JP2003306383A - METHOD FOR PRODUCING MgB2 SUPERCONDUCTIVE MATERIAL - Google Patents

METHOD FOR PRODUCING MgB2 SUPERCONDUCTIVE MATERIAL

Info

Publication number
JP2003306383A
JP2003306383A JP2002109031A JP2002109031A JP2003306383A JP 2003306383 A JP2003306383 A JP 2003306383A JP 2002109031 A JP2002109031 A JP 2002109031A JP 2002109031 A JP2002109031 A JP 2002109031A JP 2003306383 A JP2003306383 A JP 2003306383A
Authority
JP
Japan
Prior art keywords
mgb
powder
self
powder mixture
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002109031A
Other languages
Japanese (ja)
Other versions
JP3757273B2 (en
Inventor
Yoshiya Kaieda
義也 海江田
Nobutaka Oguro
信高 小黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2002109031A priority Critical patent/JP3757273B2/en
Publication of JP2003306383A publication Critical patent/JP2003306383A/en
Application granted granted Critical
Publication of JP3757273B2 publication Critical patent/JP3757273B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Ceramic Products (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a MgB<SB>2</SB>superconductive material in which oxidation and evaporation of Mg are suppressed as much as possible; the production of the MgB<SB>2</SB>superconductive material is facilitated; the improvement of the superconductive properties is possible; and production cost is reduced. <P>SOLUTION: Mg and B powders are mixed in an atomic ratio of 1:2, and the mixture of the raw material powders is compressed to prepare a molding. The molding is buried in a mixture of Ti and B powders. Part of the mixture of Ti and B powders is intensely heated to be ignited to cause the reaction represented by Ti+2B→TiB<SB>2</SB>. The whole mixture of Ti and B powders is caused to react to synthesize TiB<SB>2</SB>by self-propagation high temperature synthesis in which the heat of formation generated by the reaction propagates in turn to cause chain reaction. The heat of formation released at the synthesis induces the reaction represented by Mg+2B→MgB<SB>2</SB>. This reaction also causes self- propagation high temperature synthesis to convert the whole molding to a MgB<SB>2</SB>sintered body with superconductive properties. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この出願の発明は、MgB2超電
導材料の製造方法に関するものである。さらに詳しく
は、この出願の発明は、Mgの酸化及び蒸発をできる限り
抑制し、MgB2超電導材料の製造を容易化するとともに、
超電導性能の向上が望め、製造コストの低減を図ること
もできるMgB2超電導材料の製造方法に関するものであ
る。
TECHNICAL FIELD The present invention relates to a method for producing a MgB 2 superconducting material. More specifically, the invention of this application suppresses the oxidation and evaporation of Mg as much as possible to facilitate the production of the MgB 2 superconducting material, and
The present invention relates to a method for producing a MgB 2 superconducting material which can be expected to have improved superconducting performance and can be manufactured at a reduced cost.

【0002】[0002]

【従来の技術】MgB2超電導材料は、粉末冶金技術ではこ
れまで次のようにして製造されている。
2. Description of the Related Art A MgB 2 superconducting material has been manufactured by powder metallurgy as follows.

【0003】すなわち、マグネシウム(Mg)とボロン(B)
の粉末を原子比で1:2となるように調合、混合した
後、圧粉して成形体を作製する。Mgは、周知の通り、容
易に酸化して酸化マグネシウム(MgO)などの酸化物にな
るため、この酸化を防止するために、成形体は、次いで
鉄(Fe)、タンタル(Ta)、タングステン(W)などから形成
された金属カプセルに詰められる。そして、真空脱気
後、アルゴンガスを1/3〜1/2気圧程度封入し、長時間高
温に保持して焼結している。
That is, magnesium (Mg) and boron (B)
The powder of 1 is mixed and mixed so that the atomic ratio is 1: 2, and then the powder is pressed to prepare a molded body. As is well known, Mg easily oxidizes to an oxide such as magnesium oxide (MgO), and therefore, in order to prevent this oxidation, the molded body is made of iron (Fe), tantalum (Ta), tungsten ( It is packed in a metal capsule formed from W). Then, after vacuum deaeration, argon gas is sealed in at about 1/3 to 1/2 atm, and is held at a high temperature for a long time for sintering.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、以上の
製造方法には次のような問題がある。
However, the above manufacturing method has the following problems.

【0005】第一に、原料のMg粉末には、保存中の酸化
を少しでも抑制するために、粗い粉末が用いられている
が、その結果として、MgB2焼結体を得るまでの熱処理時
間が長くなっている。これは、MgB2超電導材料の製造コ
ストに反映する。
First, as a raw material Mg powder, a coarse powder is used in order to suppress oxidation during storage as much as possible, but as a result, a heat treatment time until obtaining a MgB 2 sintered body is obtained. Is getting longer. This is reflected in the manufacturing cost of the MgB 2 superconducting material.

【0006】第二に、Mgは高温で蒸発しやすく、したが
って、あまり高温で長時間の熱処理を行うと、焼結体中
のMgとBの組成比率が変動し、超電導性能に影響を及ぼ
す。
Secondly, Mg easily evaporates at a high temperature. Therefore, if the heat treatment is carried out at a too high temperature for a long time, the composition ratio of Mg and B in the sintered body changes, which affects the superconducting performance.

