JP2003304680A - Two-way step-up/down converter both for alternating current and for direct current - Google Patents

Two-way step-up/down converter both for alternating current and for direct current

Info

Publication number
JP2003304680A
JP2003304680A JP2002107106A JP2002107106A JP2003304680A JP 2003304680 A JP2003304680 A JP 2003304680A JP 2002107106 A JP2002107106 A JP 2002107106A JP 2002107106 A JP2002107106 A JP 2002107106A JP 2003304680 A JP2003304680 A JP 2003304680A
Authority
JP
Japan
Prior art keywords
voltage
current
input
frequency
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002107106A
Other languages
Japanese (ja)
Other versions
JP3703024B2 (en
Inventor
Yasunobu Suzuki
康暢 鈴木
Isao Sugawara
庸 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Original Assignee
Chiyoda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp filed Critical Chiyoda Corp
Priority to JP2002107106A priority Critical patent/JP3703024B2/en
Publication of JP2003304680A publication Critical patent/JP2003304680A/en
Application granted granted Critical
Publication of JP3703024B2 publication Critical patent/JP3703024B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a completely novel two-way step-up/down converter both for alternating current and for direct current, which increases or decreases alternating- current, direct-current, or both current-superposed input voltage; is provided with an automatic voltage regulating function and thus compatible with conventional alternating-current transformers; is capable of directly increasing/decreasing and converting in two ways direct-current voltages and direct currents, such as those in fuel cells and photovoltaic power generation, as well as in 400-Hz power supplies; and is of small size and light-weight and efficient. <P>SOLUTION: The two-way step-up/down converter both for alternating current and for direct current is so constituted that an alternating-current, direct-current, or both current-superposed input voltage is modulated at a frequency higher that at least an input frequency, and the modulated voltage is applied to a high-frequency autotransformer. The voltage is then increased or decreased and demodulated, and then smoothed. Thus, the converter is capable of increasing and decreasing the original alternating-current, direct-current, or both current-superposed input voltage and letting electric power energy flow in either of directions, normal direction or reverse direction. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この出願の発明は、交直流両
用双方向昇降圧変換器に関するものである。さらに詳し
くは、この出願の発明は、家電機器,業務用設備機器そ
の他各種電子機器に広く使用され、直流から数100H
zの交流までの電圧,電流変換機能を有するAC−AC
/DC−DC両用の正,逆双方向コンバータとして有用
な、全く新しい交直流両用双方向昇降圧変換器に関する
ものである。
TECHNICAL FIELD The present invention relates to a bidirectional buck-boost converter for both AC and DC. More specifically, the invention of this application is widely used in home appliances, business equipment, and various other electronic devices, and can be used for several hundreds of hours from direct current.
AC-AC having a function of converting voltage up to AC z and current
The present invention relates to an entirely new AC / DC bidirectional buck-boost converter useful as a DC / DC bidirectional positive / reverse bidirectional converter.

【0002】[0002]

【従来の技術】交流の電圧、電流変換器として従来から
交流変圧器が広く使用され、現在に到っている。一方、
DC/DCコンバータは半導体スイッチを用いた専用の
機器が通信,情報機器をはじめ各種産業用機器として一
般的に使用されている。
2. Description of the Related Art Conventionally, an AC transformer has been widely used as an AC voltage / current converter and has reached the present. on the other hand,
As the DC / DC converter, a dedicated device using a semiconductor switch is generally used as various industrial devices such as communication and information devices.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、これら
従来の交流変換器及びDC/DCコンバータには、実用
上以下のような問題点がある。
However, these conventional AC converters and DC / DC converters have the following problems in practical use.

【0004】すなわち、まず、交流変圧器は、鉄と鋼の
素材から構成られており、寿命(MTBF)が長く、短
時間の過負荷耐量が大きく、回線への雑音の発生が少な
いなど優れた特徴を持つ反面、50Hzの場合1kw程
度の容量のもので容積3l強、重量10kg前後とな
り、大きく、重いといった問題点がある。
That is, first of all, the AC transformer is made of iron and steel materials, has a long life (MTBF), has a large short-time overload capacity, and has little noise on the line. On the other hand, in the case of 50 Hz, it has a capacity of about 1 kW and a volume of more than 3 liters and a weight of about 10 kg, which is large and heavy.

【0005】一方、DC/DCコンバータは、半導体の
高周波スイッチング技術を用いて直流電力をオン・オフ
しているので同一容量の交流変圧器に比べ、容積,重量
共に数分の1に小形,軽量化できている点で省資源に寄
与しているものの、入力端子側から出力端子側への電力
エネルギーの一方向伝送機能しかなく、出力端子側で発
生することのある反(逆)起電力を入力端子側に電力回
生できず、専用の放熱抵抗で吸収するなどの手段が必要
になるといった問題点があるのが現状である。
On the other hand, since the DC / DC converter uses a semiconductor high-frequency switching technique to turn on / off the DC power, the volume and weight of the DC / DC converter are several times smaller and lighter than those of an AC transformer of the same capacity. Although it contributes to resource saving in that it has been made possible, it has only a one-way transmission function of power energy from the input terminal side to the output terminal side, and the anti (reverse) electromotive force that may occur at the output terminal side is generated. The current situation is that power cannot be regenerated on the input terminal side, and means such as absorption by a dedicated heat radiation resistor is required.

【0006】この出願の発明は、以上のとおりの事情に
鑑みてなされたものであり、従来技術の問題点を解消
し、小型、軽量、高効率で信頼性の高いことはもちろん
のこと、交流、直流、さらには交直複合の電圧について
も昇降圧ならびに自動電圧調整が可能な全く新しい交直
流両用双方向昇降圧変換器を提供することを課題として
いる。
The invention of this application has been made in view of the above circumstances, solves the problems of the prior art, and is of course small in size, lightweight, highly efficient and highly reliable. It is an object of the present invention to provide a completely new bidirectional buck-boost converter for both AC and DC, capable of stepping up and down and automatically adjusting the voltage of DC as well as AC / DC combined voltage.

【0007】[0007]

【課題を解決するための手段】この出願の発明は、上記
の課題を解決するものとして、第1には、交流、直流ま
たはその重畳された入力電圧を少なくとも入力周波数よ
りも高い周波数で変調して高周波単巻変圧器に加え、昇
圧または降圧して復調ののち平滑することで、元の交
流、直流またはその重畳された入力電圧を昇・降圧可能
で、且つ電力エネルギーの流通方向が正方向,逆方向の
いずれにも流通可能なように構成された事を特徴とする
交直流両用双方向昇降圧変換器を提供し、第2には、請
求項1記載の変換器において、半導体スイッチのオン・
オフと回路中に含まれるインダクタンスのために発生す
るスパイクパルスすべての接続点を入力端子とする多入
力全波ブリッジ・ダイオードとスナパ・コンデンサを用
いてスパイクパルスエネルギーをスナパ・コンデンサに
蓄え、ここに蓄えられた電力エネルギーにより制御回路
を駆動する事を特徴とする交直流両用双方向昇降圧変換
器を提供する。そしてこの出願の発明は、第3には、請
求項1記載の変換器において、変調により生じる高周波
電流の通路に高周波電流変成器を設け、2次巻線に生じ
る信号電圧を用いて入力電圧の交直流またはその複合電
圧に拘らず過電流保護または定電流制御を行うことを特
徴とする交直流双方向昇降圧変換器を提供し、第4に
は、請求項1記載の変換器において、高周波単巻変圧器
に切替タップと切替スイッチを設け、昇、降圧電圧比を
自由に選べるようにした事を特徴とする交直流双方向昇
降圧変圧器を提供する。第5には、請求項1記載の変換
器において、高周波単巻変圧器に2次巻線と双方向半導
体スイッチを追加し、1次巻線側を駆動する変復調用双
方向半導体スイッチの駆動パルス位相に対して追加半導
体スイッチの駆動位相をほぼ0位相から180°近くま
で制御する事により、交流入出力の場合は正位相のほぼ
最大値から零をへて逆位相の最大値まで、一方直流入出
力の場合には正極性のほぼ最大値から零をへて負極性の
ほぼ最大値まで連続制御しこの出力電圧を正逆双方向昇
降圧電圧に加える事により、入、出力電圧比を更に細か
く制御する事を特徴とする交直流両用双方向昇降圧変換
器を提供する。
In order to solve the above-mentioned problems, the invention of the present application firstly modulates an alternating current, a direct current or an input voltage superposed thereon with a frequency higher than at least the input frequency. In addition to the high frequency autotransformer, it can boost or step down the original AC or DC or its superimposed input voltage by stepping up or down and demodulating and then smoothing, and the direction of power energy flow is positive. , A bidirectional buck-boost converter for both AC and DC, characterized in that it is configured to be flowable in both reverse directions. Second, in the converter according to claim 1, a semiconductor switch on·
The spike pulse energy generated in the off and the spike pulse generated due to the inductance contained in the circuit is stored in the snapper capacitor using the multi-input full-wave bridge diode and the snapper capacitor which have the connection points as input terminals. Provided is a bidirectional buck-boost converter for both AC and DC, which is characterized in that a control circuit is driven by stored power energy. Thirdly, according to the invention of this application, in the converter according to claim 1, a high frequency current transformer is provided in a path of a high frequency current generated by modulation, and a signal voltage generated in the secondary winding is used to change the input voltage. An AC / DC bidirectional buck-boost converter is provided which performs overcurrent protection or constant current control regardless of AC / DC or a composite voltage thereof. Fourthly, in the converter according to claim 1, high frequency An AC / DC bidirectional step-up / down transformer, which is characterized in that an autotransformer is provided with a changeover tap and a changeover switch to freely select a step-up / step-down voltage ratio. Fifth, in the converter according to claim 1, a drive pulse of a modulation / demodulation bidirectional semiconductor switch for driving a primary winding side by adding a secondary winding and a bidirectional semiconductor switch to a high frequency autotransformer. By controlling the drive phase of the additional semiconductor switch from almost 0 phase to nearly 180 ° with respect to the phase, in the case of AC input / output, from the maximum value of the positive phase to zero to the maximum value of the opposite phase, while the DC In the case of input / output, the input / output voltage ratio is further increased by continuously controlling from the maximum value of the positive polarity to zero to almost the maximum value of the negative polarity and adding this output voltage to the forward / reverse bidirectional buck-boost voltage. A bidirectional buck-boost converter for both AC and DC, which is characterized by fine control.

【0008】[0008]

【発明の実施の形態】図1に本発明の基本主回路を、図
2にその制御回路の一例を示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a basic main circuit of the present invention, and FIG. 2 shows an example of its control circuit.

【0009】図1で、端子<1>,<2>(図中出は丸囲み数字
として表示。以下同じ。)は低電圧側入出力兼用端子、
<11>,<12>は高圧側出入力兼用端子であって、<1>,<2>端
子が入力側の時は<11>,<12>は出力端子であり、逆に<11
>,<12>端子を入力側とした時は<1>,<2>端子が出力側と
なり、電力エネルギーは正逆いずれの方向にも伝送され
る。また、<1>,<2>端子または<11>,<12>端子に加えられ
る電力周波数は0から数100Hzの交流まで自由に加
えることができる。たとえばf=0すなわち直流入力の
場合、正極性,逆極性いずれでも差し支えなく同一極性
の昇圧または降圧直流出力電圧,電流を取出すことがで
きる。
In FIG. 1, terminals <1> and <2> (indicated by circled numbers in the figure, the same applies hereinafter) are low-voltage side input / output terminals,
<11> and <12> are high-voltage side output / input terminals, and when <1> and <2> terminals are input side, <11> and <12> are output terminals, and conversely <11> and <12> are output terminals.
When the>, <12> terminals are the input side, the <1>, <2> terminals are the output side, and the power energy is transmitted in both forward and reverse directions. Further, the power frequency applied to the <1>, <2> terminals or the <11>, <12> terminals can be freely applied from 0 to several hundreds of alternating current AC. For example, in the case of f = 0, that is, a DC input, a step-up or step-down DC output voltage and current of the same polarity can be extracted regardless of whether the polarity is positive or reverse.

【0010】図1のF1は低電圧側フィルタ、F2は高電
圧側フィルタ、SA,SB,SCおよびSDは双方向スイッ
チであって、それぞれ2個のMOS FETスイッチの
背面突き合せ接続である。
In FIG. 1, F 1 is a low-voltage side filter, F 2 is a high-voltage side filter, and S A , S B , S C and S D are bidirectional switches, each of which is a rear face of two MOS FET switches. Butt connection.

【0011】図1ではこれに補助のC−Rスナパ回路を
付加している。
In FIG. 1, an auxiliary C-R snapper circuit is added to this.

【0012】CTは電流検出器,T1は高周波昇降圧変
圧器,D1〜D10は5入力全波整流ブリッジ回路、C2
主スナパ・コンデンサ,<16>は制御回路用補助電源とし
てのDC/DCコンバータで、<9>,<10>端子に発生する
スナパ・エネルギーによって動作し、<13>,<14>および<
15>端子に+E,0,−Eの制御用電圧を発生する。
CT is a current detector, T 1 is a high frequency step-up / down transformer, D 1 to D 10 are 5-input full-wave rectification bridge circuits, C 2 is a main snapper capacitor, and <16> is an auxiliary power supply for control circuit. This DC / DC converter operates by the snapper energy generated at the <9> and <10> terminals, and it operates at <13>, <14> and <
Generates + E, 0, -E control voltages at the 15> terminal.

【0013】図2は、このスナパ・エネルギーによって
動作する駆動回路<18>の一例を示したもので、IC1
20年来使用され最も代表的なPWM制御ICであるT
L−494を用いた場合の回路例を示したが、本ICに
こだわるものではない。このICをパルスduty比4
9%程度で動作させるために、パルス・トランスPT 1
の第4巻線に発生する電圧をダイオードD11で整流し、
抵抗R2,コンデンサC 6で平滑したのち可変抵抗VR1
で調整、C7で再平滑してICの制御端子4に加えてい
る。
FIG. 2 shows the result of this snapper energy.
An example of a driving circuit <18> that operates, an IC1Is
T, which is the most typical PWM control IC used for 20 years
An example circuit using L-494 is shown.
I'm not particular about it. This IC has a pulse duty ratio of 4
To operate at about 9%, pulse transformer PT 1
The voltage generated in the fourth winding of the diode D11Rectified with
Resistance R2, Capacitor C 6Variable resistance VR after smoothing with1
Adjust with, C7Re-smoothed with and added to control terminal 4 of IC
It

【0014】Tr1,Tr3は通常のNPNトランジス
タ,Tr2,Tr4はPNPトランジスタであり、それぞ
れトーテンポール接続によりパルス・トランスPT1
PT2を2相、49%前後のduty比で駆動する。
Tr 1 and Tr 3 are normal NPN transistors, Tr 2 and Tr 4 are PNP transistors, and pulse transformers PT 1 and PT 1 are connected by totem pole connection, respectively.
PT 2 is driven in two phases with a duty ratio of around 49%.

【0015】パルス・トランスの他端は制御回路用補助
電源<18>の零電位端子に接続するため、パルス・トラン
スには正の半サイクル+E、duty約49%、負の半
サイクル−E、duty約51%の矩型波が加わるた
め、パルス・トランスのコアに直流偏磁が生じる。これ
を避けるためR3,C9およびR4,C10によってバイア
ス電圧を発生させ、直流偏磁を防ぐ。また過電流検出制
御回路<17>は電流変成器CTの2次巻線端子X、Yから
の高周波信号電力を整流平滑し、ツェナーダイオード電
圧と比較して越えた場合にIC1の4番端子に加える事
によりパルス断続比(duty)を下げ、昇降圧変換器(以下
コンバータ)全体の過負荷を防止する。この時の電流値
の調整はたとえばVR2によって行われる。
Since the other end of the pulse transformer is connected to the zero potential terminal of the auxiliary power supply <18> for the control circuit, the pulse transformer has a positive half cycle + E, a duty of about 49%, and a negative half cycle -E. Since a rectangular wave with a duty of about 51% is applied, DC bias is generated in the core of the pulse transformer. In order to avoid this, a bias voltage is generated by R 3 , C 9 and R 4 , C 10 to prevent DC bias magnetization. Also, the overcurrent detection control circuit <17> rectifies and smoothes the high frequency signal power from the secondary winding terminals X and Y of the current transformer CT, and when it exceeds the Zener diode voltage, it goes to the 4th terminal of IC 1. The pulse duty cycle (duty) is reduced by adding the above to prevent overload of the entire buck-boost converter (hereinafter referred to as converter). The current value at this time is adjusted by, for example, VR 2 .

【0016】図3に双方向スイッチSA,SB,SCおよ
びSDの駆動波形を示す。
FIG. 3 shows driving waveforms of the bidirectional switches S A , S B , S C and S D.

【0017】パルス・トランスPT1の駆動波形Aとパ
ルス・トランスPT2の駆動波形Bとの間は180°の
位相差を有し、波形Aによって双方向スイッチSA,SD
が同時に駆動され、一方波形Bによって双方向スイッチ
B,SCが同時に駆動される。今、たとえば商用交流周
波数に対して駆動波形の周波数を十分高く選んだ場合の
各部波形例を図4に示す。また図5に簡易化した表現で
示した双方向スイッチS A,SDがオン期間(T1)中の
昇圧の原理図を示した。
Pulse transformer PT1Drive waveform A and
Ruth trans PT2180 ° between the drive waveform B of
Bidirectional switch S with phase difference and waveform AA, SD
Are driven simultaneously, while the waveform B causes a bidirectional switch
SB, SCAre driven at the same time. Now, for example, commercial exchange
When the frequency of the drive waveform is selected to be sufficiently high with respect to the wave number
An example of the waveform of each part is shown in FIG. Also, in the simplified representation in FIG.
Bidirectional switch S shown A, SDIs on (T1)In
The principle diagram of boosting is shown.

【0018】すなわち高周波トランスT1による昇圧の
原理と商用周波数のトランスの昇圧原理とは全く同一で
ある。図中のV1-2は端子<1>−<2>間の交流電圧波形で
あり、この電圧源を基に双方向スイッチSB,SDにより
交互にオン・オフ駆動されると高周波単巻変圧器T1
端子<7>−<8>間には端子<4>−<6>間の電圧の2倍の振幅
を持つ高周波リング変調波形V7-8が発生する。この電
圧波形は同時に駆動されるスイッチSA,SCにより復調
され端子<3>−<5>間にV3-5の電圧波形が発生する。高
電圧側フィルタF2によって高周波成分は除かれ、出力
端子<11>−<12>間には入力端子<1>−<2>に加えられた商
用交流電圧波形のほぼ2倍の振幅で、同一波形、同一周
波数の電圧V11-12が発生する。すなわち、1対2に昇
圧した変圧器の機能が実現する。
That is, the principle of boosting by the high frequency transformer T 1 is exactly the same as the principle of boosting by the transformer of commercial frequency. V 1-2 in the figure is an AC voltage waveform between the terminals <1> and <2>, and if the bidirectional switches S B and S D alternately turn on and off based on this voltage source, a high frequency single wave is generated. A high frequency ring modulation waveform V 7-8 having an amplitude twice the voltage between the terminals <4> and <6> is generated between the terminals <7> and <8> of the winding transformer T 1 . This voltage waveform is demodulated by the switches S A and S C which are driven simultaneously, and a voltage waveform of V 3-5 is generated between the terminals <3>-<5>. High-frequency component by the high voltage side filter F 2 is removed, the output terminal <11> - almost twice the amplitude of <2> to the applied commercial AC voltage waveform, - <12> input terminal between <1> Voltages V 11-12 having the same waveform and the same frequency are generated. That is, the function of the transformer boosted to 1 to 2 is realized.

【0019】逆に端子<11>−<12>に商用交流周波数の電
圧V11-12を加えると、双方向スイッチSA,SDとSB
Cの交互オン・オフ動作によって高周波単巻変圧器T1
の端子<7>−<8>には図4のV7-8に示した波形が発生
し、端子<6>−<5>間にはV3-5に示した波形と同じで振
幅のみが2分の1の電圧波形が発生する。低圧側フィル
タF1により高周波成分が除かれ、端子<1>−<2>間には
端子<11>−<12>間に加えられた商用交流電圧波形のほぼ
2分の1の振幅で同一周波数、同一波形の電圧V 1-2
発生する。また、逆方向に電圧を加えれば2対1に降圧
した単巻変圧器の機能が実現する。すなわち、図1の回
路は従来の鋼鉄型単巻変圧器の機能と全く同じ機能を果
たすことが判る。
On the contrary, the terminals <11>-<12> are connected to the commercial AC frequency.
Pressure V11-12, The bidirectional switch SA, SDAnd SB
SCHigh frequency autotransformer T by alternating on / off operation of1
To terminals <7>-<8> of7-8Generates the waveform shown in
However, V between terminals <6>-<5>3-5Same as the waveform shown in
A voltage waveform whose width is ½ is generated. Low voltage side fill
Ta F1Removes the high frequency component, and between terminals <1>-<2>
Almost all commercial AC voltage waveforms applied between terminals <11>-<12>
Voltage V with the same frequency and waveform with half the amplitude 1-2But
Occur. Also, if voltage is applied in the opposite direction, the voltage will drop to 2: 1.
The function of the autotransformer is realized. That is, the time of FIG.
The road performs exactly the same function as a conventional steel autotransformer.
I know that I will do it.

【0020】上記の説明では商用交流電圧波形の昇,降
圧機能について述べたが、本願発明の狙いはこれに止ま
るものではない。すなわち、図1の回路の端子<1>−<2>
間に<1>が正極性、<2>が負極性の電圧V1-2を加えると
図6に示すような各部電圧が発生し、出力端子<11>−<1
2>間には図1の入力端子<1>−<2>に加えられた直流電圧
のほぼ2倍の振幅で同一極性の直流電圧V11-12が発生
する。一方端子<11>−<12>間に直流電圧V11-12を加え
ると、図7に示したような各部電圧が発生し、端子<1>
−<2>間にほぼ2分の1の振幅で同一極性の直流電圧が
発生する。
Although the above description has described the function of raising and lowering the commercial AC voltage waveform, the aim of the present invention is not limited to this. That is, the terminals <1>-<2> of the circuit of FIG.
When a voltage V 1-2 with <1> having a positive polarity and <2> having a negative polarity is applied between them, voltages at respective parts as shown in FIG. 6 are generated, and the output terminals <11> − <1
2>, a DC voltage V 11-12 of the same polarity is generated with an amplitude almost twice that of the DC voltage applied to the input terminals <1>-<2> in FIG. On the other hand, when a DC voltage V 11-12 is applied between the terminals <11>-<12>, the voltage at each part as shown in FIG. 7 is generated, and the terminal <1>
A DC voltage of the same polarity is generated with an amplitude of approximately ½ during − <2>.

【0021】以上は商用交流と直流の2種類の電圧変換
動作について昇、降圧動作と電力エネルギーの双方向伝
送動作について述べたが、これ以外の任意の波形を加え
ても昇、降圧動作が正しく行われる事を実験により確認
している。すなわち、本発明の単巻昇降圧変圧器は直流
から数百Hzの交流およびその重畳波形に至るまで正し
く巻数比にほぼ比例して昇、降圧動作を行うことができ
る。
Up to this point, the voltage rising / falling operation and the bidirectional transmission operation of the power energy have been described for the two types of voltage conversion operation of commercial AC and DC, but the rising / falling operation is correct even if any other waveform is added. We have confirmed by experiment that it will be done. That is, the single-winding step-up / down transformer of the present invention can properly perform the step-up / step-down operation from DC to AC of several hundreds Hz and its superposed waveform in almost proportion to the turn ratio.

【0022】その根本的理由は、一般に通信技術で用い
られてきた変復調技術を電力分野に採り入れた事による
もので、変復調に歪の発生がなければ入力信号(電圧)
波形は出力側に忠実に再現するものであり、任意の波形
をそのまま出力側に取出す事ができる。なお、本願発明
で最も重要な点は電力エネルギーの正方向、逆方向共に
双方向で伝送でき、且つ入力信号(電圧)波形の種類、
極性を問わないという点にある。更に出力500ワット
の1:2単巻変圧器と同等の電子単巻変圧器を試作し、
従来の商用周波変圧器と電圧変動率、効率、力率を比較
した結果、電圧変動率2.6%、効率94%、力率ほぼ
1(99.4%程度)で全く遜色なく、容積0.6〜
0.7,重量比0.2と小形、軽量化が実現できた。
The fundamental reason for this is that the modulation / demodulation technology, which has been generally used in communication technology, is adopted in the power field. If there is no distortion in the modulation / demodulation, the input signal (voltage)
The waveform is faithfully reproduced on the output side, and any waveform can be directly output to the output side. The most important point in the present invention is that the forward and backward directions of power energy can be transmitted in both directions and the type of input signal (voltage) waveform,
The point is that the polarity does not matter. Furthermore, an electronic autotransformer equivalent to a 1: 2 autotransformer with an output of 500 watts was prototyped,
As a result of comparing the voltage fluctuation rate, the efficiency, and the power factor with the conventional commercial frequency transformer, the voltage fluctuation rate is 2.6%, the efficiency is 94%, the power factor is almost 1 (about 99.4%), and the volume is 0. .6 ~
0.7, weight ratio of 0.2, small and lightweight.

【0023】半導体を始め電子部品の性能価格比の向上
や、鉄心と銅線の性能価格比の改善によれば、コスト面
でもさらに一層優れたものとすることができる。以上が
本願発明の第1要件の説明である。
By improving the performance price ratio of electronic parts including semiconductors and improving the performance price ratio of iron cores and copper wires, the cost can be further improved. The above is the description of the first requirement of the present invention.

【0024】本願発明の第2の要件は、図1に示した5
入力ダイオード・ブリッジとスナパ・コンデンサC2
よび制御回路用補助電源<16>の組み合わせ接続にある。
The second requirement of the present invention is the requirement 5 shown in FIG.
It is connected to the combination of the input diode bridge, the snapper capacitor C 2 and the auxiliary power supply <16> for the control circuit.

【0025】一般に半導体スイッチのオン・オフ動作回
路中にインダクタンス成分が含まれていると、そのリー
ケージインダクタンスLのためにLdi/dtのスパイ
ク電圧が波形に重畳し、これが半導体の耐圧を高めなけ
ればならない原因にもなり、更にスパイク電圧吸収のた
めのスナパ回路によって無効の電力損失を発生し装置全
体の効率を低下させる。
In general, when the ON / OFF operation circuit of a semiconductor switch includes an inductance component, the leakage inductance L causes a spike voltage of Ldi / dt to be superimposed on the waveform, which must increase the breakdown voltage of the semiconductor. In addition, the snapper circuit for absorbing the spike voltage causes a reactive power loss and reduces the efficiency of the entire device.

【0026】本願図1の回路ではこの損失をなくし有効
利用するために、単巻変圧器の<6>,<7>および<8>端子
に加え、双方向半導体スイッチSA,SB,SCおよびSD
の両端に発生するスパイク電圧をすべて引き込むために
図1中の<3>および<5>端子を加えた5入力端子間に発生
するすべてのスパイク電圧を5入力ダイオード・ブリッ
ジD1〜D10に引き込み,整流してスナパ・コンデンサ
2に蓄え、このエネルギーを用いて制御回路駆動用の
絶縁型DC/DCコンバータを動作させ、主双方向スイ
ッチSA,SB,SCおよびSDを駆動している。従ってス
ナパ回路で発生した電力のほとんどは制御回路の駆動に
有効利用され、通常言われるロス・レス・スナパーを構
成する。
In the circuit of FIG. 1 of the present application, in order to eliminate this loss and effectively utilize it, in addition to the <6>, <7> and <8> terminals of the autotransformer, the bidirectional semiconductor switches S A , S B and S are added. C and S D
In order to pull in all the spike voltage generated at both ends, all spike voltage generated between 5 input terminals including <3> and <5> terminals in Fig. 1 are applied to 5 input diode bridges D 1 to D 10 . It is drawn in, rectified and stored in the snapper capacitor C 2 , and this energy is used to operate the isolated DC / DC converter for driving the control circuit to drive the main bidirectional switches S A , S B , S C and S D. is doing. Therefore, most of the electric power generated in the snapper circuit is effectively used for driving the control circuit, and constitutes a so-called lossless snapper.

【0027】各双方向スイッチSA,SB,SCおよびSD
の中に接続されているC−Rスナパ回路は、高速ダイオ
ードD1〜D10の蓄積電荷のために、なお数10ナノ・
秒の時間の遅れにより発生する極めて細いパルスのみに
応答する小容量のスナパであり、その発生電力損失はD
1〜D10および2の主スナパ回路が発生する電力よりも十
分少ない値であり、装置全体の効率低下にはほとんど影
響しない。
Each bidirectional switch S A , S B , S C and S D
The C-R snapper circuit connected inside is still several tens of nanometers due to the accumulated charge of the fast diodes D 1 to D 10.
It is a small-capacity snapper that responds only to an extremely thin pulse generated due to the delay of time of second, and the generated power loss is D
This value is sufficiently smaller than the power generated by the main snapper circuits of 1 to D 10 and 2 , and has almost no effect on the decrease in the efficiency of the entire device.

【0028】本願発明の第3の要件は過負荷対策回路で
ある。図1のCTに示したように、本願発明の回路では
入力電圧を数十キロ・ヘルツ以上の高周波で変調するた
め、電流検出用変成器CTの2次巻線に少ない巻数で電
流検出用の信号電圧を発生する。この電圧波形は入、出
力電圧の交、直流およびその複合波形の如何を問わず、
電流に比例した電圧V1を取出すことができる。
The third requirement of the present invention is an overload countermeasure circuit. As shown in CT of FIG. 1, in the circuit of the present invention, since the input voltage is modulated at a high frequency of several tens of kilohertz or more, the secondary winding of the transformer CT for current detection has a small number of turns for current detection. Generates signal voltage. This voltage waveform is independent of input, output voltage crossing, direct current and its composite waveform,
The voltage V 1 proportional to the current can be taken out.

【0029】図2中の<17>に示した回路電圧V1がツェ
ナー電圧Vzを越すと過負荷が識別され、たとえばパル
ス幅制御用IC1の4番ピンに正の電圧として加わり駆
動パルス幅(duty比)を狭め、出力電流を制限す
る。
When the circuit voltage V 1 shown in <17> in FIG. 2 exceeds the Zener voltage Vz, an overload is identified. For example, the pin 4 of the pulse width control IC 1 is applied as a positive voltage to drive pulse width. (Duty ratio) is narrowed to limit the output current.

【0030】[0030]

【実施例】図8に本願発明の第1の実施例を示した。図
中のSA,SB,SCおよびSDは第1図に示した2個の半
導体スイッチの背面突き合せによる双方向スイッチをブ
ロック図表現したものである。ここでの図1との相違点
は、単巻変圧器T1に第3および第4の巻線N3,N4
そのタップ切替のための機械的スイッチSW1,SW2
追加した点にある。今N1,N2を100として、N3
4に15の巻線を施しこれらを2組の切替スイッチS
1,SW2で切替えると、端子<1>−<2> 間と端子<11>
−<12>間の電圧比が表1に示した4通りとなる。
FIG. 8 shows a first embodiment of the present invention. S A , S B , S C and S D in the figure are block diagram representations of a bidirectional switch formed by back-butting the two semiconductor switches shown in FIG. The difference from FIG. 1 here is that the third and fourth windings N 3 and N 4 and mechanical switches SW 1 and SW 2 for switching the taps are added to the autotransformer T 1 . It is in. Now, assuming N 1 and N 2 to be 100, N 3 and
N 4 has 15 windings, and these are 2 sets of changeover switch S
Switching in W 1, SW 2, the terminal <1> - <2> between the terminal <11>
There are four voltage ratios between <12> shown in Table 1.

【0031】[0031]

【表1】 [Table 1]

【0032】この電圧比の単巻変圧器を用いれば現在1
80ヶ国を越す世界の家庭用電源電圧の殆どに使用が可
能になり、且つ小型、軽量のため海外旅行客や長短期留
学生、海外出張者、海外赴任者等の使用機器や携帯用を
主体とする各種測定機器等に広く普及するものと思われ
る。また入出力が直流から400Hz程度まで変圧でき
るので、航空機、船舶、レジャーボート、電気自動車
等、スペース、重量を重視する産業用機器等にも広く適
用可能である。
If an autotransformer with this voltage ratio is used, it is currently 1
Since it can be used for most household power supply voltages in over 80 countries and is small and lightweight, it is mainly used for overseas travelers, long-term and short-term students, overseas business travelers, and people who are assigned overseas, as well as portable devices. It is expected that it will be widely used in various measuring instruments. Moreover, since input / output can be transformed from DC to about 400 Hz, it can be widely applied to aircraft, ships, leisure boats, electric vehicles, and other industrial equipment where space and weight are important.

【0033】図9に本願発明の第2の実施例を示した。
図で端子<1>−<2>間は100V/115V系の低圧側、
端子<11>−<12>間は200V/230V系の昇圧側であ
る点は図1と変わりないが、高周波トランスT1にN3
4の2次側巻線を施し、更に双方向半導体スイッチ
E,SFを図示の如く接続して出力側にL,C11による
ノーマルモードのフィルタとコモンモードフィルタF3
を加え出力V0を取出すようにした。更に低圧側と昇圧
側の電圧V1,V2を機械的スイッチSW3のe,f接点
により切替え、この電圧に前記付加回路によって発生す
る電圧VCを加えるように構成した。
FIG. 9 shows a second embodiment of the present invention.
In the figure, between terminals <1>-<2> is the low voltage side of 100V / 115V system,
The point between the terminals <11>-<12> is the boost side of the 200V / 230V system, which is the same as in FIG. 1, but the high frequency transformer T 1 has N 3 ,
A secondary side winding of N 4 is provided, and bidirectional semiconductor switches S E and S F are connected as shown in the drawing, and a normal mode filter by L and C 11 and a common mode filter F 3 on the output side.
Was added to obtain the output V 0 . Further, the voltages V 1 and V 2 on the low voltage side and the voltage side on the boosted side are switched by the e and f contacts of the mechanical switch SW 3 , and the voltage V C generated by the additional circuit is added to this voltage.

【0034】これによりスイッチSW3の接点がe側に
閉じている場合には出力端子<12>−<19>間に発生する電
圧V0は、 V0=V1+VC・・・・・・・・・・・・・・・・・・・(1) 一方、スイッチSW3の接点がf側に閉じている場合に
は出力端子<12>−<19>間に発生する電圧V0は、 V0=V2+VC・・・・・・・・・・・・・・・・・・・(2) となる。茲でVC電圧は双方向半導体スイッチSE,SF
の位相制御により±VC(交流の場合は正位相の最大値
から零をへて逆位相の最大値まで、直流の場合は正極性
の最大値から零をへて負極性の最大値)までを連続的に
制御する。図9のブロック図<22>はその役割を果たす。
As a result, when the contact of the switch SW 3 is closed to the side e, the voltage V 0 generated between the output terminals <12>-<19> is: V 0 = V 1 + V C ... (1) On the other hand, when the contact of the switch SW 3 is closed on the f side, the voltage V 0 generated between the output terminals <12>-<19> Becomes V 0 = V 2 + V C (2) By the way, the V C voltage is the bidirectional semiconductor switch S E , S F
Phase control of ± V C (in the case of alternating current, it goes from the maximum value of the positive phase to zero to the maximum value of the opposite phase, and in the case of direct current, it goes from the maximum value of positive polarity to the maximum value of negative polarity and goes to zero) Control continuously. The block diagram <22> in FIG. 9 plays that role.

【0035】この制御回路の一例を図10に示した。図
10でIC1は前述のたとえばTL−494の如き公知
のPWM(パルス幅)制御用IC、<17>は前述の電流検
出回路,<23>は公知の絶縁型オペアンプに公知のRMS
コンバータを加えたAC/DC電圧検出回路である。I
1周辺に付加されているコンデンサ,抵抗の類はIC1
のカタログに表示されている公知の回路であるので詳細
な説明は省略する。IC1がTL−494であるとき、<
23>の電圧検出回路または<17>の電流検出回路の信号振
幅によって、9番ピンと10番ピンの接続点(制御信号
出力)には5〜95%程度の可変パルス幅信号が発生す
る。この信号は論理回路のインバータIV1,IV2をへ
てそれぞれ単安定マルチ(OSM1,OSM2)およびD
型フリップ・フロップDFF1,DFF2に加えられ、単
安定マルチとDFFの2出力を受けて4個のアンドゲー
ト回路A1,A2,A3およびA4が動作し、それぞれ出力
側のホト・カプラを経てトーテンポール型トランジスタ
により電力増幅の後パルス・トランスを駆動する。ドラ
イバー回路DR1は双方向半導体スイッチSA,S Dを同
時駆動しDR2はSB,SCを同時駆動する。またDR3
DR4はSEとSFのみを駆動する。それぞれの駆動タイ
ミングと波形の観測位置を図10および図11に<a>か
ら<h>(図中では丸囲みローマ字として表示。以下同
じ。)まで対応して示した。以下図11を概説する。
An example of this control circuit is shown in FIG. Figure
IC at 101Is a known one such as TL-494 mentioned above.
PWM (pulse width) control IC, <17> is the current detection
Output circuit, <23> is a well-known isolated type operational amplifier RMS
It is an AC / DC voltage detection circuit with a converter added. I
C1Capacitors and resistors added to the periphery are IC1
Details as it is a known circuit displayed in the catalog of
Detailed description is omitted. IC1Is TL-494, <
Signal swing of voltage detection circuit of <23> or current detection circuit of <17>
Depending on the width, the connection point between pin 9 and pin 10 (control signal
5) to 95% variable pulse width signal is generated
It This signal is the inverter IV of the logic circuit.1, IV2To
Each monostable multi (OSM1, OSM2) And D
Type flip-flop DFF1, DFF2Added to
It receives 4 outputs of stable multi and DFF.
Circuit A1, A2, A3And AFourWorks and outputs respectively
Totem pole transistor through the photo coupler on the side
Drive the pulse transformer after power amplification. Dora
Iber circuit DR1Is a bidirectional semiconductor switch SA, S DThe same
DR when2Is SB, SCDrive simultaneously. Also DR3When
DRFourIs SEAnd SFDrive only. Each drive tie
The observation positions of the ming and the waveform are shown in Figure 10 and Figure <a>.
<H> (Indicated as circled Roman letters in the figure.
Same. ). The following is a brief description of FIG. 11.

【0036】図11の<a>点および<b>点はPWM制御信
号であり、インバータにより反転している。<c>は<a>点
信号を受けたD型フリップ・フロップDFF1のQ出力
を、また<e>はQ出力を示す。同時に<a>点信号を受けた
単安定マルチのQ出力は<d>点の波形となる。この時の
パルス幅ΔT1は図中のRC時定数によって決まるが通
常0.2〜0.5μsの範囲に選ばれる。その理由は双
方向スイッチSA,とSB,SCとSDが同時オンとなる事
を避けるためであり、公知の技術である。
Points <a> and <b> in FIG. 11 are PWM control signals, which are inverted by the inverter. <c> indicates the Q output of the D-type flip-flop DFF 1 that has received the <a> point signal, and <e> indicates the Q output. At the same time, the Q output of the monostable multi that receives the signal at point <a> has a waveform at point <d>. The pulse width ΔT 1 at this time is determined by the RC time constant in the figure, but is usually selected in the range of 0.2 to 0.5 μs. The reason is to prevent the bidirectional switches S A and S B and S C and S D from being simultaneously turned on, which is a known technique.

【0037】<c>点波形と<d>点波形のアンド論理により
ホト・カプラPC1は図11<c>点の斜線で示されたT1
時間だけ駆動され、パルス・トランス出力にも同一時間
幅の駆動パルスA,Dが発生し、双方向スイッチSA
Dを同時に駆動する。同様にして<e>点波形と<d>点波
形のアンド論理によりドライバDR2を経て双方向スイ
ッチSB,SDが駆動される。この回路ではPWM信号で
ある<a>点波形のduty比が点線のように大きく変動
しても<a>点の立上がりのみですべて動作しているので
変動はない。
Due to the AND logic of the <c> point waveform and the <d> point waveform, the photo coupler PC 1 has T 1 indicated by the hatched line at the <c> point in FIG.
Driven only for a time, drive pulses A and D having the same time width are generated at the pulse transformer output, and the bidirectional switch S A ,
Drive S D at the same time. Similarly, the bidirectional switches S B and S D are driven through the driver DR 2 by the AND logic of the <e> point waveform and the <d> point waveform. In this circuit, even if the duty ratio of the waveform of the <a> point, which is the PWM signal, fluctuates greatly as indicated by the dotted line, there is no fluctuation because it is all operating only at the rising of the <a> point.

【0038】次に<b>点のパルス波形を基に動作するD
FF3およびOSM2について見てみると、<b>点パルス
の立上がりがduty比により大きく変動する。そのた
め、<f><g>および<h>点のパルス波形は<f>が<f>′ま
で、<g>が<g>′まで、さらに<h>が<h>′までduty比
により大きく変化する。前述の動作と同じ回路構成であ
るため、当然パルス・トランスの駆動出力波形E,Fも
duty比によってA,B,C,Dに対し大きく相対位
相を変える事になる。
Next, D which operates based on the pulse waveform at point <b>
Looking at FF 3 and OSM 2 , the rising edge of the pulse at point <b> greatly varies depending on the duty ratio. Therefore, the pulse waveforms at the points <f><g> and <h> can be calculated according to the duty ratio from <f> to <f> ′, <g> to <g> ′, and <h> to <h> ′. It changes a lot. Since the circuit configuration is the same as that of the above-described operation, the drive output waveforms E and F of the pulse transformer naturally change their relative phases with respect to A, B, C and D depending on the duty ratio.

【0039】図12の様にSE,SFのみの相対位相を連
続的に制御した場合、高周波変圧器の2次側に発生して
いるN3,N4巻線電圧の瞬時値は図12のViで示され
た形となる。図12の例では双方向スイッチSA,SB
CおよびSDの駆動位相を固定しておき、スイッチ
E,SFの相対位相を45°遅らせた場合(duty比
0.25のPWMパルスに相当)のLCフィルタ入力側
(図9の±Vi)を示している。この場合、LCフィル
タを経て平均化された電圧波形は図12のVCで示され
たように、Viの最大振幅の1/2になる。
When the relative phases of only S E and S F are continuously controlled as shown in FIG. 12, the instantaneous values of the winding voltages of N 3 and N 4 generated on the secondary side of the high frequency transformer are shown in the figure. It becomes the form shown by 12 Vi. In the example of FIG. 12, bidirectional switches S A , S B ,
When the drive phases of S C and S D are fixed and the relative phase of the switches S E and S F is delayed by 45 ° (corresponding to a PWM pulse with a duty ratio of 0.25), the LC filter input side (see FIG. 9) ± Vi) is shown. In this case, the voltage waveform averaged through the LC filter becomes ½ of the maximum amplitude of Vi, as shown by V C in FIG.

【0040】[0040]

【表2】 [Table 2]

【0041】位相差とVC電圧の関係は次のようにな
る。
The relationship between the phase difference and the V C voltage is as follows.

【0042】すなわちPWMパルス幅を0.03から
0.97まで連続可変にすると交流電圧の場合、N3
4巻線に発生する電圧Viと同相で94%の出力電圧
から逆相の94%出力電圧まで連続的に制御できる。従
って、図9の回路では機械的スイッチSW3の接点がe
側に閉じている時は端子<1> −<2> 間にV1または端子<
11>−<12>間にV2を加えた場合、出力端子<18>−<12>間
に発生する出力電圧V0は、 V0=V1±0.94Vi・・・・・・・・・・・・・・・(4) 一方SW3の接点がf側に閉じている時は端子<1>−<2>
間にはV1または端子<11>−<12>間にV2を加えた場
合、出力端子<18>−<12>間には、 V0=V3±0.94Vi・・・・・・・・・・・・・・・(4) の出力電圧V0を取出す事ができる。すなわち、図9の
実施例によれば高周波変圧器T1の2次巻線N3,N4
発生する電圧の大きさに応じて出力電圧を連続的に自動
制御できる。従って巻数比を適切に選ぶ事により昇降圧
変圧器に加え自動電圧調整機能を持つ事ができ、各々広
い適用範囲に利用する事が可能になる。
That is, when the PWM pulse width is continuously variable from 0.03 to 0.97, in the case of AC voltage, N 3 ,
It is possible to control continuously from the output voltage of 94% in phase with the voltage Vi generated in the N 4 winding to the output voltage of 94% in the opposite phase. Therefore, in the circuit of FIG. 9, the contact point of the mechanical switch SW 3 is e
When closed to the side, V 1 or terminal < 1 > between terminals <1> and <2>
When V 2 is applied between 11>-<12>, the output voltage V 0 generated between the output terminals <18>-<12> is: V 0 = V 1 ± 0.94Vi・ ・ ・ ・ ・ ・ ・ ・ (4) On the other hand, when the contact of SW 3 is closed on the f side, the terminals <1>-<2>
<11> V 1 or pin between - <12> when added to V2 between output terminals <18> - <12> between, V 0 = V 3 ± 0.94Vi ······ ..... It is possible to take out the output voltage V 0 of (4). That is, according to the embodiment of FIG. 9, the output voltage can be continuously and automatically controlled according to the magnitude of the voltage generated in the secondary windings N 3 and N 4 of the high frequency transformer T 1 . Therefore, by properly selecting the turns ratio, it is possible to have an automatic voltage adjustment function in addition to the step-up / down transformer, and each can be used in a wide range of applications.

【0043】もちろん、この出願の発明は以上の実施形
態、実施例に限定されるものではなく、細部については
様々な態様が可能である。
Of course, the invention of this application is not limited to the above-described embodiments and examples, and various aspects are possible in details.

【0044】[0044]

【発明の効果】以上詳しく説明した通り、本願発明によ
って、殆ど全世界の家庭用、産業用電源に対応して電力
を使用できる小型、軽量な電子変圧器が実現できるに止
まらず、従来技術では不可能であった直流から数百ヘル
ツまでの交流、さらに直流、交流の複合した電圧につい
ても昇、降圧ならびに自動電圧調整を可能ならしめる全
く新しい交直流両用双方向昇降圧変換器が提供され、こ
れによれば、パワー・エレクトロニクス産業の新しい応
用分野を広げる事になり、たとえば燃料電池や太陽光発
電など直流電力による分散給電が普及してくると、従来
の交流も含めて変圧できる交直流両用の昇降圧変圧器は
極めて重要な給変電用機器となる。
As described above in detail, according to the present invention, it is not only possible to realize a small and lightweight electronic transformer that can use electric power corresponding to almost all household and industrial power sources in the world. A completely new AC / DC bidirectional buck-boost converter is provided that enables the up / down and automatic voltage adjustment of DC, which has been impossible, AC up to several hundreds of hertz, and DC / AC combined voltage. According to this, when new application fields of the power electronics industry are expanded, for example, when distributed power supply by DC power such as fuel cells and solar power generation becomes widespread, it is possible to transform conventional AC including both AC and DC. The step-up / down transformers in the above are extremely important power supply and transformation equipment.

【図面の簡単な説明】[Brief description of drawings]

【図1】本願発明の交直流両用昇降圧変圧器の基本回路
の一例を示した図である。
FIG. 1 is a diagram showing an example of a basic circuit of an AC / DC dual step-up / down transformer of the present invention.

【図2】図1の制御回路の一具体例を示した図である。FIG. 2 is a diagram showing a specific example of the control circuit of FIG.

【図3】本願発明の交直流両用昇降圧変換器に用いられ
る双方向半導体スイッチの駆動を行うパルス・トランス
PT1,PT2の駆動電圧波形の一例を示した図である。
FIG. 3 is a diagram showing an example of drive voltage waveforms of pulse transformers PT 1 and PT 2 for driving a bidirectional semiconductor switch used in an AC / DC dual-voltage step-up / down converter of the present invention.

【図4】本願発明の交直流両用昇降圧変換器の低電圧側
に交流電圧を加えた場合の主要観測点の電圧波形の一例
を示した図である。
FIG. 4 is a diagram showing an example of voltage waveforms at main observation points when an AC voltage is applied to the low voltage side of the AC / DC dual step-up / down converter of the present invention.

【図5】本願発明の交直流両用昇降圧変換器の昇降圧動
作原理を説明するための回路図である。
FIG. 5 is a circuit diagram for explaining a step-up / step-down operation principle of an AC / DC dual step-up / step-down converter of the present invention.

【図6】本願発明の交直流両用昇降圧変換器の低電圧側
に直流電圧を加え、昇圧動作を行った場合の主要観測点
の波形を示した図である。
FIG. 6 is a diagram showing waveforms at main observation points when a boosting operation is performed by applying a DC voltage to the low voltage side of the AC / DC dual step-up / down converter of the present invention.

【図7】本願発明の交直流両用昇降圧変換器の高電圧側
に直流電圧を加え、降圧動作を行った場合の主要観測点
の波形の一例を示した図である。
FIG. 7 is a diagram showing an example of waveforms at major observation points when a step-down operation is performed by applying a DC voltage to the high voltage side of the AC / DC dual step-up / down converter of the present invention.

【図8】本願発明の交直流両用昇降圧変換器の高周波変
圧器巻線にタップを設け、このタップを機械接点等で切
替えて任意の昇降圧動作を行う基本原理を説明するため
の回路図である。
FIG. 8 is a circuit diagram for explaining the basic principle of providing a tap on the high frequency transformer winding of the AC / DC dual step-up / down converter of the present invention and switching the tap with a mechanical contact or the like to perform an arbitrary step-up / down operation. Is.

【図9】本願発明の交直流両用昇降圧変換器の高周波変
圧器に2次巻線を設け、これに双方向半導体スイッチを
組み合わせて1次巻線側の双方向半導体スイッチ群の駆
動位相に対して駆動パルス位相を制御し、出力電圧を自
動制御する基本回路の一例を示した図である。
FIG. 9 is a diagram showing a high-frequency transformer of the AC / DC dual-sided step-up / down converter according to the present invention, which is provided with a secondary winding, and a bidirectional semiconductor switch is combined with the secondary winding to form a drive phase of the bidirectional semiconductor switch group on the primary winding side. FIG. 4 is a diagram showing an example of a basic circuit that controls a drive pulse phase and automatically controls an output voltage.

【図10】図9に示した本願発明の基本回路図中の制御
回路の一実施例を示した図である。
10 is a diagram showing an embodiment of a control circuit in the basic circuit diagram of the present invention shown in FIG.

【図11】図10の制御回路の主要観測点<a>〜<h>の
動作波形を示し基本動作原理を説明するための図であ
る。
11 is a diagram for explaining the basic operation principle, showing operation waveforms at main observation points <a> to <h> of the control circuit of FIG.

【図12】図9における双方向半導体スイッチの位相制
御の一例について説明するための図である。
FIG. 12 is a diagram for explaining an example of phase control of the bidirectional semiconductor switch in FIG. 9.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H730 AA11 AA14 AA15 AS04 AS05 BB11 BB57 DD04 DD12 DD22 DD43 EE08 FD31 FG05 VV03 5H750 AA00 BA01 BA05 CC07 CC11 CC16 DD26 DD27 EE04 FF02   ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 5H730 AA11 AA14 AA15 AS04 AS05                       BB11 BB57 DD04 DD12 DD22                       DD43 EE08 FD31 FG05 VV03                 5H750 AA00 BA01 BA05 CC07 CC11                       CC16 DD26 DD27 EE04 FF02

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 交流、直流またはその重畳された入力電
圧を少なくとも入力周波数よりも高い周波数で変調して
高周波単巻変圧器に加え、昇圧または降圧して復調のの
ち平滑することで、元の交流、直流またはその重畳され
た入力電圧を昇・降圧可能で、且つ電力エネルギーの流
通方向が正方向、逆方向のいずれにも流通可能なように
構成された事を特徴とする交直流両用双方向昇降圧変換
器。
1. An AC, DC or superposed input voltage thereof is modulated at a frequency higher than at least an input frequency to be applied to a high frequency autotransformer, which is stepped up or down to be demodulated and then smoothed to obtain the original. Both AC and DC, both for AC and DC, characterized by being capable of raising and lowering the input voltage of AC or DC or its superposed input voltage, and being configured so that the flow direction of power energy can be either forward or backward. Directional buck-boost converter.
【請求項2】 請求項1記載の変換器において、半導体
スイッチのオン・オフと回路中に含まれるインダクタン
スのために発生するスパイクパルスすべての接続点を入
力端子とする多入力全波ブリッジ・ダイオードとスナパ
・コンデンサを用いてスパイクパルスエネルギーをスナ
パ・コンデンサに蓄え、ここに蓄えられた電力エネルギ
ーにより制御回路を駆動する事を特徴とする交直流両用
双方向昇降圧変換器。
2. The multi-input full-wave bridge diode according to claim 1, wherein an input terminal is a connection point of all spike pulses generated due to ON / OFF of a semiconductor switch and an inductance included in a circuit. A bidirectional buck-boost converter for both AC and DC use, characterized in that spike pulse energy is stored in the snapper capacitor using the and snapper capacitor, and the control circuit is driven by the power energy stored here.
【請求項3】 請求項1記載の変換器において、変調に
より生じる高周波電流の通路に高周波電流変成器を設
け、2次巻線に生じる信号電圧を用いて入力電圧の交直
流またはその複合電圧に拘らず過電流保護または定電流
制御を行うことを特徴とする交直流双方向昇降圧変換
器。
3. The converter according to claim 1, wherein a high-frequency current transformer is provided in a path of a high-frequency current generated by modulation, and a signal voltage generated in a secondary winding is used to convert an input voltage to an alternating current or a composite voltage thereof. An AC / DC bidirectional buck-boost converter characterized by performing overcurrent protection or constant current control regardless.
【請求項4】 請求項1記載の変換器において、高周波
単巻変圧器に切替タップと切替スイッチを設け、昇、降
圧電圧比を自由に選べるようにした事を特徴とする交直
流双方向昇降圧変圧器。
4. The converter according to claim 1, wherein the high-frequency autotransformer is provided with a changeover tap and a changeover switch so that the rising / falling voltage ratio can be freely selected. Voltage transformer.
【請求項5】 請求項1記載の変換器において、高周波
単巻変圧器に2次巻線と双方向半導体スイッチを追加
し、1次巻線側を駆動する変復調用双方向半導体スイッ
チの駆動パルス位相に対して追加半導体スイッチの駆動
位相をほぼ0位相から180°近くまで制御する事によ
り、交流入出力の場合は正位相のほぼ最大値から零をへ
て逆位相の最大値まで、一方直流入出力の場合には正極
性のほぼ最大値から零をへて負極性のほぼ最大値まで連
続制御しこの出力電圧を正逆双方向昇降圧電圧に加える
事により、入、出力電圧比を更に細かく制御する事を特
徴とする交直流両用双方向昇降圧変換器。
5. The converter pulse according to claim 1, wherein a secondary winding and a bidirectional semiconductor switch are added to the high frequency autotransformer to drive a modulation / demodulation bidirectional semiconductor switch for driving the primary winding side. By controlling the drive phase of the additional semiconductor switch from almost 0 phase to nearly 180 ° with respect to the phase, in the case of AC input / output, from the maximum value of the positive phase to zero to the maximum value of the opposite phase, while the DC In the case of input / output, the input / output voltage ratio is further increased by continuously controlling from the maximum value of the positive polarity to zero to almost the maximum value of the negative polarity and adding this output voltage to the forward / reverse bidirectional buck-boost voltage. A bidirectional buck-boost converter for both AC and DC, characterized by fine control.
JP2002107106A 2002-04-09 2002-04-09 AC / DC bidirectional buck-boost converter Expired - Lifetime JP3703024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002107106A JP3703024B2 (en) 2002-04-09 2002-04-09 AC / DC bidirectional buck-boost converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002107106A JP3703024B2 (en) 2002-04-09 2002-04-09 AC / DC bidirectional buck-boost converter

Publications (2)

Publication Number Publication Date
JP2003304680A true JP2003304680A (en) 2003-10-24
JP3703024B2 JP3703024B2 (en) 2005-10-05

Family

ID=29391235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002107106A Expired - Lifetime JP3703024B2 (en) 2002-04-09 2002-04-09 AC / DC bidirectional buck-boost converter

Country Status (1)

Country Link
JP (1) JP3703024B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007069556A1 (en) * 2005-12-12 2007-06-21 Chiyoda Co., Ltd. High-frequency modulation/demodulation multiphase rectifying device
WO2014158847A1 (en) * 2013-03-14 2014-10-02 Unico, Inc. Autotransformer system reducing total harmonic distortion
EP2618473A4 (en) * 2010-09-15 2017-10-11 Panasonic Intellectual Property Management Co., Ltd. Dc/dc converter
CN116827126A (en) * 2023-03-23 2023-09-29 广东工业大学 High-gain boost converter

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007069556A1 (en) * 2005-12-12 2007-06-21 Chiyoda Co., Ltd. High-frequency modulation/demodulation multiphase rectifying device
JP4808221B2 (en) * 2005-12-12 2011-11-02 株式会社千代田 High frequency modulation / demodulation multiphase rectifier
EP2618473A4 (en) * 2010-09-15 2017-10-11 Panasonic Intellectual Property Management Co., Ltd. Dc/dc converter
WO2014158847A1 (en) * 2013-03-14 2014-10-02 Unico, Inc. Autotransformer system reducing total harmonic distortion
US9124169B2 (en) 2013-03-14 2015-09-01 Unico, Inc. Autotransformer system reducing total harmonic distortion
EA029591B1 (en) * 2013-03-14 2018-04-30 Юнико, Инк. Autotransformer system reducing total harmonic distortion
CN116827126A (en) * 2023-03-23 2023-09-29 广东工业大学 High-gain boost converter
CN116827126B (en) * 2023-03-23 2023-11-28 广东工业大学 High-gain boost converter

Also Published As

Publication number Publication date
JP3703024B2 (en) 2005-10-05

Similar Documents

Publication Publication Date Title
JP4077809B2 (en) AC / DC flyback converter
JP4995277B2 (en) Bidirectional DC / DC converter
US8737097B1 (en) Electronically isolated method for an auto transformer 12-pulse rectification scheme suitable for use with variable frequency drives
JP5659575B2 (en) Multi-phase converter
US6611444B2 (en) Zero voltage switching DC-DC converter
US7554820B2 (en) Series resonant DC-DC converter
CN101626197B (en) Efficiency improvement in power factor correction
EP2312735B1 (en) Switching power supply unit with wide input voltage range
CN101331671B (en) High-frequency modulation/demodulation multiphase rectifying device
WO2005091483A1 (en) Dc-dc converter
JP2000354376A (en) Ac voltage regulator
EP3595154A1 (en) Power conversion circuit having inrush current limiting resistor bypass
JPH04299070A (en) Switching regulator
JP2005065497A (en) Pulse-width modulation soft switching control
WO2011038227A1 (en) Modified zero voltage transition (zvt) full bridge converter and photovoltaic (pv) array using the same
KR20190115364A (en) Single and three phase combined charger
JP2003304680A (en) Two-way step-up/down converter both for alternating current and for direct current
JP4109476B2 (en) Constant power output power supply
JP4415363B2 (en) Switching power supply
US20070035282A1 (en) Switch mode power supply and a method for controlling such a power supply
WO2024090066A1 (en) Dc/dc converter and power source device
Han et al. Efficiency optimized asymmetric half-bridge converter with hold-up time compensation
Sudharani An Improved Power Factor Correction with Control of Leakage Inductance
WO2018211893A1 (en) Isolated switching power source for three-phase ac
JP2004007907A (en) Switching power unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050713

R150 Certificate of patent or registration of utility model

Ref document number: 3703024

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080729

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090729

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090729

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100729

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100729

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110729

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120729

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130729

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term