JP2003306731A - Method for manufacturing metal matrix composite material, and metal matrix composite material - Google Patents

Method for manufacturing metal matrix composite material, and metal matrix composite material

Info

Publication number
JP2003306731A
JP2003306731A JP2002112543A JP2002112543A JP2003306731A JP 2003306731 A JP2003306731 A JP 2003306731A JP 2002112543 A JP2002112543 A JP 2002112543A JP 2002112543 A JP2002112543 A JP 2002112543A JP 2003306731 A JP2003306731 A JP 2003306731A
Authority
JP
Japan
Prior art keywords
metal
porous body
composite material
solution
pores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002112543A
Other languages
Japanese (ja)
Inventor
Chihiro Kawai
千尋 河合
Taku Kamimura
卓 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2002112543A priority Critical patent/JP2003306731A/en
Publication of JP2003306731A publication Critical patent/JP2003306731A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Chemically Coating (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a metal matrix composite material by which a metal matrix composite material having high thermal conductivity can be manufactured at an extremely low cost without requiring a high temperature process. <P>SOLUTION: A porous body 11 having a large number of pores 11A is immersed in a plating solution Q prepared by mixing a solution A containing metal as an cation and a solution B containing a reducing agent, or the plating solution is passed through the pores of the porous body. In this way, the metal is precipitated in the pores by the reducing agent to obtain the composite material consisting of the porous body and the metal. In the case where the porous body is very thick, the porous body is partially immersed in the plating solution stepwise to precipitate the metal in the pores. Further, the plating solution is circulated and continuously filtrated through the porous body to precipitate the metal in the pores. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、金属基複合材料の
製造方法および該方法により製造された金属基複合材料
に関し、詳しくは、電子部品用のヒートシンク等に用い
られる金属基複合材料の製造方法を改良し、低コスト
で、高熱伝導率を有する金属基複合材料を得るものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a metal-based composite material and a metal-based composite material produced by the method, and more particularly to a method for producing a metal-based composite material used for heat sinks for electronic parts. And a metal matrix composite material having high thermal conductivity at low cost.

【0002】[0002]

【従来の技術】従来、半導体レーザーやマイクロ波素子
などの半導体素子を搭載した電子部品には、電子部品や
素子から熱を吸収して外部に放熱するヒートシンクが用
いられている。従来の電子部品は、その発熱量が小さか
ったため、ヒートシンクとしては、熱伝導率が低くて
も、搭載される半導体素子(Si、InP、GaAs
等)との熱膨張係数が近いAl23やAlNが用いられ
てきた。しかし、最近では情報量の増大に合せて半導体
素子の大型化や高出力化が進み、発熱量の増大が問題と
なっている。従って、高熱伝導率を有するヒートシンク
用材料が強く要求されている。
2. Description of the Related Art Conventionally, a heat sink that absorbs heat from an electronic component or element and radiates the heat to the outside has been used as an electronic component on which a semiconductor element such as a semiconductor laser or a microwave element is mounted. Since the conventional electronic parts generate a small amount of heat, the semiconductor device (Si, InP, GaAs) mounted as a heat sink has a low thermal conductivity.
Etc.), Al 2 O 3 and AlN, which have similar thermal expansion coefficients, have been used. However, recently, as the amount of information increases, the size and output of semiconductor elements have increased, and the increase in the amount of heat generated has become a problem. Therefore, there is a strong demand for a heat sink material having high thermal conductivity.

【0003】ヒートシンク用材料としてAlNは熱伝導
率も比較的良好であり、またSiやInP等の半導体素
子との熱膨張係数が近いため、一般によく使用されてい
るが、さらなる高出力化や、GaAs素子のように熱膨
張係数の大きい素子には対応が難しくなっている。
As a heat sink material, AlN has a relatively good thermal conductivity and a thermal expansion coefficient close to that of a semiconductor element such as Si or InP. It is difficult to deal with devices having a large coefficient of thermal expansion such as GaAs devices.

【0004】具体的には、半導体素子等の各種半導体材
料の熱膨張係数は、Siが4.2ppm/K、InPが
4.5ppm/K、GaAsが5.9ppm/K程度であ
るため、ヒートシンク用材料としては、これらと熱膨張
係数が近いことが望ましい。さらには、ヒートシンク用
材料のヤング率は小さいほど、発生する熱応力が小さく
なるため望ましい。従って、ヒートシンク材料に必要な
物性としては、熱伝導率がCu(395W/mK)と同
等かそれ以上、熱膨張係数がCu(16.9ppm/
K)以下が望まれている。
Specifically, the coefficient of thermal expansion of various semiconductor materials such as semiconductor elements is 4.2 ppm / K for Si, 4.5 ppm / K for InP, and 5.9 ppm / K for GaAs. It is desirable that the materials for use have similar thermal expansion coefficients. Furthermore, the smaller the Young's modulus of the heat sink material, the smaller the thermal stress generated, which is desirable. Therefore, regarding the physical properties required for the heat sink material, the thermal conductivity is equal to or higher than that of Cu (395 W / mK), and the thermal expansion coefficient is Cu (16.9 ppm /
K) The following are desired.

【0005】熱伝導率が最も高い材料はダイヤモンドや
c−BNであるが、熱膨張係数が小さく(ダイヤ2.3
ppm/K、c−BN3.7ppm/K)、かつこれら
の材料はヤング率が830〜1050GPaと非常に大
きいので、ヒートシンク材と半導体素子の蝋づけ時やデ
バイスとしての使用時にヒートシンク材と半導体素子と
の大きな熱応力が発生して破壊が起こるという問題があ
る。
Materials having the highest thermal conductivity are diamond and c-BN, but they have a small coefficient of thermal expansion (diamond 2.3.
(ppm / K, c-BN 3.7 ppm / K), and these materials have a very large Young's modulus of 830 to 1050 GPa. Therefore, when the heat sink material and the semiconductor element are brazed or used as a device, the heat sink material and the semiconductor element are used. There is a problem in that a large thermal stress is generated and destruction occurs.

【0006】熱膨張係数が小さく、比較的熱伝導率が高
い材料として、セラミックスと金属を複合したAl-S
iCをはじめとする金属基複合材料が開発されている。
しかし、Alの熱伝導率(室温で約238W/mK)が
低いために複合材料にした場合の熱伝導率にも上限が存
在し、上記高熱伝導率の要求を満たすことができない。
また、Alの代わりに、より熱伝導率の高いCu(同3
95W/mK)やAg(同420W/mK)等の金属を
用いることも考えられるが、複合材として用いるSiC
との濡れ性が極めて悪いためにCu、Ag等が持つ本来
の高熱伝導性が生かされないという問題がある。
As a material having a small coefficient of thermal expansion and a relatively high thermal conductivity, Al-S which is a composite of ceramic and metal.
Metal matrix composite materials including iC have been developed.
However, since the thermal conductivity of Al (about 238 W / mK at room temperature) is low, there is an upper limit to the thermal conductivity of the composite material, and the requirement for high thermal conductivity cannot be satisfied.
Further, instead of Al, Cu having a higher thermal conductivity (see
It is possible to use a metal such as 95 W / mK) or Ag (420 W / mK), but SiC used as a composite material
There is a problem that the original high thermal conductivity of Cu, Ag, etc. cannot be utilized because the wettability with is extremely poor.

【0007】よって、本出願人は、CuやAgとの濡れ
性を向上させたヒートシンク材料として、特開平11−
67991号で、ダイヤモンド−Ag系やダイヤモンド
−Cu系複合材料を提案している。これは、ダイヤモン
ド粉末とAg-Cu-Ti系粉末を混合、成形後、該合金
の融点以上で加熱することにより、Ti成分がダイヤモ
ンド粒子表面に拡散、反応し、表面にTiC層が形成さ
れるものである(熱結法)。即ち、TiCと溶融Cuま
たは溶融Agの濡れ性が高いために、結果としてダイヤ
モンド粒子と金属の界面が密着し、高い熱伝導率を得る
ことができる。
[0007] Therefore, the applicant of the present invention has disclosed that a heat sink material having improved wettability with Cu or Ag is disclosed in JP-A-11-
No. 67991 proposes a diamond-Ag-based or diamond-Cu-based composite material. This is because after mixing and molding diamond powder and Ag-Cu-Ti-based powder and heating above the melting point of the alloy, the Ti component diffuses and reacts on the diamond particle surface, and a TiC layer is formed on the surface. It is a thing (heat-bonding method). That is, since the wettability between TiC and molten Cu or molten Ag is high, as a result, the interface between the diamond particles and the metal is brought into close contact, and high thermal conductivity can be obtained.

【0008】また、本出願人は、上記のような金属基複
合材料からなる半導体用ヒートシンクとして、特開平1
0−223812号において、ダイヤモンド−Ag系や
ダイヤモンド−Cu系複合材料及びその製法として溶浸
法なる製法を提案している。これは、ダイヤモンド粉末
とAg-Cu-Ti系粉末を混合、成形後、該合金の融点
以上で加熱してダイヤモンド粒子表面にTiC層を形成
させた後、さらに加熱してAg、Cu成分を揮発させて
多孔体とし、これに溶融Ag-Cu合金を含浸させて、
熱結法よりも熱伝導率の高い相対密度と熱伝導率を持つ
複合材料を得るというものである。
Further, the applicant of the present invention has disclosed, as a heat sink for semiconductors made of the above metal-based composite material, in Japanese Patent Laid-Open No.
No. 0-223812 proposes a diamond-Ag-based or diamond-Cu-based composite material and a manufacturing method called an infiltration method as a manufacturing method thereof. This is because after mixing and shaping diamond powder and Ag-Cu-Ti-based powder, heating above the melting point of the alloy to form a TiC layer on the surface of diamond particles, and further heating to volatilize Ag and Cu components. To form a porous body, which is impregnated with molten Ag-Cu alloy,
This is to obtain a composite material having a higher relative density and thermal conductivity, which has a higher thermal conductivity than the thermal bonding method.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、特開平
11−67991号、特開平10−223812号の半
導体用ヒートシンクは、高熱伝導率を有しているもの
の、Ag等の高融点金属をその融点以上まで加熱するた
めに製造時において設備費、ランニングコスト等が高コ
ストとなり、さらなる低コスト化が望まれている。ま
た、Ag等の金属とダイヤモンドの界面にはTiC等の
界面反応層が存在するために、この界面層で熱伝導率が
低下することが考えられ、未だ改良の余地がある。
However, the heat sinks for semiconductors disclosed in JP-A-11-67991 and JP-A-10-223812 have high thermal conductivity, but have a high melting point metal such as Ag or higher than their melting points. Since it is heated up to the above, the equipment cost, running cost, etc. at the time of manufacturing become high, and further cost reduction is desired. Further, since an interface reaction layer such as TiC exists at the interface between a metal such as Ag and diamond, it is considered that the thermal conductivity is lowered in this interface layer, and there is still room for improvement.

【0010】本発明は上記した問題に鑑みてなされたも
のであり、高温プロセスを必要とせず、極めて低コスト
で、金属基複合材料を製造可能な金属基複合材料の製造
方法、及び、TiC等の金属炭化物が存在せず、高熱伝
導率を有すると共に熱膨張率が小さい金属基複合材料を
提供することを課題としている。
The present invention has been made in view of the above problems, and does not require a high temperature process and can produce a metal matrix composite material at an extremely low cost, and a method for producing a metal matrix composite material, TiC, etc. It is an object of the present invention to provide a metal-based composite material which does not have the metal carbide of 1) and has a high thermal conductivity and a small thermal expansion coefficient.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するた
め、本発明は、金属を陽イオンとして含む溶液Aと、還
元剤を含む溶液Bとを混合してなるめっき液を、多孔体
の多数の空孔内に充填し、上記還元剤により上記金属を
上記空孔内部に析出させて、上記多孔体と金属とからな
る複合材料を得ることを特徴とする金属基複合材料の製
造方法を提供している。
In order to solve the above problems, the present invention provides a plating solution prepared by mixing a solution A containing a metal as a cation and a solution B containing a reducing agent in a large number of porous bodies. The method for producing a metal-based composite material, comprising: filling the inside of the pores, depositing the metal inside the pores with the reducing agent, and obtaining a composite material including the porous body and the metal. is doing.

【0012】上記多孔体の空孔は、該多孔体の表面開口
と連通した三次元網状の連続的な細孔あるいは、多孔体
の表面開口に連通した多数の独立した細孔からなり、上
記めっき液を一面側開口から空孔内部を通り、他面側開
口へと透過させるものである。
The pores of the porous body consist of three-dimensional mesh-like continuous pores communicating with the surface openings of the porous body or a large number of independent pores communicating with the surface openings of the porous body. The liquid is passed from the opening on one surface side through the inside of the pores to the opening on the other surface side.

【0013】本発明者は、鋭意研究の結果、金属を陽イ
オンとして含む溶液Aと還元剤を含む溶液Bとを混合し
ためっき液を用い、還元剤の作用により金属を多孔体の
空孔表面に析出させることで、多孔体の空孔内部に金属
を充填できることを見出した。 即ち、めっき液中の金
属と還元剤が存在する限り、還元作用により金属が還元
されて空孔の表面に金属が析出され、この析出された金
属表面に更に連続して金属が析出されていき、この金属
析出の積み重ねにより最終的には空孔内部を略金属で充
填することができる。これにより、溶融状態の金属を用
いることなく、金属の析出という簡易な方法で金属を緻
密に空孔内に充填することができる。その結果、高熱伝
導性を有する多孔体と金属との複合材料を低コストで製
造することができる。具体的には、多孔体の相対密度が
40%〜70%の多孔体の空孔に金属を析出させること
により、析出後の相対密度を88%〜99.2%程度の
略100%まで高めている。なお、相対密度とは(1−
空孔度)、即ち、全体積中空孔を除いた固体部分の体積
%を示す。
As a result of intensive studies, the present inventor has used a plating solution in which a solution A containing a metal as a cation and a solution B containing a reducing agent are mixed, and the metal acts on the pore surface of the porous body by the action of the reducing agent. It was found that the metal can be filled inside the pores of the porous body by precipitating into. That is, as long as the metal and the reducing agent are present in the plating solution, the metal is reduced by the reducing action to deposit the metal on the surface of the pores, and the metal is further continuously deposited on the deposited metal surface. By stacking the metal deposits, the inside of the pores can be finally filled with the metal. Thereby, the metal can be densely filled in the pores by a simple method of depositing the metal without using the molten metal. As a result, a composite material of a porous body having a high thermal conductivity and a metal can be manufactured at low cost. Specifically, by depositing a metal in the pores of the porous body having a relative density of the porous body of 40% to 70%, the relative density after the deposition is increased to about 100% of about 88% to 99.2%. ing. The relative density is (1-
Porosity), that is, the volume% of the solid portion excluding the total volume of the hollow holes.

【0014】また、この方法によれば、金属を空孔の表
面に直接析出させるため、多孔体と金属との濡れ性の影
響を受けることがなく、金属と多孔体間に良好な密着性
を得ることができる。よって、多孔体と金属との界面に
TiC等の金属炭化物を存在させる必要がないため、さ
らに熱伝導率を高めることができる。
Further, according to this method, since the metal is directly deposited on the surface of the pores, there is no influence of the wettability between the porous body and the metal, and good adhesion between the metal and the porous body is obtained. Obtainable. Therefore, since it is not necessary to allow metal carbide such as TiC to exist at the interface between the porous body and the metal, the thermal conductivity can be further increased.

【0015】上記溶液Aと溶液Bとの混合は、上記還元
剤の還元作用に最適な温度より低温とした低温領域で行
うと共に、上記金属の析出は上記めっき液を還元剤の還
元作用に最適な温度に加熱した高温領域で行い、金属の
析出速度を制御している。このように、析出時には、還
元作用に最適な温度に加熱することにより、還元剤によ
る金属の還元作用が強くなり金属の析出速度を高めるこ
とができる。一方、溶液の混合を低温で行うことによ
り、めっき液の変質や混合時の金属の析出を抑制でき、
析出効率をさらに高めることができる。このような温度
制御は、多孔体の空孔径が200μmより小さい場合に
特に効果的である。なお、金属の析出は、その他、めっ
き液中の金属の濃度、還元剤の種類や濃度、還元剤の溶
媒種やpH等により制御することもできる。
The solution A and the solution B are mixed in a low temperature region lower than the optimum temperature for the reducing action of the reducing agent, and the deposition of the metal causes the plating solution to be optimal for the reducing action of the reducing agent. It is carried out in a high temperature region heated to various temperatures to control the metal deposition rate. Thus, at the time of deposition, by heating to a temperature optimum for the reducing action, the reducing action of the metal by the reducing agent becomes strong, and the deposition rate of the metal can be increased. On the other hand, by mixing the solution at a low temperature, it is possible to suppress alteration of the plating solution and metal precipitation during mixing,
The deposition efficiency can be further increased. Such temperature control is particularly effective when the pore diameter of the porous body is smaller than 200 μm. The deposition of the metal can be controlled by the concentration of the metal in the plating solution, the type and concentration of the reducing agent, the solvent type of the reducing agent, the pH, and the like.

【0016】具体的には、上記金属はAg系金属とし、
上記溶液Aと溶液Bは5℃〜10℃の温度条件下で混合
すると共に、上記金属の析出は40℃〜50℃の温度条
件下で行うことが好ましい。金属としてAgを用いるこ
とにより、得られる複合材料の熱伝導率をさらに高める
ことができる。なお、温度を上げすぎるとAgは一部黒
色化し、複合材料の熱伝導率が低下する場合があるため
上記温度が好ましい。
Specifically, the above metal is an Ag-based metal,
It is preferable that the solution A and the solution B are mixed under a temperature condition of 5 ° C. to 10 ° C. and the deposition of the metal is performed under a temperature condition of 40 ° C. to 50 ° C. By using Ag as the metal, the thermal conductivity of the obtained composite material can be further increased. It should be noted that if the temperature is raised too high, Ag may partially turn black and the thermal conductivity of the composite material may decrease, so the above temperature is preferable.

【0017】また、上記金属をAgとすると、上記溶液
Aは、硝酸銀(AgNO3)と強塩基とを含む水溶液と
している。これにより、Agイオンを効率良く還元し
て、空孔内にAgを析出させることができる。上記強塩
基としてはアンモニア(NH3)を用いるのが好まし
い。金属Agの析出速度は、条件をうまく制御すれば1
8μm/hr程度に高めることができる。なお、Agイ
オンを含む溶液としては、NaAg(CN)2等とする
こともできる。金属は錯イオン溶液として含有しても良
い。
If the metal is Ag, the solution A is an aqueous solution containing silver nitrate (AgNO 3 ) and a strong base. Thereby, Ag ions can be efficiently reduced and Ag can be deposited in the pores. Ammonia (NH 3 ) is preferably used as the strong base. The deposition rate of metallic Ag is 1 if the conditions are well controlled.
It can be increased to about 8 μm / hr. The solution containing Ag ions may be NaAg (CN) 2 or the like. The metal may be contained as a complex ion solution.

【0018】上記溶液Aは、Agと共に、Cuをイオン
として含んでいても良く、これによりAgとCuの合金
を空孔内に充填することができる。Cuイオンは硫酸銅
等により添加することができる。なお、Cu以外にもA
l等の金属のイオンを含んでも良く、要求性能に応じて
金属種やその配合比を適宜設定することができる。
The solution A may contain Cu as an ion together with Ag, whereby the alloy of Ag and Cu can be filled in the pores. Cu ions can be added with copper sulfate or the like. In addition to Cu, A
Metal ions such as 1 may be included, and the metal species and the compounding ratio thereof can be appropriately set according to the required performance.

【0019】上記溶液Bは、ホルマリン、NaBH4
LiBH4、KBH4の少なくともいずれか1つを溶解さ
せたアルコール溶液又は水溶液としている。その他、還
元剤としては、ロシェル塩(C446NaK)、亜リ
ン酸塩、次亜リン酸塩、ヒドラジン、ジメチルアミンボ
ラン、その他テトラヒドロホウ酸等を含有する溶液等を
用いてもよい。なお、LiBH4は還元力が高いが水と
反応して分解するため、LiBHの場合はアルコール
溶液とすることが好ましい。
The above solution B is formalin, NaBH 4 ,
An alcohol solution or an aqueous solution in which at least one of LiBH 4 and KBH 4 is dissolved is used. In addition, as the reducing agent, a solution containing Rochelle salt (C 4 H 4 O 6 NaK), phosphite, hypophosphite, hydrazine, dimethylamine borane, other tetrahydroboric acid, etc. may be used. Good. LiBH 4 has a high reducing power, but it reacts with water and decomposes. Therefore, LiBH 4 is preferably an alcohol solution.

【0020】また、金属が析出することにより、めっき
液中の金属のイオンの濃度と還元剤の濃度が低下してい
くため、析出効率を上げるには、常に金属と還元剤の濃
度が高い新鮮なめっき液が多孔体の空孔表面に供給され
ることが好ましい。
Moreover, since the concentration of metal ions and the concentration of the reducing agent in the plating solution decrease due to the deposition of the metal, in order to increase the deposition efficiency, the concentration of the metal and the reducing agent is always high. It is preferable that the plating solution is supplied to the surface of the pores of the porous body.

【0021】多孔体の空孔にめっき液を充填する方法と
しては、浸漬法とろ過法とが採用される。浸漬法では、
上記多孔体をめっき槽中のめっき液に浸漬させ、多孔体
の空孔内部にめっき液を真空引きで充填し、 空孔内部に
上記金属を析出させている。多孔体の厚さが比較的大き
い場合には部分浸漬法およびろ過法が好適に用いられ
る。
As a method for filling the pores of the porous body with the plating solution, an immersion method and a filtration method are adopted. In the immersion method,
The porous body is dipped in a plating solution in a plating tank, the inside of the pores of the porous body is filled with the plating solution by vacuuming, and the metal is deposited inside the pores. When the porous body has a relatively large thickness, the partial immersion method and the filtration method are preferably used.

