JP2003302440A - Failure section locating method and failure section locating system - Google Patents

Failure section locating method and failure section locating system

Info

Publication number
JP2003302440A
JP2003302440A JP2002108273A JP2002108273A JP2003302440A JP 2003302440 A JP2003302440 A JP 2003302440A JP 2002108273 A JP2002108273 A JP 2002108273A JP 2002108273 A JP2002108273 A JP 2002108273A JP 2003302440 A JP2003302440 A JP 2003302440A
Authority
JP
Japan
Prior art keywords
failure
value
transmission line
fault
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002108273A
Other languages
Japanese (ja)
Other versions
JP4284030B2 (en
Inventor
Takiya Asai
多喜也 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kouatsu Electric Co
Original Assignee
Nippon Kouatsu Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kouatsu Electric Co filed Critical Nippon Kouatsu Electric Co
Priority to JP2002108273A priority Critical patent/JP4284030B2/en
Publication of JP2003302440A publication Critical patent/JP2003302440A/en
Application granted granted Critical
Publication of JP4284030B2 publication Critical patent/JP4284030B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Landscapes

  • Locating Faults (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a failure section locating method and a failure section locating system capable of locating easily a failure point of a one-circuit short- circuit accident in a two-circuit transmission line by using only one kind of sensor. <P>SOLUTION: In this failure section locating method and this failure section locating system, a method is used, for locating in a section unit, a one-circuit short-circuit accident generated in a two-circuit juxtaposing transmission line quipped with a first transmission line 31 and a second transmission line 32 which are parallel two circuits for connecting parallel connection points 53, 54 of on the upstream side 51 and downstream side 52. In the failure section locating method, a failure can be easily determined by paying attention to an added value which is a value greatly different between the normal time and the failure time, and by determining to be a failure when the value falls in a range determined beforehand. In addition, it can be determined that the interval between a dead spot 7 determined to be a failure and an operating spot 8 which is not a failure positioned on the upstream side from the dead spot is a dead section. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は並列して送電を行う
2回線併設送電線路に生じた短絡故障点を含む故障区間
を特定することができる故障区間標定方法及び故障区間
標定システムに関する。詳しくは、1種類のみのセンサ
を用いて2回線併設送電線路の1回線短絡事故の故障区
間を容易に標定することができる故障区間標定方法及び
故障区間標定システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fault zone locating method and a fault zone locating system capable of identifying a fault zone including a short-circuit fault point that occurs in two-line power transmission lines transmitting power in parallel. More specifically, the present invention relates to a failure section locating method and a failure section locating system capable of easily locating a failure section of a one-circuit short-circuit accident in a transmission line with two circuits using only one type of sensor.

【0002】[0002]

【従来の技術】図4に示すように、送電線鉄塔4a、4
b、4c…に送電線31、32を並行して2回線配する
ことで冗長性を持たせた送電を行う2回線併設送電線路
において、片方の回線のみが雷等によって地絡する地絡
事故や、短絡事故が起きることがある。1回線のみで構
成された送電線における短絡事故の場合は、故障点より
上流は短絡電流が流れるが、故障点より下流は電流が流
れないため、間隔を空けて電流センサを設置し、電流が
流れているかどうかで故障点を含む故障区間が容易に判
別できる。しかし、2回線送電の1回線短絡事故では、
図4に示すように正常回線によって下流52に流れる電
流が、並列接続点54から故障した第2送電線32を逆
流し、電流62として故障点Pへ流れるために1回線の
故障点標定方法を用いることができない。
2. Description of the Related Art As shown in FIG. 4, transmission line towers 4a, 4
In a two-circuit combined transmission line that transmits power with redundancy by arranging two transmission lines 31 and 32 in parallel with b, 4c, ... Or a short circuit accident may occur. In the case of a short-circuit accident in a transmission line composed of only one line, a short-circuit current flows upstream from the failure point, but no current flows downstream from the failure point, so current sensors are installed at intervals and The faulty section including the faulty point can be easily discriminated by whether or not it is flowing. However, in the case of 1-circuit short-circuit accident of 2-circuit power transmission,
As shown in FIG. 4, the current flowing in the downstream 52 by the normal line flows backward from the parallel connection point 54 through the faulty second transmission line 32 and flows as the current 62 to the fault point P. It cannot be used.

【0003】このような2回線併設送電線路で1回線短
絡事故が起きた区間を検出するための標定方法として、
(1)各回線に電流センサ及び電圧センサを設置し、こ
れらの出力を用いて故障点の方向を求める方法が知られ
ている。また、(2)特開平5−203693号公報に
は、一つの回線に対して感度が高くなるように電流セン
サを配設し、各回線の電流の大きさから故障区間を標定
可能とする方法が挙げられている。この方法は、各電流
センサによって測定した電流の位相の違いから、測定地
点からの故障点の方向を判別している。
As an orientation method for detecting a section in which a one-circuit short-circuit accident has occurred in such a two-circuit transmission line,
(1) A method is known in which a current sensor and a voltage sensor are installed in each line and the outputs of these are used to determine the direction of a failure point. Further, (2) Japanese Patent Laid-Open No. 5-203693 discloses a method in which a current sensor is arranged so that the sensitivity is high for one line, and a fault section can be located from the magnitude of the current of each line. Are listed. This method determines the direction of the failure point from the measurement point based on the difference in the phase of the current measured by each current sensor.

【0004】[0004]

【発明が解決しようとする課題】しかし、(1)に示す
電流センサ及び電圧センサを用いる方法は、センサ及び
増幅回路等が2種類分必要となりコスト高となるため、
1種類のセンサのみで求める方法が望まれている。ま
た、(2)に示す電流の位相の違いを用いる方法は、故
障箇所等で発生するノイズ等の高調波成分によって電流
波形が歪み、容易に位相を比較することができないた
め、故障点の方向判別が難しいという問題点がある。本
発明は、上記問題点を解決するものであり、1種類のみ
のセンサを用いて2回線送電線の1回線短絡事故の故障
点を容易に標定することができる故障区間標定方法及び
故障区間標定システムを提供することを目的とする。
However, in the method using the current sensor and the voltage sensor shown in (1), two types of sensors and amplifier circuits are required, resulting in high cost.
It is desired to have a method that uses only one type of sensor. Further, in the method using the difference in the phase of the current shown in (2), the current waveform is distorted by the harmonic component such as noise generated at the failure location, and the phases cannot be easily compared. There is a problem that it is difficult to determine. The present invention solves the above-mentioned problems, and a fault section locating method and fault section locating method capable of easily locating a fault point of a one-circuit short-circuit accident of a two-circuit power transmission line using only one type of sensor. The purpose is to provide a system.

【0005】[0005]

【課題を解決するための手段】本第1発明の故障区間標
定方法は、並列して送電を行う2回線併設送電線路にお
いて各回線につき少なくとも1つの電流センサを設け、
該電流センサの少なくとも1つの出力値が所定値を越え
る過電流を検出したときに、該各回線における該出力値
の加算値が所定の範囲以下となる不動作地点と、該不動
作地点より上流側であり該加算値が所定の範囲を超える
動作地点との間を故障区間と判定することを特徴とす
る。また、上記両回線で且つ同じ相の上記電流センサの
出力値が所定値を越える過電流を検出したときに上記標
定を行うことができる。更に、上記所定値は、同地点の
電流センサ出力に対する比率とすることができる。
According to the fault zone locating method of the first aspect of the invention, at least one current sensor is provided for each line in a two-line power transmission line that transmits power in parallel.
When an overcurrent in which at least one output value of the current sensor exceeds a predetermined value is detected, a dead point at which the added value of the output values in each of the lines falls within a predetermined range, and an upstream of the dead point It is characterized in that it is determined as a failure section between the operating point on the side and the added value exceeding a predetermined range. Further, the above-described orientation can be performed when an overcurrent in which the output values of the current sensors in the both lines and in the same phase exceed a predetermined value is detected. Further, the predetermined value may be a ratio to the output of the current sensor at the same point.

【0006】本第4発明の故障区間標定システムは、並
列して送電を行う2回線併設送電線路において、各回線
につき少なくとも1つ設けられる電流センサ、及び各該
回線の該電流センサの出力を加算した加算値を少なくと
も出力する加算値出力部を備える2以上の子局と、該子
局から出力された加算値を受信して故障区間の標定を行
う故障区間標定部を備える親局とを備え、該故障区間標
定部は、該電流センサの少なくとも1つの出力値が所定
値を越える過電流を検出し、且つ該出力値の加算値が所
定の範囲以下となる不動作地点の該子局と、該動作地点
より上流側であり該加算値が所定の範囲を超える動作地
点の該子局との間を故障区間と判定することを特徴とす
る。
In the fault section locating system according to the fourth aspect of the present invention, in a two-line power transmission line that transmits power in parallel, at least one current sensor is provided for each line and the outputs of the current sensors of each line are added. The two or more slave stations that output at least the added value and the master station that includes the fault section locating section that receives the added value output from the slave station and locates the fault section The failure section locator detects an overcurrent in which at least one output value of the current sensor exceeds a predetermined value, and the added value of the output values is less than or equal to a predetermined range. It is characterized in that a fault section is determined between the slave station at an operating point on the upstream side of the operating point and at which the added value exceeds a predetermined range.

【0007】[0007]

【発明の効果】本故障区間標定方法及び故障区間標定シ
ステムによれば、電流センサのみで1回線短絡事故の故
障区間を標定することができ、電圧センサ及び電流方向
判別回路等が不要であるため、安価な標定システムを作
製することができる。また、故障電流の波形が故障箇所
等で発生するノイズ等の高調波成分により変形していて
も容易に故障区間を標定することができる。更に、故障
区間の標定を、過電流が検出している期間に限定するこ
とで、故障の誤検出を防止することができる。
EFFECTS OF THE INVENTION According to the fault section locating method and the fault section locating system, the fault section of the one-circuit short-circuit fault can be located only by the current sensor, and the voltage sensor and the current direction discriminating circuit are unnecessary. Therefore, an inexpensive orientation system can be manufactured. Further, even if the waveform of the fault current is deformed by the harmonic component such as noise generated at the fault location or the like, the fault section can be easily located. Further, by limiting the location of the faulty section to the period during which the overcurrent is detected, it is possible to prevent erroneous detection of the fault.

【0008】[0008]

【発明の実施の形態】上記「電流センサ」は送電線に流
れる電流の絶対値又は相対値を非接触で測定することが
できればよく、任意の種類を選択することができる。こ
の例として、通電に伴って発生する磁気を測定する磁気
センサを用いることを挙げることができる。また、この
磁気センサとして、コイルを用いる方法の他、ホール素
子や磁気抵抗素子を用いたセンサ等を例示することがで
きる。
BEST MODE FOR CARRYING OUT THE INVENTION The "current sensor" may be any type as long as it can measure an absolute value or a relative value of a current flowing through a power transmission line in a non-contact manner. An example of this is the use of a magnetic sensor that measures the magnetism generated with energization. Further, as the magnetic sensor, a method using a coil, a sensor using a Hall element or a magnetoresistive element, and the like can be exemplified.

【0009】更に、電流センサの個数は任意の数とする
ことができる。例えば、同回線の複数相を流れる電流を
1つの電流センサで求めることができる。1つの電流セ
ンサで複数相の電流を求めることで、低コストで故障区
間標定を行うことができる。また、1つの相につき1又
は2以上の電流センサを割り当てて電流測定を行うこと
ができる。このように、各相を個別に測定することによ
って電流の高精度な測定を行うことができ、故障区間標
定を行い易くすることができる。
Further, the number of current sensors can be any number. For example, the current flowing through multiple phases of the same line can be obtained with one current sensor. By determining the currents of a plurality of phases with one current sensor, it is possible to perform fault segment localization at low cost. In addition, one or more current sensors can be assigned to one phase for current measurement. As described above, by measuring each phase individually, the current can be measured with high accuracy, and the fault section can be easily located.

【0010】過電流を検出するための上記所定値は、負
荷電流と区別することができる範囲で任意に設定するこ
とができる。また、電流センサ出力に対する上記比率に
ついても、任意に設定することができる。更に、加算値
における上記所定値は、任意に設定することができる。
また、過電流による電流値より小さな値が好ましい。
The above-mentioned predetermined value for detecting the overcurrent can be arbitrarily set within a range in which it can be distinguished from the load current. Also, the ratio to the output of the current sensor can be set arbitrarily. Further, the above-mentioned predetermined value in the added value can be set arbitrarily.
A value smaller than the current value due to overcurrent is preferable.

【0011】上記「子局」は、電流センサ及び加算値出
力部を備えるが、これらは一体に設けてもよいし、別々
に設けてその間を有線又は無線で接続することができ
る。電流センサ及び加算値出力部を別体とすることで、
電流センサのみを送電線側に近づくよう鉄塔の上方に設
け、加算値出力部を鉄塔の任意の位置に設けることがで
きるため、設置作業や点検作業等の各種作業性を高くす
ることができる。
The above "slave station" is provided with a current sensor and an addition value output unit, but these may be provided integrally, or they may be provided separately and can be connected by wire or wirelessly. By making the current sensor and the additional value output part separate,
Since only the current sensor can be provided above the steel tower so as to approach the transmission line side and the additional value output unit can be provided at an arbitrary position of the steel tower, various workability such as installation work and inspection work can be improved.

【0012】1.故障区間標定方法 本発明の故障区間標定方法は、図2に示すように並列2
回線であり、上流51及び下流52の並列接続点53、
54間を接続する第1送電線31及び第2送電線32を
備えた、2回線併設送電線路において発生した1回線短
絡事故を区間単位で標定するための方法である。また、
本故障区間標定方法は、第1送電線31及び第2送電線
32の架線を行う鉄塔4a、4b、4c…間をそれぞれ
1つの標定区間とし、各鉄塔4a、4b、4c…には第
1送電線の所定の相又は相群に流れる電流を測定するた
めの第1電流センサ11a、11b、11c…を備え
る。更に、各鉄塔4a、4b、4c…には第2送電線の
所定の相又は相群に流れる電流を測定するための第2電
流センサ12a、12b、12c…を備える。更に、各
電流センサ11、12の出力は鉄塔8に設けられた子局
1内の加算値出力部により増幅された後、互いに加算さ
れて加算値が得られる。
1. Failure Section Locating Method The failure section locating method of the present invention is a parallel section 2 as shown in FIG.
A parallel connection point 53 of the upstream 51 and the downstream 52,
This is a method for locating a one-circuit short-circuit accident that has occurred in a two-circuit power transmission line provided with a first power transmission line 31 and a second power transmission line 32 that connect between 54 in section units. Also,
In this fault section locating method, one section is located between each of the steel towers 4a, 4b, 4c, ... Which perform the overhead line of the first transmission line 31 and the second transmission line 32, and each steel tower 4a, 4b, 4c ... 1st current sensor 11a, 11b, 11c ... for measuring the electric current which flows into the predetermined phase or phase group of a power transmission line is provided. Further, each of the steel towers 4a, 4b, 4c ... Is provided with second current sensors 12a, 12b, 12c ... For measuring a current flowing in a predetermined phase or phase group of the second power transmission line. Further, the outputs of the current sensors 11 and 12 are amplified by an addition value output section in the slave station 1 provided in the steel tower 8 and then added to each other to obtain an addition value.

【0013】(1)正常時 送電線に短絡事故が起きていない正常時の場合、図3に
示すように、加算値に用いられる各送電線31、32の
電流センサ11、12の出力値は、略一致する。同じ鉄
塔4に各電流センサ11、12が設けられているために
位相などのずれが略生じないし、全く別経路で送電する
ときのように異なるノイズが含まれにくいためである。
また、図3に示すように各回線の加算値は各出力値が重
畳した値となる。
(1) Normal time In a normal time when no short circuit accident occurs in the power transmission line, as shown in FIG. 3, the output values of the current sensors 11 and 12 of the respective power transmission lines 31 and 32 used for the added value are , Almost match. This is because the current sensors 11 and 12 are provided in the same steel tower 4, so that a phase shift or the like does not substantially occur, and different noise is unlikely to be included unlike when power is transmitted through a completely different route.
Further, as shown in FIG. 3, the added value of each line is a value obtained by superimposing each output value.

【0014】(2)故障時 次いで、図4に示すように第2送電線32の故障点Pに
おいて1回線地絡事故が発生した状態を説明する。故障
点Pで地絡が発生した場合、第1送電線31の上流51
側から故障点Pに短絡電流61が流れる。また、第1送
電線31を介して第2送電線32の下流52側の並列接
続点54から故障点Pに短絡電流62が流れる。この下
流からの故障電流62は検出することには十分な大きさ
であり、上流から下流に流れる電流と明確に方向が異な
る。
(2) At the time of failure Next, a state in which a one-circuit ground fault occurs at the failure point P of the second power transmission line 32 as shown in FIG. 4 will be described. When the ground fault occurs at the failure point P, the upstream side 51 of the first power transmission line 31
A short-circuit current 61 flows from the side to the failure point P. Further, the short-circuit current 62 flows from the parallel connection point 54 on the downstream 52 side of the second power transmission line 32 to the failure point P via the first power transmission line 31. The fault current 62 from the downstream is large enough to be detected, and its direction is clearly different from that of the current flowing from the upstream to the downstream.

【0015】このため、故障点Pより上流では図3に示
すように、第1送電線31及び第2送電線32は同じ方
向に電流が流れるため、各電流センサ11、12の出力
値は正常時と同じく位相ずれもなく略一致するが、故障
点Pより下流では図5に示すように、第1送電線31及
び第2送電線32を流れる電流の向きが逆となるため各
電流センサ11、12の出力値が異なる。このため、各
第1送電線の電流センサと、第2送電線の電流センサと
を加算すると互いに打ち消し合うため、加算値は正常時
より大幅に絶対値が小さくなる。
For this reason, as shown in FIG. 3, upstream of the fault point P, current flows through the first power transmission line 31 and the second power transmission line 32 in the same direction, so that the output values of the current sensors 11 and 12 are normal. As in the case of the time, there is almost no phase shift, and they substantially coincide with each other. However, in the downstream of the failure point P, as shown in FIG. , 12 have different output values. For this reason, when the current sensor of each first power transmission line and the current sensor of the second power transmission line are added together, they cancel each other, so that the added value has a significantly smaller absolute value than in the normal state.

【0016】本故障区間標定方法はこの正常時と故障時
とで大幅に値が異なる加算値に着目し、予め決定した範
囲内になった場合に故障と判定することで、容易に故障
を判定することができる。また、故障と判定した不動作
地点7と、この不動作地点より上流で故障でない動作地
点8との間を故障区間として判断することができる。
In the present fault segment location method, the fault is easily determined by focusing on the added value that greatly differs between the normal state and the fault state and determining the fault when it falls within a predetermined range. can do. Further, it is possible to determine as a failure section between the non-operation point 7 which is determined to be a failure and the non-fault operation point 8 which is upstream from the non-operation point.

【0017】更に、上記加算値による故障の判定は、予
め過電流が流れているかどうかを調べ、過電流が流れて
いる場合のみ判定を行うことができる。過電流かどうか
を調べておくことで、正常時の電流値と区別する必要が
なくなり、判定処理の条件が容易に決定することができ
るからである。この過電流かどうかは、電流センサ1
1、12の出力値が通常負荷のときに流れる電流値を越
えているかどうかを調べることで判断することができ
る。また、電流センサ11、12が1回線の1地点につ
き複数備える場合、加算値を求めた相の電流センサ1
1、12の電流値から過電流かどうかを判断する。
Further, the determination of the failure based on the added value can be made by previously checking whether or not an overcurrent is flowing and only when the overcurrent is flowing. By checking whether or not the current is an overcurrent, it is not necessary to distinguish it from the current value at the normal time, and the condition of the determination process can be easily determined. Whether this is an overcurrent depends on the current sensor 1
It can be determined by checking whether the output values of 1 and 12 exceed the value of the current flowing when the load is normal. When a plurality of current sensors 11 and 12 are provided at one point of one line, the current sensor 1 of the phase for which the added value is obtained
It is determined from the current values of 1 and 12 whether it is an overcurrent.

【0018】更に、故障と判断するときの加算値の範囲
は、電流センサ11、12の出力値(どちらか一方でも
よいし、両者の平均値でもよい)に対する比率から算出
することもできる。例えば、比率を出力値の10分の1
とすることで、加算値が出力値の10分の1以下となっ
たときに故障と判定することができる。尚、第2送電線
で1回線短絡事故が発生した場合においても上記説明し
た内容と同様に故障区間標定方法を適用することができ
る。また、図6に示すように、相間の短絡事故が発生し
た場合であっても、図4に示す地絡の場合と同様に、故
障点Pより下流では故障点Pに逆流する電流が生じるた
め、同じ故障区間標定方法で故障区間を標定することが
できる。
Further, the range of the added value when it is determined that the failure has occurred can be calculated from the ratio to the output value of the current sensors 11 and 12 (either one may be used, or the average value of both may be used). For example, the ratio is 1/10 of the output value.
With this, it is possible to determine a failure when the added value becomes 1/10 or less of the output value. Even when a one-circuit short-circuit accident occurs in the second power transmission line, the fault segment location method can be applied in the same manner as described above. Further, as shown in FIG. 6, even when a short circuit accident between phases occurs, a current flowing back to the failure point P occurs downstream from the failure point P as in the case of the ground fault shown in FIG. , The same fault segment location method can be used to locate the fault segment.

【0019】[0019]

【実施例】以下、図1〜9を用いて本発明の故障区間標
定方法及びこの方法を用いた故障区間標定システムの実
施形態について詳しく説明する。 2.故障区間標定システムの構成 本故障区間標定システムは、図1に示すように、第1送
電線31及び第2送電線32を架線する鉄塔4a、4
b、4c…に設けられる子局1a、1b、1c…と、こ
れら子局1a、1b、1c…に接続される親局2とを備
える。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the fault zone locating method of the present invention and the fault zone locating system using this method will be described in detail below with reference to FIGS. 2. Configuration of Failure Section Locating System This failure section locating system is, as shown in FIG. 1, a steel tower 4a, 4 for connecting a first transmission line 31 and a second transmission line 32.
.. provided in b, 4c ..., And a master station 2 connected to these slave stations 1a, 1b, 1c.

【0020】子局1は、図7に示すように電流センサ1
1、12及び加算値出力部13を備える。各電流センサ
11、12は、磁気センサであり、第1送電線31及び
第2送電線32に電流が流れることによって生じる磁気
を検出することができるように設けられている。また、
電流センサ11、12は、他方の回線の送電線12、1
1から生じる磁気に反応しないように向きを調節した
り、磁気シールドを施されている。尚、本電流センサ1
1、12は1回線の2つの相から発する磁気を検知でき
るように設けられている。同時に複数相の検出を行って
も十分な出力が得られ、故障の判別を行うことができる
からである。
The slave station 1 has a current sensor 1 as shown in FIG.
1, 12 and the addition value output unit 13. Each of the current sensors 11 and 12 is a magnetic sensor and is provided so as to be able to detect the magnetism generated by the current flowing through the first power transmission line 31 and the second power transmission line 32. Also,
The current sensors 11 and 12 are the transmission lines 12 and 1 of the other line.
The direction is adjusted so that it does not react to the magnetism generated from No. 1, and a magnetic shield is applied. The current sensor 1
Nos. 1 and 12 are provided so as to detect magnetism generated from two phases of one line. This is because a sufficient output can be obtained even if the detection of a plurality of phases is performed at the same time, and the failure can be determined.

【0021】加算値出力部13は、電流センサ11、1
2の出力を必要な大きさに増幅した後、加算して加算値
を生成し、生成した加算値を親局2に出力する電子回路
である。また、子局1及び親局2間は任意の通信手段に
よって接続されている。この通信手段は、PHS電話機
による専用無線機、携帯電話機及び無線LAN装置等の
無線装置を用いて送信する無線出力手段、及び適宜増幅
して電線や光ファイバ等経由で出力する有線出力手段等
の手段とすることができる。子局1の電源は、特に限定
されず任意に選択することができる。この例として、太
陽電池や風力発電機等による充電が行われるバッテリ、
送電線からの誘導電力等を挙げることができる。親局2
は、各子局1から送信された加算値を受信し、本故障区
間標定方法による故障区間の標定を行う電子回路、又は
該標定を行うプログラムを格納したコンピュータであ
る。
The added value output unit 13 includes current sensors 11, 1
It is an electronic circuit that amplifies the output of No. 2 to a required size, adds the two to generate an added value, and outputs the generated added value to the master station 2. Further, the slave station 1 and the master station 2 are connected by any communication means. This communication means includes a dedicated radio device using a PHS telephone, a wireless output means for transmitting using a wireless device such as a mobile phone and a wireless LAN device, and a wired output means for appropriately amplifying and outputting via a wire or an optical fiber. It can be a means. The power source of the slave station 1 is not particularly limited and can be arbitrarily selected. As an example of this, a battery that is charged by a solar cell or a wind power generator,
Inductive power from a transmission line can be used. Master station 2
Is a computer that stores an electronic circuit that receives the added value transmitted from each slave station 1 and locates a faulty section by the faulty zone locating method, or a program that performs the locating.

【0022】3.故障区間標定システムの使用方法及び
効果 本故障区間標定システムは、各子局1a、1b、1c…
がその電流センサ11a…、12a…によって各送電線
31、32の電流値を検出し、これらの加算値を加算値
出力部13で加算して、親局2に送信する。親局2は、
各子局1が動作地点か不動作地点であるかどうかを判定
する。また、不動作地点がある場合は、上流の動作地点
を検索して見つかった動作地点及び不動作地点の間を故
障区間として出力を行う。
3. Method and Effect of Use of Fault Section Locating System This fault section locating system is used for each slave station 1a, 1b, 1c ...
Detects the current values of the power transmission lines 31 and 32 by the current sensors 11a ... 12a, adds the added values by the added value output unit 13, and transmits the added values to the master station 2. The master station 2
It is determined whether each slave station 1 is an operating point or a non-operating point. If there is a non-operation point, the operation point and the non-operation point found by searching the upstream operation point are output as a failure section.

【0023】このような故障区間標定システムによれ
ば、電流センサのみで故障点を標定することができ、電
圧センサ及び電流方向判別回路等が不要であるため、安
価な標定装置を作製することができる。また、故障電流
波形が故障箇所等で発生するノイズ等の高調波成分によ
り変形していても容易に故障区間を標定することができ
る。
According to such a fault section locating system, the fault point can be located only by the current sensor, and the voltage sensor, the current direction discriminating circuit, etc. are unnecessary, so that an inexpensive locating device can be manufactured. it can. Further, even if the fault current waveform is deformed by a harmonic component such as noise generated at a fault location or the like, the fault section can be easily located.

【0024】4.各相に電流センサを備える子局 本故障区間標定システムの子局1は、図7に示すよう
に、1回線につき1つの電流センサを設けるに限られ
ず、1回線につき複数の電流センサを設けることができ
る。例えば、図8に示すように、第1送電線31の各相
31A、31B、31Cには電流センサ11A、11
B、11Cを設け、第2送電線32の各相32A、32
B、32Cには電流センサ12A、12B、12Cを設
けることができる。
4. Slave station provided with current sensor for each phase Slave station 1 of the main fault section location system is not limited to one current sensor provided per line as shown in FIG. You can For example, as shown in FIG. 8, the current sensors 11A, 11 are provided on the respective phases 31A, 31B, 31C of the first power transmission line 31.
B and 11C are provided, and each phase 32A, 32 of the second power transmission line 32 is provided.
B and 32C can be provided with current sensors 12A, 12B and 12C.

【0025】このように、1回線につき複数の電流セン
サを設ける場合は、同じ相に該当する両送電線31、3
2の電流センサ11、12について加算値を求め、故障
の判断を行う。また、1回線につき複数の電流センサを
設けることによって、どの相が故障したかどうかを判断
することができる。
As described above, when a plurality of current sensors are provided for one line, both transmission lines 31, 3 corresponding to the same phase are provided.
The additional value is calculated for the current sensors 11 and 12 of No. 2, and the failure is determined. Further, by providing a plurality of current sensors for each line, it is possible to determine which phase has failed.

【0026】更に、図9に示すように、1つの電流セン
サで2相分の送電線の電流を検出するように2つの電流
センサ11D、11E(12D、12E)を設けること
ができる。また、この2つの電流センサ11D、11E
(12D、12E)は、相Bを重複して検出するように
設けている。このような配設を行うことで、電流センサ
11D(12D)のみで故障を検出した場合はA相、電
流センサ11E(12E)のみで故障を検出した場合は
C相、電流センサ11D(12D)及び電流センサ11
E(12E)で故障を検出した場合はB相又は全ての相
と判断することができ、各相に電流センサを設けた場合
と略同様の細かさで相毎の短絡を判断することができ
る。
Further, as shown in FIG. 9, two current sensors 11D, 11E (12D, 12E) can be provided so that one current sensor detects the currents of the transmission lines for two phases. In addition, these two current sensors 11D and 11E
(12D, 12E) are provided so as to detect the phase B in an overlapping manner. With such an arrangement, when the failure is detected only by the current sensor 11D (12D), the phase A, when the failure is detected only by the current sensor 11E (12E), the phase C, the current sensor 11D (12D) And current sensor 11
When a failure is detected at E (12E), it can be determined that the phase is B phase or all phases, and a short circuit for each phase can be determined with the same fineness as when a current sensor is provided for each phase. .

【0027】尚、本発明においては、上記実施例に限ら
ず、目的、用途に応じて本発明の範囲内で種々変更した
実施例とすることができる。即ち、本送電線用センサは
子局を構成する電流センサ及び加算値出力部が別体とな
っていたが、加算値出力部をいずれかの電流センサと一
体とすることができる。このような子局は配線数及び設
置作業数が減ることになり、作業性をより高めることが
できる。また、加算値出力部を分割して各電流センサ内
に設けてもよい。更に、本故障区間標定システムは、親
局2と各子局1が別体となっているが、子局のいずれか
一つの中に親局2を設けてもよい。また、1本の送電線
鉄塔に3回線以上の送電線が設けられている線路におい
ても、並列して送電を行う任意の2回線を選択して本故
障区間標定方法及び本故障区間標定システムを適用する
ことで、短絡故障点を含む故障区間を特定することがで
きる。
It should be noted that the present invention is not limited to the above-mentioned embodiment, but various modifications may be made within the scope of the present invention according to the purpose and application. That is, in the present transmission line sensor, the current sensor and the additional value output unit forming the slave station are separate, but the additional value output unit can be integrated with any of the current sensors. In such a slave station, the number of wires and the number of installation works are reduced, and the workability can be further improved. Further, the additional value output unit may be divided and provided in each current sensor. Further, in the present fault segment location system, the master station 2 and each slave station 1 are separate bodies, but the master station 2 may be provided in any one of the slave stations. In addition, even in a line where three or more transmission lines are provided in one transmission line tower, select any two lines that perform power transmission in parallel, and perform the fault segment location method and the fault segment location system. By applying it, it is possible to specify the fault section including the short-circuit fault point.

【図面の簡単な説明】[Brief description of drawings]

【図1】本故障区間標定システムの構成を説明するため
の模式図である。
FIG. 1 is a schematic diagram for explaining the configuration of the present fault segment location system.

【図2】正常時の2回線併設送電線路を説明するための
模式図である。
FIG. 2 is a schematic diagram for explaining a two-line power transmission line in a normal state.

【図3】正常時の電流センサの出力及び加算値の例を説
明するためのグラフである。
FIG. 3 is a graph for explaining an example of an output and an added value of a current sensor at a normal time.

【図4】1回線短絡事故時の2回線併設送電線路を説明
するための模式図である。
FIG. 4 is a schematic diagram for explaining a two-line power transmission line in the event of a one-line short circuit accident.

【図5】1回線短絡事故時の電流センサの出力及び加算
値の例を説明するためのグラフである。
FIG. 5 is a graph for explaining an example of the output and the added value of the current sensor at the time of a one-circuit short circuit accident.

【図6】1回線短絡事故時の2回線併設送電線路を説明
するための模式図である。
[Fig. 6] Fig. 6 is a schematic diagram for explaining a two-line power transmission line in the event of a one-line short circuit accident.

【図7】鉄塔に子局を設けた状態の例を説明するための
模式図である。
FIG. 7 is a schematic diagram for explaining an example of a state in which a slave station is provided on a steel tower.

【図8】送電線の各相にそれぞれ電流センサを設けた状
態の例を説明するための模式図である。
FIG. 8 is a schematic diagram for explaining an example of a state in which a current sensor is provided for each phase of the power transmission line.

【図9】送電線の1相が重複するように2つの電流セン
サを設けた状態の例を説明するための模式図である。
FIG. 9 is a schematic diagram for explaining an example of a state in which two current sensors are provided so that one phase of a power transmission line overlaps.

【符号の説明】[Explanation of symbols]

1;子局、11;第1電流センサ、12;第2電流セン
サ、13;加算値出力部、2;親局、31;第1送電
線、32;第2送電線、4;鉄塔、51;上流、52;
下流、53、54;並列接続点、61、62;短絡電
流、P;故障点。
1; slave station, 11; first current sensor, 12; second current sensor, 13; additional value output unit, 2; parent station, 31; first power transmission line, 32; second power transmission line, 4; steel tower, 51 Upstream, 52;
Downstream, 53, 54; parallel connection point, 61, 62; short-circuit current, P; failure point.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 並列して送電を行う2回線併設送電線路
において各回線につき少なくとも1つの電流センサを設
け、 該電流センサの少なくとも1つの出力値が所定値を越え
る過電流を検出したときに、該各回線における該出力値
の加算値が所定の範囲以下となる不動作地点と、該不動
作地点より上流側であり該加算値が所定の範囲を超える
動作地点との間を故障区間と判定することを特徴とする
故障区間標定方法。
1. At least one current sensor is provided for each line in a two-line power transmission line that transmits power in parallel, and when at least one output value of the current sensor detects an overcurrent exceeding a predetermined value, It is determined as a failure section between a dead point where the added value of the output values in each of the lines is within a predetermined range or less and an operation point upstream of the dead point and where the added value exceeds the predetermined range. A fault segment location method characterized by
【請求項2】 上記両回線で且つ同じ相の上記電流セン
サの出力値が所定値を越える過電流を検出したときに上
記標定を行う請求項1記載の故障区間標定方法。
2. The fault section locating method according to claim 1, wherein the locating is performed when an overcurrent in which the output values of the current sensors of the same phase on both the lines exceed a predetermined value is detected.
【請求項3】 上記所定値は、同地点の電流センサ出力
に対する比率である請求項1又は2記載の故障区間標定
方法。
3. The fault segment locating method according to claim 1, wherein the predetermined value is a ratio to the output of the current sensor at the same point.
【請求項4】 並列して送電を行う2回線併設送電線路
において、各回線につき少なくとも1つ設けられる電流
センサ、及び各該回線の該電流センサの出力を加算した
加算値を少なくとも出力する加算値出力部を備える2以
上の子局と、該子局から出力された加算値を受信して故
障区間の標定を行う故障区間標定部を備える親局とを備
え、 該故障区間標定部は、該電流センサの少なくとも1つの
出力値が所定値を越える過電流を検出し、且つ該出力値
の加算値が所定の範囲以下となる不動作地点の該子局
と、該動作地点より上流側であり該加算値が所定の範囲
を超える動作地点の該子局との間を故障区間と判定する
ことを特徴とする故障区間標定システム。
4. In a two-line transmission line that transmits power in parallel, at least one current sensor is provided for each line, and an added value that outputs at least an added value obtained by adding the outputs of the current sensors of each line. The system includes: two or more slave stations including an output unit; and a master station including a failure section locating unit that receives the added value output from the slave stations and locates the failure section, and the failure section locating unit includes An overcurrent in which at least one output value of the current sensor exceeds a predetermined value is detected, and the slave station at an inoperative point where the added value of the output values falls below a predetermined range; and an upstream side from the operating point. A fault segment locating system characterized by determining a fault segment between the slave station at an operating point where the added value exceeds a predetermined range.
JP2002108273A 2002-04-10 2002-04-10 Failure section locating method and failure section locating system Expired - Fee Related JP4284030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002108273A JP4284030B2 (en) 2002-04-10 2002-04-10 Failure section locating method and failure section locating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002108273A JP4284030B2 (en) 2002-04-10 2002-04-10 Failure section locating method and failure section locating system

Publications (2)

Publication Number Publication Date
JP2003302440A true JP2003302440A (en) 2003-10-24
JP4284030B2 JP4284030B2 (en) 2009-06-24

Family

ID=29392093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002108273A Expired - Fee Related JP4284030B2 (en) 2002-04-10 2002-04-10 Failure section locating method and failure section locating system

Country Status (1)

Country Link
JP (1) JP4284030B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110959120A (en) * 2017-07-25 2020-04-03 西门子交通有限公司 Method and device for fault location along an energy supply line in a direct current system
CN112505475A (en) * 2020-11-10 2021-03-16 广西电网有限责任公司河池供电局 Low-cost non-contact overhead transmission line fault section positioning method and system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110959120A (en) * 2017-07-25 2020-04-03 西门子交通有限公司 Method and device for fault location along an energy supply line in a direct current system
CN110959120B (en) * 2017-07-25 2022-10-11 西门子交通有限公司 Method and device for fault location along an energy supply line in a direct current system
US11500006B2 (en) 2017-07-25 2022-11-15 Siemens Mobility GmbH Method and device for locating faults along an energy supply chain for DC current systems
CN112505475A (en) * 2020-11-10 2021-03-16 广西电网有限责任公司河池供电局 Low-cost non-contact overhead transmission line fault section positioning method and system
CN112505475B (en) * 2020-11-10 2023-09-12 广西电网有限责任公司河池供电局 Low-cost non-contact type overhead transmission line fault interval positioning method and system

Also Published As

Publication number Publication date
JP4284030B2 (en) 2009-06-24

Similar Documents

Publication Publication Date Title
US20120169328A1 (en) Current Measuring Systems and Methods of Assembling the Same
KR20120093444A (en) Current sensor with a self-test function
CN112858838A (en) Cable fault positioning system and method
JP2003302440A (en) Failure section locating method and failure section locating system
JP4942968B2 (en) Fault section locating method and locating apparatus for transmission and distribution lines
CN105425113A (en) Method and system for fault positioning of contact net
JP4104341B2 (en) Accident location system
KR100592845B1 (en) Overhead line lightning strike and accident point detection device
JP4121979B2 (en) Non-grounded circuit insulation monitoring method and apparatus
JP2004233255A (en) Disconnection detecting system of distribution line
KR20190032948A (en) Abnormal condition diagnosis system of bolt combination portion
JP3370877B2 (en) AC BT feeder circuit fault point location device
JP5127736B2 (en) Accident location detection system and accident section identification method
JP2866172B2 (en) Transmission line fault direction locating method
KR102003947B1 (en) Abnormal condition diagnosis system of bolt combination portion
JP4039576B2 (en) Calculation method of surge propagation speed in fault location system
JPH08103022A (en) Power system and monitor for electric facility
JP3026055B2 (en) Transmission line accident aspect identification method and device
JPH06273470A (en) Accident section plotting device of overhead transmission line
US20220283214A1 (en) Leakage Current Detection in Cable Tray
JPH09251051A (en) Ground fault direction detection method for transmission and distribution lines
JP3240479B2 (en) Micro ground fault section location device
JP3528544B2 (en) Method of locating insulation breakdown of power cable line
JPH0862278A (en) Method for locating grounding generated point, and tool for locating grounding generated point used in the method
JPH01209387A (en) Fault current detection sensor and detection of fault section in transmission line using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050324

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080715

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090323

R150 Certificate of patent or registration of utility model

Ref document number: 4284030

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees