JP2003304178A - Multiinput multioutput turbo receiving method and receiver thereof - Google Patents

Multiinput multioutput turbo receiving method and receiver thereof

Info

Publication number
JP2003304178A
JP2003304178A JP2002107552A JP2002107552A JP2003304178A JP 2003304178 A JP2003304178 A JP 2003304178A JP 2002107552 A JP2002107552 A JP 2002107552A JP 2002107552 A JP2002107552 A JP 2002107552A JP 2003304178 A JP2003304178 A JP 2003304178A
Authority
JP
Japan
Prior art keywords
equalization
transmitter
output
unit
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002107552A
Other languages
Japanese (ja)
Other versions
JP4215148B2 (en
Inventor
Hirotada Fujii
啓正 藤井
Tetsushi Abe
哲士 阿部
Takahiro Asai
孝浩 浅井
Shigeru Tomisato
繁 冨里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Original Assignee
NTT Docomo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Docomo Inc filed Critical NTT Docomo Inc
Priority to JP2002107552A priority Critical patent/JP4215148B2/en
Publication of JP2003304178A publication Critical patent/JP2003304178A/en
Application granted granted Critical
Publication of JP4215148B2 publication Critical patent/JP4215148B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Radio Transmission System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve an error rate characteristic when there is a big difference between received power of signals from respective transmitters. <P>SOLUTION: Received energy per information bit of a received signal from each transmitter is calculated (S2), and equalization and decoding processing is applied to the received signal from the receiver in the order of large received energy. That is, for example, only a received signal corresponding to a transmitter with large received energy in the previous prior information is used to perform equalization processing, and equalization and decoding processing is also applied to a received signal from a transmitter with small received energy according as the repetition of equalization and decoding is increased. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は同一周波数帯を使
用し同一時刻に送信を行う2以上の整数N個の送信機か
らの信号を1以上の整数M個のアンテナで受信し、等化
と復号を繰り返すことによりN個の送信機からの信号分
離を行う多入力多出力(MIMO)ターボ受信方法及び
その受信機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention receives signals from two or more integer N transmitters which use the same frequency band and transmit at the same time by one or more integer M antennas to perform equalization. The present invention relates to a multi-input multi-output (MIMO) turbo reception method and a receiver for separating signals from N transmitters by repeating decoding.

【0002】[0002]

【従来の技術】移動体通信事業の課題は限られた周波数
上でいかに高品質で多数のユーザを収容できるかという
ことにある。このような課題を解決する手段として、多
入力多出力(Multi-Input Multi-Output:MIMO)シ
ステムがある。このシステムでは図1に示すように複数
の送信機S1〜SNが同一周波数帯を使用し、同一の時
間に送信を行い、これらの送信信号を複数のアンテナA
1〜AMを備えるMIMOターボ受信機10で受信し、
MIMOターボ受信機10は受信信号を等化復号処理し
て各送信機S1〜SNの送信シンボルを推定して出力端
子Out1〜OutNに別々に出力する。
2. Description of the Related Art The problem of the mobile communication business is how to accommodate a large number of users with high quality on a limited frequency. As a means for solving such a problem, there is a multi-input multi-output (MIMO) system. In this system, as shown in FIG. 1, a plurality of transmitters S1 to SN use the same frequency band and transmit at the same time, and these transmission signals are transmitted to a plurality of antennas A.
Received by the MIMO turbo receiver 10 including 1 to AM,
The MIMO turbo receiver 10 performs equalization decoding processing on the received signal, estimates the transmission symbols of the respective transmitters S1 to SN, and outputs them to the output terminals Out1 to OutN separately.

【0003】多入力多出力ターボ受信法としては、特願
2001−043213号「多入力多出力ターボ受信法
及びチャネル推定法」において提案されている。この特
許出願で提案されている多入力多出力ターボ受信法を可
能とする送信機の構成を図3に示す。情報ビットに対し
てチャネル符号器11で誤り訂正符号化を行ない、誤り
訂正符号化により得られた符号化ビット系列(符号誤系
列)をインタリーバ12でインタリーブ(並べ替え)し
た後変調手段13で搬送波信号を変調して送信する。そ
の際、トレーニングシンボル系列生成手段14よりのそ
の送信機に固有のトレーニングシンボル系列を多重化手
段15を通じて送信しこれに引き続き符号化ビット系列
を送信する。
A multi-input multi-output turbo reception method is proposed in Japanese Patent Application No. 2001-043213 "Multi-input multi-output turbo reception method and channel estimation method". FIG. 3 shows the configuration of a transmitter that enables the multi-input multi-output turbo reception method proposed in this patent application. The channel encoder 11 performs error correction coding on the information bits, and an interleaver 12 interleaves (rearranges) the coded bit sequence (code error sequence) obtained by the error correction coding, and then the modulation means 13 performs a carrier wave. Modulate the signal and transmit. At this time, the training symbol sequence generated by the training symbol sequence generation means 14 is transmitted through the multiplexing means 15 and the encoded bit sequence is subsequently transmitted through the multiplexing means 15.

【0004】図1中の多入力多出力ターボ受信機10は
各アンテナA1〜AMで受信された信号は図に示してい
ないが、受信増幅後、ベースバンド信号に変更され、更
に例えばシンボル(ビット)周期又はその整数分の1で
サンプリングされてデジタル信号の受信信号として入力
端子211 〜21M より多入力多出力(MIMO)等化
部22に入力される。また各アンテナよりの受信信号は
チャネル推定部23にも入力され、このチャネル推定部
23にはトレーニングシンボル系列生成部24から各送
信機S1〜SNよりのトレーニングシンボル系列と同一
のトレーニングシンボル系列が入力され、各送信機Sn
(n=1,…,N)と受信アンテナA1〜AMとの間の
伝送路特性、つまりインパルスレスポンス(チャネル
値)がそれぞれ推定され、これら推定されたチャネル値
と、各送信機信号と対応した系列用復号部251 〜25
N よりの第2事前情報系列λ1 P〜λN PとがMIMO等化
部22に入力され、全入力系列の等化処理が一括して行
われ、その各送信機信号(ユーザ)ごとの信号系列復号
部251 〜25N に供給される。
In the multi-input multi-output turbo receiver 10 shown in FIG. 1, the signals received by the antennas A1 to AM are not shown in the figure, but after reception amplification, they are converted into baseband signals, and further, for example, symbols (bits) are used. ) The signal is sampled at a cycle or an integral fraction thereof, and is input to the multi-input multi-output (MIMO) equalization unit 22 from the input terminals 21 1 to 21 M as a reception signal of a digital signal. The received signal from each antenna is also input to the channel estimation unit 23, and the same training symbol sequence as the training symbol sequence from each of the transmitters S1 to SN is input from the training symbol sequence generation unit 24 to this channel estimation unit 23. Each transmitter Sn
The transmission path characteristics between (n = 1, ..., N) and the receiving antennas A1 to AM, that is, impulse responses (channel values) are respectively estimated, and these estimated channel values correspond to the respective transmitter signals. Sequence decoding unit 25 1 to 25
A second pre-information sequence lambda 1 P to [lambda] N P than N is input to the MIMO equalization section 22, an equalization processing for all the input sequence is performed collectively, for each the respective transmitter signal (user) It is supplied to the signal sequence decoding units 25 1 to 25 N.