【0022】部分浸漬法では、多孔体をめっき液中に所
定厚みずつ段階的に浸漬していき、段階的に多孔体の空
孔内部に上記金属を析出させ、最終的に空孔全体に上記
金属を析出させている。即ち、多孔体の厚さが比較的大
きい場合、その一部をめっき液に浸漬し、浸漬した部分
のみ金属を析出させ、その後、段階的に多孔体を深く沈
めていき、これを繰り返している。この方法は厚い多孔
体を、薄い層毎に金属を析出させているため、各層毎に
緻密な層が得られ、最終的に完全に緻密化出来る利点が
ある。1回に浸漬する深さ(厚み)は、多孔体の空孔の
大きさにもよるが、30μm以上100μm以下が好ま
しい。これは、100μmを超えると、完全に緻密化す
ることができなくなり、30μm未満では、浸漬の繰り
返し回数が多くなり効率が悪くなるためである。なお、
多孔体の厚さが100μm以下程度の場合には多孔体の
全体をメッキ液に浸漬しても良いことは言うまでもな
い。
In the partial immersion method, the porous body is gradually immersed in a plating solution by a predetermined thickness to gradually deposit the metal inside the pores of the porous body, and finally to the entire pores. Metal is deposited. That is, when the thickness of the porous body is relatively large, a part of the porous body is immersed in the plating solution, the metal is deposited only in the immersed portion, and then the porous body is gradually deeply submerged, which is repeated. . This method has an advantage that a dense layer can be obtained for each layer and a final dense densification can be obtained because the metal is deposited in each thin layer in the thick porous body. The depth (thickness) of one immersion is preferably 30 μm or more and 100 μm or less, although it depends on the size of the pores of the porous body. This is because if it exceeds 100 μm, it becomes impossible to completely densify it, and if it is less than 30 μm, the number of times of dipping is increased and the efficiency deteriorates. In addition,
Needless to say, when the thickness of the porous body is about 100 μm or less, the entire porous body may be immersed in the plating solution.

【0023】上記浸漬法による場合、真空引きで多孔体
の空孔内にめっき液を充填するため、析出効率を高める
ことができる。上記真空条件は、通常のロータリーポン
プ等を用いて設定することができる。真空度は、1×1
-3torr程度であれば良く、これより小さい値が好
ましい。なお、多孔体をめっき液に浸漬させた後にめっ
き液の温度を高めても良いし、めっき液の温度を高めた
後に多孔体をめっき液に浸漬させても良い。
In the case of the above-mentioned dipping method, the plating solution is filled in the pores of the porous body by vacuuming, so that the deposition efficiency can be improved. The above vacuum conditions can be set by using an ordinary rotary pump or the like. Vacuum degree is 1 × 1
It may be about 0 -3 torr, and a value smaller than this is preferable. The temperature of the plating solution may be raised after the porous body is immersed in the plating solution, or the porous body may be immersed in the plating solution after raising the temperature of the plating solution.

【0024】上記ろ過方法では、めっき液をポンプで循
環させて、上記多孔体で連続的にろ過し、該多孔体の空
孔表面にめっき液を連続的に通過させることにより、め
っき液と空孔表面とを連続的に接触させ、空孔表面に金
属を析出させている。このろ過させつつ金属を析出させ
る方法は、多孔体の空孔内部に連続的にめっき液が流れ
るため、多孔体の厚さが厚い場合に特に有効である。即
ち、めっき液を多孔体で連続的にろ過することにより、
多孔体の厚み方向中心近傍の空孔内にも、新鮮なめっき
液を供給することができる。ろ過工程は、金属の析出に
より多孔体に閉気孔が形成されて、それ以上ろ過が進ま
なくなるまで継続する。
In the above-mentioned filtration method, the plating solution is circulated by a pump, continuously filtered by the porous body, and the plating solution is continuously passed through the pore surface of the porous body to thereby remove the plating solution and the void. The metal is deposited on the surface of the pores by making continuous contact with the surface of the pores. This method of depositing a metal while filtering is particularly effective when the thickness of the porous body is large because the plating solution continuously flows inside the pores of the porous body. That is, by continuously filtering the plating solution with a porous body,
Fresh plating solution can also be supplied into the pores near the center of the porous body in the thickness direction. The filtration step is continued until the closed pores are formed in the porous body due to the deposition of the metal and the filtration cannot proceed any further.

【0025】なお、多孔体の空孔径の大きさにもよる
が、多孔体厚みが100μm程度までは、ろ過方法でな
くても相対密度がほぼ100%の複合材料を得ることが
できる。厚みが100μmを超えた場合には、相対密度
を上げるためにはろ過方法を用いるのが好ましい。
Depending on the size of the pores of the porous body, a composite material having a relative density of almost 100% can be obtained up to a porous body thickness of about 100 μm without using a filtration method. When the thickness exceeds 100 μm, a filtration method is preferably used to increase the relative density.

【0026】さらに、めっき液と多孔体の空孔表面とを
接触させる方法として、めっき液を噴霧器等によりミス
ト状にして多孔体の空孔表面に均一に接触するように連
続的に吹きつける方法を採用しえる。
Further, as a method for bringing the plating solution into contact with the surface of the pores of the porous body, the plating solution is made into a mist with a sprayer or the like and continuously sprayed so as to uniformly contact the surface of the pores of the porous body. Can be adopted.

【0027】めっき液と多孔体の空孔表面とを接触させ
る前に、多孔体の空孔表面を酸性溶液あるいは/及びア
ルカリ性溶液により洗浄していることが好ましい。浸漬
する多孔体は予め、酸等によってその表面を洗浄してお
くと、金属との密着力を高めることができる。
Before bringing the plating solution into contact with the pore surface of the porous body, it is preferable to wash the pore surface of the porous body with an acidic solution and / or an alkaline solution. If the surface of the porous body to be dipped is washed with an acid or the like in advance, the adhesion with the metal can be enhanced.

【0028】めっき液を用いて金属を析出させる時間
は、浸漬法やろ過法等の金属析出法の違いや、多孔体の
厚みや材質、混合めっき液の種類、析出条件等によって
異なるが1〜15時間、好ましくは5〜10時間が良
い。
The time for depositing the metal using the plating solution varies depending on the difference in the metal deposition method such as the dipping method and the filtration method, the thickness and material of the porous body, the type of the mixed plating solution, the deposition conditions, etc. 15 hours, preferably 5-10 hours.

【0029】本発明は、また、多孔体と、該多孔体の空
孔内部の金属との複合材料であって、上記空孔内部の金
属は、空孔内部で金属が空孔内部に直接析出されたもの
からなる金属基複合材料を提供している。上記金属基複
合材料は前記した製造方法により製造されたものからな
るが、該方法により製造されたものに限定されず、他の
方法により製造された場合も含むものである。
The present invention is also a composite material of a porous body and a metal inside the pores of the porous body, wherein the metal inside the pores directly deposits the metal inside the pores. A metal matrix composite material is provided. The metal-based composite material is made of the above-mentioned manufacturing method, but is not limited to the one manufactured by the method, and may be manufactured by another method.

【0030】上記構成の金属基複合材料では、多孔体の
空孔内部には金属が直接析出されているため、多孔体と
金属との界面に、TiC等の金属炭化物が存在せず、非
常に高熱伝導性とすることができる。よって、半導体用
ヒートシンク等として好適に用いることができる。
In the metal-based composite material having the above-mentioned structure, since the metal is directly deposited inside the pores of the porous body, there is no metal carbide such as TiC at the interface between the porous body and the metal, which is extremely high. It can have high thermal conductivity. Therefore, it can be suitably used as a heat sink for semiconductors and the like.

【0031】上記金属は、Agを含む金属としている。
充填金属をAg単体、あるいはAgを含む金属とするこ
とで、高熱伝導性を得ることができる。また、上記金属
は、AgとCuとの合金とすることもでき、その他Al
等の金属を含んでも良い。金属基複合材料としての要求
性能に応じて金属種やその配合比を適宜設定することが
できる。
The above metal is a metal containing Ag.
High thermal conductivity can be obtained by using Ag as the filling metal or a metal containing Ag. Further, the metal may be an alloy of Ag and Cu, and other Al
You may include metals, such as. The metal species and the compounding ratio thereof can be appropriately set according to the required performance as the metal-based composite material.

【0032】上記多孔体は、多数の粒子を圧縮固着する
ことにより成形されてなり、上記多孔体を構成する粒子
は、ダイヤモンド、SiC、AlN、Si34、黒鉛の
少なくとも1種以上からなる。高熱伝導率の複合材料を
得るには、多孔体を構成する粒子自体の熱伝導率が高い
ことが必須であるため、上記粒子としては、ダイヤモン
ド、SiC、AlN、Si34、黒鉛などが好ましく、
特に高熱伝導率を得るにはダイヤモンドが好適である。
The porous body is formed by compressing and fixing a large number of particles, and the particles constituting the porous body are composed of at least one of diamond, SiC, AlN, Si 3 N 4 and graphite. . In order to obtain a composite material having a high thermal conductivity, it is essential that the particles themselves constituting the porous body have a high thermal conductivity. Therefore, as the above particles, diamond, SiC, AlN, Si 3 N 4 , graphite or the like is used. Preferably
Especially, diamond is suitable for obtaining high thermal conductivity.

【0033】上記多孔体は、柱状に成長したβ型Si3
4粒子同士が三次元的にランダムに結合したSi34
多孔体であることが好ましい。この多孔体は高強度であ
るので、この多孔体に金属を析出させて緻密化させるこ
とにより、より高強度で熱伝導率の高い複合材料を得る
ことができる。この場合、平均空孔径が0.01〜3μ
m程度のSi34多孔体を用いると、さらに熱伝導率が
高く、極めて強度の高い複合材料とすることができる。
The above-mentioned porous body is a β type Si 3 grown in a columnar shape.
Si 3 N 4 in which N 4 particles are three-dimensionally randomly bonded
It is preferably a porous body. Since this porous body has high strength, a composite material having higher strength and higher thermal conductivity can be obtained by depositing a metal on the porous body to densify it. In this case, the average pore diameter is 0.01 to 3 μ
By using a porous Si 3 N 4 body having a size of about m, it is possible to obtain a composite material having an even higher thermal conductivity and an extremely high strength.

【0034】上記多孔体を構成する粒子の平均粒径は、
特に制限はないが、5μm〜500μmであるのが好ま
しい。これは、500μmを超えると複合材料を加工し
にくくなるし、5μmより小さいと粒子の表面積が増加
して粒子と金属との界面面積が大きくなり、大きな熱抵
抗が生じてしまうためである。なお、多孔体を構成する
粒子の平均粒径は、複合材料を放熱材として用いる場合
は、20〜500μm、好ましくは30〜300μm、
さらに好ましくは30〜150μmである。
The average particle size of the particles constituting the above porous body is
Although not particularly limited, it is preferably 5 μm to 500 μm. This is because if it exceeds 500 μm, it becomes difficult to process the composite material, and if it is less than 5 μm, the surface area of the particles increases and the interfacial area between the particles and the metal increases, resulting in a large thermal resistance. The average particle size of the particles forming the porous body is 20 to 500 μm, preferably 30 to 300 μm when the composite material is used as a heat dissipation material.
More preferably, it is 30 to 150 μm.

【0035】また、半導体用ヒートシンクとして用いる
金属基複合材料は、その相対密度は75%以上、熱伝導
率は400W/mK以上で高い方が好ましいが、400
W/mK〜700W/mKが好適である。熱膨張係数は
6.0ppm/K(6.0×10−6/K)〜10.0
ppm/K(10.0×10−6/K)が好ましい。
The metal-based composite material used as a heat sink for semiconductors preferably has a relative density of 75% or more and a thermal conductivity of 400 W / mK or more, which is higher.
W / mK to 700 W / mK is preferable. The coefficient of thermal expansion is 6.0 ppm / K (6.0 × 10 −6 / K) to 10.0.
ppm / K (10.0 × 10 −6 / K) is preferable.

