JP2003305467A - Method for treating coal gasification waste water - Google Patents

Method for treating coal gasification waste water

Info

Publication number
JP2003305467A
JP2003305467A JP2002111051A JP2002111051A JP2003305467A JP 2003305467 A JP2003305467 A JP 2003305467A JP 2002111051 A JP2002111051 A JP 2002111051A JP 2002111051 A JP2002111051 A JP 2002111051A JP 2003305467 A JP2003305467 A JP 2003305467A
Authority
JP
Japan
Prior art keywords
coal gasification
anion exchange
coal
exchange resin
waste water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002111051A
Other languages
Japanese (ja)
Inventor
Masayuki Nakamichi
真之 中道
Hideki Suzuki
英樹 鈴木
Norifune Hosoi
紀舟 細井
Atsushi Morihara
森原  淳
Takafumi Murakami
孝文 村上
Takeshi Hatta
武 八田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Hitachi Ltd
Kurita Water Industries Ltd
Original Assignee
Electric Power Development Co Ltd
Hitachi Ltd
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd, Hitachi Ltd, Kurita Water Industries Ltd filed Critical Electric Power Development Co Ltd
Priority to JP2002111051A priority Critical patent/JP2003305467A/en
Publication of JP2003305467A publication Critical patent/JP2003305467A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for treating coal gasification waste water by which the COD component in a gas cleaning waste water produced in the coal gasification process can be efficiently removed. <P>SOLUTION: The method for treating the coal gasification waste water is characterized in that the coal gasification waste water discharged from the washing process of the gas essentially comprising carbon monoxide and hydrogen obtained by partial oxidation of coal is brought into contact with a weak- basic or intermediate-basic anion exchange resin. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、石炭ガス化排水の
処理方法に関する。さらに詳しくは、本発明は、石炭ガ
ス化工程において発生するガス洗浄排水中に含まれるC
OD成分を、効率よく除去することができる石炭ガス化
排水の処理方法に関する。 【0002】 【従来の技術】石炭は、化石燃料の中で最も埋蔵量に富
み、将来は火力発電用燃料の主力になると言われてい
る。限られた化石燃料を有効に利用するために、従来型
の火力発電に比べて効率の高いガスタービン発電と蒸気
タービン発電を併用する石炭ガス化複合発電が注目され
ている。石炭ガス化複合発電は、石炭を部分酸化するこ
とにより、一酸化炭素と水素を主成分とするガス燃料に
変換する石炭ガス化炉、その生成ガスから煤塵、硫黄分
などを除去するガス精製装置、その精製ガスを燃料とす
るガスタービン複合サイクル発電プラントを組み合わせ
た発電方式である。ガスタービン本体は、液化天然ガス
焚きのガスタービンと同じものがそのまま使えることが
石炭ガスに求められている。図1は、石炭ガス化複合発
電の一例の工程系統図である。本例においては、微粉炭
搬送装置1から微粉炭が気流により搬送され、酸素とと
もに石炭ガス化炉2に送り込まれる。微粉炭は1,50
0〜1,800℃、2〜3MPaで部分酸化され、生成した
一酸化炭素と水素を主成分とするガスは炉頂からシンガ
スクーラ3に送られる。発生したスラグは、炉底から排
出される。ガスは、ダストフィルタ4を通過して煤塵が
除去されたのち、水洗塔5において水により洗浄され
る。水洗塔で発生する排水は、排水処理装置6に送られ
る。水洗されたガスは、COS転換器7を経て脱硫塔8
へ送られ、硫黄分が除去される。精製されたガスはガス
タービン9に送られ、燃焼してタービンを駆動する。ガ
スタービンの排気は、排熱回収ボイラ10ヘ送られ、排
熱が回収されて発生する蒸気により蒸気タービン11が
駆動される。水洗塔において発生する排水には、COD
成分が含まれるので、COD成分を除去する必要があ
る。水洗塔の排水に含まれるCOD成分は、溶解状態で
存在しているために、凝集沈澱や凝集加圧浮上処理など
では除去が困難である。次亜塩素酸ソーダや過酸化水素
などの酸化剤による処理では効率が悪く、COD成分の
除去率は最大でも50%程度である。また、処理水にこ
れらの酸化剤が残留するために、後処理により残留する
酸化剤を除去する必要が生ずる。水洗塔の排水に含まれ
るCOD成分は、活性炭にも極めて吸着されにくく、1
0〜20%程度の除去率にしか達しないために、実用的
な処理法とは言えない。このために、石炭ガス化工程に
おいて、水洗塔で発生する排水を処理し、含まれるCO
D成分を効率的に除去することができる石炭ガス化排水
の処理方法が求められていた。 【0003】 【発明が解決しようとする課題】本発明は、石炭ガス化
工程において発生するガス洗浄排水中に含まれるCOD
成分を、効率よく除去することができる石炭ガス化排水
の処理方法を提供することを目的としてなされたもので
ある。 【0004】 【課題を解決するための手段】本発明者らは、上記の課
題を解決すべく鋭意研究を重ねた結果、石炭ガス化排水
中に含まれるCOD成分は、チオ硫酸イオン(S
23 2-)、チオシアン酸イオン(SCN-)及びフェロ
シアン酸イオン(Fe(CN)6 4-)が主体をなし、か
つ、これらのイオンは、塩基性の吸着剤により吸着除去
し得ることを見いだし、この知見に基づいて本発明を完
成するに至った。すなわち、本発明は、(1)石炭の部
分酸化により得られた一酸化炭素と水素を主成分とする
ガスの水洗工程から排出される石炭ガス化排水を、弱塩
基性又は中塩基性のアニオン交換樹脂と接触させること
を特徴とする石炭ガス化排水の処理方法、を提供するも
のである。さらに、本発明の好ましい態様として、
(2)石炭ガス化排水のpHを7以下に調整してアニオン
交換樹脂と接触させる第1項記載の石炭ガス化排水の処
理方法、(3)アニオン交換樹脂が、マクロポーラス型
樹脂又はマクロレティキュラー型樹脂である第3項記載
の石炭ガス化排水の処理方法、(4)アニオン交換樹脂
を塔に充填し、石炭ガス化排水を下向流で通水すること
によりアニオン交換樹脂と接触させる第1項記載の石炭
ガス化排水の処理方法、(5)アニオン交換樹脂を再生
して繰り返し使用する第1項記載の石炭ガス化排水の処
理方法、(6)アルカリ剤により脱着したのち、酸を通
液することにより再生を行う第5項記載の石炭ガス化排
水の処理方法、及び、(7)アルカリ剤が水酸化ナトリ
ウムであり、酸が硫酸又は塩酸である第6項記載の石炭
ガス化排水の処理方法、を挙げることができる。 【0005】 【発明の実施の形態】本発明の石炭ガス化排水の処理方
法においては、石炭の部分酸化により得られた一酸化炭
素と水素を主成分とするガスの水洗工程から排出される
石炭ガス化排水を、弱塩基性又は中塩基性のアニオン交
換樹脂と接触させる。本発明方法を適用する石炭ガス化
プロセスに特に制限はなく、例えば、移動床式のルルギ
法、噴流床式のコッパース−トチェク法、流動床式のウ
ィンクラー法、加圧流動床式のハイガス法、加圧噴流床
式のテキサコ法などを挙げることができる。生成ガス中
の一酸化炭素と水素の割合は、ルルギ法は25容量%と
40容量%、コッパース−トチェク法は58容量%と2
8容量%、ウィンクラー法は35容量%と43容量%、
ハイガス法は24容量%と30容量%、テキサコ法は4
7容量%と35容量%程度であると言われている。本発
明方法においては、石炭ガス化排水を弱塩基性又は中塩
基性のアニオン交換樹脂に接触させる前に、凝集沈殿や
ろ過などにより懸濁物質(SS)を除去することが好ま
しい。石炭ガス化排水中のSSをあらかじめ除去するこ
とにより、樹脂の汚染を防いで、吸着性能を維持するこ
とができる。本発明方法においては、石炭ガス化排水の
pHを7以下に調整してアニオン交換樹脂と接触させるこ
とが好ましく、pHを3〜6に調整してアニオン交換樹脂
と接触させることがより好ましい。石炭ガス化排水のpH
が7を超えると、COD成分の除去率が低下するおそれ
がある。 【0006】本発明方法に用いる弱塩基性のアニオン交
換樹脂としては、例えば、交換基としてアミノ基、アル
キルアミノ基、ジアルキルアミノ基などを有するアニオ
ン交換樹脂などを挙げることができ、交換基としてジメ
チルアミノ基を有するアニオン交換樹脂を特に好適に用
いることができる。本発明方法に用いる中塩基性のアニ
オン交換樹脂としては、例えば、第3級アミン基を主体
としたり、アンモニウム基や各種アミン基が混在してい
るようなアニオン交換樹脂を挙げることができる。本発
明方法に用いるアニオン交換樹脂は、マクロポーラス型
樹脂、マクロレティキュラー型樹脂などの多孔質型樹脂
であることが好ましい。多孔質型アニオン交換樹脂は、
COD成分を吸着したのち、アルカリ剤により脱着し、
酸を通液することにより再生し、反復使用することがで
きる。ゲル型アニオン交換樹脂は、有機物による汚染が
蓄積し、再生が困難となるおそれがある。本発明方法に
おいては、弱塩基性又は中塩基性のアニオン交換樹脂
に、塩酸、硫酸などの酸を通液することにより、あらか
じめCl-型、SO4 2-型などとして、石炭ガス化排水を
接触させることが好ましい。Cl-型、SO4 2-型などと
することにより、石炭ガス化排水中のCOD成分を効率
的に吸着除去することができる。本発明方法において、
石炭ガス化排水をアニオン交換樹脂と接触させる方法に
特に制限はなく、例えば、アニオン交換樹脂を充填した
塔に石炭ガス化排水を通水することにより、石炭ガス化
排水をアニオン交換樹脂と接触させることができる。通
水方向に特に制限はなく、上向流、下向流のいずれとも
することができるが、下向流で通水することが樹脂の流
動を抑えることができるので好ましい。 【0007】本発明方法において、アニオン交換樹脂の
充填塔は1基のみを用いることができ、あるいは複数基
を用いることもできる。アニオン交換樹脂の充填塔を2
基以上直列に連結して用いると、1基目の充填塔が完全
に飽和するまで通水することができるので、単位樹脂当
たりの処理水量を増加することができる。また、アニオ
ン交換樹脂の充填塔を3基用い、直列に連結した2基に
常時通水し、その間に他の1基を再生することもでき
る。本発明方法によれば、石炭ガス化排水中に含まれる
COD成分を効率よく除去することができる。例えば、
石炭ガス化排水のCODMnが200mgO/Lである場
合、通水量が樹脂充填層体積の50倍程度まで、90%
以上のCODMnを除去することができる。本発明方法に
より処理された処理水中には、なおアンモニアなどが含
まれる場合があるので、ストリッピング、紫外線照射、
触媒存在下の酸化剤の作用などにより、除去することが
好ましい。本発明方法において、アニオン交換樹脂の吸
着性能が低下したときは、再生して繰り返し使用するこ
とができる。COD成分を吸着したアニオン交換樹脂
は、アルカリ剤を通液することによりCOD成分を脱着
してOH-型とし、さらに酸を通液することにより再生
することができる。使用するアルカリ剤に特に制限はな
く、例えば、水酸化ナトリウム、水酸化カリウムなどを
挙げることができる。これらの中で、水酸化ナトリウム
を好適に用いることができる。使用する酸に特に制限は
なく、例えば、塩酸、硫酸などを挙げることができる。
塩酸、硫酸などを通液することにより、アニオン交換樹
脂はCl-型、SO4 2-型などとなり、石炭ガス化排水中
に含まれるCOD成分に対する吸着性能を回復する。酸
としては、硫酸を用いるのが安価であるが、排水中にカ
ルシウムが含まれる場合は、硫酸カルシウムのスケール
化を防ぐために、塩酸を用いることが好ましい。本発明
方法によれば、石炭ガス化の水洗工程で発生する排水か
ら、簡単な操作によってCOD成分を効率よく除去する
ことができる。 【0008】 【実施例】以下に、実施例を挙げて本発明をさらに詳細
に説明するが、本発明はこれらの実施例によりなんら限
定されるものではない。 実施例1 図1に示す工程を有する石炭処理量150t/dのパイ
ロットプラントの水洗塔排水の処理を行った。この排水
の水質は、SS540mg/L、pH8.3、CODMn48
0mgO/Lであった。この排水に、硫酸バンド2,00
0mg/L及び高分子凝集剤[栗田工業(株)、クリフロッ
クPA362]3mg/Lを添加して凝集沈殿処理を行
い、ろ過により固液分離し、硫酸を加えてpHを調整し、
原水とした。原水の水質は、SS10mg/L以下、pH
4、CODMn210mgO/Lであった。弱塩基性のアニ
オン交換樹脂[三菱化学(株)製、WA30]50mLをガ
ラスカラムに充填し、5重量%硫酸水溶液100mLを通
液してSO4 2-型としたのち、原水を0.25L/hすな
わちSV5h-1で、下向流で通水することにより処理し
た。カラムから流出する処理水のCODMnは、通水量
0.15Lのとき8.7mgO/L、0.45Lのとき9.6
mgO/L、1.05Lのとき9.9mgO/L、1.65L
のとき11.1mgO/L、2.25Lのとき11.4mgO
/L、2.85Lのとき12.6mgO/L、3.45Lの
とき14.0mgO/L、4.05Lのとき22.1mgO/
L、4.65Lのとき27.2mgO/L、5.25Lのと
き45.9mgO/L、5.85Lのとき98.4mgO/
L、6.45Lのとき110.9mgO/L、7.05Lの
とき116.8mgO/Lであった。原水7.05Lを通水
したとき、通水を中止し、樹脂の再生を行った。工業用
水150mLを通水して樹脂層を洗浄した後、5重量%水
酸化ナトリウム水溶液100mLを通液して、吸着された
COD成分を脱着し、さらに工業用水150mLで洗浄し
た後、5重量%硫酸水溶液100mLを通水して樹脂をS
4 2-型とした。樹脂の再生後、ふたたび原水7.05L
を通水して、2回目の処理を行った。以下同様にして、
樹脂の再生と原水の通水処理を、10回目まで繰り返し
た。通水量と処理水のCODMnの関係を、1回目、5回
目、9回目及び10回目の処理についてグラフ化し、図
2に示す。図2に見られるように、処理水のCODMn
は、通水量が樹脂充填層体積の50倍程度までは20mg
O/L以下であり、90%以上のCOD成分が除去され
ている。また、樹脂の再生後も、通水量が樹脂充填層体
積の50倍程度までは、処理水のCODMn値は低く、良
好に処理できることが分かる。 【0009】 【発明の効果】本発明方法によれば、石炭ガス化の水洗
工程で発生する排水から、簡単な操作によりCOD成分
を効率よく除去することができる。
Description: TECHNICAL FIELD The present invention relates to a method for treating coal gasification wastewater. More specifically, the present invention relates to a method for removing C contained in gas cleaning wastewater generated in a coal gasification process.
The present invention relates to a method for treating coal gasification wastewater that can efficiently remove OD components. [0002] Coal is the richest in fossil fuel reserves and is said to become the main fuel for thermal power generation in the future. In order to effectively use limited fossil fuels, attention has been paid to combined gasification combined cycle power generation that uses gas turbine power generation and steam turbine power generation that are more efficient than conventional thermal power generation. The integrated coal gasification combined cycle power plant is a coal gasifier that partially oxidizes coal to convert it into a gas fuel containing carbon monoxide and hydrogen as its main component, and a gas purification device that removes dust, sulfur, etc. from the gas produced therefrom. This is a power generation system combining a gas turbine combined cycle power generation plant using the purified gas as fuel. Coal gas is required to use the same gas turbine body as a liquefied natural gas-fired gas turbine as it is. FIG. 1 is a process system diagram of an example of the integrated coal gasification combined cycle. In this example, pulverized coal is transported from the pulverized coal transport device 1 by airflow, and sent to the coal gasifier 2 together with oxygen. 1,50 for pulverized coal
The gas which is partially oxidized at 0 to 1,800 ° C. and 2 to 3 MPa and is mainly composed of carbon monoxide and hydrogen is sent to the syngas cooler 3 from the furnace top. The generated slag is discharged from the furnace bottom. After the gas passes through the dust filter 4 and the dust is removed, the gas is washed with water in the washing tower 5. The wastewater generated in the washing tower is sent to the wastewater treatment device 6. The water-washed gas passes through a COS converter 7 and passes through a desulfurization tower 8.
To remove the sulfur content. The purified gas is sent to the gas turbine 9 and burns to drive the turbine. The exhaust gas of the gas turbine is sent to the exhaust heat recovery boiler 10, and the steam generated by the recovery of the exhaust heat drives the steam turbine 11. COD is included in the wastewater generated in the washing tower.
Since the components are contained, it is necessary to remove the COD components. Since the COD component contained in the wastewater from the washing tower exists in a dissolved state, it is difficult to remove the COD component by coagulation sedimentation or coagulation pressure floating treatment. The treatment with an oxidizing agent such as sodium hypochlorite or hydrogen peroxide is inefficient, and the removal rate of the COD component is at most about 50%. Further, since these oxidizing agents remain in the treated water, it is necessary to remove the remaining oxidizing agents by post-treatment. The COD component contained in the effluent of the washing tower is extremely unlikely to be adsorbed on activated carbon.
Since the removal rate reaches only about 0 to 20%, it cannot be said that it is a practical treatment method. For this purpose, in a coal gasification process, wastewater generated in a washing tower is treated to contain CO
There has been a need for a method for treating coal gasification wastewater that can efficiently remove the D component. [0003] The present invention relates to a COD contained in gas washing wastewater generated in a coal gasification process.
An object of the present invention is to provide a method for treating coal gasification wastewater that can efficiently remove components. [0004] The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, the COD component contained in the coal gasification wastewater has a thiosulfate ion (S
2 O 3 2-), thiocyanate ion (SCN -) and ferrocyanide ion (Fe (CN) 6 4-) forms the principal, and these ions may be adsorbed and removed with a basic adsorbent The present invention has been completed based on this finding. That is, the present invention relates to (1) coal gasification wastewater discharged from a water washing step of a gas containing carbon monoxide and hydrogen as main components obtained by partial oxidation of coal, with a weak basic or medium basic anion. A method for treating coal gasification wastewater, which is characterized by being brought into contact with an exchange resin. Further, as a preferred embodiment of the present invention,
(2) The method for treating coal gasification wastewater according to claim 1, wherein the pH of the coal gasification wastewater is adjusted to 7 or less and brought into contact with an anion exchange resin, (3) the anion exchange resin is a macroporous resin or a macroretite. 4. The method for treating coal gasification wastewater according to claim 3, which is a curable resin, (4) filling the tower with the anion exchange resin and passing the coal gasification wastewater in a downward flow to contact the anion exchange resin. The method for treating coal gasification wastewater according to claim 1, (5) the method for treating coal gasification wastewater according to item 1, wherein the anion exchange resin is regenerated and used repeatedly, and (6) the acid after desorbing with an alkali agent. Item 7. The method for treating coal gasification wastewater according to Item 5, wherein the coal gas is regenerated by passing through the tank, and (7) The coal gas according to Item 6, wherein the alkali agent is sodium hydroxide and the acid is sulfuric acid or hydrochloric acid. Wastewater treatment Law, can be mentioned. [0005] In the method for treating coal gasification wastewater of the present invention, coal discharged from a water washing step of a gas mainly composed of carbon monoxide and hydrogen obtained by partial oxidation of coal. The gasification effluent is contacted with a weakly or moderately basic anion exchange resin. There are no particular restrictions on the coal gasification process to which the method of the present invention is applied. And a pressurized spouted bed type Texaco method. The ratios of carbon monoxide and hydrogen in the produced gas were 25% by volume and 40% by volume in the Rurgi method, and 58% by volume and 2% in the Copper-Stochek method.
8% by volume, 35% by volume and 43% by volume according to the Winkler method,
High gas method is 24% and 30% by volume, Texaco method is 4%
It is said to be about 7% by volume and about 35% by volume. In the method of the present invention, it is preferable to remove suspended solids (SS) by coagulation sedimentation or filtration before contacting the coal gasification wastewater with a weakly basic or neutral basic anion exchange resin. By removing the SS in the coal gasification wastewater in advance, it is possible to prevent contamination of the resin and maintain the adsorption performance. In the method of the present invention, the coal gasification wastewater
It is preferable to adjust the pH to 7 or less and contact the anion exchange resin, and it is more preferable to adjust the pH to 3 to 6 and contact the anion exchange resin. PH of coal gasification wastewater
Exceeds 7, the removal rate of the COD component may decrease. Examples of the weakly basic anion exchange resin used in the method of the present invention include anion exchange resins having an amino group, an alkylamino group, a dialkylamino group or the like as an exchange group. An anion exchange resin having an amino group can be particularly preferably used. Examples of the medium-basic anion exchange resin used in the method of the present invention include an anion exchange resin having a tertiary amine group as a main component and an ammonium group or various amine groups mixed therein. The anion exchange resin used in the method of the present invention is preferably a porous resin such as a macroporous resin and a macroreticular resin. The porous anion exchange resin is
After adsorbing the COD component, desorb with an alkaline agent,
It can be regenerated by passing an acid through it and used repeatedly. In the gel type anion exchange resin, contamination by organic substances may accumulate, and regeneration may be difficult. In the process of the present invention, weakly basic or medium basic anion exchange resin, hydrochloric acid, by acid liquid passage such as sulfuric acid, previously Cl - type, as such SO 4 2-type, coal gasification waste water It is preferred to make contact. Cl - type, by a like SO 4 2-type, it is possible to efficiently adsorb and remove COD components in coal gasification waste water. In the method of the present invention,
There is no particular limitation on the method of bringing the coal gasification wastewater into contact with the anion exchange resin. For example, the coal gasification wastewater is brought into contact with the anion exchange resin by passing the coal gasification wastewater through a tower filled with the anion exchange resin. be able to. There is no particular limitation on the water flowing direction, and the water flowing direction may be either an upward flow or a downward flow. However, it is preferable to flow water in a downward flow since the flow of the resin can be suppressed. In the method of the present invention, only one packed column of an anion exchange resin can be used, or a plurality of packed columns can be used. 2 packed columns of anion exchange resin
When used in series or more, water can be passed until the first packed tower is completely saturated, so that the amount of treated water per unit resin can be increased. In addition, it is also possible to use three packed towers of anion exchange resin, always pass water through two connected in series, and regenerate another one between them. According to the method of the present invention, COD components contained in coal gasification wastewater can be efficiently removed. For example,
When the COD Mn of coal gasification wastewater is 200 mg O / L, the water flow rate is 90% up to about 50 times the resin packed bed volume.
The above COD Mn can be removed. Since the treated water treated by the method of the present invention may still contain ammonia and the like, stripping, ultraviolet irradiation,
It is preferable to remove it by the action of an oxidizing agent in the presence of a catalyst. In the method of the present invention, when the adsorption performance of the anion exchange resin decreases, it can be regenerated and used repeatedly. The anion exchange resin to which the COD component has been adsorbed can be regenerated by desorbing the COD component by passing an alkaline agent to form an OH - type, and further passing an acid. The alkali agent to be used is not particularly limited, and examples thereof include sodium hydroxide and potassium hydroxide. Among them, sodium hydroxide can be suitably used. There is no particular limitation on the acid used, and examples thereof include hydrochloric acid and sulfuric acid.
Hydrochloride, by passing liquid such as sulfuric acid, the anion exchange resin is Cl - type, SO 4 2-type such as made to recover the adsorption performance for the COD components contained in the coal gasification effluent. It is inexpensive to use sulfuric acid as the acid, but when wastewater contains calcium, it is preferable to use hydrochloric acid in order to prevent scaling of calcium sulfate. According to the method of the present invention, COD components can be efficiently removed from wastewater generated in a washing step of coal gasification by a simple operation. The present invention will be described in more detail with reference to the following Examples, which by no means limit the present invention. Example 1 The wastewater from a washing tower of a pilot plant with a coal treatment amount of 150 t / d having the process shown in FIG. 1 was treated. The water quality of this wastewater was SS 540 mg / L, pH 8.3, COD Mn 48
It was 0 mg O / L. The sulfuric acid band 2,000
0 mg / L and 3 mg / L of a polymer flocculant [Kurita Kogyo Co., Ltd., Clifloc PA362] were added to perform coagulation sedimentation treatment, followed by solid-liquid separation by filtration, pH adjustment by adding sulfuric acid,
Raw water. Raw water quality is SS 10mg / L or less, pH
4, COD Mn was 210 mg O / L. A glass column was filled with 50 mL of a weakly basic anion exchange resin [WA30, manufactured by Mitsubishi Chemical Corporation], and 100 mL of a 5% by weight aqueous solution of sulfuric acid was passed through to form SO 4 2− , and 0.25 L of raw water was used. / H, ie, at an SV of 5 h −1 , by passing water downward. The COD Mn of the treated water flowing out of the column was 8.7 mg O / L when the flow rate was 0.15 L, and 9.6 when the flow rate was 0.45 L.
mgO / L, 9.5 mgO / L for 1.05 L, 1.65 L
At 11.1 mg O / L at 2.25 L at 11.4 mg O / L
/ L, 12.6 mg O / L for 2.85 L, 14.0 mg O / L for 3.45 L, 22.1 mg O / L for 4.05 L
L, 47.2 mg O / L at 4.65 L, 45.9 mg O / L at 5.25 L, 98.4 mg O / L at 5.85 L
L, 11.09 mg O / L for 6.45 L, and 116.8 mg O / L for 7.05 L. When 7.05 L of raw water was passed, the flow was stopped and the resin was regenerated. After washing the resin layer by passing 150 mL of industrial water, the adsorbed COD component was desorbed by passing 100 mL of a 5% by weight aqueous sodium hydroxide solution, and further washed with 150 mL of industrial water, followed by 5% by weight. 100 mL of sulfuric acid aqueous solution is passed through to make the resin S
O 4 2- type was used. After regeneration of the resin, 7.05L of raw water again
The second treatment was performed by passing water through. Similarly,
The regeneration of the resin and the treatment of passing the raw water were repeated up to the tenth time. FIG. 2 is a graph showing the relationship between the flow rate and the COD Mn of the treated water for the first, fifth, ninth, and tenth treatments. As shown in FIG. 2, the COD Mn value of the treated water is 20 mg when the flow rate is about 50 times the volume of the resin packed bed.
O / L or less, and 90% or more of the COD component is removed. Further, even after the regeneration of the resin, the COD Mn value of the treated water is low and it can be understood that the treated water can be favorably treated until the water flow rate is about 50 times the volume of the resin packed layer. According to the method of the present invention, COD components can be efficiently removed from waste water generated in a washing step of coal gasification by a simple operation.

【図面の簡単な説明】 【図1】図1は、石炭ガス化複合発電の一例の工程系統
図である。 【図2】図2は、通水量と処理水のCODの関係を示す
グラフである。 【符号の説明】 1 微粉炭搬送装置 2 石炭ガス化炉 3 シンガスクーラ 4 ダストフィルタ 5 水洗塔 6 排水処理装置 7 COS転換器 8 脱硫塔 9 ガスタービン 10 排熱回収ボイラ 11 蒸気タービン
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a process flow diagram of an example of an integrated coal gasification combined cycle. FIG. 2 is a graph showing a relationship between a flow rate and COD of treated water. [Description of Signs] 1 Pulverized coal transport device 2 Coal gasifier 3 Syngas cooler 4 Dust filter 5 Rinsing tower 6 Wastewater treatment device 7 COS converter 8 Desulfurization tower 9 Gas turbine 10 Exhaust heat recovery boiler 11 Steam turbine

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中道 真之 福岡県北九州市若松区柳崎町1番 電源開 発株式会社若松総合事業所内 (72)発明者 鈴木 英樹 東京都中央区銀座六丁目15番1号 電源開 発株式会社内 (72)発明者 細井 紀舟 茨城県日立市幸町3丁目1番1号 株式会 社日立製作所火力・水力事業部内 (72)発明者 森原 淳 茨城県日立市大みか町7丁目2番1号 株 式会社日立製作所電力・電機開発研究所内 (72)発明者 村上 孝文 東京都新宿区西新宿三丁目4番7号 栗田 工業株式会社内 (72)発明者 八田 武 東京都新宿区西新宿三丁目4番7号 栗田 工業株式会社内 Fターム(参考) 4D025 AA09 AB10 AB12 AB22 BA15 BA22 BB02 BB09 4H060 AA00 BB04 BB23 CC18 DD12 DD14    ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Masayuki Nakamichi             Opened the 1st power supply in Yanagizaki-cho, Wakamatsu-ku, Kitakyushu-shi, Fukuoka             Departure from Wakamatsu General Office (72) Inventor Hideki Suzuki             6-15-1, Ginza, Chuo-ku, Tokyo Power supply open             In the departure corporation (72) Inventor Noboru Hosoi             3-1-1 Sachimachi, Hitachi City, Ibaraki Pref.             Hitachi, Ltd. Thermal and Hydro Power Division (72) Inventor Jun Morihara             7-2-1, Omika-cho, Hitachi City, Ibaraki Prefecture             Hitachi, Ltd., Power and Electricity Development Laboratory (72) Inventor Takafumi Murakami             Kurita 3-4-7 Nishi Shinjuku, Shinjuku-ku, Tokyo             Industrial Co., Ltd. (72) Inventor Takeshi Hatta             Kurita 3-4-7 Nishi Shinjuku, Shinjuku-ku, Tokyo             Industrial Co., Ltd. F term (reference) 4D025 AA09 AB10 AB12 AB22 BA15                       BA22 BB02 BB09                 4H060 AA00 BB04 BB23 CC18 DD12                       DD14

Claims (1)

【特許請求の範囲】 【請求項1】石炭の部分酸化により得られた一酸化炭素
と水素を主成分とするガスの水洗工程から排出される石
炭ガス化排水を、弱塩基性又は中塩基性のアニオン交換
樹脂と接触させることを特徴とする石炭ガス化排水の処
理方法。
Claims: 1. Coal gasification wastewater discharged from a water washing step of a gas mainly composed of carbon monoxide and hydrogen obtained by partial oxidation of coal is subjected to weak basic or medium basic. A method for treating coal gasification wastewater, comprising contacting with an anion exchange resin.
JP2002111051A 2002-04-12 2002-04-12 Method for treating coal gasification waste water Pending JP2003305467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002111051A JP2003305467A (en) 2002-04-12 2002-04-12 Method for treating coal gasification waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002111051A JP2003305467A (en) 2002-04-12 2002-04-12 Method for treating coal gasification waste water

Publications (1)

Publication Number Publication Date
JP2003305467A true JP2003305467A (en) 2003-10-28

Family

ID=29394004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002111051A Pending JP2003305467A (en) 2002-04-12 2002-04-12 Method for treating coal gasification waste water

Country Status (1)

Country Link
JP (1) JP2003305467A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102010760A (en) * 2010-12-21 2011-04-13 山西晋城无烟煤矿业集团有限责任公司 Coal gas washing, dedusting and purifying process
JP2012001686A (en) * 2010-06-21 2012-01-05 Ihi Corp Gasified gas manufacturing system and method
JP2012115784A (en) * 2010-12-02 2012-06-21 Toshiba Fuel Cell Power Systems Corp Water treatment system, and fuel cell electric power system using the same
US8562828B2 (en) 2004-02-16 2013-10-22 Mitsubishi Heavy Industries, Ltd. Wastewater treatment apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8562828B2 (en) 2004-02-16 2013-10-22 Mitsubishi Heavy Industries, Ltd. Wastewater treatment apparatus
JP2012001686A (en) * 2010-06-21 2012-01-05 Ihi Corp Gasified gas manufacturing system and method
JP2012115784A (en) * 2010-12-02 2012-06-21 Toshiba Fuel Cell Power Systems Corp Water treatment system, and fuel cell electric power system using the same
CN102010760A (en) * 2010-12-21 2011-04-13 山西晋城无烟煤矿业集团有限责任公司 Coal gas washing, dedusting and purifying process

Similar Documents

Publication Publication Date Title
TWI355289B (en) Method of removing mercury from flue gas after com
ES2625174T3 (en) Device and method for simultaneous removal of hydrogen sulfide and carbon dioxide from biogas
JP5320778B2 (en) Regeneration method of amine liquid
JP2008045060A (en) Method for recovering and purifying methane from biofermented gas by using adsorbent
CZ292547B6 (en) Process for purifying flue gas containing nitrogen oxides and apparatus for purification flue gas
CN103241796B (en) Process and device for performing continuous filtration and adsorption treatment on sewage by using graphene
CN103936206B (en) A kind of method of organic matter and phosphorus in synchronous removal sewage biochemical tail water
JP2016515936A (en) Absorption medium, method for producing absorption medium, and method and apparatus for separating hydrogen sulfide from acid gas
JP2006083311A (en) Apparatus for refining sewage gas and method for refining the same gas
CN105836837A (en) Removing device and removing method for ammonia nitrogen in wastewater and contaminated water body
CN115041152B (en) Resin-based neodymium-loaded nanocomposite, preparation method thereof and application thereof in deep removal of phosphate in water
JP2001170695A (en) Gaseous methane refining equipment and domestic animal dung treatment facility
CN207091047U (en) A kind of activated carbon can automatic regeneration sewage-treatment plant
CN102432125B (en) Device and method for treating pulping wastewater by using catalytic ozone
CN107804890A (en) A kind of processing system and its method for improving ammonia nitrogen absorption material absorption property
CN203513401U (en) Graphene-based continuous waste water filtration and adsorption treatment device
CN106318500A (en) Biological purifying process of unconventional gas
CN104801166A (en) Method and device for cooperative flue gas desulfurization and sewage organic matter degradation and denitrification
JP2003305467A (en) Method for treating coal gasification waste water
CN210332252U (en) To CO in cement kiln tail flue gas2Trapping, concentrating and utilizing system
JPH0731994A (en) Waste water treating device
CN112011378A (en) Method for performing biogas desulfurization by using wastewater in biochemical process
JP5974730B2 (en) Gasification gas generation system and gasification gas generation method
KR100460225B1 (en) Apparatus and method for purifying water through an electrical adsorption-desorption cycle using an activated carbon electrode with both positive and negative
JP2000294266A (en) Method and device for recovering energy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070223

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070625