【0005】MIMO等化部22の構成を図4に示す。
MIMO等化部22には受信信号、各復号部251 〜2
N の各SISO復号器から帰還される事前情報系列λ
1 P〜λN P、チャネル推定部25よりのチャネル推定値が
入力される。必要に応じてオフセット補償手段26よ
り、受信信号の送信機間及びアンテナ間のずれを補償
し、各系列用等化手段271 〜27N において、第2事
前情報系列λ1 P〜λN Pとチャネル推定値とよりその系列
(送信機信号)における受信信号中の干渉レプリカを干
渉レプリカ生成部28でそれぞれ再生し、これを受信信
号から減算部29でそれぞれ差し引くことで符号間干渉
(ISI)、チャネル間干渉(MAI)を低減する。さ
らに、それぞれ減算部29から残されるISI及びMA
Iを最小平均2乗誤差(MMSE)フィルタ31により
それぞれ処理し、そのフィルタ処理結果に対し事前情報
計算部32で各シンボルの第1事前情報系列を計算し出
力する。事前情報計算部32では、MMSEフィルタ3
1の出力、チャネル推定値、前回処理の第2事前情報が
入力され、各送信機ごとの受信信号の情報ビット(シン
ボル)b(i)が+1である確率と−1である確率の対
数尤度比Λ1 が計算され、そのΛ1 からその送信機の前
回処理の第2事前情報が引算されて、等化処理結果の信
頼度を示す第1事前情報として出力される。
The structure of the MIMO equalizer 22 is shown in FIG.
The MIMO equalization unit 22 receives the received signal, and each decoding unit 25 1 to 2
Prior information sequence λ fed back from each 5 N SISO decoder
1 P to λ N P , and the channel estimation value from the channel estimation unit 25 is input. If necessary, the offset compensating means 26 compensates for the difference between the transmitters and the antennas of the received signal, and the respective equalizing means 27 1 to 27 N for the respective sequences use the second prior information sequences λ 1 P to λ N P. And the channel estimation value, the interference replicas in the received signal in the sequence (transmitter signal) are regenerated by the interference replica generation unit 28, and subtracted from the received signal by the subtraction unit 29, so that intersymbol interference (ISI) , Reduce inter-channel interference (MAI). Furthermore, the ISI and MA left from the subtraction unit 29, respectively.
I is processed by the minimum mean square error (MMSE) filter 31, and the a priori information calculation unit 32 calculates the first a priori information sequence of each symbol with respect to the filter processing result and outputs the result. The prior information calculation unit 32 uses the MMSE filter 3
The log likelihood of the probability that the information bit (symbol) b (i) of the received signal for each transmitter is +1 and the probability that it is -1, with the output of 1, the channel estimation value, and the second prior information of the previous processing input The power ratio Λ 1 is calculated, and the second prior information of the previous processing of the transmitter is subtracted from the Λ 1 and output as the first prior information indicating the reliability of the equalization processing result.

【0006】MIMO等化部22よりの各ユーザ(送信
機)ごとの第1事前情報系列は図3に示すように各系列
用復号部251 〜25N でデインタリーバ33で逆並び
替え(デインタリーブ)された系列としてSISO(Si
ngl Input Singl Output)復号器34に入力され、SI
SO復号(誤り訂正復号)が行われる。SISO復号器
34では、誤り訂正復号処理を作った復号結果及びその
信頼度を示す第2事前情報系列を出力する。その各第2
事前情報系列はそれぞれインタリーバ35でインタリー
ブされてMIMO等化部22へ入力される。同一受信信
号に対し、このMIMO等化処理及びSISO復号処理
を複数回繰り返し、最終的な復号結果を出力する。これ
らの各部の制御及び繰り返し処理を制御部36が行う。
As shown in FIG. 3, the first a priori information sequence for each user (transmitter) from the MIMO equalization unit 22 is reversely rearranged (de-interleaved) by the de-interleaver 33 in each sequence decoding unit 25 1 to 25 N. As an interleaved sequence, SISO (Si
ngl Input Singl Output) is input to the decoder 34 and SI
SO decoding (error correction decoding) is performed. The SISO decoder 34 outputs the decoding result of the error correction decoding process and the second prior information sequence indicating the reliability thereof. Each second
The prior information sequences are interleaved by the interleaver 35 and input to the MIMO equalization unit 22. The MIMO equalization process and the SISO decoding process are repeated a plurality of times for the same received signal, and the final decoding result is output. The control unit 36 controls and repeats each of these units.

【0007】この繰り返し等化復号処理のk−1回目と
k回目の過程を図5に示す。ここでユーザn(n=1,
…,N)に対する等化及びSISO復号部37nは送信
機Snからの受信信号に対する、つまり信号系列nに対
する図4中の系列用等化手段27nと信号系列nに対す
る図3中の系列用復号部25nを合せたものを表し、そ
の入力、出力は第2事前情報のみを示し、他の入力、出
力は省略してある。k−1回目の処理により得られた各
ユーザnに対する等化及びSISO復号部37nよりの
第2事前情報λn Pはk回目の処理における等化及びSI
SO復号部37 1 〜37N の全てに供給されて、繰り返
し処理が行われる。このように1回目の処理から全ての
送信機S1〜SNからの受信信号に対する等化復号処理
を行っていた。
The k-1th time of this iterative equalization decoding processing
The k-th process is shown in FIG. Here, user n (n = 1,
, N) equalization and SISO decoding unit 37n transmits
For the received signal from the device Sn, that is, for the signal sequence n.
For the sequence equalizer 27n and the signal sequence n in FIG.
3 is a combination of the sequence decoding units 25n in FIG.
Inputs and outputs of the above show only the second prior information, and other inputs and outputs
Power is omitted. Each obtained by the (k-1) th processing
From the equalization and SISO decoding unit 37n for user n
Second prior information λn PIs equalization and SI in the k-th processing
SO decryption unit 37 1~ 37NIs supplied to all of and repeated
Processing is performed. In this way, from the first processing all
Equalization decoding processing for received signals from the transmitters S1 to SN
Was going on.

【0008】[0008]

【発明が解決しようとする課題】上記MIMOターボ受
信機において、送信機S1〜SNからの受信電力間に大
きな差がある場合、受信電力の弱い送信機(ユーザ)の
受信信号は受信電力の強い送信機(ユーザ)の受信信号
からより強い干渉を受けることになる。その結果時に1
回目の等化復号処理の後に生成される第2事前情報系列
は、大きな誤差を持ったものになり、この第2事前情報
系列を用いて等化処理を行うとビット誤り率(BER)
特性が劣化する。
In the MIMO turbo receiver described above, when there is a large difference between the received powers from the transmitters S1 to SN, the received signal of the transmitter (user) having a weak received power has a strong received power. More interference will be received from the received signal of the transmitter (user). As a result 1
The second prior information sequence generated after the second equalization decoding process has a large error, and if the equalization process is performed using this second prior information sequence, the bit error rate (BER)
The characteristics deteriorate.

【0009】[0009]

【課題を解決するための手段】この発明においては各送
信機からの受信信号の情報ビット当たりの受信エネルギ
ーを推定し1回目の等化(復号)処理は受信エネルギー
の大きい順に少なくとも1つの送信機からの受信信号に
ついて等化(復号)処理を行い、少なくとも最終回の等
化(復号)処理では受信エネルギーの最も小さい送信機
からの受信信号について等化(復号)処理を行う。
According to the present invention, the received energy per information bit of the received signal from each transmitter is estimated, and the first equalization (decoding) process is performed by at least one transmitter in descending order of received energy. The equalization (decoding) process is performed on the received signal from, and the equalization (decoding) process is performed on the received signal from the transmitter having the smallest received energy at least in the final equalization (decoding) process.

【0010】[0010]

【発明の実施の形態】<第1実施形態>図6にこの発明
の第1実施形態を示し、図3と対応する部分に同一参照
符号を付けてある。この実施形態においては各系列用復
号部251 〜25N から出力される第2事前情報系列を
それぞれ選択器411 〜41N を介してMIMO等化部
22に入力し、各送信機S1〜SNよりの受信信号の情
報ビット当たりのエネルギーを受信エネルギー算出部4
2で算出し、これら算出した受信エネルギーに基づき選
択制御部43により選択器411 〜41N を制御する。
その他、MIMO等化部22、各系列用復号部251
25N に関しては従来のものと同じ構成とすることがで
きる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS <First Embodiment> FIG. 6 shows a first embodiment of the present invention, in which parts corresponding to those in FIG. 3 are designated by the same reference numerals. In this embodiment, the second a priori information sequences output from the respective sequence decoding units 25 1 to 25 N are input to the MIMO equalization unit 22 via the selectors 41 1 to 41 N , respectively, and the transmitters S 1 to S 1 are transmitted. The energy per information bit of the received signal from the SN is calculated by the received energy calculation unit 4
The selection control unit 43 controls the selectors 41 1 to 41 N based on the calculated received energy.
In addition, the MIMO equalization unit 22 and each sequence decoding unit 25 1 to
25 N can have the same configuration as the conventional one.

【0011】図7にこの第1実施形態におけるk−1回
目からk回目への繰り返し等化及び復号処理の過程を、
図5と対応させて示す。k−1回目の等化及びSISO
復号部371 において求められた第2事前情報系列は選
択器411 を介してk回目の全ての等化及びSISO復
号部371 〜37N へ供給され、等化及びSISO復号
部372 で求められた第2事前情報系列は選択器412
を介してk回目の全ての等化及びSISO復号部371
〜37N へ供給される。以下同様に各等化及びSISO
復号部で求められた第2事前情報系列はそれぞれ選択器
を介してk回目の全ての等化及びSISO復号部371
〜37N へ供給される。
FIG. 7 shows a process of iterative equalization and decoding processing from the (k-1) th time to the kth time according to the first embodiment.
It shows in correspondence with FIG. k-1st equalization and SISO
The second pre-information sequence obtained in the decoding unit 37 1 is supplied via the selector 41 1 to k-th all equalization and SISO decoding unit 37 1 to 37 N, with equalization and SISO decoder 37 2 The obtained second prior information sequence is the selector 41 2
Through k equalization and SISO decoding section 37 1
~ 37 N. Similarly, each equalization and SISO
The second a priori information sequence obtained by the decoding unit is supplied to each of the k-th equalization and SISO decoding units 37 1 through the selector.
~ 37 N.