【0036】また、多孔体の形状は、円板状、その他平
板状、立方体、直方体、その他多面体等、製品としての
使用状態や加工性、製造方法等に応じて種々の形状とす
ることができる。
Further, the shape of the porous body can be various shapes such as disk shape, other flat plate shape, cube, rectangular parallelepiped, and other polyhedron depending on the use state as a product, workability, manufacturing method and the like. .

【0037】[0037]

【発明の実施の形態】以下、本発明の実施形態を図面を
参照して説明する。図1は、本発明の金属基複合材料1
0を示し、金属基複合材料10は、複数の空孔11Aを
有する多孔体11を備え、多孔体11の空孔11A内に
金属12が充填されてなる構成としている。相対密度は
99.1%、熱伝導率は600W/mK、熱膨張係数は
9.8ppm/Kとしており、半導体用ヒートシンクと
して特に有用である。
DETAILED DESCRIPTION OF THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a metal matrix composite material 1 of the present invention.
0 indicates that the metal-based composite material 10 includes a porous body 11 having a plurality of pores 11A, and the pores 11A of the porous body 11 are filled with a metal 12. The relative density is 99.1%, the thermal conductivity is 600 W / mK, and the thermal expansion coefficient is 9.8 ppm / K, which is particularly useful as a heat sink for semiconductors.

【0038】空孔11A内に充填された金属12は、金
属12の陽イオンが多孔体11の表面に直接析出された
金属12からなり、Ag(銀)としている。また、多孔
体11は、多数の粒子11Bを圧縮固着して成形し、こ
れら粒子11Bの隙間に多孔体11の表面開口に連通す
る三次元網状の空孔11Aが形成されている。上記粒子
として平均粒径が300μmのダイヤモンド粒子を用い
て成形されている。
The metal 12 filled in the pores 11A is composed of the metal 12 in which the cations of the metal 12 are directly deposited on the surface of the porous body 11, and is Ag (silver). Further, the porous body 11 is formed by compressing and fixing a large number of particles 11B, and three-dimensional net-like pores 11A communicating with the surface openings of the porous body 11 are formed in the gaps between these particles 11B. As the particles, diamond particles having an average particle diameter of 300 μm are used for molding.

【0039】以下、本発明の金属基複合材料の製造方法
の第1実施形態について説明する。第1実施形態では、
Agイオンを含む溶液Aと、還元剤を含む溶液Bとを混
合し、この混合により調製しためっき液Q中にダイヤモ
ンド多孔体を浸漬して、多孔体の空孔内にAgを析出さ
せて金属基複合材料を得ている。
The first embodiment of the method for producing a metal-based composite material of the present invention will be described below. In the first embodiment,
The solution A containing Ag ions and the solution B containing a reducing agent are mixed, and the diamond porous body is immersed in the plating solution Q prepared by this mixing to deposit Ag in the pores of the porous body to form a metal. A matrix composite material is obtained.

【0040】具体的には、まず、図2(A)に示すよう
に、平均粒径が300μmのダイヤモンド粒子11Bを
多数圧縮固着して成形した多孔体11を準備する。多孔
体11は、多数の粒子11Bが互いに密着することによ
り多数の空孔11Aを有する。空孔11Aは多孔体11
の両面開口に連続し、めっき液が一側開口から空孔11
A内を通って他側開口へ流出する透過性を有している。
多孔体11は、直径10mm、厚さ100μmの円板状
とし、相対密度は50%としている。また、前処理とし
て、多孔体11を硝酸、水酸化ナトリウム水溶液、純水
に順次浸漬し、多孔体11の表面を洗浄している。
Specifically, first, as shown in FIG. 2 (A), a porous body 11 formed by compressing and fixing a large number of diamond particles 11B having an average particle diameter of 300 μm is prepared. The porous body 11 has a large number of pores 11A due to a large number of particles 11B being in close contact with each other. The pores 11A are porous bodies 11
The plating solution is continuous with the openings on both sides of the
It is permeable to flow through the inside of A to the other side opening.
The porous body 11 has a disk shape with a diameter of 10 mm and a thickness of 100 μm, and the relative density is 50%. Further, as a pretreatment, the porous body 11 is sequentially immersed in nitric acid, an aqueous sodium hydroxide solution, and pure water to wash the surface of the porous body 11.

【0041】次に、容器15において、蒸留水に固体の
硝酸銀を溶かす。これに強塩基である5%アンモニア水
を加え溶液Aを得る。アンモニア水を加えると、最初は
褐色の沈殿(にごり)である酸化銀(AgO)ができる
(反応(1))。 2Ag++2OH-→Ag2O↓+H2O・・・反応式(1)
Next, in the container 15, solid silver nitrate is dissolved in distilled water. A strong base, 5% aqueous ammonia, is added to this to obtain solution A. When ammonia water is added, silver oxide (AgO), which is initially a brown precipitate (turbidity), is formed (reaction (1)). 2Ag + + 2OH - → Ag 2 O ↓ + H 2 O ··· reaction formula (1)

【0042】その後、この沈殿がちょうど消えてしまう
までアンモニア水を加えると、沈殿はジアンミン銀イオ
ンとなって溶解し、無色透明の硝酸銀水溶液となる(反
応(2))。反応(1)と反応(2)は5℃〜10℃の低
温で行っている。 Ag2O+4NH3+HO→2[Ag(NH32]++2OH・・反応式(2)
After that, when ammonia water is added until the precipitate just disappears, the precipitate becomes diammine silver ions and dissolves to become a colorless and transparent silver nitrate aqueous solution (reaction (2)). Reaction (1) and reaction (2) are performed at a low temperature of 5 ° C to 10 ° C. Ag 2 O + 4NH 3 + H 2 O → 2 [Ag (NH 3 ) 2 ] + + 2OH ·· Reaction formula (2)

【0043】この溶液Aを攪拌しつつ、ホルマリン(ホ
ルムアルデヒドの37%以上の水溶液)を含み還元性を
有する溶液Bを加え、めっき液Qを得ている。図2
(B)に示すように、めっき液Qを容器15ごとガラス
容器16内に入れ、その後、多孔体11をめっき液Q中
に浸漬させる。その後、ガラス容器16内をロータリー
ポンプ17で真空引きし、真空条件下としている。
While stirring this solution A, a reducing solution B containing formalin (37% or more formaldehyde aqueous solution) is added to obtain a plating solution Q. Figure 2
As shown in (B), the plating solution Q together with the container 15 is placed in the glass container 16, and then the porous body 11 is immersed in the plating solution Q. After that, the inside of the glass container 16 is evacuated by the rotary pump 17 to maintain the vacuum condition.

【0044】この状態において、めっき液Qの温度を5
0℃に加熱し、多孔体11をめっき液Q中に10時間浸
漬させることにより、めっき液Qと多孔体11の空孔1
1Aの表面とを接触させ、還元剤であるホルマリンの還
元作用によりAgを多孔体11の空孔11Aの表面に連
続的に析出させ、多孔体11の空孔11A中にAgを緻
密に充填している。
In this state, the temperature of the plating solution Q is set to 5
By heating to 0 ° C. and immersing the porous body 11 in the plating solution Q for 10 hours, the plating solution Q and the pores 1 of the porous body 11 are
1A is brought into contact with the surface of the porous body 11, and Ag is continuously deposited on the surface of the pores 11A of the porous body 11 by the reducing action of the reducing agent formalin, and Ag is densely filled in the pores 11A of the porous body 11. ing.

【0045】なお、Agの析出速度の制御は、反応式
(2)で得られる硝酸銀水溶液の温度を制御することによ
り行うことができ、本実施形態では、加熱ヒーター18
を用い、多孔体11を浸漬中の硝酸銀水溶液の温度を加
熱してホルマリンによるAgの還元性を高めて、銀の析
出速度を大きくしている。
The Ag precipitation rate is controlled by the reaction formula
This can be performed by controlling the temperature of the silver nitrate aqueous solution obtained in (2). In the present embodiment, the heater 18
Is used to heat the temperature of the aqueous silver nitrate solution during the immersion of the porous body 11 to enhance the reducibility of Ag by formalin and increase the deposition rate of silver.

【0046】このように、金属Agのイオンを含む溶液
Aと還元剤を含む溶液Bとを混合してめっき液Qを得
て、該めっき液Q中に多孔体11を浸漬しているので、
多孔体11の空孔11A内にめっき液Qが流れ込み、還
元剤の還元作用により空孔11A内にAgを析出させ、
空孔11AをAgで充填することができる。かつ、めっ
き液Qの温度制御を行うと共に、浸漬を真空下で行って
いるので、多孔体11の空孔11AにAgを効率よく析
出させることができる。
In this way, the solution A containing the ions of metal Ag and the solution B containing the reducing agent are mixed to obtain the plating solution Q, and the porous body 11 is immersed in the plating solution Q.
The plating solution Q flows into the pores 11A of the porous body 11 and Ag is deposited in the pores 11A by the reducing action of the reducing agent.
The holes 11A can be filled with Ag. Moreover, since the temperature of the plating solution Q is controlled and the immersion is performed under vacuum, Ag can be efficiently deposited in the pores 11A of the porous body 11.

【0047】以下、本発明の金属基複合材料の製造方法
の第2実施形態について説明する。第2実施形態では、
めっき液を多孔体で連続的にろ過し、めっき液と多孔体
の空孔の表面とを連続的に接触させ、空孔内に金属を充
填し、金属基複合材料を得ている。
The second embodiment of the method for producing a metal-based composite material of the present invention will be described below. In the second embodiment,
The plating solution is continuously filtered with a porous body, the plating solution and the surface of the pores of the porous body are continuously brought into contact with each other, and the pores are filled with a metal to obtain a metal-based composite material.

【0048】具体的には、図3に示すように、クロスフ
ローろ過装置30に多孔体21をセットし、ろ過を行っ
ている。多孔体は21、平均粒径100μmのダイヤモ
ンド粒子から成形し、直径10mm、厚さ1000μm
の円板状とし、相対密度は66%としている。溶液Aは
第1実施形態と同様とし、溶液BはKBH4として混合
溶液を得ている。
Specifically, as shown in FIG. 3, the porous body 21 is set in the cross flow filtration device 30 and filtration is performed. The porous body 21 is formed from diamond particles having an average particle size of 100 μm, and the diameter is 10 mm and the thickness is 1000 μm
Disk shape and the relative density is 66%. The solution A was the same as in the first embodiment, and the solution B was KBH 4 to obtain a mixed solution.

