており、全体判定手段として機
能する。
When the comparison results are almost the same, the flow balance of the water supply system is normal, and 7A, 7 of each reservoir
The water level gauges 8A, 8B and 8C of B and 7C are also considered to be normal. On the contrary, if different, 7A, 7B of each reservoir,
It is judged that there is an abnormality in any of the water level gauges 8A, 8B, 8C of 7C, and the state of excessive water supply or water supply stoppage has occurred. That is, the presence / absence of abnormality in the entire equipment is checked in step S103, and it functions as an overall determination means.

【0043】このように設備のどこかに異常があると判
断された場合は、次に、どの配水池7A、7B、7Cの
水位計8A、8B、8Cに異常が生じているかを、各池
毎に検出する。この検出は、各配水池7A、7B、7C
において前段に位置する送水ポンプ5、12A、12B
からの送水水量と、次段の配水池12B、12Cや需要
家へ流出する流量とを比較することによって行なう。
When it is determined that there is something wrong with the equipment, it is then determined which of the distribution reservoirs 7A, 7B, 7C the water level gauges 8A, 8B, 8C have an abnormality with. Detect every time. This detection is carried out by each distribution reservoir 7A, 7B, 7C.
Water pump 5, 12A, 12B located in the previous stage in
This is done by comparing the amount of water to be sent from the water with the amount of water flowing out to the next-stage distribution reservoirs 12B and 12C and the customers.

【0044】まず、配水池7Aについて、前段の送水ポ
ンプ5の送水流量積算値Tと、配水流量積算値a+送水
流量積算値Aの合計値とを比較し、ほぼ一致している
(所定範囲内)か、違っている(所定範囲外)かを判定
する(処理ステップS104)。
First, with respect to the distribution reservoir 7A, the integrated value T of the water supply flow rate of the water supply pump 5 in the preceding stage and the total value of the integrated value A of the distribution water flow rate + the integrated value A of the water supply flow rate A are compared, and the values are substantially in agreement (within the predetermined range). ) Or different (outside the predetermined range) is determined (processing step S104).

【0045】この判断で違っている時は、配水池7Aの
設備が故障と判断して処理する(処理ステップS10
8)。
If there is a difference in this judgment, it is judged that the equipment of the distribution reservoir 7A is out of order and the processing is performed (processing step S10).
8).

【0046】一方、ほぼ一致している時は、次段の配水
池7Bについて同様の判定処理を行なう。すなわち、前
段の送水ポンプ12Aの送水流量積算値Aと、配水流量
積算値b+送水流量積算値Bの合計値とを比較し、ほぼ
一致しているか、違っているかを判定する(処理ステッ
プS105)。
On the other hand, when they are almost the same, the same judgment processing is performed for the next-stage distribution reservoir 7B. That is, the water supply flow rate integrated value A of the water supply pump 12A at the preceding stage is compared with the total value of the distribution water flow rate integrated value b + the water supply flow rate integrated value B, and it is determined whether they are substantially the same or different (processing step S105). .

【0047】この判断で違っている時は、配水池7Bの
設備が故障と判断して処理する(処理ステップS10
9)。
If the result of this judgment is different, it is judged that the equipment of the distribution reservoir 7B is out of order and is processed (processing step S10).
9).

【0048】一方、ほぼ一致している時は、最終段の配
水池7Cについて同様の判定処理を行なう。すなわち、
前段の送水ポンプ12Bの送水流量積算値Bと、配水流
量積算値cとを比較し、ほぼ一致しているか、違ってい
るかを判定する(処理ステップS106)。
On the other hand, when they are almost the same, the same determination process is performed for the final stage distribution reservoir 7C. That is,
The integrated value B of the water supply flow rate of the water supply pump 12B at the preceding stage and the integrated value c of the distribution water flow rate c are compared, and it is determined whether or not they are substantially the same (process step S106).

【0049】この判断で違っている時は、配水池7Cの
設備が故障と判断して処理する(処理ステップS11
0)。
If the result of this judgment is different, it is judged that the equipment of the distribution reservoir 7C is out of order and the processing is carried out (processing step S11).
0).

【0050】ほぼ一致している時は人間系の判断が必要
となる、すなわち、今回の送水流量積算値Tと合計配水
流量積算値とが違っている原因を人間系で調査する(処
理ステップS107)。
When they are almost the same, it is necessary for the human system to judge, that is, the human system investigates the cause of the difference between the cumulative value T of the water supply and the total cumulative value of the distribution water flow (processing step S107). ).

【0051】すなわち、処理ステップS104乃至S1
10は各池毎判定手段として機能する。
That is, the processing steps S104 to S1.
10 functions as a determination unit for each pond.

【0052】この一連のルーチン処理に、具体的な数値
データを当てはめて説明すると、次ぎのようになる。
A concrete numerical data is applied to this series of routine processes and the description is as follows.

【0053】すなわち、配水流量a=50m/h 配水流量b=100m/h 配水流量c=150m/h の流量が、n=3時間継続して流れた場合の積算値は、
次ぎの通りとなる。
That is, the integrated value when the distribution flow rate a = 50 m 3 / h, the distribution flow rate b = 100 m 3 / h, and the distribution flow rate c = 150 m 3 / h continuously flow for n = 3 hours,
It will be as follows.

【0054】配水流量積算値a=150m 配水流量積算値b=300m 配水流量積算値c=450m 配水流量合計値 =900m この時に、例えば、送水流量積算値Tが1050m
なった場合、処理ステップS103で比較処理された結
果、「違っている」と判断されて、次ぎの処理ステップ
S104による比較処理が実行される。そして、送水流
量積算値T:1050m (配水流量積算値a:150m)+(送水流量積算値
A:750m)=900mであるとする。
の場合、送水流量積算値Aは、(配水流量積算値b:3
00m)+(配水流量積算値c:450m)=75
0mと想定している。比較処理の結果は、1050
>900mであり、1050m3−900m
150mの流量差があるので、処理ステップ108で
は、配水池7Aで何らかの異常が発生していると判断さ
れる。
Integrated value of distribution flow rate a = 150 mThree Integrated water flow rate b = 300mThree Integrated flow rate c = 450mThree Total water flow rate = 900mThree At this time, for example, the integrated value T of the water supply flow rate is 1050 mThreeWhen
If so, the result of comparison processing in processing step S103
As a result, the next processing step is judged as “different”.
The comparison process in S104 is executed. And the water flow
Integrated value T: 1050mThree (Distribution flow rate integrated value a: 150 mThree) + (Integrated value of water flow rate
A: 750mThree) = 900mThreeSuppose This
In the case of, the integrated value A of the water supply flow rate is
00mThree) + (Distribution flow rate integrated value c: 450 mThree) = 75
0mThreeI assume that. The comparison result is 1050
mThree> 900mThreeAnd 1050m3-900 mThree=
150mThreeSince there is a flow rate difference of
Is judged to have some abnormality in the distribution reservoir 7A.
Be done.

【0055】この場合、送水流量積算値の方が多いた
め、オーバーフロー発生が考えられる、したがって、水
位計が故障している可能性が大きいことになる。
In this case, since the integrated value of the water supply flow rate is larger, it is possible that an overflow occurs, and therefore there is a high possibility that the water level gauge is out of order.

【0056】また、このフローチャート上の判断処理で
ほぼ一致しているかどうかの判断基準は、運用者が設定
変更出来るようにし、夏や冬等の条件が違う時に設定値
を変えることにより、異常検出の精度を高めることが出
来る。
In the judgment process on this flow chart, the judgment criterion of whether or not they substantially agree with each other allows the operator to change the setting, and by changing the set value when the conditions such as summer and winter are different, the abnormality is detected. The accuracy of can be improved.

【0057】このように、水位計信号が見かけ上正常で
あっても、電気系統の故障発生により水位変化を表して
いない場合は、直ちにこれを検出し、配水池のオーバフ
ローや、断水等の不測の状態を未然に防止できる。
As described above, even if the water level signal is apparently normal, if the water level change does not appear due to the occurrence of a failure in the electric system, this is immediately detected, and an unexpected overflow such as an overflow of the reservoir or a water cutoff is detected. The state of can be prevented.

【0058】以上のように、上記実施の形態では、1日
当りの送水流量積算値Tは配水流量積算値の合計値、す
なわち、配水流量積算値a+配水流量積算値b+配水流
量積算値cとほぼ一致することに着目して、送水流量積
算値Tと合計配水流量積算値とを比較し、その比較結果
が違う時はどこかで異常が発生しているものと判断し、
その異常を検出している。
As described above, in the above embodiment, the integrated value T of the water supply flow rate per day is approximately the sum of the integrated values of the distribution flow rate, that is, the integrated value of the distribution flow rate a + the integrated value of the distribution flow rate b + the integrated value of the distribution flow rate c. Paying attention to the coincidence, the integrated value T of the water supply flow rate is compared with the integrated value of the total distribution water flow rate, and when the comparison result is different, it is judged that an abnormality has occurred somewhere.
The abnormality is detected.

【0059】すなわち、まず、設備全体のどこかで異常
が生じているかを処理ステップS103(全体判定手
段)で判断し、異常がある場合は、どこで異常が生じて
いるかを処理ステップS104乃至S110(各池毎判
定手段)で判断し異常個所を特定している。ただし、上
記全体判定手段は必ずしも必要ではなく、これを省略し
て、直ちに各池判定手段による処理を行なってもよい。
That is, first, it is determined in processing step S103 (overall determination means) whether an abnormality has occurred in the entire equipment, and if there is an abnormality, in which processing step S104 to S110 (wherein the abnormality has occurred). Judgment is made for each pond and the abnormal location is specified. However, the overall determination means is not always necessary, and the processing may be immediately performed by each pond determination means by omitting it.

【0060】なお、この比較のタイミングは、図5に示
すように、1時間毎に行なうが、過去n時間分の流量積
算値も1時間毎に計算しておく。
The timing of this comparison is performed every hour as shown in FIG. 5, but the flow rate integrated value for the past n hours is also calculated every hour.

【0061】そして、この過去n時間分の値は設定変更
できるようにしておき、運用者が過去何時間分の積算値
で比較したら、最適に判断できるか調整できるようにす
る。
The values of the past n hours can be set and changed so that the operator can adjust how many past hours the integrated values are compared to make the optimum determination.

【0062】また、リアルタイムな故障判断の周期は1
時間が通常であるが、過去の流量積算値を保存するデー
タ数と周期により早くすることも可能である。
The cycle of real-time failure judgment is 1
Although the time is usually, it is possible to speed up the past flow rate integrated value depending on the number of data to be stored and the cycle.

【0063】また、図1に示した上水道系統以外の系統
システムにおいても、同じ処理方法ができるのは当然で
ある。水位計の種類はいろいろあるが、同じ用途に使用
される水位計すべてについて、例えば、電極式水位計お
よびフロート式水位計等も同じ故障判断が可能である。
Naturally, the same treatment method can be applied to a system other than the water supply system shown in FIG. Although there are various types of water level gauges, it is possible to make the same failure determination for all water level gauges used for the same purpose, for example, an electrode type water level gauge and a float type water level gauge.

【0064】さらに、本実施形態においては、流量計が
正常の条件で説明したが、水位計が正常で流量計が異常
になる場合が発生する場合にも、流量積算値の収支が合
わないため、同じ方法によって異常を検出することがで
きる。この方法によれば、水位計を2台設置しなくても
異常検出精度を高めることができる。
Further, in the present embodiment, the description has been made under the condition that the flowmeter is normal, but the balance of the integrated value of the flowrate does not match even when the water level gauge is normal and the flowmeter becomes abnormal. , The abnormality can be detected by the same method. According to this method, the abnormality detection accuracy can be improved without installing two water level gauges.

【0065】図6は、他の実施の形態のシステム構成を
示しており、図1に示した実施形態に他の上水道系統も
監視制御する総合監視システム18を付加したシステム
構成になっている。この総合監視システム18は、中央
監視システム11と同等の機能を持っており、NTT回
路などの通信回線10を利用して他の上水道系統19か
らも情報を収集し、全国の各上水道系統別の監視を中央
監視システム11に持っている機能と同様におこなう。
FIG. 6 shows a system configuration of another embodiment, which has a system configuration in which an integrated monitoring system 18 for monitoring and controlling other water supply systems is added to the embodiment shown in FIG. This comprehensive monitoring system 18 has a function equivalent to that of the central monitoring system 11, collects information from other water supply systems 19 by using the communication line 10 such as the NTT circuit, and separates each water supply system nationwide. The monitoring is performed in the same manner as the function of the central monitoring system 11.

【0066】そのため、各上水道系統の運用者の不在時
対応や無人化対応、さらに、中央監視システム11故障
時のバックアップ対応が可能となる。
Therefore, it becomes possible to deal with the absence of operators of the respective water supply systems, unmanned response, and backup support when the central monitoring system 11 fails.

【0067】また、総合監視システム18は、全国の流
量や、水位信号の情報を収集し保存するため、各上水系
統間にまたがる流量計算、流量収支、水位監視、および
異常時対応等のサ−ビスを各自治体に提供することも実
現できることになる。
Further, since the comprehensive monitoring system 18 collects and stores information on the national flow rate and the water level signal, it supports the flow rate calculation, the flow balance, the water level monitoring, and the response in the event of an abnormality across each water supply system. -It will be possible to provide services to each local government.

【0068】[0068]

【発明の効果】本発明によれば、配水池における水位計
の見かけ上正常な水位範囲における異常を、各池毎の流
量収支により正確に検出し、且つ、その異常箇所を特定
し得るので、配水池のオーバフローや断水等の不具合発
生を未然に防止できる。
According to the present invention, an abnormality in an apparently normal water level range of a water level gauge in a distribution pond can be accurately detected by the flow balance of each pond, and the abnormal portion can be specified. It is possible to prevent problems such as overflow of the reservoir and water interruption.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による配水システムの一実施の形態を示
すシステム構成図である。
FIG. 1 is a system configuration diagram showing an embodiment of a water distribution system according to the present invention.

【図2】一般的な配水流量の時間的推移を表す日変化パ
ターン図である。
FIG. 2 is a daily change pattern diagram showing a general time course of water flow rate.

【図3】一般的な送水流量の時間的推移を表す日変化パ
ターン図である。
FIG. 3 is a daily change pattern diagram showing a time-dependent transition of a general water supply flow rate.

【図4】本発明の一実施の形態における中央監視システ
ムでの処理手順を示すフローチャートである。
FIG. 4 is a flowchart showing a processing procedure in the central monitoring system in the embodiment of the present invention.

【図5】同上一実施の形態における流量積算値の比較タ
イミングと過去n時間の流量積算値との関係を示した説
明図である。
FIG. 5 is an explanatory diagram showing the relationship between the comparison timing of the integrated flow rate and the integrated flow rate for the past n hours in the embodiment.

【図6】本発明の他の実施形態を示すシステム構成図で
ある。
FIG. 6 is a system configuration diagram showing another embodiment of the present invention.

【図7】配水池水位計の水位信号と制御動作との関係を
示す説明図である。
FIG. 7 is an explanatory diagram showing a relationship between a water level signal of a reservoir water level gauge and a control operation.

【符号の説明】[Explanation of symbols]

4 浄水場 5,12A,12B 送水ポンプ 6 送水流量計 7A,7B,7C 配水池 8A,8B,8C 水位計 9,15,16,17 端末 10 NTT回線 11 中央監視システム 13A,13B,13C 配水流量計 14A,14B 送水流量計 18 総合監視システム 19 他の上水道系統 4 water purification plant 5,12A, 12B water pump 6 Water flow meter 7A, 7B, 7C Reservoir 8A, 8B, 8C Water level gauge 9, 15, 16, 17 terminals 10 NTT line 11 Central monitoring system 13A, 13B, 13C Water flow meter 14A, 14B Water flow meter 18 Comprehensive monitoring system 19 Other water supply systems

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 浄水場及び多段に構成された複数の配水
池を有し、初段の配水池は浄水場から送水ポンプにより
送水を受け、最終段以外の配水池はそれぞれ、自己の配
水池の水を次段の配水池に送水する送水ポンプを有し、
各配水池は需要家への配水設備をそれぞれ備えた配水シ
ステムであって、 浄水場及び最終段以外の配水池に設けられ、後段側の配
水池への送水流量を測定する送水流量計と、 前記各配水池に設けられ、各池水位を測定する水位計及
び各配水流量を測定する配水流量計と、 各配水池の水位を入力し、対応する配水池の水位に応じ
てその配水池の前段側に位置する送水ポンプの運転を制
御する送水制御手段と、 各配水池について、一定時間ごとの前段に位置する送水
ポンプの送水流量と次段への送水流量及び自己の配水流
量の合計値とを比較し、その差が所定範囲外の場合は対
応する配水池に異常発生と判断する各池毎判定手段と、 を備えたことを特徴とする配水システム。
1. A water treatment plant and a plurality of reservoirs configured in multiple stages. The first stage reservoir receives water from a water treatment plant by a water pump, and the reservoirs other than the last stage respectively have their own reservoirs. It has a water pump that sends water to the next stage distribution reservoir,
Each distribution reservoir is a distribution system equipped with water distribution equipment for customers, and is installed in the water treatment plant and distribution reservoirs other than the final stage, and a flow meter for measuring the flow rate of the water to the distribution reservoir on the latter stage side, A water level meter for measuring the water level of each pond and a water flow meter for measuring the water flow rate of each pond, and the water level of each water pond are input, and the water level of the corresponding water pond is adjusted according to the water level of the corresponding water pond. The water supply control means that controls the operation of the water supply pump located on the upstream side, and the total value of the water supply flow rate of the water supply pump located on the upstream side and the water supply flow rate to the next stage and its own water supply flow rate for each distribution reservoir at regular intervals. The water distribution system is characterized by comprising: (1) each of which is compared with each other, and when the difference is out of a predetermined range, it is determined that the corresponding water distribution reservoir has an abnormality.
【請求項2】 浄水場及び多段に構成された複数の配水
池を有し、初段の配水池は浄水場から送水ポンプにより
送水を受け、最終段以外の配水池はそれぞれ、自己の配
水池の水を次段の配水池に送水する送水ポンプを有し、
各配水池は需要家への配水設備をそれぞれ備えた配水シ
ステムであって、 浄水場及び最終段以外の配水池に設けられ、対応する配
水池への送水流量を検出する送水流量計と、 前記各配水池に設けられ、各池水位を検出する水位計及
び各配水流量を測定する配水流量計と、 各配水池の水位を入力し、対応する配水池の水位に応じ
てその配水池の前段に位置する送水ポンプの運転を制御
する送水制御手段と、 一定時間ごとの前記浄水場からの送水流量と各配水池か
らの配水流量の合計値とを比較し、その差が所定範囲外
の場合はいずれかに不具合発生と判断する全体判定手段
と、 各配水池について、一定時間ごとの前段に位置する送水
ポンプの送水流量と次段への送水流量及び自己の配水流
量の合計値とを比較し、その差が所定範囲外の場合は対
応する配水池に異常発生と判断する各池毎判定手段と、 を備えたことを特徴とする配水システム。
2. A water treatment plant and a plurality of water reservoirs configured in multiple stages, the first stage reservoir receives water from the water treatment plant by a water pump, and the reservoirs other than the last stage each have their own reservoirs. It has a water pump that sends water to the next stage distribution reservoir,
Each distribution reservoir is a distribution system equipped with water distribution equipment to consumers, and is installed in the water treatment plant and distribution reservoirs other than the final stage, and a water flow meter for detecting the water flow rate to the corresponding distribution reservoir, A water level meter installed in each reservoir to detect the water level of each reservoir and a water flow meter to measure the water flow rate of each reservoir, and the water level of each reservoir should be input, and the preceding stage of the reservoir should be entered according to the water level of the corresponding reservoir. When the water supply control means for controlling the operation of the water supply pump located in the above is compared with the total value of the water flow rate from the water treatment plant and the water flow rate from each reservoir at regular intervals, and the difference is outside the specified range Compares the total flow rate of the water pump located in the preceding stage with the total flow rate of the water pump located in the preceding stage and the total value of the amount of water sent to the next stage and its own distribution flow rate for each distribution reservoir, for each distribution reservoir. And the difference is outside the specified range Water distribution system comprising: the respective pond each determination means for determining that abnormality occurs in the corresponding distribution reservoir, the.
【請求項3】 浄水場及び各配水池に設けられた各測定
器による測定値は浄水場及び各配水池に設けられた各端
末から通信回線により中央監視システムに送信され、中
央監視システムにて積算及び判定処理されることを特徴
とする請求項1または請求項2に記載の配水システム。
3. The values measured by each measuring device provided at the water purification plant and each distribution reservoir are transmitted from each terminal provided at the water purification plant and each distribution reservoir to the central monitoring system through a communication line, and the central monitoring system 3. The water distribution system according to claim 1, wherein the water distribution system is subjected to integration and determination processing.
【請求項4】 中央監視システムと同等の監視機能を有
し、他の水道系統の端末からも情報授受が可能で、中央
監視システムに代って監視制御処理を実行可能な総合監
視システムを通信回線に接続したことを特徴とする請求
項3に記載の配水システム。
4. An integrated monitoring system having a monitoring function equivalent to that of a central monitoring system, capable of exchanging information from other water system terminals, and capable of executing monitoring control processing instead of the central monitoring system. The water distribution system according to claim 3, wherein the water distribution system is connected to a line.
JP2002113329A 2002-04-16 2002-04-16 Water distribution system Withdrawn JP2003306957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002113329A JP2003306957A (en) 2002-04-16 2002-04-16 Water distribution system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002113329A JP2003306957A (en) 2002-04-16 2002-04-16 Water distribution system

Publications (1)

Publication Number Publication Date
JP2003306957A true JP2003306957A (en) 2003-10-31

Family

ID=29395544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002113329A Withdrawn JP2003306957A (en) 2002-04-16 2002-04-16 Water distribution system

Country Status (1)

Country Link
JP (1) JP2003306957A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007170021A (en) * 2005-12-21 2007-07-05 Toshiba Corp Water distribution and pipeline information analysis system
JP2009191448A (en) * 2008-02-12 2009-08-27 Panasonic Corp Storage equipment
JP2019117600A (en) * 2017-12-27 2019-07-18 株式会社クボタ Monitoring system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007170021A (en) * 2005-12-21 2007-07-05 Toshiba Corp Water distribution and pipeline information analysis system
JP2009191448A (en) * 2008-02-12 2009-08-27 Panasonic Corp Storage equipment
JP2019117600A (en) * 2017-12-27 2019-07-18 株式会社クボタ Monitoring system
JP7018766B2 (en) 2017-12-27 2022-02-14 株式会社クボタ Monitoring system

Similar Documents

Publication Publication Date Title
CN110212645B (en) Power consumption information acquisition terminal power failure event reporting method and device
CN117097030B (en) Intelligent operation monitoring system for power grid distribution terminal
JP2018055150A (en) Notification device, monitoring system and notification method
KR102286436B1 (en) smart sewage treatment method using data
CN107144764A (en) A kind of user&#39;s voltage dip accident detection method based on ammeter data
CN111721907A (en) Sewage treatment in-situ monitoring system
CN111997881A (en) Intelligent variable-frequency constant-pressure control system for water supply
JP2009118541A (en) Power supply state collection system
JP2003306957A (en) Water distribution system
WO2021015662A1 (en) System and method for auditing wastewater treatment plant parameters
CN107102633B (en) A kind of distribution terminal fault self-diagnosis method and system
KR20080081390A (en) Apparatus and method for detecting street lamp fault
KR100358557B1 (en) Breakdown observation system and method for street-ramp divergence circuit
US10669883B2 (en) Steam-using facility monitoring system
CN112666899A (en) Control method and system of regulating valve group, electronic equipment and storage medium
CN112947611B (en) Scheduling method and system based on pressure monitoring
KR100709632B1 (en) Pump operation method for water purification system and apparatus therefor
JP2018132916A (en) Water treatment plant operation support system
CN114858250A (en) Fault detection method and system of intelligent water meter and readable storage medium
JPH06249151A (en) Automatic compressed air device operation system
KR100458309B1 (en) Street lamp control system and method the same
AU2018388779B2 (en) Methods and systems for distributed verification and control of a resource distribution network
KR20030067307A (en) Method for managing gas supply system according the travel-rate of regulator
TW583810B (en) Method of using voltage-drop rate to measure battery in UPS system
CN110419052B (en) Method for aggregating the operating values of a plurality of operating units and monitoring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050224

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070122