【0007】第三に、熱処理中の雰囲気が良好な非酸化
性雰囲気でないと、Mgの酸化が避けられないが、真空に
してしまうと、蒸発を助長することになり、取扱いが難
しい。
Thirdly, if the atmosphere during the heat treatment is not a good non-oxidizing atmosphere, the oxidation of Mg cannot be avoided, but if it is evacuated, the evaporation is promoted and the handling is difficult.

【0008】この出願の発明は、このような事情に鑑み
てなされたものであり、Mgの酸化及び蒸発をできる限り
抑制し、MgB2超電導材料の製造を容易化するとともに、
超電導性能の向上が望め、製造コストの低減を図ること
もできるMgB2超電導材料の製造方法を提供することを解
決すべき課題としている。
The invention of this application has been made in view of such circumstances, and suppresses the oxidation and evaporation of Mg as much as possible to facilitate the production of the MgB 2 superconducting material, and
It is an issue to be solved to provide a manufacturing method of a MgB 2 superconducting material which can be expected to improve the superconducting performance and can also reduce the manufacturing cost.

【0009】[0009]

【課題を解決するための手段】この出願の発明の発明者
らは、以上の課題を解決するために、すなわち、Mgの酸
化及び蒸発をできる限り抑制し、できる限り短時間にMg
とBを反応させてMgB2超電導材料を合成するために、研
究を重ねた。
Means for Solving the Problems In order to solve the above-mentioned problems, the inventors of the present invention, namely, suppress the oxidation and evaporation of Mg as much as possible, and make Mg as short as possible.
Studies have been repeated to react B with B to synthesize a MgB 2 superconducting material.

【0010】この出願の発明の発明者の一人は、炭化
物、ホウ化物などの自己伝播高温合成に成功している
(たとえば、特許第1816876号)。自己伝播高温合成と
は、粉末混合物をその一部において強熱して点火し、初
期反応を生起させると、この時発生する生成熱が次々に
伝播して連鎖反応が起こり、粉末混合物の全体が、炭化
物、ホウ化物などの化合物に合成されるというものであ
る。
One of the inventors of the invention of this application has succeeded in self-propagating high-temperature synthesis of carbides, borides and the like (for example, Japanese Patent No. 1816876). Self-propagation high-temperature synthesis is that when a powder mixture is ignited by igniting a part thereof and an initial reaction occurs, the heat of formation generated at this time is successively propagated to cause a chain reaction, and the entire powder mixture is It is synthesized into compounds such as carbides and borides.

【0011】そこで、MgB2超電導材料についても自己伝
播高温合成の適用を様々に試みたが、実現は簡単ではな
かった。その原因を多方面から検討したところ、MgB2
生成熱が、他のホウ化物の生成熱に比べ、1/3程度しか
ないことが主因であると判明した。ホウ化物の生成熱
は、たとえば、TiB2で-279.9kJ/mol、ZrB2で-326.6kJ/m
ol、HfB2で-328.9kJ/molである。これに対し、MgB2の生
成熱は、-92.0kJ/molと小さい。このことから、Mg+2B→
MgB2で示される反応及びその伝播は起こりにくいと結論
される。
Therefore, various attempts were made to apply the self-propagating high-temperature synthesis to the MgB 2 superconducting material, but the realization was not easy. When the cause was investigated from various directions, it was found that the heat of formation of MgB 2 was only about 1/3 of the heat of formation of other borides. The heat of boride formation is, for example, -279.9 kJ / mol for TiB 2 and -326.6 kJ / m for ZrB 2.
It is -328.9 kJ / mol for ol and HfB 2 . On the other hand, the heat of formation of MgB 2 is as small as -92.0 kJ / mol. From this, Mg + 2B →
It is concluded that the reaction shown by MgB 2 and its propagation are unlikely to occur.

【0012】他の要因は、やはりMgが蒸発しやすいとい
うことである。初期反応を生起させるために、原料の粉
末混合物の一部を強熱して点火しようとすると、Mgは蒸
発してしまい、この蒸発が、Mg+2B→MgB2で示される反
応に必要な熱を奪ってしまうのである。また、Mgの蒸発
にともない、前述した通り、原料中のMgとBの組成比率
が変動し、これが、自己伝播高温合成をより一層難しく
するのである。
Another factor is that Mg is also likely to evaporate. When a portion of the powder mixture of the raw materials is ignited by heating to ignite the initial reaction, Mg evaporates, and this evaporation produces heat necessary for the reaction represented by Mg + 2B → MgB 2. It will rob you. Further, as described above, the composition ratio of Mg and B in the raw material fluctuates with the evaporation of Mg, which makes self-propagating high temperature synthesis even more difficult.

【0013】これらの原因究明に基づき、この出願の発
明の発明者らは、鋭意検討を加えた結果、TiとBの自己
伝播高温合成を利用することにより、以上の問題が解消
され、MgB2超電導材料の自己伝播高温合成が実現される
ことを見出した。
Based on the investigation of these causes, the inventors of the invention of the present application have made earnest studies, and as a result, by utilizing the self-propagating high temperature synthesis of Ti and B, the above problems were solved and MgB 2 It was found that self-propagating high temperature synthesis of superconducting materials can be realized.

【0014】前述の通り、TiB2の生成熱は-279.9kJ/mol
であり、自己伝播高温合成は容易に起こる。自己伝播高
温合成時の断熱温度は2917℃であり、また、Ti+2B→TiB
2で示される反応及びその自己伝播高温合成時の反応熱
により、Mg+2B→MgB2で示される反応及び自己伝播高温
合成が誘発されるのである。つまり、MgB2の生成熱は、
ホウ化物の中でも小さいが、MgとBの自己伝播高温合成
に必要な熱が、TiB2の生成熱により補われるのである。
As described above, the heat of formation of TiB 2 is -279.9 kJ / mol.
And self-propagating high temperature synthesis easily occurs. The adiabatic temperature during self-propagating high-temperature synthesis is 2917 ℃, and Ti + 2B → TiB
The reaction represented by 2 and the heat of reaction during the self-propagating high temperature synthesis induce the reaction represented by Mg + 2B → MgB 2 and the self-propagating high temperature synthesis. In other words, the heat of formation of MgB 2 is
The heat required for self-propagating high-temperature synthesis of Mg and B, which is the smallest among borides, is supplemented by the heat of formation of TiB 2 .

【0015】このようにTiB2の自己伝播高温合成に誘発
されるMgとBの自己伝播高温合成は、Mg粉末とB粉末を原
子比で1:2の割合に混合し、圧粉して作製した成形体
が数グラム〜数十グラム程度の時、所要時間は1秒以下
の短時間であり、したがって、Mgの酸化及び蒸発を最小
限に抑えることができる。
As described above, the self-propagating high-temperature synthesis of Mg and B induced by the self-propagating high-temperature synthesis of TiB 2 is prepared by mixing Mg powder and B powder in an atomic ratio of 1: 2 and compacting. When the formed compact has a weight of several grams to several tens of grams, the time required is a short time of 1 second or less, and therefore, the oxidation and evaporation of Mg can be minimized.

【0016】この出願の発明は、以上の通りの技術知見
に基づいて完成されたものである。
The invention of this application has been completed based on the technical knowledge as described above.

【0017】すなわち、この出願の発明は、Mg粉末とB
粉末を原子比で1:2の割合に混合し、この原料混合粉
末を圧粉して作製した成形体をTiとBの粉末混合物中に
埋設した後、TiとBの粉末混合物をその一部において強
熱して点火し、Ti+2B→TiB2で示される反応を生起さ
せ、その時発生する生成熱が次々に伝播して連鎖反応す
る自己伝播高温合成によりTiとBの粉末混合物全体をTiB
2に合成する一方、この時放出される生成熱によりMg+2B
→MgB2で示される反応を誘起させ、この反応もまた自己
伝播高温合成させて、前記成形体の全体を超電導性能を
有するMgB2焼結体とすることを特徴とするMgB2超電導材
料の製造方法(請求項1)を提供する。
That is, the invention of this application is based on Mg powder and B
The powder was mixed at an atomic ratio of 1: 2, and the molded body produced by compacting this raw material mixed powder was embedded in the powder mixture of Ti and B, and then the powder mixture of Ti and B was partially used. At the same time, it ignites and ignites to cause the reaction shown by Ti + 2B → TiB 2 , and the heat of formation generated at that time is propagated one after another to cause a chain reaction.
While synthesizing into 2 , the heat of formation released at this time causes Mg + 2B
→ Manufacture of MgB 2 superconducting material characterized by inducing a reaction represented by MgB 2 and also self-propagating high temperature synthesis of this reaction to make the whole of the compact into a MgB 2 sintered body having superconducting performance. A method (claim 1) is provided.

【0018】またこの出願の発明は、MgB2の自己伝播高
温合成を、真空中、室温以上300℃以下の条件で行わせ
ること(請求項2)、真空度を5×10-1Torr以下とする
こと(請求項3)、TiとBの粉末混合物をあらかじめ真
空中で加熱し、粉末混合物中に含まれる水分及び揮発性
不純物を除去すること(請求項4)をそれぞれ一態様と
して提供する。
In the invention of this application, the self-propagating high-temperature synthesis of MgB 2 is performed in vacuum at room temperature or higher and 300 ° C. or lower (claim 2), and the degree of vacuum is 5 × 10 -1 Torr or lower. It is provided as an aspect to do so (claim 3) and to preheat the powder mixture of Ti and B in a vacuum to remove water and volatile impurities contained in the powder mixture (claim 4).

【0019】以下、実施例を示しつつ、この出願の発明
のMgB2超電導材料の製造方法についてさらに詳しく説明
する。
Hereinafter, the method for producing the MgB 2 superconducting material of the invention of this application will be described in more detail with reference to Examples.

【0020】[0020]

【発明の実施の形態】この出願の発明のMgB2超電導材料
の製造方法では、前記の通り、Mg粉末とB粉末を原子比
で1:2の割合に混合し、この原料混合粉末を圧粉して
作製した成形体をTiとBの粉末混合物中に埋設する。次
いで、TiとBの粉末混合物をその一部において強熱して
点火し、Ti+2B→TiB2で示される反応を生起させ、その
時発生する生成熱が次々に伝播して連鎖反応する自己伝
播高温合成によりTiとBの粉末混合物全体をTiB2に合成
する。その一方、この出願の発明のMgB2超電導材料の製
造方法では、TiB2の自己伝播高温合成時に放出される生
成熱によりMg+2B→MgB2で示される反応を誘起させ、こ
の反応もまた自己伝播高温合成させて、前記成形体の全
体を超電導性能を有するMgB2焼結体とする。
BEST MODE FOR CARRYING OUT THE INVENTION In the method for producing a MgB 2 superconducting material according to the invention of the present application, as described above, Mg powder and B powder are mixed at an atomic ratio of 1: 2, and this raw material mixed powder is compacted. The compact thus produced is embedded in a powder mixture of Ti and B. Next, the powder mixture of Ti and B is ignited by igniting a part of it, causing a reaction represented by Ti + 2B → TiB 2 , and the heat of formation generated at that time is propagated one after another and a chain reaction occurs. The entire powder mixture of Ti and B is synthesized into TiB 2 by synthesis. On the other hand, in the method for producing the MgB 2 superconducting material of the invention of this application, the reaction shown by Mg + 2B → MgB 2 is induced by the heat of formation released during the self-propagating high-temperature synthesis of TiB 2 , and this reaction is also self-sustaining. Propagation at high temperature is performed, and the entire compact is made into a MgB 2 sintered compact having superconducting performance.

【0021】具体的には、この出願の発明のMgB2超電導
材料の製造方法を実施する際には、図1に概略を示した
自己伝播高温合成装置を使用することができる。
Specifically, when carrying out the method for producing the MgB 2 superconducting material of the invention of this application, the self-propagating high temperature synthesis apparatus outlined in FIG. 1 can be used.

【0022】図1に示したように、自己伝播高温合成装
置は、真空容器(1)を備えている。真空容器(1)
は、シーリング機構(2)によりシールされ、給排気系
(3)に接続されて、内部の給排気が可能とされてい
る。この真空容器(1)の内部には、ヒーター(4)及
び熱電対(8)を備えた電気炉(5)が配設されてい
る。電気炉(5)には、その内部に耐火性るつぼ(6)
が配置される。耐火性るつぼ(6)には、TiとBの粉末
混合物(10)が充填される。
As shown in FIG. 1, the self-propagating high temperature synthesis apparatus comprises a vacuum container (1). Vacuum container (1)
Is sealed by a sealing mechanism (2) and is connected to an air supply / exhaust system (3) to enable the internal air supply / exhaust. Inside the vacuum container (1), an electric furnace (5) equipped with a heater (4) and a thermocouple (8) is arranged. The electric furnace (5) has a refractory crucible (6) inside.
Are placed. The refractory crucible (6) is filled with a powder mixture of Ti and B (10).

【0023】また、自己伝播高温合成装置には、TiとB
の粉末混合物(10)の一部を強熱し、点火させるタン
グステン線、ニクロム線などから形成することのできる
電熱コイル(7)が配設され、通常、この電熱コイル
(7)は、耐火性るつぼ(6)に充填されたTiとBの粉
末混合物(10)の上端部に接触するように配置され
る。
In addition, the self-propagating high-temperature synthesizer includes Ti and B.
An electric heating coil (7) that can be formed from a tungsten wire, a nichrome wire, or the like for igniting and igniting a part of the powder mixture (10) is provided, and the electric heating coil (7) is usually a refractory crucible. It is arranged so as to contact the upper end of the powder mixture of Ti and B (10) filled in (6).

【0024】なお、以上のヒーター(4)、電熱コイル
(7)及び熱電対(8)は、いずれも、気密状態が保持
されるようにして真空容器(1)から外部に引き出さ
れ、電源、制御器などに電気的に接続され、外部から操
作可能とされている。
The above-mentioned heater (4), electrothermal coil (7) and thermocouple (8) are all pulled out from the vacuum container (1) so as to maintain an airtight state, and a power source, It is electrically connected to a controller and can be operated from the outside.

【0025】MgB2超電導材料の製造に際しては、Mg粉末
とB粉末を原子比で1:2の割合に混合し、この原料混
合粉末を圧粉して成形体(9)を作製する。この成形体
(9)は、耐火性るつぼ(6)に充填したTiとBの粉末
混合物(10)中に埋設する。なお、TiとBの粉末混合
物(10)は、成形体(9)の埋設に先立ち、あらかじ
め真空中で加熱し、粉末混合物(10)中に含まれる水
分及び揮発性不純物を除去しておくと、より良質のMgB2
超電導材料が得られる。
In the production of the MgB 2 superconducting material, Mg powder and B powder are mixed at an atomic ratio of 1: 2, and the raw material mixed powder is compacted to prepare a compact (9). This compact (9) is embedded in a powder mixture (10) of Ti and B filled in a refractory crucible (6). Incidentally, the powder mixture (10) of Ti and B is heated in vacuum in advance before embedding the molded body (9) to remove water and volatile impurities contained in the powder mixture (10). , Better quality MgB 2
A superconducting material is obtained.

【0026】その後、耐火性るつぼ(6)を電気炉
(5)の内部に配置し、真空容器(1)をシーリング機
構(2)によりシールする。そして、真空容器(1)の
内部を給排気系(3)の作動により真空排気する。この
時の真空度は、MgB2超電導材料の自己伝播高温合成を生
起させるのに適当なものとするのが好ましく、たとえ
ば、5×10-1Torr以下が例示される。真空度は、高めれ
ば高めるほど、MgOなどの酸化物の生成を抑えるのに有
効となる。
After that, the refractory crucible (6) is placed inside the electric furnace (5), and the vacuum container (1) is sealed by the sealing mechanism (2). Then, the inside of the vacuum container (1) is evacuated by the operation of the supply / exhaust system (3). The vacuum degree at this time is preferably set to be suitable for causing self-propagating high-temperature synthesis of the MgB 2 superconducting material, and is, for example, 5 × 10 -1 Torr or less. The higher the degree of vacuum, the more effective it is to suppress the formation of oxides such as MgO.

【0027】次いで、TiとBの粉末混合物(10)の一
部、具体的には、図1に示したような上端部に電熱コイ
ル(7)を接触させて配置し、通電して強熱し、TiとB
の粉末混合物(10)の上端部、すなわち、一部を点火
する。着火後、TiとBの粉末混合物(10)では、Ti+2B
→TiB2で示される反応が起こり、その時発生する生成熱
が次々に伝播し、連鎖反応を起こし、自己伝播高温合成
が起こる。そして、最終的にTiとBの粉末混合物(1
0)の全体がTiB2となる。一方、TiとBの粉末混合物
(10)の自己伝播高温合成時に放出される生成熱によ
り、Mg+2B→MgB2で示される反応が誘起され、成形体
(9)もまた、生成熱が小さいのに関わらず、自己伝播
高温合成を起こし、その全体が、超電導性能を有するMg
B2焼結体となる。一般に、成形体(9)が数グラム〜数
十グラム程度であると、MgB2の自己伝播高温合成に要す
る時間は、1秒以下と非常に短い。
Next, an electric heating coil (7) is placed in contact with a part of the powder mixture (10) of Ti and B, specifically, the upper end portion as shown in FIG. , Ti and B
The upper end, that is, a part of the powder mixture (10) is ignited. After ignition, in the powder mixture of Ti and B (10), Ti + 2B
→ The reaction indicated by TiB 2 occurs, the heat of formation generated at that time propagates one after another, causing a chain reaction, and self-propagating high temperature synthesis occurs. Finally, a powder mixture of Ti and B (1
The whole of 0) becomes TiB 2 . On the other hand, the heat of formation released during the self-propagating high-temperature synthesis of the powder mixture of Ti and B (10) induces the reaction represented by Mg + 2B → MgB 2 , and the compact (9) also has a small heat of formation. Irrespective of the fact that Mg that has self-propagating high temperature synthesis and has superconducting performance
It becomes a B 2 sintered body. Generally, when the molded body (9) is about several grams to several tens of grams, the time required for self-propagating high-temperature synthesis of MgB 2 is as short as 1 second or less.

【0028】なお、MgB2の自己伝播高温合成は、前述の
通り、真空中で行うことが好ましいが、これに加え、電
気炉(5)内の温度をヒーター(4)により室温以上30
0℃以下に保持すると、MgB2超電導材料の収率がほぼ90%
〜100%となる。
The self-propagating high-temperature synthesis of MgB 2 is preferably carried out in vacuum as described above. In addition to this, the temperature in the electric furnace (5) is kept at room temperature or higher by the heater (4).
When kept below 0 ℃, the yield of MgB 2 superconducting material is almost 90%.
~ 100%.

【0029】以上の通り、生成熱が小さいことから自己
伝播高温合成が不可能であったMgB2超電導材料を、自己
伝播高温合成により製造することができ、所要時間は短
時間となり、これまでの粉末冶金技術における長時間の
熱処理が解消される。したがって、Mgの酸化及び蒸発を
できる限り抑制することが可能となり、MgB2超電導材料
の製造が容易化される。また、MgとBの組成比率がほぼ
安定化し、超電導性能の向上が望める。しかも、上記製
造の容易化とともに、MgB2の自己伝播高温合成に用いら
れるTi粉末、B粉末は、いずれも、特に高価なものでは
ないため、製造コストの低減が図られる。
As described above, the MgB 2 superconducting material, which was not capable of self-propagating high-temperature synthesis due to the small heat of formation, can be manufactured by self-propagating high-temperature synthesis, and the required time becomes short. Long-term heat treatment in powder metallurgy is eliminated. Therefore, it becomes possible to suppress the oxidation and evaporation of Mg as much as possible, and the manufacture of the MgB 2 superconducting material is facilitated. Further, the composition ratio of Mg and B is almost stabilized, and improvement of superconducting performance can be expected. Moreover, since the Ti powder and the B powder used for the self-propagating high-temperature synthesis of MgB 2 are not particularly expensive, the manufacturing cost can be reduced as well as facilitating the manufacturing.

【0030】[0030]

【実施例】平均粒径が約400μmの角状のMg粉末、平均粒
径が約1μmのアモルファスボロン(B)粉末、平均粒径が3
0μmの角状のTi粉末を使用した。上記Mg粉末とB粉末を
原子比で1:2の割合に混合し、原料混合粉末をポリウ
レタンゴム型に詰め、冷間等方圧プレス(CIP)により300
MPaに1分間保持し、圧粉して成形体を作製した。ま
た、Ti粉末とB粉末を混合し、この粉末混合物を200℃に
12時間保持して乾燥させた。
Example: Angular Mg powder having an average particle size of about 400 μm, amorphous boron (B) powder having an average particle size of about 1 μm, and an average particle size of 3
0 μm square Ti powder was used. The above Mg powder and B powder are mixed at an atomic ratio of 1: 2, the raw material mixed powder is packed in a polyurethane rubber mold, and 300% is obtained by cold isostatic pressing (CIP).
It was held at MPa for 1 minute and pressed to prepare a molded body. Also, Ti powder and B powder are mixed, and this powder mixture is heated to 200 ° C.
Hold for 12 hours to dry.

【0031】そして、図1に示したような自己伝播高温
合成装置の耐火性るつぼ(6)に、TiとBの粉末混合物
(10)を入れ、その中にMgとBの成形体(9)を埋設
した。この後、耐火性るつぼ(6)を電気炉(5)の内
部に配置し、TiとBの粉末混合物(10)の上端部に、
線径0.6mmのタングステン線から形成された電熱コイル
(7)を接触させて配置した。この状態において、真空
容器(1)をシーリング機構(2)によりシールし、真
空容器(1)の内部を給排気系(3)により真空排気
し、1×10-3Pa以下の真空度に常時保った。そして、電
熱コイル(7)に20A程度の電流を通電し、TiとBの粉末
混合物(10)の上端部を強熱して点火した。
Then, a powder mixture (10) of Ti and B was put into a refractory crucible (6) of a self-propagating high temperature synthesis apparatus as shown in FIG. 1, and a compact (9) of Mg and B was put therein. Buried. After this, a refractory crucible (6) is placed inside the electric furnace (5), at the upper end of the powder mixture of Ti and B (10),
An electrothermal coil (7) formed of a tungsten wire having a wire diameter of 0.6 mm was placed in contact with each other. In this state, the vacuum container (1) is sealed by the sealing mechanism (2), and the inside of the vacuum container (1) is evacuated by the air supply / exhaust system (3) to constantly maintain a vacuum degree of 1 × 10 −3 Pa or less. I kept it. Then, a current of about 20 A was applied to the electric heating coil (7) to ignite the upper end of the powder mixture (10) of Ti and B by igniting it.

【0032】着火後、Ti+2B→TiB2で示される反応が生
起し、その時発生する生成熱が次々に伝播し、連鎖反応
を起こして粉末混合物(10)の全体が、短時間の内に
TiB2に自己伝播高温合成された。さらに、このTiB2の自
己伝播高温合成時に放出される生成熱により、成形体
(9)においてMg+2B→MgB2で示される反応が誘発さ
れ、自己伝播高温合成を起こし、成形体(9)の全体が
MgB2焼結体となった。
After ignition, the reaction represented by Ti + 2B → TiB 2 occurs, and the heat of formation generated at that time is propagated one after another, causing a chain reaction to cause the entire powder mixture (10) to fall within a short time.
Self-propagating high temperature synthesis was performed on TiB 2 . Furthermore, the heat of formation released during the self-propagating high-temperature synthesis of TiB 2 induces a reaction represented by Mg + 2B → MgB 2 in the compact (9), causing self-propagating high-temperature synthesis, and thus the compact (9) The whole of
It became a MgB 2 sintered body.

【0033】図2は、図1に示した自己伝播高温合成装
置の電気炉を室温に保持して作製したMgB2焼結体の帯磁
率の温度変化をプロットした図である。
FIG. 2 is a graph plotting the temperature change of the magnetic susceptibility of the MgB 2 sintered body produced by keeping the electric furnace of the self-propagating high temperature synthesis apparatus shown in FIG. 1 at room temperature.

【0034】この図2から確認されるように、MgB2焼結
体は、超電導遷移温度が39Kであり、帯磁率の変化が大
きく、良好な超電導性能を有していると理解される。
As can be seen from FIG. 2, it is understood that the MgB 2 sintered body has a superconducting transition temperature of 39 K, a large change in magnetic susceptibility, and good superconducting performance.

【0035】図3は、図1に示した自己伝播高温合成装
置の電気炉を150℃に保持して作製したMgB2焼結体の帯
磁率の温度変化をプロットした図である。
FIG. 3 is a diagram in which the temperature change of the magnetic susceptibility of the MgB 2 sintered body produced by holding the electric furnace of the self-propagating high temperature synthesis apparatus shown in FIG. 1 at 150 ° C. is plotted.

【0036】この図3から確認されるように、MgB2焼結
体は、超電導遷移温度が39Kであり、帯磁率の変化が大
きく、良好な超電導性能を有していると理解される。
As can be seen from FIG. 3, it is understood that the MgB 2 sintered body has a superconducting transition temperature of 39 K, has a large change in magnetic susceptibility, and has excellent superconducting performance.

【0037】図4は、図1に示した自己伝播高温合成装
置の電気炉を200℃に保持して作製したMgB2焼結体の帯
磁率の温度変化をプロットした図である。
FIG. 4 is a graph plotting the temperature change of the magnetic susceptibility of the MgB 2 sintered body produced by keeping the electric furnace of the self-propagating high temperature synthesis apparatus shown in FIG. 1 at 200 ° C.

【0038】この図4から確認されるように、MgB2焼結
体は、超電導遷移温度が39Kであり、帯磁率の変化が大
きく、良好な超電導性能を有していると理解される。SQ
UID(超電導量子干渉計)で測定したMgB2の収率は100%
であった。
As can be seen from FIG. 4, it is understood that the MgB 2 sintered body has a superconducting transition temperature of 39 K, a large change in magnetic susceptibility, and good superconducting performance. SQ
MgB 2 yield measured by UID (superconducting quantum interferometer) is 100%
Met.

【0039】もちろん、この出願の発明は、以上の実施
形態及び実施例によって限定されるものではない。自己
伝播高温合成装置の構成及び構造、自己伝播高温合成時
の条件、使用する粉末の形状及び粒径などの細部につい
ては様々な態様が可能であることはいうまでもない。
Of course, the invention of this application is not limited to the above-described embodiments and examples. It goes without saying that various aspects are possible in terms of details such as the configuration and structure of the self-propagating high-temperature synthesis apparatus, the conditions at the time of self-propagating high-temperature synthesis, the shape and particle size of the powder used.

【0040】[0040]

【発明の効果】以上詳しく説明した通り、この出願の発
明によって、Mgの酸化及び蒸発をできる限り抑制し、Mg
B2超電導材料の製造を容易化するとともに、超電導性能
の向上が望め、製造コストの低減を図ることもできる。
As described in detail above, according to the invention of this application, the oxidation and evaporation of Mg are suppressed as much as possible.
B 2 superconducting materials can be easily manufactured, and superconducting performance can be expected to be improved, so that manufacturing costs can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】この出願の発明のMgB2超電導材料の製造方法に
適用可能な自己伝播高温合成装置の概要を示した断面図
である。
FIG. 1 is a cross-sectional view showing an outline of a self-propagating high-temperature synthesis apparatus applicable to a method for manufacturing a MgB 2 superconducting material according to the invention of this application.

【図2】図1に示した自己伝播高温合成装置の電気炉を
室温に保持して作製したMgB2焼結体の帯磁率の温度変化
をプロットした図である。
FIG. 2 is a diagram in which a change in magnetic susceptibility of an MgB 2 sintered body produced by keeping the electric furnace of the self-propagating high temperature synthesis apparatus shown in FIG. 1 at room temperature is plotted.

【図3】図1に示した自己伝播高温合成装置の電気炉を
150℃に保持して作製したMgB2焼結体の帯磁率の温度変
化をプロットした図である。
FIG. 3 shows an electric furnace of the self-propagating high-temperature synthesis apparatus shown in FIG.
FIG. 3 is a diagram in which a temperature change of magnetic susceptibility of an MgB 2 sintered body produced by holding at 150 ° C. is plotted.

【図4】図4は、図1に示した自己伝播高温合成装置の
電気炉を200℃に保持して作製したMgB2焼結体の帯磁率
の温度変化をプロットした図である。
FIG. 4 is a graph plotting the temperature change of the magnetic susceptibility of the MgB 2 sintered body produced by keeping the electric furnace of the self-propagating high temperature synthesis apparatus shown in FIG. 1 at 200 ° C.

【符号の説明】 1 真空容器 2 シーリング機構 3 給排気系 4 ヒーター 5 電気炉 6 耐火性るつぼ 7 電熱コイル 8 熱電対 9 成形体 10 TiとBの粉末混合物[Explanation of symbols] 1 vacuum container 2 sealing mechanism 3 air supply / exhaust system 4 heater 5 electric furnace 6 Fireproof crucible 7 Electric heating coil 8 thermocouple 9 molded products Powder mixture of 10 Ti and B

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Mg粉末とB粉末を原子比で1:2の割合
に混合し、この原料混合粉末を圧粉して作製した成形体
をTiとBの粉末混合物中に埋設した後、TiとBの粉末混合
物をその一部において強熱して点火し、Ti+2B→TiB2
示される反応を生起させ、その時発生する生成熱が次々
に伝播して連鎖反応する自己伝播高温合成によりTiとB
の粉末混合物全体をTiB2に合成する一方、この時放出さ
れる生成熱によりMg+2B→MgB2で示される反応を誘起さ
せ、この反応もまた自己伝播高温合成させて、前記成形
体の全体を超電導性能を有するMgB2焼結体とすることを
特徴とするMgB2超電導材料の製造方法。
1. A Mg powder and a B powder are mixed at an atomic ratio of 1: 2, and a green body prepared by compacting this raw material mixed powder is embedded in a powder mixture of Ti and B, and then Ti is mixed. Part of the powder mixture of B and B is ignited by igniting, causing a reaction represented by Ti + 2B → TiB 2 , and the heat of formation generated at that time is propagated one after another and chain reaction occurs. And B
While the entire powder mixture of No. 1 is synthesized into TiB 2 , the heat of formation released at this time induces a reaction represented by Mg + 2B → MgB 2 , and this reaction is also self-propagating at high temperature to synthesize the entire compact body. MgB 2 superconductor material production method which is characterized in that the MgB 2 sintered body having a superconducting performance.
【請求項2】 MgB2の自己伝播高温合成を、真空中、室
温以上300℃以下の条件で行わせる請求項1記載のMgB2
超電導材料の製造方法。
Wherein the MgB 2 a combustion synthesis, in a vacuum, MgB of claim 1, wherein to perform the following conditions 300 ° C. above room temperature 2
Manufacturing method of superconducting material.
【請求項3】 真空度を5×10-1Torr以下とする請求項
2記載のMgB2超電導材料の製造方法。
3. The method for producing a MgB 2 superconducting material according to claim 2, wherein the degree of vacuum is 5 × 10 −1 Torr or less.
【請求項4】 TiとBの粉末混合物をあらかじめ真空中
で加熱し、粉末混合物中に含まれる水分及び揮発性不純
物を除去する請求項1、2又は3いずれかに記載のMgB2
超電導材料の製造方法。
4. The MgB 2 according to claim 1, 2 or 3, wherein a powder mixture of Ti and B is previously heated in vacuum to remove water and volatile impurities contained in the powder mixture.
Manufacturing method of superconducting material.
JP2002109031A 2002-04-11 2002-04-11 Manufacturing method of MgB2 superconducting material Expired - Lifetime JP3757273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002109031A JP3757273B2 (en) 2002-04-11 2002-04-11 Manufacturing method of MgB2 superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002109031A JP3757273B2 (en) 2002-04-11 2002-04-11 Manufacturing method of MgB2 superconducting material

Publications (2)

Publication Number Publication Date
JP2003306383A true JP2003306383A (en) 2003-10-28
JP3757273B2 JP3757273B2 (en) 2006-03-22

Family

ID=29392609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002109031A Expired - Lifetime JP3757273B2 (en) 2002-04-11 2002-04-11 Manufacturing method of MgB2 superconducting material

Country Status (1)

Country Link
JP (1) JP3757273B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008280230A (en) * 2007-04-12 2008-11-20 Japan Science & Technology Agency Self-propagation high temperature synthesis method
CN111978086A (en) * 2019-07-16 2020-11-24 史玉成 Preparation method of novel superconducting material
CN112967844A (en) * 2021-02-26 2021-06-15 西部超导材料科技股份有限公司 MgB2Method for preparing multi-core superconducting wire

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008280230A (en) * 2007-04-12 2008-11-20 Japan Science & Technology Agency Self-propagation high temperature synthesis method
CN111978086A (en) * 2019-07-16 2020-11-24 史玉成 Preparation method of novel superconducting material
CN112967844A (en) * 2021-02-26 2021-06-15 西部超导材料科技股份有限公司 MgB2Method for preparing multi-core superconducting wire

Also Published As

Publication number Publication date
JP3757273B2 (en) 2006-03-22

Similar Documents

Publication Publication Date Title
JP4800540B2 (en) 312 phase material manufacturing method and sintering method thereof
Shon et al. Simultaneous synthesis and densification of MoSi2 by field‐activated combustion
Xu et al. Synthesis of MoSi2/WSi2 nanocrystalline powder by mechanical-assistant combustion synthesis method
TW201127747A (en) Manufacturing method for AlN
JP3757273B2 (en) Manufacturing method of MgB2 superconducting material
Krishnarao et al. Thermite assisted synthesis of ZrB 2 and ZrB 2–SiC through B 4 C reduction of ZrO 2 and ZrSiO 4 in air
Tolendiuly et al. The effect of MWCNT addition on superconducting properties of MgB 2 fabricated by high-pressure combustion synthesis
JP3697510B2 (en) Manufacturing method of WC cemented carbide
JP2000016805A (en) Production of aluminum nitride
JP3757270B2 (en) Manufacturing method of MgB2 superconducting material
JPH0556284B2 (en)
JP2004075467A (en) Boron suboxide powder and method for producing sintered compact thereof
JP3697509B2 (en) Method for sintering tungsten powder
KR101053955B1 (en) Manufacturing method of magnesium-based hydride and magnesium-based hydride prepared using the same
Borovinskaya et al. SHS ceramics: History and recent advances
Hu et al. Microstructures and densification of MoSi2–SiC composite by field-activated and pressure-assisted combustion synthesis
JPH059009A (en) Production of intermetallic compound and ceramics
JP3771127B2 (en) Atmospheric pressure combustion synthesis method of high density TiAl intermetallic compound
JPH0717373B2 (en) Method for producing oxide superconducting material
JP2539857B2 (en) Method for synthesizing silicon carbide powder
KR101189473B1 (en) Manufacturing method of mayenite electride
JPH04124007A (en) Combustion synthesis of high-purity tin
Wang-Jun et al. Bulk MgB2 superconductor with high critical current density synthesized by self-propagating high-temperature synthesis method
Li et al. Combustion synthesis of zinc ferrite powders in oxygen
Ramdane Self-Propagating High-Temperature Synthesis of MgB2 superconductor: A Review

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051206

R150 Certificate of patent or registration of utility model

Ref document number: 3757273

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term