【0049】クロスフローろ過装置30は、めっき液Q
を供給する原液タンク31と、原液タンク31に送水す
る新たなめっき液を貯蔵する予備タンク32と、金属イ
オンと還元剤の濃度が低下した廃液を流し込む廃液タン
ク33と、多孔体ホルダー34と、該多孔体ホルダー3
4を収容する加熱炉40を備えている。また、各タンク
31〜33と多孔体ホルダー34は、循環路35を通じ
て連結され、循環路35内にめっき液を送水させてい
る。めっき液は原液タンク31から送水ポンプ36を介
して多孔体21に供給されると共に、濃度が低下しため
っき液はドレインポンプ37を介して廃液タンク33に
流され、かつ、新たなめっき液は予備タンク32から予
備室38を介して原液タンク31に新規に供給される構
成としている。原液タンク31は5℃〜10℃程度の低
温でめっき液を保管できる構成とし、多孔体ホルダー3
4を加熱炉40に収容することにより、ろ過時のめっき
液の温度を50℃程度に保温できる構成としている。な
お、加熱炉40に多孔体ホルダー34を収容する代わり
に、ヒータを付設してめっき液を上記温度に加熱保持し
てもよい。
The cross-flow filtration device 30 uses the plating solution Q.
A stock solution tank 31 for supplying a stock solution, a reserve tank 32 for storing a new plating solution to be supplied to the stock solution tank 31, a waste solution tank 33 for pouring a waste solution having a reduced concentration of metal ions and a reducing agent, and a porous body holder 34, The porous body holder 3
The heating furnace 40 for accommodating 4 is provided. Further, each of the tanks 31 to 33 and the porous body holder 34 are connected through a circulation path 35, and the plating solution is fed into the circulation path 35. The plating solution is supplied from the stock solution tank 31 to the porous body 21 via the water supply pump 36, the plating solution having a reduced concentration is flowed to the waste solution tank 33 via the drain pump 37, and a new plating solution is reserved. The stock solution is newly supplied from the tank 32 to the stock solution tank 31 via the auxiliary chamber 38. The stock solution tank 31 is configured to store the plating solution at a low temperature of about 5 ° C. to 10 ° C., and the porous body holder 3
By housing No. 4 in the heating furnace 40, the temperature of the plating solution during filtration can be kept at about 50 ° C. Instead of accommodating the porous body holder 34 in the heating furnace 40, a heater may be attached to heat and maintain the plating solution at the above temperature.

【0050】クロスフローろ過装置30において、多孔
体21をOリング39を介して多孔体ホルダー34に設
置し、図中矢印の向きにめっき液を循環させ、多孔体2
1の一面側(下面側)から他面側(上面側)に向かって
連続的にめっき液を送水し、多孔体21の空孔21A中
にめっき液を通過させている。めっき液が空孔21A中
で還元されて、空孔21A内にAgを析出している。
In the cross-flow filtration device 30, the porous body 21 is placed on the porous body holder 34 via the O-ring 39, and the plating solution is circulated in the direction of the arrow in the figure to obtain the porous body 2
The plating solution is continuously fed from one surface side (lower surface side) of the No. 1 toward the other surface side (upper surface side), and the plating solution is passed through the holes 21A of the porous body 21. The plating solution is reduced in the holes 21A to deposit Ag in the holes 21A.

【0051】また、濃度の低下しためっき液は廃液タン
ク33に流し出すと共に、新たなめっき液を予備タンク
32から原液タンク31に供給することで、多孔体21
の空孔21Aの表面を常に新鮮なめっき液と接触させて
いる。なお、多孔体21の上下間の圧力差である膜間差
圧は0.1MPaとし、流速2m/sで10時間ろ過を
行っている。
Further, the plating solution having a reduced concentration is poured out to the waste solution tank 33, and a new plating solution is supplied from the spare tank 32 to the stock solution tank 31, whereby the porous body 21 is obtained.
The surface of the hole 21A is always in contact with a fresh plating solution. The transmembrane pressure difference, which is the pressure difference between the upper and lower sides of the porous body 21, was 0.1 MPa, and filtration was performed for 10 hours at a flow rate of 2 m / s.

【0052】このように、多孔体21を用いてめっき液
Qを循環ろ過することにより、多孔体21の厚みが厚い
場合でも、空孔21A内にめっき液Qを十分接触させる
ことができ、多孔体21の中心近傍でも金属を析出させ
ることができる。また、連続的に新鮮なめっき液を供給
しているため、常に効率良く金属を析出することができ
る。
As described above, by circulating and filtering the plating solution Q using the porous body 21, the plating solution Q can be sufficiently brought into contact with the pores 21A even when the thickness of the porous body 21 is large. The metal can be deposited near the center of the body 21. Moreover, since the fresh plating solution is continuously supplied, the metal can be always deposited efficiently.

【0053】次ぎに、本発明の金属基複合材料の製造方
法の第3実施形態の部分浸漬法について説明する。第3
実施形態では、多孔体を所定厚みづつめっき液中に浸漬
し、めっき液中に浸漬させた部分の空孔内に金属を充填
させた後、多孔体の残りの部分についても、順次めっき
液中に浸漬を繰り返し、所定厚みずつ空孔内に金属を充
填させ、最終的に多孔体全体の空孔内に金属を充填し、
金属基複合材料を得ている。
Next, the partial dipping method of the third embodiment of the method for producing a metal-based composite material of the present invention will be described. Third
In the embodiment, the porous body is dipped into the plating solution by a predetermined thickness, and after filling the metal in the pores of the portion immersed in the plating solution, the remaining portion of the porous body is also sequentially plated in the plating solution. Repeatedly dipping in, the metal is filled into the pores by a predetermined thickness, and finally the metal is filled into the pores of the entire porous body,
A metal matrix composite material is obtained.

【0054】具体的には、図4(A)〜(F)に示すよ
うに、ワイヤwにつるした多孔体41を所定厚みずつ段
階的にめっき槽50のめっき液Q中に浸漬させている。
多孔体41は、平均粒径30μmのダイヤモンド粒子か
ら成形し、直径10mm、厚さ1000μmの円板状と
し、相対密度は66%としている。溶液Aは第1実施形
態と同様とし、溶液BはKBH4として混合溶液を得て
いる。
Specifically, as shown in FIGS. 4A to 4F, the porous body 41 hung on the wire w is immersed in the plating solution Q in the plating bath 50 step by step by a predetermined thickness. .
The porous body 41 is formed from diamond particles having an average particle size of 30 μm, is formed into a disk shape having a diameter of 10 mm and a thickness of 1000 μm, and has a relative density of 66%. The solution A was the same as in the first embodiment, and the solution B was KBH 4 to obtain a mixed solution.

【0055】まず、図4(A)〜(C)に示すように、
多孔体41を下面から100μm分だけめっき液Qに浸
漬する。空孔41A内にめっき液を流し込み、浸漬させ
た部分に金属(Ag)42を析出させる。その後、めっ
き液槽50内のめっき液を交換し、新たなめっき液Q中
に、図4(D)に示すように、多孔体41を100μm
だけ沈め、浸漬させた部分に金属(Ag)42を析出さ
せる。この所定厚み毎の浸漬を、図4(E)、(F)に
示すように、新鮮なめっき液で段階的に繰り返し行う。
図4(F)は最終段階を示し、多孔体41の全体(厚さ
1000μm)をめっき液中に浸漬し、最も上層部分の
空孔内に金属(Ag)を析出させている。
First, as shown in FIGS. 4 (A) to 4 (C),
The porous body 41 is immersed in the plating solution Q for 100 μm from the lower surface. The plating solution is poured into the holes 41A to deposit the metal (Ag) 42 on the immersed portion. Then, the plating solution in the plating solution tank 50 is replaced, and the porous body 41 is replaced with 100 μm in the new plating solution Q as shown in FIG. 4 (D).
The metal (Ag) 42 is deposited on the immersed portion. The immersion for each predetermined thickness is repeated stepwise with a fresh plating solution as shown in FIGS. 4 (E) and 4 (F).
FIG. 4F shows the final stage, in which the entire porous body 41 (thickness: 1000 μm) is immersed in the plating solution to deposit the metal (Ag) in the pores in the uppermost layer.

【0056】このように、段階的に多孔体をめっき液Q
中に浸漬させていくことで、多孔体41の厚みが厚い場
合でも、段階的に緻密に金属42を析出することがで
き、多孔体41全体の空孔41A内に、完全に金属42
を充填させることができる。
In this way, the porous body is gradually plated with the plating solution Q.
Even when the porous body 41 has a large thickness, the metal 42 can be densely deposited in a stepwise manner by immersing the porous body 41 in the pores 41A of the entire porous body 41, and the metal 42 can be completely removed.
Can be filled.

【0057】上記実施形態以外に、析出させる金属とし
ては、Cu、Al等を用いることもでき、Ag等との合
金として析出させても良い。また多孔体は、柱状に成長
したβ型Si34粒子同士が三次元的にランダムに結合
したSi34多孔体等を用いることもでき、材質や構成
粒径等を適宜変更することができる。
In addition to the above-mentioned embodiment, Cu, Al, or the like may be used as the metal to be deposited, or may be deposited as an alloy with Ag or the like. Further, as the porous body, it is possible to use a Si 3 N 4 porous body in which β-type Si 3 N 4 particles grown in a columnar shape are three-dimensionally randomly bonded, and the material, the constituent particle size, etc. may be appropriately changed. You can

【0058】以下、本発明の実施例について詳述する。Examples of the present invention will be described in detail below.

【0059】(実施例1)平均粒径が300μmのダイ
ヤモンド粉末を圧縮して固着し、直径10mm×厚さ5
0μm、100μm、200μm、500μm、100
0μm(1mm)に厚さを各々変更して成形し、相対密
度50%の円板状の多孔体を得た。 ≪試薬準備≫ 試薬・・・・硝酸銀(AgNO3)2g、5%アンモニ
ア水(NH3)5ml、35%ホルマリン2ml、4m
ol/l(20%)硝酸(HNO3)50ml、20%水
酸化ナトリウム溶液(NaOH)50mlを用いた。 ≪溶液の調製≫ 溶液A:蒸留水60mlに硝酸銀2gを溶かした。これ
に5%アンモニア水を加えた。はじめ、褐色の沈殿(に
ごり)ができたが、これがちょうど消えてしまうまで、
アンモニア水を加え、最終的に水を加えて100mlに
した。 溶液B:蒸留水100mlホルマリン2mlを加えた。 ≪多孔体前処理≫多孔体を20%硝酸に5分、その後2
0%水酸化ナトリウムに5分、最後に、純水に5分浸漬
し、ダイヤ粒子表面の汚れを除去した。 ≪緻密化(金属の析出)≫5℃に保持した溶液Aと溶液
Bを同量ずつ混ぜためっき液を作製し、液が透明になる
まで放置した。(15分) 各多孔体をめっき液に浸漬し、めっき液を容器ごとガラ
ス容器に入れ、ガラス容器内をロータリーポンプで真空
引きし、1×10-3torrに達した後、めっき液を5
0℃に加熱した。そのまま5〜15hr放置後、引き上
げて試料を評価した。結果を下記の表1に示す。
Example 1 Diamond powder having an average particle size of 300 μm was compressed and fixed, and a diameter of 10 mm and a thickness of 5
0 μm, 100 μm, 200 μm, 500 μm, 100
The thickness was changed to 0 μm (1 mm), and molding was performed to obtain a disk-shaped porous body having a relative density of 50%. «Reagents Preparation» reagent .... nitrate (AgNO 3) 2g, 5% ammonia water (NH 3) 5ml, 35% formalin 2 ml, 4m
50 ml of ol / l (20%) nitric acid (HNO 3 ) and 50 ml of 20% sodium hydroxide solution (NaOH) were used. << Preparation of Solution >> Solution A: 2 g of silver nitrate was dissolved in 60 ml of distilled water. To this, 5% aqueous ammonia was added. At first, a brown precipitate was formed, but until it just disappeared,
Ammonia water was added, and finally water was added to make 100 ml. Solution B: 100 ml of distilled water and 2 ml of formalin were added. << Pretreatment of Porous Material >> The porous material is treated with 20% nitric acid for 5 minutes, and then 2
It was immersed in 0% sodium hydroxide for 5 minutes and finally in pure water for 5 minutes to remove dirt on the surface of the diamond particles. << Dense densification (deposition of metal) >> A plating solution was prepared by mixing solution A and solution B held at 5 ° C in equal amounts, and allowed to stand until the solution became transparent. (15 minutes) Each porous body was immersed in a plating solution, the plating solution was placed in a glass container together with the container, the glass container was evacuated by a rotary pump to reach 1 × 10 −3 torr, and then the plating solution was added to 5
Heated to 0 ° C. The sample was evaluated by pulling it up after leaving it for 5 to 15 hours. The results are shown in Table 1 below.

【0060】[0060]

【表1】 [Table 1]

【0061】各項目については、下記の方法により測定
を行った。実施例2〜4についても同様とした。 相対密度:緻密化処理前後の重量変化より、試料の相対
密度を計算 熱伝導率:レーザーフラッシュ法により測定 熱膨張係数:差動トランス式装置で測定(室温〜200
℃の平均熱膨張係数) X線回折:析出相を同定
Each item was measured by the following method. The same applies to Examples 2 to 4. Relative density: Calculate relative density of sample from weight change before and after densification Thermal conductivity: Measured by laser flash method Coefficient of thermal expansion: Measured by differential transformer type device (room temperature to 200
Average thermal expansion coefficient in ° C) X-ray diffraction: Identifies the precipitated phase

【0062】表1に示すように、めっき処理後、金属A
gが析出し、複合材料の熱伝導率は、成形体厚が100
0μmのものを除いて、金属Ag(420W/mK)よ
りも高くなった。また、成形体厚が100μm以下の場
合、相対密度が99%以上の複合材料が得られた。ま
た、めっき時間は10hrでほぼ効果が飽和することが
確認された。
As shown in Table 1, after the plating treatment, metal A
g is deposited, and the thermal conductivity of the composite material is 100
It was higher than that of metallic Ag (420 W / mK) except for those of 0 μm. Moreover, when the thickness of the molded body was 100 μm or less, a composite material having a relative density of 99% or more was obtained. It was also confirmed that the effect was almost saturated when the plating time was 10 hours.

【0063】(実施例2)平均粒径が10〜550μm
のダイヤモンド粉末を直径10mm×厚さ100μmに
成形し、相対密度66%の円板状の多孔体を得た。ダイ
ヤモンド粒径の異なる8種の多孔体を得た。 ≪試薬準備≫ 試薬・・・・硝酸銀(AgNO)2g、硫酸銅0.6
g、5%アンモニア水(NH)5ml、NaBH4
たはKBH4 2ml、4mol/l(20%)硝酸(H
NO3)50ml、20%水酸化ナトリウム溶液(Na
OH)50mlを用いた。 ≪溶液の調製≫ 溶液A:蒸留水60mlに硝酸銀2gと硫酸銅0.6g
を溶かした。これに5%アンモニア水を加えた。はじ
め、褐色の沈殿(にごり)ができたが、これがちょうど
消えてしまうまで、アンモニア水を加え、最終的に水を
加えて100mlにした。 溶液B:蒸留水100mlにNaBH4、またはKBH4
を2mlを加えた。 ≪多孔体前処理≫多孔体を20%硝酸に5分、その後2
0%水酸化ナトリウムに5分、最後に、純水に5分浸漬
し、ダイヤ粒子表面の汚れを除去した。 ≪緻密化(金属の析出)≫5℃に保持した溶液Aと溶液
Bを同量ずつ混ぜためっき液を作製し、液が透明になる
まで放置した。(15分) 各多孔体をめっき液に浸漬し、めっき液を容器ごとガラ
ス容器に入れ、ガラス容器内をロータリーポンプで真空
引きし、1×10-3torrに達した後、めっき液を5
0℃に加熱した。そのまま10hr放置後、引き上げて
試料を評価した。結果を下記の表2に示す。
(Example 2) Average particle size is 10 to 550 μm
The diamond powder of 1 was molded into a diameter of 10 mm and a thickness of 100 μm to obtain a disk-shaped porous body having a relative density of 66%. Eight types of porous bodies having different diamond grain sizes were obtained. «Reagent preparation» reagent ... silver nitrate (AgNO 3) 2g, copper sulfate 0.6
g, 5% ammonia water (NH 3 ) 5 ml, NaBH 4 or KBH 4 2 ml, 4 mol / l (20%) nitric acid (H
NO 3 ) 50 ml, 20% sodium hydroxide solution (Na
OH) 50 ml was used. << Preparation of Solution >> Solution A: 2 g of silver nitrate and 0.6 g of copper sulfate in 60 ml of distilled water.
Melted. To this, 5% aqueous ammonia was added. At first, a brown precipitate was formed, but ammonia water was added until the precipitate just disappeared, and finally water was added to make 100 ml. Solution B: NaBH 4 or KBH 4 in 100 ml of distilled water
2 ml was added. << Pretreatment of Porous Material >> The porous material is treated with 20% nitric acid for 5 minutes, and then 2
It was immersed in 0% sodium hydroxide for 5 minutes and finally in pure water for 5 minutes to remove dirt on the surface of the diamond particles. << Dense densification (deposition of metal) >> A plating solution was prepared by mixing solution A and solution B held at 5 ° C in equal amounts, and allowed to stand until the solution became transparent. (15 minutes) Each porous body was immersed in a plating solution, the plating solution was placed in a glass container together with the container, the glass container was evacuated by a rotary pump to reach 1 × 10 −3 torr, and then the plating solution was added to 5
Heated to 0 ° C. The sample was evaluated by pulling it up after leaving it for 10 hours. The results are shown in Table 2 below.

【0064】[0064]

【表2】 [Table 2]

【0065】表2に示すように、めっき処理後、金属A
g-Cu合金が析出した。ダイヤ粒径が20μm以上の
場合、複合材料の熱伝導率はいずれも金属Agの熱伝導
率(420W/mK)よりも高くなった。
As shown in Table 2, after the plating treatment, the metal A
A g-Cu alloy was deposited. When the diamond particle size was 20 μm or more, the thermal conductivity of each of the composite materials was higher than the thermal conductivity of metal Ag (420 W / mK).

【0066】(実施例3)平均粒径が100μmのダイ
ヤモンド粉末を直径10mm×厚さ1、2、5mmに成
形し、相対密度66%の円板状の多孔体を得た。 ≪試薬準備≫ 試薬・・・・硝酸銀(AgNO3)200g、5%アン
モニア水(NH3)500ml、KBH4 200ml、
4mol/l(20%)硝酸(HNO3)5000ml、
20%水酸化ナトリウム溶液(NaOH)5000ml
を用いた。 ≪溶液の調製≫ 溶液A:蒸留水6000mlに硝酸銀200gを溶かし
た。これに5%アンモニア水を加えた。はじめ、褐色の
沈殿(にごり)ができたが、これがちょうど消えてしま
うまで、アンモニア水を加え、最終的に水を加えて10
000mlにした。 溶液B:蒸留水10000mlにKBH4を200ml
加えた。 ≪多孔体前処理≫多孔体を20%硝酸に5分、その後2
0%水酸化ナトリウムに5分、最後に、純水に5分浸漬
し、ダイヤ粒子表面の汚れを除去した。 ≪緻密化(金属の析出)≫5℃に保持した溶液Aと溶液
Bを同量ずつ混ぜためっき液を作製し、液が透明になる
まで放置した。(15分) 各多孔体とめっき液を、図3に示すクロスフローろ過装
置に設置し、膜間差圧0.1MPa、流速2m/s、温
度50℃で10hrろ過した。ろ過後の試料を評価し
た。原液タンクは低温(5〜10℃)とした。本実施例
では、加熱炉を用いずに、クロスフローでめっき液が流
れて摩擦が発生することで温度を上昇させ、ろ過温度を
50℃とした。なお、ろ過装置ではポンプによる循環で
吐出側の流入口では加圧が負荷され、流出口では吸引側
の負圧が負荷された。また、比較として、ろ過をせず
に、実施例1、2と同様に浸漬のみを行った試料も作製
評価した。結果を下記の表3に示す。
Example 3 Diamond powder having an average particle size of 100 μm was molded into a diameter of 10 mm and a thickness of 1, 2, 5 mm to obtain a disk-shaped porous body having a relative density of 66%. «Reagent preparation» reagent ... silver nitrate (AgNO 3) 200g, 5% aqueous ammonia (NH 3) 500ml, KBH 4 200ml,
5000 mol of 4 mol / l (20%) nitric acid (HNO 3 ),
5000 ml of 20% sodium hydroxide solution (NaOH)
Was used. << Preparation of Solution >> Solution A: 200 g of silver nitrate was dissolved in 6000 ml of distilled water. To this, 5% aqueous ammonia was added. At first, a brown precipitate was formed, but until it disappeared, ammonia water was added, and finally water was added to add 10
It was 000 ml. Solution B: 200 ml of KBH 4 in 10,000 ml of distilled water
added. << Pretreatment of Porous Material >> The porous material is treated with 20% nitric acid for 5 minutes, and then 2
It was immersed in 0% sodium hydroxide for 5 minutes and finally in pure water for 5 minutes to remove dirt on the surface of the diamond particles. << Dense densification (deposition of metal) >> A plating solution was prepared by mixing solution A and solution B held at 5 ° C in equal amounts, and allowed to stand until the solution became transparent. (15 minutes) Each porous body and the plating solution were placed in the cross-flow filtration device shown in FIG. 3, and filtered for 10 hours at a transmembrane pressure difference of 0.1 MPa, a flow rate of 2 m / s and a temperature of 50 ° C. The sample after filtration was evaluated. The stock solution tank was set to a low temperature (5 to 10 ° C). In the present example, the temperature was raised by the flow of the plating solution in a cross flow to generate friction without using a heating furnace, and the filtration temperature was set to 50 ° C. In the filtration device, pressurization was applied at the discharge side inlet and negative pressure at the suction side was applied at the outlet side due to circulation by the pump. In addition, as a comparison, a sample in which only dipping was performed in the same manner as in Examples 1 and 2 without filtering was also produced and evaluated. The results are shown in Table 3 below.

【0067】[0067]

【表3】 [Table 3]

【0068】表3に示すように、めっき処理後、金属A
gが析出し、熱伝導率は金属Agの熱伝導率(420W
/mK)以上であった。また、ろ過法を用いると、成形
体厚さが1000μm以上と大きくなっても、相対密度
99%以上の複合材料が得られた。
As shown in Table 3, after the plating treatment, the metal A
g is deposited, and the thermal conductivity is that of metallic Ag (420 W
/ MK) or more. Further, when the filtration method was used, a composite material having a relative density of 99% or more was obtained even if the thickness of the molded body increased to 1000 μm or more.

【0069】(実施例4)平均粒径が30μmのダイヤ
モンド、SiC、AlN、Si34、黒鉛粉末を直径1
0mm×厚さ1000μmに成形し、相対密度66%の
円板状の多孔体を得た。また、柱状Si34粒子が三次
元的にランダムに結合した構造を持つ多孔体Si34
ラミックス(住友電気工業(株)製商品名ポアセラム、平
均空孔径0.05μm、0.1μm、0.2μm)も同形
状で用いた。 ≪試薬準備≫ 試薬・・・・硝酸銀(AgNO3)2g、5%アンモニ
ア水(NH3)5ml、KBH4 2ml、4mol/l
(20%)硝酸(HNO3)50ml、20%水酸化ナト
リウム溶液(NaOH)50mlを用いた。 ≪溶液の調製≫ 溶液A:蒸留水60mlに硝酸銀2gを溶かした。これ
に5%アンモニア水を加えた。はじめ、褐色の沈殿(に
ごり)ができたが、これがちょうど消えてしまうまで、
アンモニア水を加え、最終的に水を加えて100mlに
した。 溶液B:蒸留水100mlにKBH4を2mlを加え
た。 ≪多孔体前処理≫多孔体を20%硝酸に5分、その後2
0%水酸化ナトリウムに5分、最後に、純水に5分浸漬
し、多孔体表面の汚れを除去した。 ≪緻密化(金属の析出)≫5℃に保持した溶液Aと溶液
Bを同量ずつ混ぜためっき液を作製し、液が透明になる
まで放置した。(15分) 図4に示す方法により、各多孔体をめっき液に100μ
m深さのみ浸漬し、温度を50℃に加熱して10hr放
置した。その後、新しいめっき液を用い、多孔体を20
0μm深さまで浸漬し(新たに100μm深さ浸漬)、
10hr放置した。これを繰り返して、最終的に多孔体
を1000μm深さまで処理した。めっき処理後の試料
を評価した。結果を下記の表4に示す。なお、曲げ強度
については、3点曲げ強度で評価した。また、真空度が
1×10-3torrの真空条件でめっき処理を行った。
Example 4 Diamond powder having an average particle diameter of 30 μm, SiC, AlN, Si 3 N 4 , and graphite powder were used to obtain a diameter of 1
It was molded into 0 mm × thickness of 1000 μm to obtain a disk-shaped porous body having a relative density of 66%. Further, porous Si 3 N 4 ceramics having a structure in which columnar Si 3 N 4 particles are randomly bonded in a three-dimensional manner (trade name Poacerum manufactured by Sumitomo Electric Industries, Ltd., average pore diameters 0.05 μm, 0.1 μm, 0.2 μm) was also used with the same shape. «Reagents Preparation» reagent .... nitrate (AgNO 3) 2g, 5% ammonia water (NH 3) 5ml, KBH 4 2ml, 4mol / l
50 ml of (20%) nitric acid (HNO 3 ) and 50 ml of 20% sodium hydroxide solution (NaOH) were used. << Preparation of Solution >> Solution A: 2 g of silver nitrate was dissolved in 60 ml of distilled water. To this, 5% aqueous ammonia was added. At first, a brown precipitate was formed, but until it just disappeared,
Ammonia water was added, and finally water was added to make 100 ml. Solution B: 2 ml of KBH 4 was added to 100 ml of distilled water. << Pretreatment of Porous Material >> The porous material is treated with 20% nitric acid for 5 minutes, and then 2
It was immersed in 0% sodium hydroxide for 5 minutes and finally in pure water for 5 minutes to remove stains on the surface of the porous body. << Dense densification (deposition of metal) >> A plating solution was prepared by mixing solution A and solution B held at 5 ° C in equal amounts, and allowed to stand until the solution became transparent. (15 minutes) By the method shown in FIG.
Immersion was performed only at a depth of m, the temperature was heated to 50 ° C., and the mixture was left for 10 hours. After that, a new plating solution is used to make the porous body 20
Immersion to 0 μm depth (newly 100 μm depth immersion),
It was left for 10 hours. By repeating this, the porous body was finally processed to a depth of 1000 μm. The sample after the plating treatment was evaluated. The results are shown in Table 4 below. The bending strength was evaluated by the three-point bending strength. Further, the plating treatment was performed under the vacuum condition of the degree of vacuum of 1 × 10 −3 torr.

【0070】[0070]

【表4】 [Table 4]

【0071】表4に示すように、繰り返しめっき処理を
することにより、成形体厚が1mm(1000μm)で
も緻密化させることができた。また、多孔体としてポア
セラムを用いると、熱伝導率は低下するため、半導体用
ヒートシンク材としては好適ではないが、ダイヤ、SI
C、AlN,Si34、黒鉛からなる多孔体と比較して
強度は極めて高くなるため、高強度の複合材料として好
適に用いられる。
As shown in Table 4, by repeating the plating treatment, the compact could be densified even when the thickness of the compact was 1 mm (1000 μm). In addition, when the porous body is used as the porous body, the thermal conductivity is lowered, so that it is not suitable as a heat sink material for semiconductors, but diamond, SI
Since the strength is extremely higher than that of a porous body composed of C, AlN, Si 3 N 4 , and graphite, it is suitably used as a high-strength composite material.

【0072】[0072]

【発明の効果】以上の説明より明らかなように、本発明
の金属基複合材料の製造方法によれば、金属を陽イオン
として含む溶液Aと還元剤を含む溶液Bとを混合しため
っき液を用い、還元剤の作用により金属を多孔体の空孔
内部で析出させ、この金属の析出により多孔体の空孔内
に緻密に金属を充填している。このため、多孔体と金属
との密着性が良好であり、金属を加熱により溶融状態と
して用いる必要はないため、極めて低コストで、高熱伝
導性を有する金属基複合材料を製造することができる。
As is apparent from the above description, according to the method for producing a metal-based composite material of the present invention, a plating solution containing a solution A containing a metal as a cation and a solution B containing a reducing agent is mixed. A metal is deposited inside the pores of the porous body by the action of the reducing agent, and the metal is densely filled in the pores of the porous body by the deposition of the metal. Therefore, the adhesion between the porous body and the metal is good, and it is not necessary to use the metal in a molten state by heating, so that the metal matrix composite material having high thermal conductivity can be manufactured at extremely low cost.

【0073】また、めっき液の温度を調整することで、
金属の析出効率を高めることができる。さらに、多孔体
の厚みに応じて、多孔体の表面への金属の析出方法を、
ろ過や浸漬等の種々の方法に適宜変更することで、多種
多用な金属基複合材料を高性能で得ることができる。
By adjusting the temperature of the plating solution,
The metal deposition efficiency can be increased. Furthermore, depending on the thickness of the porous body, a method for depositing a metal on the surface of the porous body,
By appropriately changing to various methods such as filtration and dipping, a wide variety of metal-based composite materials can be obtained with high performance.

【0074】また、本発明の金属基複合材料は、空孔内
に充填された金属が、金属のイオンを多孔体の空孔内に
直接析出させた金属からなるため、金属が非常に緻密な
構造である上に、金属と多孔体の間に界面層が存在して
いない。よって、非常に高熱伝導性を得ることができ
る。従って、半導体用ヒートシンク等として好適に用い
ることができる。
Further, in the metal-based composite material of the present invention, the metal filled in the pores is a metal in which the metal ions are directly deposited in the pores of the porous body, so that the metal is very dense. In addition to being a structure, there is no interface layer between the metal and the porous body. Therefore, very high thermal conductivity can be obtained. Therefore, it can be suitably used as a heat sink for semiconductors and the like.

【0075】本発明では、熱伝導率が高く、熱膨張係数
が半導体素子に近い半導体用ヒートシンク材を高温プロ
セスを経ずに安価に作製でき、半導体レーザーやマイク
ロ波デバイス、各種LSIなどの性能を最大限に発揮さ
せることができる。
According to the present invention, a heat sink material for a semiconductor having a high thermal conductivity and a thermal expansion coefficient close to that of a semiconductor element can be manufactured inexpensively without going through a high temperature process, and the performance of semiconductor lasers, microwave devices, various LSIs, etc. You can make the most of it.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の金属基複合材料の概略構成図であ
る。
FIG. 1 is a schematic configuration diagram of a metal matrix composite material of the present invention.

【図2】 (A)(B)は多孔体をめっき液中に浸漬し
て空孔内に金属を析出させる方法を示す図である。
2A and 2B are diagrams showing a method of immersing a porous body in a plating solution to deposit a metal in the pores.

【図3】 クロスフローろ過装置の概略図である。FIG. 3 is a schematic diagram of a cross-flow filtration device.

【図4】 (A)〜(F)は多孔体を所定厚みずつめっ
き液中に浸漬し、段階的に多孔体全体の空孔内に金属を
析出させる方法を示す図である。
4 (A) to (F) are diagrams showing a method of immersing a porous body in a plating solution with a predetermined thickness to gradually deposit metal in the pores of the entire porous body.

【符号の説明】[Explanation of symbols]

10 金属基複合材料 11 多孔体 11A 空孔 11B 粒子 12 金属 10 Metal matrix composite materials 11 Porous body 11A hole 11B particles 12 metal

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K020 AA22 AA24 AC05 BA02 BB30 4K022 AA05 BA01 BA08 BA33 DA04 DB01 DB04 DB06 5F036 AA01 BB01 BD01 BD14 BD16   ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4K020 AA22 AA24 AC05 BA02 BB30                 4K022 AA05 BA01 BA08 BA33 DA04                       DB01 DB04 DB06                 5F036 AA01 BB01 BD01 BD14 BD16

Claims (19)

【特許請求の範囲】[Claims] 【請求項1】 金属を陽イオンとして含む溶液Aと、還
元剤を含む溶液Bとを混合してなるめっき液を、多孔体
の多数の空孔内に充填し、上記還元剤により上記金属を
上記空孔内部に析出させて、上記多孔体と金属とからな
る複合材料を得ることを特徴とする金属基複合材料の製
造方法。
1. A plating solution prepared by mixing a solution A containing a metal as a cation and a solution B containing a reducing agent is filled in a large number of pores of a porous body, and the metal is added by the reducing agent. A method for producing a metal-based composite material, which comprises depositing inside the pores to obtain a composite material comprising the porous body and a metal.
【請求項2】 上記多孔体の空孔は、該多孔体の表面開
口と連通した三次元網状の連続的な細孔あるいは、多孔
体の表面開口に連通した多数の独立した細孔からなり、
上記めっき液を表面側から空孔内部に透過可としてお
り、 上記多孔体の相対密度は40%〜70%、該多孔体の空
孔内部に金属を析出した後の相対密度を88%〜99.
2%としている請求項1に記載の金属基複合材料の製造
方法。
2. The pores of the porous body are composed of continuous three-dimensional mesh-like pores communicating with the surface openings of the porous body or a large number of independent pores communicating with the surface openings of the porous body,
The plating solution is permeable from the surface side to the inside of the pores, the relative density of the porous body is 40% to 70%, and the relative density after the metal is deposited inside the pores of the porous body is 88% to 99%. .
The method for producing a metal-based composite material according to claim 1, wherein the content is 2%.
【請求項3】 上記溶液Aと溶液Bとの混合は、上記還
元剤の還元作用に最適な温度より低温とした低温領域で
行うと共に、 上記金属の析出は、上記めっき液を還元剤の還元作用に
最適な温度に加熱した高温領域で行い、金属の析出速度
を制御している請求項1または請求項2に記載の金属基
複合材料の製造方法。
3. The solution A and the solution B are mixed in a low temperature region which is lower than the optimum temperature for the reducing action of the reducing agent, and the metal is deposited by reducing the plating solution with the reducing agent. The method for producing a metal-based composite material according to claim 1 or 2, wherein the deposition rate of the metal is controlled by performing it in a high temperature region heated to an optimum temperature for the action.
【請求項4】 上記金属はAg系金属とし、上記多孔体
はダイヤモンド、SiC、AlN、Si34、黒鉛の少
なくとも1種以上からなる多数の粒子を三次元的にラン
ダムに圧縮固着して成形したもので、高熱伝導率を有す
る放熱材料としている請求項1乃至請求項3のいずれか
1項に記載の金属基複合材料の製造方法。
4. The Ag-based metal is used as the metal, and the porous body is formed by randomly and three-dimensionally compressing and fixing a large number of particles of at least one of diamond, SiC, AlN, Si 3 N 4 and graphite. The method for producing a metal-based composite material according to any one of claims 1 to 3, wherein the heat-dissipating material is formed and has a high thermal conductivity.
【請求項5】 上記溶液Aと溶液Bは5℃〜10℃の温
度条件下で混合すると共に、上記金属の析出は40℃〜
50℃の温度条件下で行っている請求項4に記載の金属
基複合材料の製造方法。
5. The solution A and the solution B are mixed under a temperature condition of 5 ° C. to 10 ° C., and the precipitation of the metal is 40 ° C.
The method for producing a metal-based composite material according to claim 4, which is performed under a temperature condition of 50 ° C.
【請求項6】 上記溶液Aは、硝酸銀(AgNO3)と
強塩基とを含む水溶液である請求項4または請求項5に
記載の金属基複合材料の製造方法。
6. The method for producing a metal-based composite material according to claim 4, wherein the solution A is an aqueous solution containing silver nitrate (AgNO 3 ) and a strong base.
【請求項7】 上記溶液Aは、Cuをイオンとして含ん
でいる請求項5または請求項6に記載の金属基複合材料
の製造方法。
7. The method for producing a metal-based composite material according to claim 5, wherein the solution A contains Cu as an ion.
【請求項8】 上記溶液Bは、ホルマリン、NaB
4、LiBH4、KBH 4 の少なくともいずれか1つを
溶解させたアルコール溶液又は水溶液である請求項4乃
至請求項7のいずれか1項に記載の金属基複合材料の製
造方法。
8. The solution B is formalin, NaB
HFour, LiBHFour, KBH Four At least one of
It is a dissolved alcohol solution or aqueous solution.
Manufacturing of the metal matrix composite material according to claim 7.
Build method.
【請求項9】 上記多孔体をめっき槽中の上記めっき液
に浸漬させ、多孔体の空孔内部にめっき液を真空引きで
充填し、 空孔内部に上記金属を析出させている請求項1
乃至請求項8のいずれか1項に記載の金属基複合材料の
製造方法。
9. The porous body is dipped in the plating solution in a plating tank, the inside of the pores of the porous body is filled with the plating solution by vacuuming, and the metal is deposited inside the pores.
A method for manufacturing the metal-based composite material according to claim 8.
【請求項10】 上記多孔体を上記めっき液中に所定厚
みずつ段階的に浸漬していき、段階的に多孔体の空孔内
部に上記金属を析出させ、最終的に空孔全体に上記金属
を析出させている請求項9に記載の金属基複合材料の製
造方法。
10. The porous body is gradually dipped in the plating solution by a predetermined thickness to gradually deposit the metal inside the pores of the porous body, and finally the metal is entirely deposited in the pores. The method for producing a metal-based composite material according to claim 9, wherein the metal is deposited.
【請求項11】 上記めっき液をポンプで循環させて上
記多孔体で連続的にろ過し、該多孔体の空孔内部に上記
金属を析出させている請求項1乃至請求項8のいずれか
1項に記載の金属基複合材料の製造方法。
11. The method according to claim 1, wherein the plating solution is circulated by a pump and continuously filtered by the porous body to deposit the metal inside the pores of the porous body. The method for producing a metal-based composite material according to item.
【請求項12】 上記めっき液を上記多孔体の空孔表面
と接触させる前に、上記多孔体の空孔表面を、酸性溶液
あるいは/及びアルカリ性溶液により洗浄している請求
項1乃至請求項11のいずれか1項に記載の金属基複合
材料の製造方法。
12. The pore surface of the porous body is washed with an acidic solution and / or an alkaline solution before the plating solution is brought into contact with the pore surface of the porous body. The method for producing the metal-based composite material according to any one of 1.
【請求項13】 多孔体と、該多孔体の空孔内部の金属
との複合材料であって、 上記金属は、多孔体の空孔内部で金属が直接析出された
ものからなる金属基複合材料。
13. A composite material of a porous body and a metal inside pores of the porous body, wherein the metal is a metal-based composite material in which the metal is directly deposited inside the pores of the porous body. .
【請求項14】 請求項1乃至請求項12のいずれか1
項に記載の製造方法により製造されたものからなる請求
項13に記載の金属基複合材料。
14. The method according to any one of claims 1 to 12.
14. The metal-based composite material according to claim 13, which is manufactured by the manufacturing method according to claim 13.
【請求項15】 上記金属はAg単体あるいはAgとC
uの合金等のAgを含む金属からなる一方、 上記多孔体は多数の粒子を圧縮固着して成形されてな
り、該粒子は、ダイヤモンド、SiC、AlN、Si3
4、黒鉛の少なくとも1種以上からなる請求項13ま
たは請求項14に記載の金属基複合材料。
15. The metal is Ag alone or Ag and C.
On the other hand, the porous body is formed by compressing and fixing a large number of particles, and the particles are diamond, SiC, AlN, Si 3 or the like.
The metal matrix composite material according to claim 13 or 14, comprising at least one of N 4 and graphite.
【請求項16】 上記多孔体は、柱状に成長したβ型S
34粒子同士が三次元的にランダムに結合したSi3
4多孔体である請求項13乃至請求項15のいずれか
1項に記載の金属基複合材料。
16. The β-type S grown in a columnar shape is the porous body.
i 3 N 4 Si 3 in which three particles are randomly bonded in three dimensions
The metal-based composite material according to any one of claims 13 to 15, which is a N 4 porous body.
【請求項17】 上記多孔体を構成する粒子の平均粒径
が5μm〜500μmである請求項15または請求項1
6に記載の金属基複合材料。
17. The average particle size of particles constituting the porous body is 5 μm to 500 μm.
7. The metal matrix composite material according to item 6.
【請求項18】 半導体用ヒートシンクとして用いられ
る請求項13乃至請求項17のいずれか1項に記載の金
属基複合材料。
18. The metal-based composite material according to claim 13, which is used as a heat sink for semiconductors.
【請求項19】 上記半導体用ヒートシンクとして用い
る金属基複合材料の相対密度は75%以上、熱伝導率は
400W/mk〜700W/mk、熱膨張係数は6.0
ppm/K〜10.0ppm/Kである請求項18に記
載の金属基複合材料。
19. The metal-based composite material used as the heat sink for semiconductors has a relative density of 75% or more, a thermal conductivity of 400 W / mk to 700 W / mk, and a thermal expansion coefficient of 6.0.
The metal-based composite material according to claim 18, which has a ppm / K to 10.0 ppm / K.
JP2002112543A 2002-04-15 2002-04-15 Method for manufacturing metal matrix composite material, and metal matrix composite material Withdrawn JP2003306731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002112543A JP2003306731A (en) 2002-04-15 2002-04-15 Method for manufacturing metal matrix composite material, and metal matrix composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002112543A JP2003306731A (en) 2002-04-15 2002-04-15 Method for manufacturing metal matrix composite material, and metal matrix composite material

Publications (1)

Publication Number Publication Date
JP2003306731A true JP2003306731A (en) 2003-10-31

Family

ID=29395022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002112543A Withdrawn JP2003306731A (en) 2002-04-15 2002-04-15 Method for manufacturing metal matrix composite material, and metal matrix composite material

Country Status (1)

Country Link
JP (1) JP2003306731A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006032406A (en) * 2004-07-12 2006-02-02 Sony Corp Semiconductor laser device
JP2006225211A (en) * 2005-02-18 2006-08-31 Dainippon Printing Co Ltd Porous body
JP2008075103A (en) * 2006-09-19 2008-04-03 Sumitomo Electric Ind Ltd Method for forming porous resin material
JP2010522827A (en) * 2007-03-29 2010-07-08 コーニング インコーポレイテッド Method and apparatus for film deposition
JP2016115767A (en) * 2014-12-12 2016-06-23 浜松ホトニクス株式会社 Semiconductor laser unit and semiconductor laser device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006032406A (en) * 2004-07-12 2006-02-02 Sony Corp Semiconductor laser device
JP2006225211A (en) * 2005-02-18 2006-08-31 Dainippon Printing Co Ltd Porous body
JP4742607B2 (en) * 2005-02-18 2011-08-10 大日本印刷株式会社 Porous material
JP2008075103A (en) * 2006-09-19 2008-04-03 Sumitomo Electric Ind Ltd Method for forming porous resin material
JP2010522827A (en) * 2007-03-29 2010-07-08 コーニング インコーポレイテッド Method and apparatus for film deposition
JP2016115767A (en) * 2014-12-12 2016-06-23 浜松ホトニクス株式会社 Semiconductor laser unit and semiconductor laser device

Similar Documents

Publication Publication Date Title
KR0180769B1 (en) Diamond sintered body having strength and high wear-resistance and manufacturing method thereof
KR100218606B1 (en) Process for making coated abrasives
CN101438401B (en) Aluminum-silicon carbide composite body and method for processing the same
JP2004525779A (en) Metal-infiltrated diamond sintered compact composite tool formed from coated diamond particles
US4833040A (en) Oxidation resistant fine metal powder
TW201009092A (en) Aluminum-diamond based complex and method for manufacturing the same
CN113097153B (en) Preparation method of aluminum silicon carbide heat sink substrate and aluminum silicon carbide heat sink substrate
JP6272636B2 (en) Method for manufacturing a device comprising brazing formed from metal oxalate
US4695489A (en) Electroless nickel plating composition and method
US20030096059A1 (en) Composite material and method of producing the same
CN106583735A (en) Method for preparing diamond/copper composite material parts with high volume fraction
US4435189A (en) Method of preparing rough textured metal coated abrasives and product resulting therefrom
JP2003306731A (en) Method for manufacturing metal matrix composite material, and metal matrix composite material
JP2664231B2 (en) Method of manufacturing and using electroless nickel plating bath
CN109887882B (en) Method for rapidly filling nano particles in micropores
KR101917834B1 (en) DiamondNi CompositeStructured Particle with Multilayered Metallic Alloy and Method for Producing the Particle Thereof
CN106756906B (en) A kind of preparation method of double coating diamond dusts
CN106544653A (en) A kind of SiC powder surface chemical plating copper method
US4863766A (en) Electroless gold plating composition and method for plating
Harizanov et al. Metal coated alumina powder for metalloceramics
KR20130115728A (en) Electroless ni-w-p alloy plating solution and the method for plating using the same
CN1222205A (en) Electrochemical fluidized bed coating of powders
WO2011096362A1 (en) Member for mounting semiconductor element, process for producing same, and semiconductor device
CN110373660A (en) A kind of method of the diamond particle surfaces electroless copper of coat of metal sensitization activation
CN108486553B (en) Silicon carbide powder nickel plating process

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050705