【0012】選択制御部43では、例えば次の規範に基
づいて第2事前情報系列に対する選択制御を行う。情報
ビット当たりの受信エネルギーが大きい順にユーザ(送
信機)に順番をX(X=1,2,…,N)付けると、k
回目の等化と誤り訂正復号の繰り返しでは、k>Xを満
す順番Xのユーザの第2事前情報系列のみを選択し、他
のユーザの第2事前情報系列の値は全て0とする。ここ
で、各ユーザの情報ビット当たりの受信エネルギーは例
えば送信機Snのアンテナと受信機の各アンテナA1〜
AM間の各インパルス応答(チャネル推定値)の2乗を
積分し、その和をとり、これに1/(符号化率)を乗算
することで求めることができる。
The selection control unit 43 performs selection control for the second prior information sequence based on the following standard, for example. If X (X = 1, 2, ..., N) is assigned to the users (transmitters) in order of increasing received energy per information bit, k
In the second iteration of equalization and error correction decoding, only the second a priori information series of the users in the order X satisfying k> X are selected, and the values of the second a priori information series of other users are all zero. Here, the received energy per information bit of each user is, for example, the antenna of the transmitter Sn and the antennas A1 to A1 of the receiver.
This can be obtained by integrating the square of each impulse response (channel estimation value) between AMs, taking the sum, and multiplying this by 1 / (coding rate).

【0013】この受信エネルギーとしては例えば図8に
示すようにアンテナA1〜AMからの入力端子211
21M を経由した受信信号と、トレーニングシンボル系
列生成手段24M からの、送信機Snが送信するトレー
ニングシンボル系列と同一のトレーニングシンボル系列
との相関を相関部451 〜45M でそれぞれ求め、これ
ら相関出力をシフトレジスタ461 〜46M それぞれに
入力し、そのシフトレジスタ461 〜46M の各シフト
段の出力に重みを乗算部で乗算して、加算部471 〜4
M でそれぞれ加算し、つまり相関出力に対し一定時間
にわたり重み付け加算を行い、受信エネルギー指標を求
め、更にこれら受信エネルギー指標を加算部48で加算
し、その最大値を最大値検出部49で検出しこれをユー
ザn(送信機Sn)からの受信信号のシンボル当たりの
受信エネルギーとしてもよい。
The input terminals 21 1 to the antenna A1~AM as indicated in the received energy, for example, in FIG
A reception signal that has passed through the 21 M, from the training symbol sequence generation unit 24 M, respectively determined correlation by the correlation unit 45 1 to 45 M of the training symbol sequence and the same training symbol sequence transmitter Sn to transmit these enter the correlation output to the shift register 46 1 -46 M, respectively, by multiplying the weight multiplication unit to an output of the shift stages of the shift register 46 1 -46 M, the addition unit 47 1-4
7 M respectively, that is, weighted addition is performed on the correlation output for a certain period of time, the received energy index is obtained, and the received energy index is further added by the adder 48, and the maximum value thereof is detected by the maximum value detector 49. This may be used as the received energy per symbol of the received signal from the user n (transmitter Sn).

【0014】図6に示した第1実施形態の処理手順の例
を図9を参照して説明する。ステップS1で各送信機と
受信機間の伝送路特性、つまりチャネル値(インパルス
レスポンス)をチャネル推定部23で推定し、ステップ
S2で各送信機からの受信信号の情報ビット当たりの受
信エネルギーを受信エネルギー算出部42で算出する。
ステップS3でこれら算出した受信エネルギーの大きい
順にその送信機に順番X(X=1,2,…,N)を付け
る。ステップS4で処理回数パラメータkを1に初期化
する。ステップS5でk>Xを満す順番Xの送信機の第
2事前情報系列を選択する。つまり選択する送信機の事
前情報と対応する選択器41X を通過可能にする。ステ
ップS6で選択した第2事前情報とチャネル推定値とを
用いて順番Xの送信機からの受信信号に対する等化復号
処理を行う。
An example of the processing procedure of the first embodiment shown in FIG. 6 will be described with reference to FIG. In step S1, the transmission channel characteristic between each transmitter and the receiver, that is, the channel value (impulse response) is estimated by the channel estimator 23, and in step S2 the received energy per information bit of the received signal from each transmitter is received. The energy is calculated by the energy calculator 42.
In step S3, the transmitters are sequentially numbered X (X = 1, 2, ..., N) in descending order of the calculated received energy. In step S4, the process number parameter k is initialized to 1. In step S5, the second prior information sequence of the transmitter of order X that satisfies k> X is selected. That is, the selector 41 X corresponding to the prior information of the transmitter to be selected can be passed. Using the second prior information and the channel estimation value selected in step S6, equalization decoding processing is performed on the received signal from the transmitter in order X.

【0015】k=1では全ての第2事前情報が選択され
ず、従って図4中のレプリカ生成手段28で干渉レプリ
カ信号が生成されない。従って全ての送信機S1〜SN
からの各受信信号に対し、等化復号処理が行われること
になる。k=2になり始めてX=1番目の送信機の第2
事前情報が選択され、これを用いた干渉レプリカ信号が
生成され、受信信号からこの干渉レプリカ信号が差し引
かれ、その残りについて等化復号処理が行われ、つまり
送信機S1から受信信号に対して等化復号処理が行われ
る。同様にして繰り返し処理の回数kが増加するに従っ
て、選択する第2事前情報の数が多くなるが、その増加
する順は受信エネルギーが大きいものから選ぶため、生
成する干渉レプリカ信号を大きく誤まるおそれがなく、
それだけ正しく等化復号処理を行うことができる。なお
一般にはk>Xを満す全てのXの送信機の第2事前情報
を選択するが処理回数kを増加したら選択する第2事前
情報の数を必ずしも増加することなく、例えば2回ずつ
同一数の第2事前情報を選択することを行いながら、つ
まり繰り返し処理を2回行うごとに、選択する第2事前
情報の数を増加するようにしてもよい。等化復号処理は
第2事前情報を選択した送信機からの受信信号について
のみ行えばよいが、処理としては毎回全ての送信機から
の受信信号に対して行ってもよい。
When k = 1, all the second prior information is not selected, so that the replica generating means 28 in FIG. 4 does not generate an interference replica signal. Therefore, all transmitters S1 to SN
The equalization decoding process is performed on each received signal from. 2nd of X = 1 transmitter starting to k = 2
Prior information is selected, an interference replica signal is generated using this information, this interference replica signal is subtracted from the received signal, and equalization decoding processing is performed on the rest, that is, from the transmitter S1 to the received signal, etc. The decryption process is performed. Similarly, as the number k of repeated processes increases, the number of second pieces of second prior information to be selected increases, but the increasing order is selected from the one having the largest received energy, so that the interference replica signal to be generated may be greatly erroneous. Without
Thus, the equalization decoding process can be performed correctly. Note that generally, the second prior information of all X transmitters satisfying k> X is selected, but if the number of processing times k is increased, the number of second prior information to be selected is not necessarily increased. The number of pieces of second prior information to be selected may be increased while selecting the number of pieces of second prior information, that is, every time the iterative process is performed twice. The equalization decoding process may be performed only on the received signals from the transmitters for which the second prior information is selected, but the process may be performed on the received signals from all the transmitters every time.

【0016】ステップS7でkが予め決めた処理回数k
R となったかを調べ、kR になっていなければステップ
S8でkを+1してステップS5に戻る。kR の値は少
なくともN+1より大とされ、つまりk=kR となった
時は、受信エネルギーが最も小さい送信機からの受信信
号に対する等化復号処理の繰り返しも十分行われるよう
にする。ステップS7でk=kR であれば、ステップS
9でその時、得られた各送信機からの受信信号に対する
復号結果を出力する。なお図9中に破線で示すようにス
テップS10でステップS6における等化復号処理の結
果、全ての信号を正しく復号することができた送信機か
らの受信信号に対する、その後の等化復号処理は中止し
てもよい。
In step S7, k is the predetermined number of processing times k
It is checked whether or not R is obtained, and if it is not k R , k is incremented by 1 in step S8 and the process returns to step S5. The value of k R is set to be at least larger than N + 1, that is, when k = k R , the equalization decoding process for the received signal from the transmitter having the smallest received energy is sufficiently repeated. If k = k R in step S7, step S
At 9 then, the decoding result for the received signal from each transmitter obtained is output. As shown by the broken line in FIG. 9, as a result of the equalization decoding process in step S6 in step S10, the subsequent equalization decoding process for the received signal from the transmitter that was able to correctly decode all signals is stopped. You may.

【0017】以上の説明から理解されるように、要は受
信エネルギーの大きい送信機からの受信信号から選択等
化復号処理を行うことになるから、その選択等化復号処
理は必ずしも事前情報の選択により行う場合に限らず、
例えば系列用復号部251 〜25N (図6)及び系列用
等化手段271 〜27N (図4)中の等化復号処理を行
うもののみを動作させるように制御部36により制御し
てもよい。この場合は図9中に破線で示すように「事前
情報」の部分を削除した状態の処理手順となり、また図
6中の選択器411 〜41N は省略され、かつステップ
S5ではkXとして、つまりk=1において最も受信
エネルギーが大きいものについての等化復号処理を行う
ようにしてもよい。
As can be understood from the above description, the point is that the selective equalization decoding process is performed from the received signal from the transmitter having a large received energy. Not only when
For example, the control unit 36 controls so that only the sequence decoding units 25 1 to 25 N (FIG. 6) and the sequence equalization units 27 1 to 27 N (FIG. 4) that perform equalization decoding processing are operated. May be. In this case, the processing procedure is such that the "preliminary information" portion is deleted as shown by the broken line in FIG. 9, the selectors 41 1 to 41 N in FIG. 6 are omitted, and k > X in step S5. That is, that is, the equalization decoding process may be performed for the one with the largest received energy at k = 1.

【0018】<第2実施形態>図10にこの発明の第2
実施形態を図6と対応する部分に同一参照符号を付けて
示す。第1実施形態と違う点は、系列用復号部251
25N が省略され、代りに、MIMO等化部22の各送
信機からの受信信号の等化出力、つまり各MMSEフィ
ルタ31(図4)の出力を硬判定して復号結果を出力す
る硬判定部51 1 〜51N を設け、またMIMO等化部
22よりの各送信機の第1事前情報が選択器411 〜4
N を通じてMIMO等化部22に入力される点であ
る。この図10に示した受信機の処理手順は図9におい
て、事前情報として、第1事前情報が用いられ、ステッ
プS6における等化復号処理の代りに等化処理のみとな
り、ステップS7で処理繰り返し回数kがkR になる
と、ステップS9でその時のMIMO等化部22からの
各送信機からの受信信号に対する等化処理出力が硬判定
部511 〜51N でそれぞれ硬判定され、復号結果とし
て出力される。この場合も選択器411 〜41N を省略
してMIMO等化部22内の系列用等化手段271 〜2
N 中のkXを満す系列用等化手段27X のみを動作
させてもよい。この第2実施形態では誤り訂正復号を行
わないため、ステップS10の処理を行うことはできな
い。
<Second Embodiment> FIG. 10 shows a second embodiment of the present invention.
In the embodiment, parts corresponding to those in FIG.
Show. The difference from the first embodiment is that the sequence decoding unit 251~
25NIs omitted, and instead, each transmission of the MIMO equalization unit 22 is omitted.
The equalized output of the received signal from the transmitter, that is, each MMSE filter
Output the decoding result by hard-deciding the output of the filter 31 (Fig. 4).
Hard decision section 51 1~ 51NAnd the MIMO equalizer
The first prior information of each transmitter from 22 is the selector 411~ 4
1NIs input to the MIMO equalizer 22 through
It The processing procedure of the receiver shown in FIG. 10 is shown in FIG.
Then, the first prior information is used as the prior information, and
Only the equalization process is performed instead of the equalization decoding process in step S6.
Then, in step S7, the number of processing iterations k is kRbecome
Then, in step S9, the MIMO equalizer 22 at that time
Hard decision of equalization output for received signals from each transmitter
Part 511~ 51NHard decision is made by
Is output. Also in this case, the selector 411~ 41NOmit
Then, the sequence equalization means 27 in the MIMO equalization unit 221~ 2
7NK in>Equalization means 27 for series satisfying XXOnly works
You may let me. In this second embodiment, error correction decoding is performed.
Therefore, the processing of step S10 cannot be performed.
Yes.

【0019】<第3実施形態>この発明の第3実施形態
においては、受信エネルギーの大きさの順にてユーザ
(送信機)を複数のグループに分け、グループごとに選
択処理を行う。ここでは、簡単のため情報ビット当たり
のエネルギーが大きい順をユーザ1,2,…,N、つま
り送信機S1,S2,…,SNとする。グループに分類
する手法としては、例えば、情報ビット当たりのエネル
ギーが大きい順にグループの数Gでユーザ数Nを割算し
た数N/Gずつのユーザ(送信機)のグループG1,
…,GGに分類するか、或いは、(ユーザ1の情報ビッ
ト当たりのエネルギー)×((G−1)÷G)以上の情
報ビット当たりのエネルギーで受信されたユーザをグル
ープG1とし、以下順に(ユーザ1の情報ビット当たり
のエネルギー)×((G−X)÷G)以上の情報ビット
当たりのエネルギーで受信された残りのユーザをグルー
プGXとしてもよい。そして、等化と復号処理の繰り返
しにおいて、k回目の等化と誤り訂正復号の繰り返しで
は、k>XとなるグループGXに属するユーザの信号の
みを選択し、他のグループに属するユーザの事前情報系
列2の値は全て0とする。
<Third Embodiment> In a third embodiment of the present invention, users (transmitters) are divided into a plurality of groups in the order of the magnitude of received energy, and selection processing is performed for each group. Here, for simplification, the order in which the energy per information bit is large is defined as users 1, 2, ..., N, that is, transmitters S1, S2 ,. As a method of classifying into groups, for example, groups G1 of users (transmitters) each having a number N / G obtained by dividing the number N of users by the number G of groups in descending order of energy per information bit.
, GG, or a group G1 of users received with energy per information bit equal to or more than (energy per information bit of user 1) × ((G−1) ÷ G), and in the following order (( The remaining users received with the energy per information bit of the user 1) × ((G−X) ÷ G) or more may be set as the group GX. Then, in the repetition of the equalization and decoding processing, in the kth iteration of the equalization and error correction decoding, only the signals of the users belonging to the group GX with k> X are selected, and the prior information of the users belonging to the other groups is selected. The values of series 2 are all 0.

【0020】この場合のターボ受信機の機能構成は図6
に示したものと同様であり、その処理手順の例を図11
に示す。ステップS1,S2では図9に示した手順と同
様に、それぞれチャネル推定、受信エネルギー推定を行
う。ステップS3ではユーザ(送信機)からの受信信号
をG個のグループにその受信エネルギーの大きい順に分
ける。このグループ分の手法は例えば前述した方法をと
ることができ、これは制御部36で行う。またステップ
S5ではk>Xを満す送信機グループGXに属する事前
情報を選択することになり、ステップS6で選択した事
前情報を用いて対応する送信機からの受信信号に対して
等化復号処理を行うことは図9の場合と同様である。ス
テップS7,S8の処理も図9のそれと同様であり、ス
テップS9での出力も図9のS9と同様である。
The functional configuration of the turbo receiver in this case is shown in FIG.
11 is similar to that shown in FIG.
Shown in. In steps S1 and S2, channel estimation and reception energy estimation are respectively performed in the same manner as the procedure shown in FIG. In step S3, the received signals from the user (transmitter) are divided into G groups in descending order of received energy. As the method for this group, for example, the method described above can be adopted, and this is performed by the control unit 36. Further, in step S5, the prior information belonging to the transmitter group GX satisfying k> X is selected, and the equalization decoding process is performed on the received signal from the corresponding transmitter using the prior information selected in step S6. It is similar to the case of FIG. The processing in steps S7 and S8 is similar to that in FIG. 9, and the output in step S9 is also similar to S9 in FIG.

【0021】この場合も、第2事前情報の選択の代りに
選択したグループに属する送信機からの受信信号に対す
る等化復号のみを行わせるように系列用復号部251
25 N 及び系列用等化手段271 〜27N 中の対応する
もののみを動作させるようにしてもよい。更に第2実施
形態と同様に、誤り訂正復号を行わずに、MIMO等化
部22からの第1事前情報を選択器411 〜41N で選
択してMIMO等化部22に帰還させて繰り返し等化を
行う場合、同様に繰り返し処理は等化処理のみとし、そ
の系列用等化手段271 〜27N をグループ選択により
動作させてもよい。以上第1〜第3実施形態の説明から
理解されるように、この実施形態においては、繰り返し
処理における最初の方で受信エネルギーの大きい受信信
号についてのみ行い、その後、受信エネルギーの小さい
ものも含めて又はこれらと誤り訂正復号されたものを除
いて繰り返し処理を行い、この手法により大きく誤った
干渉レプリカ信号による悪影響を避けることができる。
Also in this case, instead of selecting the second prior information,
For received signals from transmitters belonging to the selected group
Sequence decoding unit 25 so that only equalization decoding is performed.1~
25 NAnd series equalization means 271~ 27NCorresponding in
You may make it operate only one thing. Second implementation
Similar to the embodiment, MIMO equalization without performing error correction decoding
Selector 41 for the first prior information from section 221~ 41NSelected by
It is selected and returned to the MIMO equalizer 22 to perform repeated equalization.
In the same way, if you perform only the equalization process,
Equalizing means 271~ 27NBy group selection
It may be operated. From the above description of the first to third embodiments
As will be appreciated, in this embodiment, the repetition
Received signal with high received energy at the beginning of processing
No. received energy is small after that
Including those, or excluding those that have been error correction decoded
Iterative processing was performed, and this method caused a large error.
It is possible to avoid the adverse effect of the interference replica signal.

【0022】<第4実施形態>図12にこの発明の第4
実施形態の構成を示し、図6と対応する部分に同一参照
符号を付けてある。図6における選択器411 〜41N
の代りに重み付与部531 〜53N が、選択制御部43
の代りに重み係数制御部54が設けられる。図13にこ
の第4実施形態におけるk−1回目からk回目への繰り
返し等化及び復号処理の過程を、図7と対応する部分に
同一参照符号を付けて示す。この第4実施形態ではk回
目の等化復号処理ではk−1回目で得られた第2事前情
報系列に対し重み付与部531 〜53N で重みを付与し
たものを用いる。この重み付与は重み係数制御部54に
より、受信エネルギーが弱い程、その信号系列の第2事
前情報系列に対する重みが小さくなるように制御され
る。このため、この重みは全ユーザの受信エネルギー推
定値、繰り返し回数の関数となる。つまり繰り返し回数
が多くなるに従って各信号系列に付与される重み相互間
の差が小さくなるようにされ、最終的には重みの差は0
とされる。最適な重みは、等化手法及びSISO復号手
法、誤り訂正符号に依存すると考えられ、シミュレーシ
ョン等により逐一求める必要がある。この求めた受信エ
ネルギー、繰り返し回数に対する重みを読み出すための
重みテーブル56を制御部36内に設けておくとよい。
<Fourth Embodiment> FIG. 12 shows a fourth embodiment of the present invention.
The structure of the embodiment is shown, and the portions corresponding to those in FIG. 6 are denoted by the same reference numerals. Selectors 41 1 to 41 N in FIG.
Instead of the weighting units 53 1 to 53 N , the selection control unit 43
A weight coefficient control unit 54 is provided instead of the. FIG. 13 shows the steps of the iterative equalization and decoding processing from the (k−1) th time to the kth time in the fourth embodiment, with the same reference numerals being given to the portions corresponding to those in FIG. 7. In the fourth embodiment, in the k-th equalization decoding process, the second prior information sequence obtained in the (k-1) th time is weighted by the weighting units 53 1 to 53 N. The weighting is controlled by the weighting coefficient control unit 54 so that the weaker the received energy, the smaller the weighting of the signal sequence with respect to the second prior information sequence. Therefore, this weight is a function of the received energy estimation value of all users and the number of repetitions. That is, as the number of repetitions increases, the difference between the weights given to the respective signal sequences becomes smaller, and finally the difference in weight becomes 0.
It is said that It is considered that the optimum weight depends on the equalization method, the SISO decoding method, and the error correction code, and it is necessary to obtain the optimum weight one by one by simulation or the like. It is advisable to provide a weight table 56 in the control unit 36 for reading out the received energy and the weight for the number of repetitions thus obtained.

【0023】さらに、この第4実施形態で、重み係数を
0か1とし、これらの選択基準として第1〜第3実施形
態と同じものを用いれば、第1〜第3実施形態と同様な
ものになることからもわかるように、第1〜第3実施形
態はこの第4実施形態の特殊な場合といえる。図12に
示したターボ受信機の処理手順の例を図14に示す。図
9と同様にステップS1,S2でチャネル推定、受信エ
ネルギー推定を行うが、この図12ではステップS3で
kを1に初期化し、ステップS4でkと受信エネルギー
とに対応して各送信機の事前情報に対する重みを重みテ
ーブル56を参照して決定し、または予め決めた関数を
用いて決定し、ステップS5でその決定した重みを対応
する送信機の事前情報に対し、重み付与部53nで乗算
して重みを付与する。
Further, in the fourth embodiment, if the weighting coefficient is set to 0 or 1, and the same selection criteria as those used in the first to third embodiments are used, the same ones as in the first to third embodiments are obtained. As can be seen from the above, the first to third embodiments can be said to be a special case of the fourth embodiment. FIG. 14 shows an example of the processing procedure of the turbo receiver shown in FIG. Similar to FIG. 9, channel estimation and reception energy estimation are performed in steps S1 and S2. In this FIG. 12, k is initialized to 1 in step S3, and in step S4, the transmitters of the respective transmitters are associated with k and the reception energy. The weight for the prior information is determined by referring to the weight table 56 or using a predetermined function, and in step S5, the determined prior weight is multiplied by the prior information of the corresponding transmitter in the weight assigning unit 53n. And give weight.

【0024】ステップS6で各送信機からの受信信号に
対し、チャネル推定値、重み付与された事前情報を用い
て等化復号処理を行い、その後、k=kR かを調べ、k
R になっていなければkを+1してステップS4に戻
る。k=kR であれば、ステップS9で復号結果を出力
することは同様である。この場合も誤り訂正復号を行わ
ず、第1事前情報に対し、重みを付与してMIMO等化
部22に帰還して等化処理のみを繰り返す場合にも適用
できる。この場合は、k=kR になると、MIMO等化
部22の等化出力を硬判定部511 〜51N でそれぞれ
硬判定して復号結果として出力する。
In step S6, the received signal from each transmitter is subjected to equalization decoding processing using the channel estimation value and weighted prior information, and then k = k R is checked to determine whether k = k R.
If it is not R , k is incremented by 1 and the process returns to step S4. If k = k R , it is the same as outputting the decoding result in step S9. Also in this case, the error correction decoding is not performed, and a weight is given to the first a priori information, which is returned to the MIMO equalization unit 22 and only the equalization process is repeated. In this case, when k = k R , the hard decision units 51 1 to 51 N make hard decisions on the equalized outputs of the MIMO equalization unit 22 and output them as decoding results.

【0025】図9、図11、図14において、誤り訂正
復号を行う場合は、ステップS7でk=kR を調べる代
りに全ての送信機からの受信信号の全てが正しく復号で
きたかを調べ、正しく復号できたら、繰り返し処理を中
止するようにしてもよい。受信機10の受信アンテナは
1個でもよい。第1実施形態の効果を示すために、計算
機シミュレーションによる特性評価を行った。シミュレ
ーションに用いたパラメータは以下のとおりである。 パス数 5 同時送信ユーザ数 2 受信アンテナ数 3 等化器 SC/MMSE 復号アルゴリズム Max−Log−MAP 拘束長 3 図15は所望ユーザと他の干渉源となる1ユーザが同時
に送信を行ったときの所望ユーザのビット誤り率(BE
R)特性を示している。ここでDURとは希望波対干渉
波電力比(db)を示している。図より、DURが小さ
くなるにつれて従来の方法では、BER特性が劣化して
いることがわかる。これは、DURが小さいということ
は、干渉波電力(ユーザ2の電力)が希望波電力(ユー
ザ1の電力)に対して大きい事を意味し、所望ユーザ1
からの受信信号がより大きな干渉を受けるためである。
しかしこの第1実施形態によればDURが負の領域にお
いてBER特性を大幅に改善できることがわかる。これ
はユーザ2の信号に対してのみ等化復号処理を行い、そ
の結果としてユーザ1の信号に対する等化復号処理を行
う時も誤りを多く含んだ事前情報系列を用いないことに
なり、電力の大きな干渉波からの影響が少なくなるため
である。
In the case of performing error correction decoding in FIGS. 9, 11, and 14, instead of checking k = k R in step S7, it is checked whether all received signals from all transmitters can be correctly decoded. If the decoding is successful, the iterative process may be stopped. The receiver 10 may have only one receiving antenna. In order to show the effect of the first embodiment, characteristic evaluation was performed by computer simulation. The parameters used in the simulation are as follows. Number of paths 5 Number of simultaneous transmission users 2 Number of reception antennas 3 Equalizer SC / MMSE decoding algorithm Max-Log-MAP constraint length 3 FIG. 15 shows a case where a desired user and one user who is another interference source perform transmission at the same time. Bit error rate of desired user (BE
R) shows the characteristics. Here, DUR indicates a desired wave to interference wave power ratio (db). From the figure, it can be seen that the BER characteristics deteriorate with the conventional method as the DUR decreases. This means that the small DUR means that the interference wave power (power of user 2) is larger than the desired wave power (power of user 1), and the desired user 1
This is because the received signal from the terminal receives more interference.
However, according to the first embodiment, it can be seen that the BER characteristic can be greatly improved in the negative DUR region. This means that the equalization decoding process is performed only on the signal of the user 2 and, as a result, even when the equalization decoding process of the signal of the user 1 is performed, the prior information sequence including many errors is not used, and the power consumption of the power is reduced. This is because the influence from large interference waves is reduced.

【0026】[0026]

【発明の効果】以上述べたようにこの発明の第1〜第3
実施形態によれば、受信エネルギーの小さい受信信号系
列に対しては等化(復号)処理を繰り返しの始めでは行
わず、受信エネルギーの大きい受信信号系列から大きな
干渉を受け、誤りを多く含んだ事前情報系列を使用せ
ず、受信エネルギーの大きい受信信号系列に対する誤り
の少ない事前情報系列を作り、受信エネルギーの小さい
受信信号系列に対し、比較的正しく干渉レプリカを作れ
るようになってから受信エネルギーの小さい受信信号系
列に対し、等化(復号)処理を行うため、干渉の影響を
小さくすることができ、ビット誤り率特性を改善するこ
とができる。この発明の第4実施形態によれば受信エネ
ルギーが小さい受信信号系列の事前情報に対しては小さ
い重みを与えることにより、等化処理において誤りを多
く含んだ事前情報系列による悪影響を小さくしているた
め、同様に誤り率特性を改善することができる。
As described above, the first to third aspects of the present invention are described.
According to the embodiment, the equalization (decoding) process is not performed on the received signal sequence having the small received energy at the beginning of the repetition, but the received signal sequence having the large received energy receives a large amount of interference, and the pre-processing including many errors is performed. Without using an information sequence, a priori information sequence with few errors is created for a received signal sequence with a large received energy, and the received energy with a small received energy can be created relatively accurately for a received signal sequence with a small received energy. Since the equalization (decoding) process is performed on the received signal sequence, the influence of interference can be reduced and the bit error rate characteristic can be improved. According to the fourth embodiment of the present invention, by giving a small weight to the prior information of the received signal sequence having small received energy, the adverse effect of the prior information sequence including many errors in the equalization process is reduced. Therefore, the error rate characteristic can be similarly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】多入力多出力同時送受信システムの構成例を示
す図。
FIG. 1 is a diagram showing a configuration example of a multi-input multi-output simultaneous transmission / reception system.

【図2】図1中の送信機の機能構成例を示す図。FIG. 2 is a diagram showing a functional configuration example of a transmitter in FIG.

【図3】従来の多入力多出力ターボ受信機の機能構成例
を示す図。
FIG. 3 is a diagram showing a functional configuration example of a conventional multi-input multi-output turbo receiver.

【図4】図3中のMIMO等化部22の機能構成例を示
す図。
4 is a diagram showing a functional configuration example of a MIMO equalization unit 22 in FIG.

【図5】従来のMIMOターボ等化繰り返し処理を説明
するための図。
FIG. 5 is a diagram for explaining a conventional MIMO turbo equalization iterative process.

【図6】この発明の第1実施形態の機能構成例を示す
図。
FIG. 6 is a diagram showing a functional configuration example of the first embodiment of the present invention.

【図7】第1実施形態の繰り返し処理を説明するための
図。
FIG. 7 is a diagram for explaining repetitive processing of the first embodiment.

【図8】図6中の受信エネルギー算出部42の具体例を
示す図。
FIG. 8 is a diagram showing a specific example of a received energy calculation unit 42 in FIG.

【図9】第1実施形態の処理手順の例を示す流れ図。FIG. 9 is a flowchart showing an example of a processing procedure of the first embodiment.

【図10】この発明の第2実施形態の機能構成例を示す
図。
FIG. 10 is a diagram showing a functional configuration example of a second embodiment of the present invention.

【図11】この発明の第3実施形態の処理手順の例を示
す流れ図。
FIG. 11 is a flowchart showing an example of the processing procedure of the third embodiment of the present invention.

【図12】この発明の第4実施形態の機能構成例を示す
図。
FIG. 12 is a diagram showing a functional configuration example of a fourth embodiment of the present invention.

【図13】第4実施形態の繰り返し処理を説明するため
の図。
FIG. 13 is a diagram for explaining repetitive processing of the fourth embodiment.

【図14】第4実施形態の処理手順の例を示す流れ図。FIG. 14 is a flowchart showing an example of the processing procedure of the fourth embodiment.

【図15】第1実施形態の効果を説明するための電子計
算機シミュレーション結果を示す図。
FIG. 15 is a diagram showing an electronic computer simulation result for explaining the effect of the first embodiment.

フロントページの続き (72)発明者 浅井 孝浩 東京都千代田区永田町二丁目11番1号 株 式会社エヌ・ティ・ティ・ドコモ内 (72)発明者 冨里 繁 東京都千代田区永田町二丁目11番1号 株 式会社エヌ・ティ・ティ・ドコモ内 Fターム(参考) 5K022 FF00 5K046 AA05 EE47 EF03 EF13 Continued front page    (72) Inventor Takahiro Asai             2-11-1, Nagatacho, Chiyoda-ku, Tokyo Stock             Ceremony company NTT Docomo (72) Inventor Shigeru Tomisato             2-11-1, Nagatacho, Chiyoda-ku, Tokyo Stock             Ceremony company NTT Docomo F-term (reference) 5K022 FF00                 5K046 AA05 EE47 EF03 EF13

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 2以上の整数N個の送信機からの信号を
受信して、その受信信号に対し送信機と受信機間のチャ
ネル推定値を用いて等化処理を繰り返して、各送信機か
らの信号を分離復号する受信方法において、 上記各送信機からの受信信号の情報ビット当たりの受信
エネルギーを求め、 等化処理の繰り返しの最初は上記受信エネルギーが大き
い送信機からの受信信号について選択等化処理を行い、 等化処理の繰り返しの最後には受信エネルギーが小さい
送信機からの受信信号について選択等化復号処理を行う
ことを特徴とする多入力多出力ターボ受信方法。
1. A transmitter that receives signals from an integer N of two or more transmitters and repeats equalization processing for the received signals by using a channel estimation value between the transmitters and the receivers. In the receiving method that separates and decodes the signal from, the reception energy per information bit of the reception signal from each transmitter is obtained, and the reception signal from the transmitter with a large reception energy is selected at the beginning of the repetition of the equalization process. A multi-input multi-output turbo reception method characterized by performing equalization processing, and at the end of repetition of the equalization processing, selective equalization decoding processing is performed on a received signal from a transmitter with small received energy.
【請求項2】 上記等化処理の繰り返しを重ねるに従っ
て、順次受信エネルギーが小さい送信機からの受信信号
について選択等化処理を行うことを特徴とする請求項1
記載の多入力多出力ターボ受信方法。
2. The selective equalization process is performed on a received signal from a transmitter having a smaller received energy as the equalization process is repeated.
The described multi-input multi-output turbo reception method.
【請求項3】 上記受信エネルギーが大きい順番をXと
し、k回目の等化処理はk>Xを満たすX番目の送信機
からの受信信号について選択等化処理することを特徴と
する請求項1記載の多入力多出力ターボ受信方法。
3. The X-order is the order in which the received energy is large, and the k-th equalization process is a selective equalization process for the received signal from the X-th transmitter that satisfies k> X. The described multi-input multi-output turbo reception method.
【請求項4】 上記受信エネルギーが大きい順に、
G1,NG2,NG3,…,NGX個(NG1,NG2,…,NGX
は自然数)ずつのグループG1,G2,…,GXにN個
の送信機からの受信信号を分類し、 k回目の等化処理はk>Xを満たすグループGXの送信
機からの受信信号について選択等化処理することを特徴
とする請求項1記載の多入力多出力ターボ受信方法。
4. The descending order of received energy,
N G1 , N G2 , N G3 , ..., N GX pieces (N G1 , N G2 , ..., N GX
Is a natural number) and the received signals from the N transmitters are classified into groups G1, G2, ..., GX, and the k-th equalization process selects the received signals from the transmitters in the group GX that satisfy k> X. The multi-input multi-output turbo reception method according to claim 1, wherein equalization processing is performed.
【請求項5】 各等化処理ごとにその等化処理された各
送信機からの受信信号を誤り訂正復号し、かつその信頼
度を示す事前情報を求め、上記等化処理を上記事前情報
を含めて行い、等化復号処理を繰り返し、 上記選択等化処理は、その選択等化処理対象となる送信
機からの受信信号の前回の等化復号処理で得られた事前
情報のみをその選択等化処理に用いることを特徴とする
請求項1〜4の何れかに記載の多入力多出力ターボ受信
方法。
5. For each equalization process, the received signal from each transmitter subjected to the equalization process is subjected to error correction decoding, and prior information indicating the reliability thereof is obtained, and the above equalization process is performed using the above prior information. The equalization decoding process is repeated, and the selective equalization process is performed by selecting only the prior information obtained by the previous equalization decoding process of the reception signal from the transmitter which is the target of the selective equalization process. The multi-input multi-output turbo reception method according to any one of claims 1 to 4, wherein the multi-input multi-output turbo reception method is used in a digitization process.
【請求項6】 各等化処理ごとに各送信機からの受信信
号についてのその等化処理出力の信頼度を示す事前情報
を求め、上記等化処理を上記事前情報を含めて行い、 上記選択等化処理は、その選択等化処理対象となる送信
機からの受信信号の前回の等化処理で得られた事前情報
のみをその選択等化処理に用いることを特徴とする請求
項1〜4の何れかに記載の多入力多出力ターボ受信方
法。
6. For each equalization process, prior information indicating the reliability of the equalization output of the received signal from each transmitter is obtained, the equalization process is performed including the prior information, and the selection is performed. 5. The equalization process uses only the prior information obtained by the previous equalization process of the reception signal from the transmitter which is the target of the selective equalization process, in the selective equalization process. The multi-input multi-output turbo reception method according to any one of 1.
【請求項7】 2以上の整数N個の送信機からの信号を
受信して、その受信信号に対し、送信機と受信機間のチ
ャネル推定値と、前回の処理で得られた事前情報を用い
て等化処理を行い、その等化処理結果に対し誤り訂正復
号を行うと共にその信頼度を示す事前情報を求め、 上記等化復号処理を繰り返して各送信機からの信号を分
離復号する受信方法において、 上記各送信機からの受信信号の情報ビット当たりの受信
エネルギーを求め、 その受信エネルギーが大きい程、大きな重みを、上記等
化処理に用いる事前情報に与え、 上記等化復号の繰り返しが進むに従って上記事前情報に
与える重みの差を小さくすることを特徴とする多入力多
出力ターボ受信方法。
7. A signal from an integer N number of transmitters equal to or greater than 2 is received, and a channel estimation value between the transmitter and the receiver and prior information obtained in the previous processing are received for the received signal. Equalization processing is performed using the equalization processing, error correction decoding is performed on the result of the equalization processing, prior information indicating the reliability thereof is obtained, and the above equalization decoding processing is repeated to separate and decode the signals from each transmitter. In the method, the received energy per information bit of the received signal from each transmitter is obtained, the larger the received energy is, the greater the weight is given to the prior information used in the equalization process, and the repetition of the equalization decoding is performed. A multi-input multi-output turbo reception method, characterized in that the difference in weight given to the prior information is reduced as the process proceeds.
【請求項8】 2以上の整数N個の送信機からの信号を
受信して、その受信信号に対し、送信機と受信機間のチ
ャネル推定値と、前回の処理で得られた事前情報を用い
て等化処理して各送信機から受信信号の等化出力と、そ
の信頼度を示す事前情報を出力することを繰り返し、 上記等化出力より各送信機からの信号を分離復号する受
信方法において、 上記各送信機からの受信信号の情報ビット当たりの受信
エネルギーを求め、 上記受信エネルギーが大きい程、大きな重みを、上記等
化処理に用いる事前情報に与え、 上記等化処理の繰り返しが進むに従って上記事前情報に
与える重みの差を小さくすることを特徴とする多入力多
出力ターボ受信方法。
8. A signal from an integer N number of transmitters equal to or greater than 2 is received, and a channel estimation value between the transmitter and the receiver and prior information obtained in the previous process are received for the received signal. A receiving method in which the equalization output of each transmitter is equalized by using the equalized output and the prior information indicating the reliability thereof is output repeatedly, and the signal from each transmitter is separated and decoded from the equalized output. In, the received energy per information bit of the received signal from each transmitter is obtained, and the greater the received energy, the greater the weight given to the prior information used in the equalization process, and the repetition of the equalization process proceeds. The multi-input multi-output turbo reception method is characterized in that the difference in weight given to the prior information is reduced according to the above.
【請求項9】 2以上の整数N個の送信機からの信号を
受信する受信機であって、 受信信号と上記各送信機と対応するトレーニング信号と
が入力され、各送信機と受信機間の各チャネル値を推定
するチャネル推定部と、 上記受信信号と上記各チャネル値と、上記各送信機ごと
の事前情報とが入力されて、各送信機からの受信信号を
等化して出力する多入力多出力等化部と、 その多入力多出力等化部の出力が入力され、誤り訂正復
号を行うと共にその信頼度を示す情報として事前情報を
出力する復号部と、 上記復号部からの各送信機ごとの事前情報が入力され、
選択されたもののみを上記多入力多出力等化部へ入力す
る選択部と、 上記各送信機からの受信信号の情報ビット当たりの受信
エネルギーを算出する受信エネルギー算出部と、 同一受信信号に対し上記多入力多出力等化部及び上記復
号部を繰り返し動作させると共に、その繰り返しを重ね
るに従って上記受信エネルギーの大きな送信機から順次
受信エネルギーの小さな送信機の事前情報を選択するよ
うに上記選択部を制御する制御部とを具備する多入力多
出力ターボ受信機。
9. A receiver for receiving signals from an integer N transmitters of 2 or more, wherein the received signal and a training signal corresponding to each transmitter are input, and between the transmitters and the receivers. A channel estimation unit for estimating each channel value of, a received signal, each channel value, and prior information for each transmitter are input, and a received signal from each transmitter is equalized and output. An input multi-output equalization unit, a decoding unit that receives the outputs of the multi-input multi-output equalization unit, performs error correction decoding, and outputs a priori information as information indicating the reliability thereof, and each of the decoding units Preliminary information for each transmitter is entered,
A selection unit that inputs only selected ones to the multi-input multi-output equalization unit, a reception energy calculation unit that calculates reception energy per information bit of the reception signal from each transmitter, and for the same reception signal While repeatedly operating the multi-input multi-output equalization unit and the decoding unit, as the repetition is repeated, the selection unit is selected so as to sequentially select the prior information of the transmitter with the small reception energy from the transmitter with the large reception energy. A multi-input multi-output turbo receiver including a control unit for controlling.
【請求項10】 2以上の整数N個の送信機からの信号
を受信する受信機であって、 受信信号と上記各送信機と対応するトレーニング信号と
が入力され、各送信機と受信機間の各チャネル値を推定
するチャネル推定部と、 上記受信信号と上記各チャネル値と、上記各送信機ごと
の事前情報とが入力されて、各送信機からの受信信号を
等化して出力すると共にその信頼性を示す事前情報を出
力する多入力多出力等化部と、 その多入力多出力等化部の出力が入力され、その硬判定
値を出力する復号部と、 上記多入力多出力等化部からの各送信機ごとの事前情報
が入力され、選択されたもののみを上記多入力多出力等
化部へ入力する選択部と、 上記各送信機からの受信信号の情報ビット当たりの受信
エネルギーを算出する受信エネルギー算出部と、 同一受信信号に対し上記多入力多出力等化部を繰り返し
動作させると共に、その繰り返しを重ねるに従って上記
受信エネルギーの大きな送信機から順次受信エネルギー
の小さな送信機の事前情報を選択するように上記選択部
を制御する制御部とを具備する多入力多出力ターボ受信
機。
10. A receiver for receiving signals from an integer N number of transmitters equal to or greater than 2, wherein a received signal and a training signal corresponding to each of the transmitters are input, and between the transmitters and the receivers. A channel estimation unit for estimating each channel value of, the received signal, each channel value, and prior information for each transmitter are input, and the received signal from each transmitter is equalized and output. A multi-input multi-output equalization unit that outputs a priori information indicating the reliability, a decoding unit that inputs the output of the multi-input multi-output equalization unit and outputs a hard decision value, the multi-input multi-output, etc. Preselection information for each transmitter is input from the equalizer, and only a selected one is input to the multi-input multi-output equalizer, and a reception signal per information bit from the transmitter is received. With a received energy calculator that calculates energy The selection unit is configured to repeatedly operate the multi-input multi-output equalization unit with respect to the same reception signal, and to sequentially select the prior information of the transmitters with large reception energy from the transmitter with large reception energy as the repetition is repeated. A multi-input multi-output turbo receiver including a control unit for controlling the.
【請求項11】 2以上の整数N個の送信機からの信号
を受信する受信機であって、 受信信号と上記各送信機と対応するトレーニング信号と
が入力され、各送信機と受信機間の各チャネル値を推定
するチャネル推定部と、 上記受信信号と上記各チャネル値と、上記各送信機ごと
の事前情報とが入力されて、各送信機からの受信信号を
等化して出力する多入力多出力等化部と、 その多入力多出力等化部の出力が入力され、誤り訂正復
号を行うと共にその信頼度を示す情報として事前情報を
出力する復号部と、 上記復号部からの各送信機ごとの事前情報が入力され、
重みが付与されて上記多入力多出力等化部へ上記事前情
報として入力する重み付与部と、 上記各送信機からの受信信号の情報ビット当たりの受信
エネルギーを算出する受信エネルギー算出部と、 上記受信エネルギーの大きい程大きな重みを送信機の事
前情報に対し与えるように上記重み付与部に重みを供給
し、同一受信信号に対し上記多入力多出力等化部及び上
記復号部を繰り返し動作させると共に、その繰り返しを
重ねるに従って事前情報に与える重みの相互の差を小さ
くする制御部とを具備する多入力多出力ターボ受信機。
11. A receiver for receiving signals from an integer N transmitters of 2 or more, wherein the received signal and a training signal corresponding to each transmitter are input, and between the transmitters and the receivers. A channel estimation unit for estimating each channel value of, a received signal, each channel value, and prior information for each transmitter are input, and a received signal from each transmitter is equalized and output. An input multi-output equalization unit, a decoding unit that receives the outputs of the multi-input multi-output equalization unit, performs error correction decoding, and outputs a priori information as information indicating the reliability thereof, and each of the decoding units Preliminary information for each transmitter is entered,
A weighting unit that is weighted and is input to the multi-input multi-output equalization unit as the pre-information, a reception energy calculation unit that calculates reception energy per information bit of a reception signal from each transmitter, and The larger the received energy, the larger the weight is given to the prior information of the transmitter, the more weight is supplied to the weighting unit, and the multi-input multi-output equalization unit and the decoding unit are repeatedly operated for the same reception signal. , A multi-input multi-output turbo receiver including a control unit that reduces the mutual difference of weights given to prior information as the repetition is repeated.
【請求項12】 2以上の整数N個の送信機からの信号
を受信する受信機であって、 受信信号と上記各送信機と対応するトレーニング信号と
が入力され、各送信機と受信機間の各チャネル値を推定
するチャネル推定部と、 上記受信信号と上記各チャネル値と、上記各送信機ごと
の事前情報とが入力されて、各送信機からの受信信号を
等化して出力すると共にその信頼性を示す事前情報を出
力する多入力多出力等化部と、 その多入力多出力等化部の出力が入力され、その硬判定
値を出力する復号部と、 上記多入力多出力等化部からの各送信機ごとの事前情報
が入力され、重みが付与されて上記多入力多出力等化部
へ上記事前情報として入力する重み付与部と、 上記各送信機からの受信信号の情報ビット当たりの受信
エネルギーを算出する受信エネルギー算出部と、 上記受信エネルギーの大きい程大きな重みを送信機の事
前情報に対し与えるように上記重み付与部に重みを供給
し、同一受信信号に対し上記多入力多出力等化部及び上
記復号部を繰り返し動作させると共に、その繰り返しを
重ねるに従って事前情報に与える重みの相互の差を小さ
くする制御部とを具備する多入力多出力ターボ受信機。
12. A receiver for receiving signals from an integer N transmitters of 2 or more, wherein a received signal and a training signal corresponding to each transmitter are input, and between the transmitters and the receivers. A channel estimation unit for estimating each channel value of, the received signal, each channel value, and prior information for each transmitter are input, and the received signal from each transmitter is equalized and output. A multi-input multi-output equalization unit that outputs a priori information indicating the reliability, a decoding unit that inputs the output of the multi-input multi-output equalization unit and outputs a hard decision value, the multi-input multi-output, etc. Preliminary information for each transmitter from the equalization unit is input, a weight is assigned to the multi-input multi-output equalization unit and is input as the prior information to the multi-input multi-output equalization unit, and information on the received signal from each transmitter. Receive to calculate received energy per bit The energy calculation unit and a weight are supplied to the weight giving unit so that a larger weight is given to the prior information of the transmitter as the received energy is larger, and the multi-input multi-output equalization unit and the decoding unit are provided for the same received signal. A multi-input multi-output turbo receiver comprising: a control unit that repeatedly operates the units and reduces the mutual difference of weights given to the prior information as the repetition is repeated.
JP2002107552A 2002-04-10 2002-04-10 Multi-input multi-output turbo receiving method and its receiver Expired - Fee Related JP4215148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002107552A JP4215148B2 (en) 2002-04-10 2002-04-10 Multi-input multi-output turbo receiving method and its receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002107552A JP4215148B2 (en) 2002-04-10 2002-04-10 Multi-input multi-output turbo receiving method and its receiver

Publications (2)

Publication Number Publication Date
JP2003304178A true JP2003304178A (en) 2003-10-24
JP4215148B2 JP4215148B2 (en) 2009-01-28

Family

ID=29391548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002107552A Expired - Fee Related JP4215148B2 (en) 2002-04-10 2002-04-10 Multi-input multi-output turbo receiving method and its receiver

Country Status (1)

Country Link
JP (1) JP4215148B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006104104A1 (en) * 2005-03-29 2006-10-05 Matsushita Electric Industrial Co., Ltd. Mimo transmitting apparatus, mimo receiving apparatus, and retransmitting method
JP2009284313A (en) * 2008-05-23 2009-12-03 Sharp Corp Radio communication system, communication device, radio communication method, and radio communication program

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006104104A1 (en) * 2005-03-29 2006-10-05 Matsushita Electric Industrial Co., Ltd. Mimo transmitting apparatus, mimo receiving apparatus, and retransmitting method
JPWO2006104104A1 (en) * 2005-03-29 2008-09-04 松下電器産業株式会社 MIMO transmitting apparatus, MIMO receiving apparatus, and retransmission method
JP4642839B2 (en) * 2005-03-29 2011-03-02 パナソニック株式会社 MIMO transmission apparatus, MIMO reception apparatus, and transmission method
US8086927B2 (en) 2005-03-29 2011-12-27 Panasonic Corporation MIMO transmitting apparatus, MIMO receiving apparatus, and retransmitting method
JP2009284313A (en) * 2008-05-23 2009-12-03 Sharp Corp Radio communication system, communication device, radio communication method, and radio communication program

Also Published As

Publication number Publication date
JP4215148B2 (en) 2009-01-28

Similar Documents

Publication Publication Date Title
JP4412926B2 (en) Adaptive equalization apparatus and program thereof
EP1290821B1 (en) Methods and systems for decoding a received signal having a transmitter or channel induced coupling between bits
KR100563383B1 (en) Mimo receiver and method of reception therefor
EP1264456B1 (en) Method and apparatus for combined soft-decision based interference cancellation and decoding
JP4105567B2 (en) MIMO receiver and receiving method thereof
RU2303330C1 (en) Method for receiving signal in communication system with several channels for transmitting and receiving
JP4098773B2 (en) Receiving apparatus and receiving method
WO2009099092A1 (en) Execution judgment device, reception device, radio communication system, and execution judgment method
CN1398477A (en) Methods and systems for decoding symbols by combining matched-filtered samples with hard symbol decisions
CN104202271B (en) Iterative equalization method based on survivor path-by-survivor path processing in direct sequence spread spectrum communication
CN101005299B (en) Method and system for signal processing
JP2005237033A (en) Turbo reception method and receiver therefor
JP5327808B2 (en) IDMA receiver
US8446999B2 (en) Receiving apparatus and communication system
WO2004088908A1 (en) Signal processing apparatus and method
JP4215148B2 (en) Multi-input multi-output turbo receiving method and its receiver
CN102664707B (en) Method for determining logarithm likelihood ratio, Turbo encoding method and device thereof
CN101272363A (en) Low-complexity turbo equalization method based on precoding
JP5642046B2 (en) Receiving apparatus and receiving method in MIMO-OFDM transmission
JP4173321B2 (en) Wireless transmitter, wireless transmission system, wireless receiver, and programs thereof
JP2003124907A (en) Ofdm signal-transmitting apparatus, ofdm signal- receiving apparatus, and ofdm signal-receiving method
JP2011139294A (en) Transmitter and receiver
JP2004511949A (en) CDMA receiver interference cancellation system and interference cancellation method
JP5207698B2 (en) Reception device and transmission path estimation method
Chunxiao et al. Performance simulation on low-complexity lll-based algorithm for mimo system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050401

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081029

R150 Certificate of patent or registration of utility model

Ref document number: 4215148

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees