JP2003301219A - Method for manufacturing steel pipe with high strength and low yield ratio superior in weld part toughness - Google Patents

Method for manufacturing steel pipe with high strength and low yield ratio superior in weld part toughness

Info

Publication number
JP2003301219A
JP2003301219A JP2002314704A JP2002314704A JP2003301219A JP 2003301219 A JP2003301219 A JP 2003301219A JP 2002314704 A JP2002314704 A JP 2002314704A JP 2002314704 A JP2002314704 A JP 2002314704A JP 2003301219 A JP2003301219 A JP 2003301219A
Authority
JP
Japan
Prior art keywords
mass
steel pipe
temperature range
steel
transformation point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002314704A
Other languages
Japanese (ja)
Inventor
Toru Hayashi
透 林
Toshiyuki Hoshino
俊幸 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002314704A priority Critical patent/JP2003301219A/en
Publication of JP2003301219A publication Critical patent/JP2003301219A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an advantageous method for improving the weld part toughness, in a welded steel pipe which satisfies mechanical properties of a high strength and a low yield ratio. <P>SOLUTION: This manufacturing method comprises heating a steel sheet, having a composition including 0.05-0.15 mass% C, 0.10-0.50 mass% Si, 0.5-2.0 mass% Mn, 0.005-0.10 mass% Al, 0.05-0.50 mass% Cr, 0.05-0.50 mass% Mo, further 0.002-0.03 mass% Ti and 0.001-0.01 mass% REM (rare earth metals), to a range between the A<SB>c3</SB>transformation temperature and 1000°C, and quenching it, or heating and rolling a steel slab having the same composition, and quenching it from the A<SB>r3</SB>transformation temperature or higher, consequently heating it again at a range between the A<SB>c1</SB>transformation temperature and the A<SB>c3</SB>transformation temperature and quenching it, further tempering it in a temperature range of 460-650°C, forming the steel sheet into a shape of a pipe, welding the seam to manufacture the steel pipe, and annealing the steel pipe at a temperature range of 500-700°C. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、 建築や土木の分
野に供する高強度低降伏比鋼管、具体的には降伏応力が
440 〜590MPaおよび引張強さが590 〜740MPaで、かつ降
伏比が85%以下の諸特性を有する溶接鋼管、とりわけ溶
接部靱性の良好な高強度低降伏比鋼管の製造方法に関す
るものである。
TECHNICAL FIELD The present invention relates to a high-strength low-yield ratio steel pipe for use in the fields of construction and civil engineering, and more specifically, to a steel having a high yield stress.
The present invention relates to a method for producing a welded steel pipe having various properties of 440 to 590 MPa and tensile strength of 590 to 740 MPa and a yield ratio of 85% or less, especially a high strength and low yield ratio steel pipe having good weld toughness.

【0002】[0002]

【従来の技術】従来、 高層建築物の柱には、条切りした
鋼板4枚を箱型に溶接した柱、いわゆるボックスタイプ
が多く利用されていたが、 近年は、 剛性、 変形性能およ
び耐火性能に優れ、 かつ柱の断面積が小さく建築物内の
有効空間を大きくできる、鋼管柱、中でも鋼管内部にコ
ンクリートを充填して構造柱とする、いわゆるCFT (Co
ncrete Filled Steel Tube) が用いられるようになって
きた。
2. Description of the Related Art Conventionally, a box-shaped column welded with four strips of steel was often used as a column for a high-rise building, but in recent years, rigidity, deformation performance, and fire resistance have been used. Steel pipe columns with excellent cross-section and small column cross-sectional area to increase the effective space in the building, especially the so-called CFT (Co
ncrete Filled Steel Tube) has come into use.

【0003】このCFT タイプの鋼管は、鋼板を曲げて管
状に成形したのち、その継目を溶接して管とし、その後
焼戻して使用に供されるため、 この焼戻し後に上記した
機械的性質を有する必要があり、 その製造は容易ではな
かった。すなわち、高層建築物の柱として用いられる鋼
管用鋼は、主に高層建築物の柱として引張強さが590MPa
級は必要であり、かつ建築用のために降伏比は85%以下
に制限され、これらの機械的性質とりわけ低降伏比を、
高強度の下に実現させるのは難しいものであった。
This CFT type steel pipe is formed by bending a steel plate into a tubular shape, and then welding the joints to form a pipe, which is then tempered for use. Therefore, it is necessary to have the above-mentioned mechanical properties after tempering. However, its production was not easy. That is, the steel for steel pipes used as columns for high-rise buildings has a tensile strength of 590 MPa mainly as columns for high-rise buildings.
Grades are required, and for construction the yield ratio is limited to 85% or less, these mechanical properties especially low yield ratio,
It was difficult to realize under high strength.

【0004】ここで、特許文献1には、所定の成分に調
整した鋼を熱間圧延したのち、Ac3変態点〜1000℃の温
度範囲に加熱焼入れし、 引き続き 750〜850 ℃の温度範
囲に再加熱焼入れして2相混合組織とすることによっ
て、低降伏比を実現することが提案されている。この技
術によって、高強度の下に低降伏比を実現することが可
能になったのである。
[0004] Here, in Patent Document 1, the steel which is adjusted to a predetermined component After hot rolling, heat quenching to a temperature range of A c3 transformation point to 1000 ° C., subsequently the temperature range of 750 to 850 ° C. It has been proposed to realize a low yield ratio by reheating and quenching to form a two-phase mixed structure. This technology has made it possible to achieve a low yield ratio under high strength.

【0005】ところで、上記したように、この種の鋼管
は、鋼板を曲げて管状に成形しその継目を溶接して作製
されるため、溶接部が生じることは不可避である。そし
て、この溶接部における靱性は、母材と同様に、最低で
も0℃で47J以上のシャルピー吸収エネルギーが必要で
ある。最近では、鋼管を作製する組立加工業者間での競
争が激化していることもあり、鋼管の溶接作業効率の向
上に対する要求は強くなっている。さらに、鋼が高強度
化されるに伴い、母材は勿論、溶接部についても良好な
靱性が強く求められていたのである。例えば、上記ボッ
クスタイプの柱における角溶接では、60万J/cmの大入
熱での溶接が施された溶接部において、70J以上の吸収
エネルギーを有することが求められている。従って、上
記CFT においても、近い将来10万J/cmの入熱での溶接
部に、同様の要求がなされることは確実である。
By the way, as described above, since this kind of steel pipe is manufactured by bending a steel plate into a tubular shape and welding its joints, it is unavoidable that a welded portion is formed. The toughness of the welded portion requires Charpy absorbed energy of 47 J or more at 0 ° C. at least as in the base metal. Recently, due to intensifying competition among steel pipe manufacturing assembly processors, there has been a strong demand for improvement in welding efficiency of steel pipes. Further, as the strength of steel becomes higher, good toughness is strongly demanded not only in the base metal but also in the welded portion. For example, in the corner welding of the box type column, it is required that the welded portion having a large heat input of 600,000 J / cm has absorbed energy of 70 J or more. Therefore, it is certain that similar requirements will be made in the above CFT for welded parts with a heat input of 100,000 J / cm in the near future.

【0006】この点、特許文献1には、溶接部靱性をTi
の添加によって向上することが記載されているが、この
Ti添加による溶接部靱性の改善には限度があり、例えば
大径の鋼管を製造するに当り、とりわけ7万J/cmを越
える大入熱での溶接を行った際の溶接部靱性は、保証の
限りではなかった。
[0006] In this respect, in Patent Document 1, the weld toughness is Ti
It is described that the addition of
There is a limit to the improvement of the weld toughness by adding Ti. For example, when manufacturing a large-diameter steel pipe, the weld toughness is guaranteed especially when welding with a large heat input exceeding 70,000 J / cm. Not as long as.

【0007】[0007]

【特許文献1】特開平5−117746号公報[Patent Document 1] Japanese Patent Laid-Open No. 5-117746

【0008】[0008]

【発明が解決しようとする課題】そこで、この発明の目
的は、高強度かつ低降伏比という機械的特性を満足する
溶接鋼管において、その溶接部靱性を向上する有利な方
途を与えることにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an advantageous way of improving the toughness of a welded steel pipe in a welded steel pipe satisfying the mechanical properties of high strength and low yield ratio.

【0009】[0009]

【課題を解決するための手段】発明者らは、上述のCFT
用鋼の開発に鋭意取り組んだ結果、 所望の高強度低降伏
比を実現するためには、鋼板の段階で2相域焼入処理を
行ってCおよびMnの濃度分布をつけること、MoおよびTi
添加による析出物の微細化にて歪取り焼鈍後の強度を確
保すること、Cr添加による固溶Cの固定にて降伏比を低
減すること、が有効であることを確認した。その上で、
溶接部の靱性を向上する手段について鋭意究明したとこ
ろ、Tiに併せてREM を複合添加することが極めて有効な
手だてとなることを見出し、この発明を完成するに到っ
た。
[Means for Solving the Problems]
As a result of earnest efforts in the development of steel for use in steel, in order to achieve the desired high strength and low yield ratio, it is necessary to carry out a two-phase quenching treatment at the stage of the steel sheet to obtain the concentration distribution of C and Mn, Mo and Ti.
It was confirmed that it is effective to secure the strength after strain relief annealing by refining the precipitates by adding and to reduce the yield ratio by fixing the solid solution C by adding Cr. Moreover,
As a result of diligent research into means for improving the toughness of the welded part, they have found that the combined addition of REM and Ti is an extremely effective measure, and have completed the present invention.

【0010】すなわち、この発明の要旨構成は、次のと
おりである。 (1) C:0.05〜0.15mass%、Si:0.10〜0.50mass%、M
n:0.5 〜2.0 mass%、Al:0.005 〜0.10mass%、Cr:
0.05〜0.50mass%およびMo:0.05〜0.50mass%を含み、
さらにTi:0.002 〜0.03mass%およびREM : 0.001 〜0.
01mass%を含有し、かつ下記式に従うCeqが0.47以下で
ある成分組成を有する鋼板に、Ac3変態点〜1000℃の温
度域に加熱して焼入れを施し、 次いでAc1変態点以上A
c3変態点以下の温度域に再加熱して焼入れを施し、 さら
に460 〜650 ℃の温度域での焼戻しを行ったのち、該鋼
板を管状に成形しその継目を溶接して鋼管を作製し、該
鋼管を500 〜700 ℃の温度域で焼鈍することを特徴とす
る溶接部靱性の良好な高強度低降伏比鋼管の製造方法。 記 Ceq=C[mass%] + Mn[mass%]/6+ Si[mass%]/24+
Ni[mass%]/40+ Cr[mass%]/5+ Mo[mass%]/4+V
[mass%] /14
That is, the gist of the present invention is as follows. (1) C: 0.05 to 0.15 mass%, Si: 0.10 to 0.50 mass%, M
n: 0.5 to 2.0 mass%, Al: 0.005 to 0.10 mass%, Cr:
0.05 to 0.50 mass% and Mo: 0.05 to 0.50 mass% are included,
Furthermore, Ti: 0.002-0.03 mass% and REM: 0.001--0.
A steel sheet containing 01 mass% and having a composition of Ceq according to the following formula of 0.47 or less is heated to a temperature range of A c3 transformation point to 1000 ° C. for quenching, and then A c1 transformation point or more A
After reheating to a temperature range below the c3 transformation point and quenching, and further tempering in a temperature range of 460 to 650 ° C, the steel sheet is formed into a tubular shape and its seam is welded to produce a steel pipe, A method for producing a high-strength low-yield-ratio steel pipe having good weld toughness, characterized by annealing the steel pipe in a temperature range of 500 to 700 ° C. Note Ceq = C [mass%] + Mn [mass%] / 6+ Si [mass%] / 24+
Ni [mass%] / 40 + Cr [mass%] / 5 + Mo [mass%] / 4 + V
[mass%] / 14

【0011】(2) C:0.05〜0.15mass%、Si:0.10〜0.
50mass%、Mn:0.5 〜2.0 mass%、Al:0.005 〜0.10ma
ss%、Cr:0.05〜0.50mass%およびMo:0.05〜0.50mass
%を含み、さらにTi:0.002 〜0.03mass%およびREM :
0.001 〜0.01mass%を含有し、かつ上記式に従うCeqが
0.47以下である成分組成を有する鋼スラブを、Ac3変態
点〜1300℃の温度域に加熱し、Ar3変態点以上の温度域
で圧延を行い、この圧延後の鋼板をそのまま焼入れし、
次いでAc1変態点以上Ac3変態点以下の温度域に再加熱
して焼入れを施し、 さらに460 〜650 ℃の温度域での焼
戻しを行ったのち、鋼板を管状に成形しその継目を溶接
して鋼管を作製し、該鋼管を500 〜700℃の温度域で焼
鈍することを特徴とする溶接部靱性の良好な高強度低降
伏比鋼管の製造方法。
(2) C: 0.05 to 0.15 mass%, Si: 0.10 to 0.
50mass%, Mn: 0.5-2.0 mass%, Al: 0.005-0.10ma
ss%, Cr: 0.05 to 0.50 mass% and Mo: 0.05 to 0.50 mass
%, And further Ti: 0.002-0.03 mass% and REM:
Ceq according to the above formula containing 0.001 to 0.01 mass%
The steel slab having the component composition is 0.47 or less, and heated to a temperature range of A c3 transformation point to 1300 ° C., subjected to rolling in a temperature range of more than A r3 transformation point, directly quenching the steel sheet after the rolling,
Then, it is reheated to a temperature range of A c1 transformation point or more and A c3 transformation point or less to quench it, and further tempered in a temperature range of 460 to 650 ° C, and then a steel sheet is formed into a tubular shape and its seam is welded. A method for producing a high-strength, low-yield-ratio steel pipe having good weld toughness, which comprises producing a steel pipe by annealing at a temperature range of 500 to 700 ° C.

【0012】(3) 上記(1) または(2) において、鋼板
は、さらにCu:0.05〜1.0 mass%、Ni:0.05〜1.0 mass
%、V:0.005 〜0.05mass%、Nb:0.005 〜0.05mass%
およびCa:0.0005〜0.005 mass%のいずれか1種または
2種以上を含有する成分組成を有することを特徴とする
溶接部靱性の良好な高強度低降伏比鋼管の製造方法。
(3) In the above (1) or (2), the steel sheet further contains Cu: 0.05 to 1.0 mass% and Ni: 0.05 to 1.0 mass.
%, V: 0.005 to 0.05 mass%, Nb: 0.005 to 0.05 mass%
And Ca: 0.0005 to 0.005 mass% of one or two or more of them are contained in the composition, and a method for producing a high-strength, low-yield ratio steel pipe having good weld toughness.

【0013】[0013]

【発明の実施の形態】まず、この発明を導くに到った実
験結果について、詳述する。すなわち、C:0.11mass
%、Si:0.30mass%、Mn:1.45mass%、Al:0.027 mass
%、Cr:0.16mass%およびMo:0.25mass%を含む成分組
成を基本として、さらに種々の量のTiおよびREM を単独
添加または複合添加した、鋼板をそれぞれ用意し、これ
ら鋼板を900 ℃に加熱して焼入れを施し、 次いで790 ℃
に再加熱して焼入れし、 さらに540 ℃での焼戻しを行っ
たのち、該鋼板を管状に成形しその継目をサブマージア
ーク溶接にて入熱20000 、50000 、70000 および100000
J/cmの条件で溶接して鋼管を作製し、該鋼管を550 〜
700 ℃の温度域で焼鈍した。
First, the experimental results leading to the present invention will be described in detail. That is, C: 0.11 mass
%, Si: 0.30 mass%, Mn: 1.45 mass%, Al: 0.027 mass
%, Cr: 0.16mass% and Mo: 0.25mass%, and steel sheets prepared by adding various amounts of Ti and REM individually or in combination, and heating these steel sheets to 900 ° C. And quenching, then 790 ℃
After reheating to quench and quenching, and further tempering at 540 ℃, the steel sheet is formed into a tube and its joints are heat-input by submerged arc welding 20000, 50000, 70000 and 100000.
Welded under the condition of J / cm to produce a steel pipe,
Annealed in the temperature range of 700 ° C.

【0014】かくして得られた鋼管の溶接部における低
温靱性 v0 (溶接ボンド部から溶接熱影響部側へ1mm
隔てた位置における0℃でのシャルピー吸収エネルギ
ー:J)について調査した結果を、表1に示す。表1に
示すように、上記基本成分になる鋼を用いた鋼管Aにお
ける溶接部靱性に比較し、この基本成分にTiまたはREM
を単独添加した鋼による鋼管BおよびCはいずれも溶接
部靱性が向上しているが、いずれも70000 J/cmを越え
る大入熱による溶接を経ると、その溶接部における吸収
エネルギーは70J未満に低下してしまう。
Low temperature toughness v E 0 (1 mm from weld bond to weld heat affected zone) in the weld of the steel pipe thus obtained
Table 1 shows the results of an investigation on the Charpy absorbed energy at 0 ° C .: J) at the separated positions. As shown in Table 1, in comparison with the weld zone toughness of the steel pipe A using the steel having the above basic composition, Ti or REM
Steel pipes B and C made of the steel with only added have improved toughness at the welded parts, but both have a absorbed energy of less than 70 J after welding with a large heat input exceeding 70,000 J / cm. Will fall.

【0015】[0015]

【表1】 [Table 1]

【0016】これに対して、基本成分にTiおよびREM を
複合添加した鋼による鋼管Cにおける溶接部靱性は、入
熱20000 および50000 J/cmでの溶接条件で向上してい
るのは勿論、70000 および100000J/cmの大入熱で溶接
を行った場合にあっても、溶接部のシャルピー吸収エネ
ルギーを70J以上に維持することができる。
On the other hand, the weld toughness of the steel pipe C made of the steel in which Ti and REM are added to the basic components is improved to 70000 as a matter of course under the welding conditions of heat input of 20,000 and 50,000 J / cm. Even when welding is performed with a large heat input of 100,000 J / cm, the Charpy absorbed energy of the welded portion can be maintained at 70 J or more.

【0017】さらに、このTiおよびREM の複合添加によ
る効果について、詳しく述べる。すなわち、図1にTiお
よびREM の添加の概念を示すように、まずTiはTiN とし
て析出し強力に初期γ粒をピンニングし粒成長を抑制し
て靱性を向上するが、TiN は1400℃以上で溶解してしま
うため、大入熱溶接時などの1400℃をこえる温度域では
靱性向上効果を発揮することが難しい。一方、REM はRE
M(O,S)として1400℃以上でも溶解せずに残留し、TiN 程
ではないが、初期γ粒をピンニングし粒成長を抑制す
る、効果を有する。従って、両者を複合して添加すれ
ば、大入熱溶接時などの1400℃をこえる温度域が拡大
し、TiN によって粒成長を抑制することが難しくなった
としても、REM による粒成長の抑制が引き続き維持され
るため、十分な靱性を得ることが可能になる。すなわ
ち、TiおよびREM を複合添加することによって、双方の
不足分を補完し合う形となる結果、両者の単なる和に止
まらない効果が得られるのである。
Further, the effect of the combined addition of Ti and REM will be described in detail. That is, as shown in the concept of addition of Ti and REM in Fig. 1, Ti is first precipitated as TiN and strongly pinned the initial γ grains to suppress grain growth and improve toughness. Since it melts, it is difficult to exert the effect of improving toughness in the temperature range exceeding 1400 ° C, such as during high heat input welding. On the other hand, REM is RE
It remains as M (O, S) without melting even at 1400 ° C. or higher, and has the effect of pinning initial γ grains and suppressing grain growth, although not to the extent of TiN. Therefore, if both are added in combination, the temperature range over 1400 ° C, such as during high heat input welding, expands, and even if it becomes difficult to suppress grain growth by TiN, it is possible to suppress grain growth by REM. Since it is continuously maintained, it becomes possible to obtain sufficient toughness. In other words, the combined addition of Ti and REM complements each other's deficiency, resulting in an effect that is not merely a sum of the two.

【0018】この発明は、上記の新規知見に由来するも
のであり、特にTiおよびREM を複合添加して溶接部靱性
を確保することによって、高層建築物の柱用CFT に好適
の鋼管の提供が、ここに実現したのである。
The present invention is derived from the above new finding, and in particular, by providing Ti and REM in combination to secure weld toughness, it is possible to provide a steel pipe suitable for CFT for columns of high-rise buildings. , Realized here.

【0019】以下に、この発明の製造方法について、各
工程毎に詳しく説明する。まず、鋼板の成分組成におけ
る各成分量の限定理由を説明する。 C:0.05〜0.15mass% Cは、所望の強度を得るためおよび炭化物を析出させる
ために、少なくとも0.05mass%は必要であり、一方上限
は靭性および溶接性の劣化の観点から0.15mass%とし
た。
The manufacturing method of the present invention will be described in detail below for each step. First, the reasons for limiting the amount of each component in the component composition of the steel sheet will be described. C: 0.05 to 0.15 mass% C is required to be at least 0.05 mass% in order to obtain desired strength and to precipitate carbides, while the upper limit is 0.15 mass% from the viewpoint of deterioration of toughness and weldability. .

【0020】Si: 0.10 〜0.5 mass% Siは、製鋼上0.10mass%以上が必要であり、一方 0.5ma
ss%を超えると、母材の靱性を劣化させるため、 0.10
〜0.5 mass%の範囲とする。
Si: 0.10-0.5 mass% Si requires 0.10 mass% or more in steelmaking, while 0.5ma
If it exceeds ss%, the toughness of the base material deteriorates, so 0.10
The range is to 0.5 mass%.

【0021】Mn:0.5 〜2.0 mass% Mnは、母材の強度を確保するために0.5 mass%以上は必
要であり、一方、2.0mass%を超えると溶接部の靱性を著
しく劣化させるため、Mn:0.5 〜2.0 mass%の範囲とす
る。
Mn: 0.5 to 2.0 mass% Mn needs to be 0.5 mass% or more in order to secure the strength of the base metal. On the other hand, if it exceeds 2.0 mass%, the toughness of the welded portion is significantly deteriorated. : 0.5 to 2.0 mass%

【0022】Al:0.005 〜0.10mass% Alは、脱酸剤として0.005 mass%以上は必要であるが、
0.10mass%以上添加してもその効果が飽和する。
Al: 0.005 to 0.10 mass% Al requires 0.005 mass% or more as a deoxidizing agent,
The effect is saturated even if 0.10 mass% or more is added.

【0023】Cr:0.05〜0.50mass% Crは、0.05mass%以上の添加により、後述の製造工程に
おける歪取り焼鈍後の鋼管の降伏応力を低下させて降伏
比を低下するのに有効であるが、0.50mass%をこえて添
加してもその効果は飽和するため、0.05〜0.50mass%の
範囲とする。
Cr: 0.05 to 0.50 mass% Cr is effective for reducing the yield stress and the yield ratio of the steel pipe after the stress relief annealing in the manufacturing process described later by adding 0.05 mass% or more. , The effect is saturated even if added over 0.50mass%, so the range is 0.05 to 0.50mass%.

【0024】Mo:0.05〜0.50mass% Moは、0.05mass%以上の添加により析出物の微細化が達
成され、後述の製造工程における歪取り焼鈍後の鋼管の
引張強さを上昇させる効果がある。一方、0.50mass%を
こえて添加すると、溶接性が劣化するため、0.50mass%
を上限とする。
Mo: 0.05 to 0.50 mass% Mo has the effect of increasing the tensile strength of the steel pipe after stress relief annealing in the manufacturing process described later by achieving the refinement of precipitates by the addition of 0.05 mass% or more. . On the other hand, if added over 0.50 mass%, the weldability will deteriorate, so 0.50 mass%
Is the upper limit.

【0025】以上の成分組成を基本として、さらにTi:
0.002 〜0.030 mass%およびREM :0.001 〜0.01mass%
を複合して含有させることが肝要である。すなわち、上
述のとおり、TiおよびREM を複合添加することによっ
て、溶接部靱性を格段に向上することができるのであ
る。
Based on the above component composition, Ti:
0.002-0.030 mass% and REM: 0.001-0.01 mass%
It is essential to include a complex of. That is, as described above, by adding Ti and REM in combination, the toughness of the weld zone can be significantly improved.

【0026】Ti:0.002 〜0.030 mass% Tiは、TiN として析出し、1400℃までの温度域において
初期γ粒の成長を抑制することによって、溶接部靱性を
向上するのに有用である。そのためには、0.002 mass%
以上の含有が必要であるが、0.030 mass%をこえて添加
してもその効果は飽和するため、0.002 〜0.030 mass%
の範囲とする。
Ti: 0.002 to 0.030 mass% Ti precipitates as TiN and is useful for improving the toughness of the welded portion by suppressing the growth of initial γ grains in the temperature range up to 1400 ° C. For that, 0.002 mass%
The above content is required, but even if added over 0.030 mass%, the effect is saturated, so 0.002 to 0.030 mass%
The range is.

【0027】REM :0.001 〜0.01mass% REM は、Tiと同様に、初期γ粒をピンニングし粒成長を
抑制する効果を有し、特に1400℃以上の高温域において
もREM(O,S)として残留するため、その効果を、例えば大
入熱溶接を行った場合等にも発揮することができる。そ
のためには、0.001 mass%以上の含有が必要であるが、
0.01mass%をこえて添加してもその効果は飽和するた
め、0.001 〜0.01mass%の範囲とする。
REM: 0.001 to 0.01 mass% REM has the effect of pinning the initial γ grains and suppressing grain growth, similar to Ti, especially as REM (O, S) even in the high temperature range of 1400 ° C or higher. Since it remains, the effect can be exhibited even when large heat input welding is performed. For that purpose, it is necessary to contain 0.001 mass% or more,
Even if added in excess of 0.01 mass%, the effect will be saturated, so the range is 0.001 to 0.01 mass%.

【0028】さらに、上記の成分組成において、上記し
た式に従うCeqを0.47以下に規制する必要がある。すな
わち、Ceqが0.47をこえると、溶接性が極めて悪くな
り、溶接後に割れが発生し易くなるため、Ceqは0.47以
下とする。
Further, in the above component composition, it is necessary to regulate Ceq according to the above formula to 0.47 or less. That is, if Ceq exceeds 0.47, the weldability becomes extremely poor and cracks easily occur after welding, so Ceq is set to 0.47 or less.

【0029】また、以上の必須成分に加えて、Cu:0.05
〜1.0 mass%、Ni:0.05〜1.0 mass%、V:0.005 〜0.
05mass%、Nb:0.005 〜0.05mass%およびCa:0.0005〜
0.005 mass%のいずれか1種または2種以上を含有する
ことができる。
In addition to the above essential components, Cu: 0.05
~ 1.0 mass%, Ni: 0.05-1.0 mass%, V: 0.005-0.0.
05mass%, Nb: 0.005-0.05mass% and Ca: 0.0005-
Any one kind or two kinds or more of 0.005 mass% can be contained.

【0030】Cu:0.05〜1.0 mass% Cuは、0.05mass%以上の添加により固溶強化を期待でき
るが、1.0 mass%をこえて添加すると靱性を劣化するた
め、0.05〜1.0 mass%の範囲とすることが好ましい。
Cu: 0.05 to 1.0 mass% Cu can be expected to be solid solution strengthened by adding 0.05 mass% or more, but if added in excess of 1.0 mass%, toughness deteriorates. Preferably.

【0031】Ni:0.05〜1.0 mass% Niは、0.05mass%以上で添加すると、母材の高靭性を阻
害することなしに強度の上昇に寄与するが、1.0 mass%
をこえて添加しても、その効果が飽和するため、0.05〜
1.0 mass%の範囲とすることが好ましい。
Ni: 0.05-1.0 mass% When Ni is added in an amount of 0.05 mass% or more, it contributes to the increase in strength without impairing the high toughness of the base material.
If added over 5, the effect will saturate, so 0.05-
It is preferably in the range of 1.0 mass%.

【0032】V:0.005 〜0.05mass% Vは、0.005 mass%以上で添加すると、V(CN)として析
出し、後述の製造工程における歪取り焼鈍後の引張強さ
の確保に役立つが、 0.05mass%をこえると靭性の低下を
招くため、0.005 〜0.05mass%の範囲とすることが好ま
しい。
V: 0.005 to 0.05 mass% When V is added in an amount of 0.005 mass% or more, V is precipitated as V (CN), which is useful for ensuring the tensile strength after strain relief annealing in the manufacturing process described later. %, The toughness is lowered. Therefore, it is preferable to set the content in the range of 0.005 to 0.05 mass%.

【0033】Nb:0.005 〜0.05mass% Nbは、0.005 mass%以上の添加で析出し、後述の製造工
程における歪取り焼鈍後の引張強さの確保に役立つが、
0.05mass%を超えて添加しても、その効果が飽和するた
め、0.005 〜0.05mass%の範囲とすることが好ましい。
Nb: 0.005 to 0.05 mass% Nb precipitates with addition of 0.005 mass% or more, and helps secure the tensile strength after strain relief annealing in the manufacturing process described later,
Even if added in excess of 0.05 mass%, the effect will be saturated, so the range of 0.005 to 0.05 mass% is preferable.

【0034】なお、上記の成分組成に成る鋼板は、以下
に示す2通りの方法によって、有利に円柱鋼管柱に製造
することができる。すなわち、1つは、再加熱焼入れ、
2相域焼戻し、焼戻し、造管、歪み取り焼鈍による方法
(以下、A法とする)、残りの1つは、圧延後直接焼入
れ、2相域焼戻し、焼戻し、造管、歪み取り焼鈍による
方法(以下、B法とする)である。
The steel sheet having the above-described composition can be advantageously manufactured into a cylindrical steel tubular column by the following two methods. That is, one is reheating and quenching,
Two-phase region tempering, tempering, pipe forming, strain relief annealing (hereinafter referred to as A method), the remaining one is direct quenching after rolling, two-phase region tempering, tempering, pipe forming, strain relief annealing (Hereinafter referred to as method B).

【0035】まず、A法について述べる。すなわち、上
記の成分組成に成る鋼板は、所定の組成範囲に溶製され
た鋼を、Ac3変態点以上のγ単相域に加熱し、γ再結晶
域で所定板厚まで圧延して空冷する工程を経て得られる
が、特にこの工程に限定する必要はない。
First, the method A will be described. That is, in the steel sheet having the above-mentioned composition, the steel melted in the predetermined composition range is heated to the γ single phase region of the Ac 3 transformation point or higher, and rolled in the γ recrystallization region to the predetermined plate thickness and air-cooled. Although it can be obtained through the process, it is not particularly limited to this process.

【0036】次いで、上記鋼板を、Ac3変態点〜1000℃
の温度域に加熱して焼入れを施し、次いでAc1変態点以
上Ac3変態点以下の温度域に再加熱して焼入れを施し、
さらに460 〜650 ℃の温度域での焼戻しを行ったのち、
該鋼板を管状に成形し、その継目を溶接して鋼管を作製
し、該鋼管を500 〜700 ℃の温度域で焼鈍する。
Then, the above steel sheet is subjected to an A c3 transformation point to 1000 ° C.
To the temperature range of A c1 transformation point or more and A c3 transformation point or less, and quenching is performed.
After tempering in the temperature range of 460 to 650 ℃,
The steel sheet is formed into a tubular shape, the seams thereof are welded to produce a steel pipe, and the steel pipe is annealed in a temperature range of 500 to 700 ° C.

【0037】すなわち、造管前の鋼板をAc3変態点〜10
00℃に加熱焼入する理由は、 この温度域に加熱すること
で鋼を完全にオーステナイト化し、次いで焼入れること
で十分な強度を確保するためである。Ac3点以上に加熱
しなければ完全にオーステナイト化せず、 十分な強度は
得られない。一方、 1000℃をこえて加熱すると、初期オ
ーステナイト粒径が粗大化し靱性が劣化する。
That is, the steel sheet before pipe forming has an A c3 transformation point of about 10
The reason for heating and quenching to 00 ° C is that the steel is completely austenitized by heating in this temperature range, and then it is quenched to ensure sufficient strength. If it is not heated to A c3 point or more, it will not be fully austenitized and sufficient strength cannot be obtained. On the other hand, if the temperature exceeds 1000 ° C, the initial austenite grain size becomes coarse and the toughness deteriorates.

【0038】次に、Ac1変態点以上Ac3変態点以下の2
相域に加熱し焼入れる理由は、CおよびMnを十分に2相
分離させて濃度分布をつくるためである。 これにより、
その後の造管、 そして歪取り焼鈍後も濃度分布が維持さ
れ、硬質域と軟質域との2相化により、降伏比を低下す
ることが容易になる。Ac1変態点以上Ac3変態点以下の
2相域で保持しなければ、 このようなCおよびMnの濃度
分布を起こしにくい。なお、このような硬質域および軟
質域の分配は1:1で起こることが最適である。 また、
2相域加熱後、 焼入れることにより、最終的な強度を確
保しやすい。
Next, 2 above the A c1 transformation point and below the A c3 transformation point
The reason for heating and quenching in the phase region is that C and Mn are sufficiently separated into two phases to form a concentration distribution. This allows
The concentration distribution is maintained even after the subsequent pipe forming and strain relief annealing, and the yield ratio can be easily lowered by the two-phase formation of the hard region and the soft region. Such a concentration distribution of C and Mn is unlikely to occur unless it is maintained in the two-phase region between the A c1 transformation point and the A c3 transformation point. Optimally, such distribution of hard and soft regions occurs at 1: 1. Also,
It is easy to secure the final strength by quenching after heating the two-phase region.

【0039】さらに、460 〜650 ℃に焼戻す理由は、46
0 ℃以上に加熱しなければ、 鋼板強度が高くなって、 引
き続く造管の負荷が大きくなる。一方、 650℃をこえて
加熱すると、著しい強度低下が生じて、 最終的に強度が
確保できない。
Further, the reason for tempering to 460 to 650 ° C. is 46
If it is not heated above 0 ° C, the strength of the steel plate will increase and the subsequent load on the pipe making will increase. On the other hand, if the temperature exceeds 650 ° C and is heated, the strength is remarkably reduced, and the strength cannot be finally secured.

【0040】最後に、造管後の焼鈍は、500 〜700 ℃の
温度範囲で行う。なぜなら、500 ℃未満では強度が高く
なりすぎ、 一方700 ℃をこえると強度が低くなるためで
ある。
Finally, the annealing after pipe making is carried out in the temperature range of 500 to 700 ° C. This is because the strength becomes too high below 500 ° C, while the strength becomes low above 700 ° C.

【0041】次に、B法について述べる。すなわち、上
記した所定の組成範囲に溶製された鋼を、Ac3変態点以
上のγ単相域に加熱し、Ar3変態点以上の温度域で圧延
を行い、この圧延後の鋼板に直ちに焼入れを施し、 次い
でAc1変態点以上Ac3変態点以下の温度域に再加熱して
焼入れを施し、 さらに460 〜650 ℃の温度域での焼戻し
を行ったのち、鋼板を管状に成形しその継目を溶接して
鋼管を作製し、該鋼管を500 〜700 ℃の温度域で焼鈍す
る。
Next, the method B will be described. That is, the steel melted in the above-mentioned predetermined composition range is heated to a γ single-phase region above the A c3 transformation point and rolled in a temperature region above the Ar 3 transformation point, and the steel sheet after this rolling is immediately rolled. After quenching, then reheating to a temperature range of A c1 transformation point or more and A c3 transformation point or less for quenching, and further tempering in a temperature range of 460 to 650 ° C, the steel sheet is formed into a tubular shape. A seam is welded to produce a steel pipe, and the steel pipe is annealed in a temperature range of 500 to 700 ° C.

【0042】ここで、始めにAc3変態点以上のγ単相域
に加熱し、Ar3変態点以上の温度域で圧延を行い、この
圧延後の鋼板に直ちに焼入れを施す理由は、このAc3
態点以上のγ単相域に加熱することで鋼を完全にオース
テナイト化し、次いでAr3変態点以上の温度域で圧延を
行うことで粗大化したγ粒を微細化し、併せて鋼板を所
定形状に整えるためである。さらに、圧延後の鋼板をそ
のまま焼入れ、つまり圧延後すみやかに、少なくともA
r3変態点以上から冷却することにより、十分な強度を確
保することができる。なお、このB法はA法に比べて、
旧γ粒径が粗大となり易いため、降伏応力(YS)が低
くなり降伏比(YR)をより低くすることが可能であ
る。
Here, the reason for first heating to the γ single phase region above the A c3 transformation point and rolling in the temperature region above the A r3 transformation point and immediately quenching the rolled steel sheet is this A The steel is completely austenitized by heating to the γ single-phase region above the c3 transformation point, and then rolling is performed in the temperature region above the Ar3 transformation point to refine the coarsened γ grains, and the steel sheet This is to adjust the shape. Further, the rolled steel sheet is quenched as it is, that is, at least immediately after rolling, A
By cooling from the r3 transformation point or higher, sufficient strength can be secured. In addition, this method B is
Since the old γ grain size is likely to be coarse, the yield stress (YS) becomes low, and the yield ratio (YR) can be made lower.

【0043】[0043]

【実施例】実施例1 表2に示す成分組成になる鋼スラブを、 A法:1200℃に加熱後1100℃までに圧延を終了する、熱
間圧延によって作製し、該鋼板を900 ℃に再加熱して焼
入れまたは、 B法:1150℃に加熱後、温度が930 ℃に低下する間に圧
延を行って、直ちに900℃以上から室温まで水冷した。
Example 1 A steel slab having the chemical composition shown in Table 2 was prepared by hot rolling, in which method A: heating to 1200 ° C. and then rolling up to 1100 ° C. was completed, and the steel sheet was reheated to 900 ° C. After heating and quenching or Method B: After heating to 1150 ° C, rolling was performed while the temperature dropped to 930 ° C, and immediately water cooling from 900 ° C or higher to room temperature was performed.

【0044】引き続き、790 ℃の2相域で焼入れたの
ち、540 ℃で焼戻しを行ったのち、該鋼板に、板厚
(t)/外径(d)=8%の造管処理を施して管状に成
形し、その継目をサブマージアーク溶接にて入熱20000
、 50000、70000 および100000J/cmの各条件で溶接
して鋼管を作製し、該鋼管を550 ℃の温度の歪取り焼鈍
に供した。
Subsequently, after quenching in the two-phase region of 790 ° C. and tempering at 540 ° C., the steel sheet was subjected to a pipe forming treatment of plate thickness (t) / outer diameter (d) = 8%. Molded into a tubular shape, the seam of which is input by submerged arc welding with heat input of 20000
, 50000, 70000 and 100000 J / cm were welded to produce a steel pipe, and the steel pipe was subjected to strain relief annealing at a temperature of 550 ° C.

【0045】[0045]

【表2】 [Table 2]

【0046】かくして得られた鋼管について、母材の機
械的性質について評価した結果を表3に示す。また、一
部の鋼については、TiおよびREM 添加の影響を調査する
ため、溶接部靱性を評価した。その評価結果を、表3に
併記する。表3から、この発明に従う成分組成を有する
鋼管は、高強度でありながら低降伏比であり、特にTiお
よびREM を所定の範囲で複合添加した鋼No. 15および21
〜23では、溶接部靱性、とりわけ大入熱溶接後の溶接部
靱性が大きいことは明らかである。
Table 3 shows the results of evaluation of the mechanical properties of the base material of the steel pipe thus obtained. For some steels, weld toughness was evaluated to investigate the effect of Ti and REM additions. The evaluation results are also shown in Table 3. From Table 3, the steel pipe having the composition according to the present invention has high strength and low yield ratio, and in particular, steel Nos. 15 and 21 in which Ti and REM are compounded in a predetermined range are added.
It is clear that the weld toughness is particularly high in the range of ~ 23, especially after the high heat input welding.

【0047】[0047]

【表3】 [Table 3]

【0048】実施例2 表2に示した鋼No. 15の成分組成になる鋼板を実施例1
と同じく熱間圧延によって作製し、該鋼板に、表4に示
す種々の条件の熱処理を施したのち、該鋼板に、板厚
(t)/外径(d)=4〜8%の造管処理を施して管状
に成形し、その継目を表4に示す種々の条件で溶接して
鋼管を作製し、該鋼管を表4に示す温度の歪取り焼鈍に
供した。
Example 2 A steel sheet having the composition of steel No. 15 shown in Table 2 was used in Example 1
Produced by hot rolling in the same manner as described above, and after subjecting the steel sheet to heat treatment under various conditions shown in Table 4, the steel sheet was formed into a pipe having a thickness (t) / outer diameter (d) = 4 to 8%. The tube was treated to form a tube, and the joints were welded under various conditions shown in Table 4 to prepare a steel tube, and the steel tube was subjected to strain relief annealing at the temperatures shown in Table 4.

【0049】かくして得られた鋼管について、母材の機
械的性質について評価した結果を、表4に併記する。表
4から、この発明に従う熱処理を施して得られた鋼板
は、高強度でありながら低い降伏比を有することがわか
る。また、直接焼入れを用いたB法に従って製造するこ
とにより、低い降伏比が得られることがわかる。
Table 4 also shows the results of evaluating the mechanical properties of the base material of the steel pipes thus obtained. From Table 4, it can be seen that the steel sheet obtained by performing the heat treatment according to the present invention has a high yield strength and a low yield ratio. Further, it can be seen that a low yield ratio can be obtained by manufacturing according to the method B using direct quenching.

【0050】[0050]

【表4】 [Table 4]

【0051】[0051]

【発明の効果】この発明によれば、高強度かつ低降伏比
を満足した溶接鋼管における、溶接部靱性が格段に向上
されるから、特に高層建築物の柱となるCFT に最適の鋼
管を提供することができる。
EFFECTS OF THE INVENTION According to the present invention, since the weld toughness of welded steel pipe satisfying high strength and low yield ratio is remarkably improved, a steel pipe most suitable for CFT which is a pillar of a high-rise building is provided. can do.

【図面の簡単な説明】[Brief description of drawings]

【図1】 TiおよびREM の添加効果を示す概念図であ
る。
FIG. 1 is a conceptual diagram showing the effect of adding Ti and REM.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 38/38 C22C 38/38 38/58 38/58 Fターム(参考) 4K037 EA01 EA05 EA06 EA11 EA13 EA15 EA17 EA20 EA27 EA31 EA32 EA36 FA02 FC04 FC05 FF02 4K042 AA06 BA01 CA03 CA05 CA06 CA08 CA10 CA12 CA13 CA14 DA03 DC02 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C22C 38/38 C22C 38/38 38/58 38/58 F term (reference) 4K037 EA01 EA05 EA06 EA11 EA13 EA15 EA17 EA20 EA27 EA31 EA32 EA36 FA02 FC04 FC05 FF02 4K042 AA06 BA01 CA03 CA05 CA06 CA08 CA10 CA12 CA13 CA14 DA03 DC02

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 C:0.05〜0.15mass%、Si:0.10〜0.50
mass%、Mn:0.5 〜2.0mass%、Al:0.005 〜0.10mass
%、Cr:0.05〜0.50mass%およびMo:0.05〜0.50mass%
を含み、さらにTi:0.002 〜0.03mass%およびREM : 0.
001 〜0.01mass%を含有し、かつ下記式に従うCeqが0.
47以下である成分組成を有する鋼板を、A c3変態点〜10
00℃の温度域に加熱して焼入れを施し、 次いでAc1変態
点以上Ac3変態点以下の温度域に再加熱して焼入れを施
し、 さらに460 〜650 ℃の温度域での焼戻しを行ったの
ち、該鋼板を管状に成形しその継目を溶接して鋼管を作
製し、該鋼管を500 〜700 ℃の温度域で焼鈍することを
特徴とする溶接部靱性の良好な高強度低降伏比鋼管の製
造方法。 記 Ceq=C[mass%] + Mn[mass%]/6+ Si[mass%]/24+
Ni[mass%]/40+ Cr[mass%]/5+ Mo[mass%]/4+V
[mass%] /14
1. C: 0.05 to 0.15 mass%, Si: 0.10 to 0.50
mass%, Mn: 0.5 to 2.0 mass%, Al: 0.005 to 0.10 mass
%, Cr: 0.05 to 0.50 mass% and Mo: 0.05 to 0.50 mass%
In addition, Ti: 0.002-0.03 mass% and REM: 0.
Ceq in accordance with the following formula is 0.
A steel sheet having a chemical composition of 47 or less is c3Transformation point ~ 10
Heated to a temperature range of 00 ° C to quench it, then Ac1transformation
Point or above Ac3Reheat to a temperature range below the transformation point and quench
And tempered in the temperature range of 460 to 650 ℃.
Then, the steel plate is formed into a tubular shape and the seams are welded to form a steel pipe.
And annealing the steel pipe in the temperature range of 500 to 700 ° C.
Manufacture of high strength and low yield ratio steel pipe with good weld toughness
Build method. Record Ceq = C [mass%] + Mn [mass%] / 6+ Si [mass%] / 24+
 Ni [mass%] / 40 + Cr [mass%] / 5 + Mo [mass%] / 4 + V
[mass%] / 14
【請求項2】 C:0.05〜0.15mass%、Si:0.10〜0.50
mass%、Mn:0.5 〜2.0mass%、Al:0.005 〜0.10mass
%、Cr:0.05〜0.50mass%およびMo:0.05〜0.50mass%
を含み、さらにTi:0.002 〜0.03mass%およびREM : 0.
001 〜0.01mass%を含有し、かつ下記式に従うCeqが0.
47以下である成分組成を有する鋼スラブを、Ac3変態点
〜1300℃の温度域に加熱し、Ar3変態点以上の温度域で
圧延を行い、この圧延後の鋼板をそのまま焼入れし、 次
いでAc1変態点以上Ac3変態点以下の温度域に再加熱し
て焼入れを施し、 さらに460 〜650 ℃の温度域での焼戻
しを行ったのち、鋼板を管状に成形しその継目を溶接し
て鋼管を作製し、該鋼管を500 〜700 ℃の温度域で焼鈍
することを特徴とする溶接部靱性の良好な高強度低降伏
比鋼管の製造方法。 記 Ceq=C[mass%] + Mn[mass%]/6+ Si[mass%]/24+
Ni[mass%]/40+ Cr[mass%]/5+ Mo[mass%]/4+V
[mass%] /14
2. C: 0.05 to 0.15 mass%, Si: 0.10 to 0.50
mass%, Mn: 0.5 to 2.0 mass%, Al: 0.005 to 0.10 mass
%, Cr: 0.05 to 0.50 mass% and Mo: 0.05 to 0.50 mass%
In addition, Ti: 0.002-0.03 mass% and REM: 0.
Ceq in accordance with the following formula is 0.
A steel slab having a component composition of 47 or less is heated to a temperature range of A c3 transformation point to 1300 ° C., rolled in a temperature range of A r3 transformation point or more, and the steel sheet after the rolling is quenched as it is, After reheating to a temperature range of A c1 transformation point or more and A c3 transformation point or less and quenching, and further tempering in a temperature range of 460 to 650 ° C, the steel sheet is formed into a tubular shape and its seam is welded. A method for producing a high-strength low-yield-ratio steel pipe having good weld toughness, which comprises producing a steel pipe and annealing the steel pipe in a temperature range of 500 to 700 ° C. Note Ceq = C [mass%] + Mn [mass%] / 6+ Si [mass%] / 24+
Ni [mass%] / 40 + Cr [mass%] / 5 + Mo [mass%] / 4 + V
[mass%] / 14
【請求項3】 請求項1または2において、鋼板は、さ
らにCu:0.05〜1.0 mass%、Ni:0.05〜1.0 mass%、
V:0.005 〜0.05mass%、Nb:0.005 〜0.05mass%およ
びCa:0.0005〜0.005 mass%のいずれか1種または2種
以上を含有する成分組成を有することを特徴とする溶接
部靱性の良好な高強度低降伏比鋼管の製造方法。
3. The steel sheet according to claim 1, further comprising Cu: 0.05 to 1.0 mass%, Ni: 0.05 to 1.0 mass%,
V: 0.005 to 0.05 mass%, Nb: 0.005 to 0.05 mass%, and Ca: 0.0005 to 0.005 mass% Any one or two or more kinds of component compositions are contained, and good weld toughness is characterized. Manufacturing method of high strength and low yield ratio steel pipe.
JP2002314704A 2002-02-08 2002-10-29 Method for manufacturing steel pipe with high strength and low yield ratio superior in weld part toughness Pending JP2003301219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002314704A JP2003301219A (en) 2002-02-08 2002-10-29 Method for manufacturing steel pipe with high strength and low yield ratio superior in weld part toughness

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002031807 2002-02-08
JP2002-31807 2002-02-08
JP2002314704A JP2003301219A (en) 2002-02-08 2002-10-29 Method for manufacturing steel pipe with high strength and low yield ratio superior in weld part toughness

Publications (1)

Publication Number Publication Date
JP2003301219A true JP2003301219A (en) 2003-10-24

Family

ID=29404974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002314704A Pending JP2003301219A (en) 2002-02-08 2002-10-29 Method for manufacturing steel pipe with high strength and low yield ratio superior in weld part toughness

Country Status (1)

Country Link
JP (1) JP2003301219A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006223408A (en) * 2005-02-15 2006-08-31 Sankyo Kk Game machine
JP2006223413A (en) * 2005-02-15 2006-08-31 Sankyo Kk Game machine
CN101798826A (en) * 2010-03-05 2010-08-11 宜都市万鑫精密铸造有限公司 Integral-type excavator bucket and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006223408A (en) * 2005-02-15 2006-08-31 Sankyo Kk Game machine
JP2006223413A (en) * 2005-02-15 2006-08-31 Sankyo Kk Game machine
CN101798826A (en) * 2010-03-05 2010-08-11 宜都市万鑫精密铸造有限公司 Integral-type excavator bucket and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP4844687B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
JP5079419B2 (en) Steel for welded structure with excellent toughness of weld heat affected zone, method for producing the same, and method for producing welded structure
JP5217385B2 (en) Steel sheet for high toughness line pipe and method for producing the same
JP4655670B2 (en) Manufacturing method of high strength welded steel pipe with low yield ratio and excellent weld toughness
JP4071906B2 (en) Manufacturing method of steel pipe for high tension line pipe with excellent low temperature toughness
JP2009270194A (en) PROCESS FOR PRODUCTION OF 780 MPa-GRADE HIGH-TENSILE-STRENGTH STEEL PLATE EXCELLENT IN LOW-TEMPERATURE TOUGHNESS
JP5034290B2 (en) Low yield ratio high strength thick steel plate and method for producing the same
JP4096839B2 (en) Manufacturing method of high yield thick steel plate with low yield ratio and excellent toughness of heat affected zone
JP4656416B2 (en) Refractory steel with excellent weldability
JP2005187853A (en) Method for producing high strength thick steel plate excellent in toughness in extra-high heat input welded-heat affected part
JP2009287081A (en) High-tension steel and producing method therefor
JP5999005B2 (en) Low yield ratio high strength steel sheet with excellent weld heat affected zone toughness and method for producing the same
JP5028761B2 (en) Manufacturing method of high strength welded steel pipe
JP5151034B2 (en) Manufacturing method of steel plate for high tension line pipe and steel plate for high tension line pipe
JP7082669B2 (en) High-strength, high-toughness hot-rolled steel sheet and its manufacturing method
JP4433844B2 (en) Method for producing high strength steel with excellent fire resistance and toughness of heat affected zone
JP2008280602A (en) High productivity type high-strength high-toughness steel plate and its production method
JP2008144216A (en) Method for producing steel for welded structure excellent in high temperature strength and low temperature toughness
JP2003301219A (en) Method for manufacturing steel pipe with high strength and low yield ratio superior in weld part toughness
JP2898455B2 (en) Manufacturing method of high strength steel with excellent weldability
JP2005220379A (en) Method for producing non-heat treated high strength thick steel plate excellent in toughness at extra-large heat input weld heat-affected zone
JPS6293312A (en) Manufacture of high tensile steel stock for stress relief annealing
JP2005307313A (en) Method for producing steel plate excellent in earthquake-proof and weldability
JP7260779B2 (en) High strength steel plate for high heat input welding
JP4639508B2 (en) Manufacturing method of low yield ratio steel with excellent fire resistance